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We present a uniformly first order accurate numerical method for solving the Klein-
Gordon-Zakharov (KGZ) system with two dimensionless parameters 0 < ε ≤ 1 and 0 <
γ ≤ 1, which are inversely proportional to the plasma frequency and the acoustic speed, 
respectively. In the simultaneous high-plasma-frequency and subsonic limit regime, i.e. 
ε < γ → 0+, the KGZ system collapses to a cubic Schrödinger equation, and the solution 
propagates waves with O (ε2)-wavelength in time and meanwhile contains rapid outgoing 
initial layers with speed O (1/γ ) in space due to the incompatibility of the initial data. By 
presenting a multiscale decomposition of the KGZ system, we propose a multiscale time 
integrator Fourier pseudospectral method which is explicit, efficient and uniformly accurate 
for solving the KGZ system for all 0 < ε < γ ≤ 1. Numerical results are reported to show 
the efficiency and accuracy of scheme. Finally, the method is applied to investigate the 
convergence rates of the KGZ system to its limiting models when ε < γ → 0+.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

The Zakharov type models are of paramount importance for studying the Langmuir turbulence in plasma dynamics 
[37,47,48,38,18,24]. As one of them, the Klein-Gordon-Zakharov (KGZ) system was derived from the Euler-Maxwell equations 
to describe the interaction between Langmuir waves and ion sound waves in the plasma [11,34,37,45]. We shall consider in 
this work, the KGZ system (d = 1, 2, 3) in its dimensionless form [4,36,11,34]:

ε2∂ttψ(x, t) − �ψ(x, t) + 1

ε2
ψ(x, t) + ψ(x, t)φ(x, t) = 0, (1.1a)

γ 2∂ttφ(x, t) − �φ(x, t) − �ψ2(x, t) = 0, x ∈ Rd, t > 0, (1.1b)

ψ(x,0) = ψ0(x), ∂tψ(x,0) = ψ1(x)

ε2
, φ(x,0) = φ0(x), ∂tφ(x,0) = φ1(x)

γ
, (1.1c)
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where ψ := ψ(x, t) :Rd × [0, ∞) →R and φ := φ(x, t) :Rd × [0, ∞) →R are the unknowns denoting respectively, the fast 
time scale component of the electric field and the deviation of ion density from a constant equilibrium. Here 0 < ε ≤ 1 and 
0 < γ ≤ 1 are introduced [11,34,4] as two dimensionless parameters that are inversely proportional to the plasma frequency 
and the ion sound speed, respectively, and ψ0, ψ1, φ0 and φ1 are given real-valued initial functions which are bounded for 
ε, γ ∈ (0, 1]. As is well-known, the energy of the KGZ system (1.1) is conserved as

E(t) :=
∫
Rd

[
ε2 (∂tψ)2 + |∇ψ |2 + 1

ε2
ψ2 + γ 2

2
|∇ϕ|2 + 1

2
φ2 + φψ2

]
dx

≡
∫
Rd

[
1

ε2
ψ2

1 + |∇ψ0|2 + 1

ε2
ψ2

0 + 1

2
|∇ϕ0|2 + 1

2
φ2

0 + φ0ψ
2
0

]
dx = E(0), t ≥ 0, (1.2)

where ϕ(x, t) solves �ϕ(x, t) = ∂tφ(x, t) with lim|x|→∞ϕ(x, t) = 0 and ϕ0(x) = �−1φ1(x).

In the literature, the KGZ system has been studied in different parameter regimes both analytically and numerically. In 
the classical regime of (1.1), i.e. ε = O (1) and γ = O (1), the well-posedness of the Cauchy problem has been established in 
[25,40], and numerical discretizations equipped with finite difference time domain method [46] or finite element method 
[21] or spectral element method [17] or exponential wave integrator [49] have been considered. When γ = O (1) and 
ε 
 1, the KGZ system (1.1) is in the high-plasma-frequency limit regime, and (1.1) has been proved to converge to the 
Zakharov system [11,15,35] as ε → 0. The solution of (1.1) in such regime propagates waves with wavelength at O (ε2)

in time, which causes severe numerical burden in computations, since classical schemes would require step size smaller 
than the wavelength. To enlarge the step size, a multiscale time integrator with uniform first order accuracy for ε ∈ (0, 1]
was proposed based on a decomposition by frequency in [8], and later a class of oscillatory integrators were proposed in 
[10] to further overcome the numerical loss of derivative in rigorous error analysis. On the other hand, when ε = O (1)

and γ 
 1 in (1.1), which is known as the subsonic limit regime, the KGZ system reduces to the nonlinear Klein-Gordon 
equation as γ → 0 [16]. In this regime, similar to the subsonic limit of Zakharov system [2,39,35,41,43,31,30], the solution 
of (1.1) propagates waves with wavelength at O (γ ) in time and contains outgoing initial layers at speed O (1/γ ) in space. 
To numerically handle the highly oscillatory behaviours here, an asymptotic consistent formulation was utilised to propose 
a finite difference method [5] and a multiscale time integrator [33] with accuracy uniform for γ ∈ (0, 1]. The last but more 
challenging regime of the KGZ system is the simultaneous high-plasma-frequency and subsonic limit regime, i.e. ε, γ 
 1 in 
(1.1). As ε, γ → 0 at the same time, under different ratio between the two small parameters, the KGZ system (1.1) may 
converge to different limit equations. Masmoudi and Nakanishi proved rigorously in [34] that under the case ε ≤ δγ → 0
with some fixed δ ∈ (0, 1), the KGZ system (1.1) converges to a cubic Schrödinger equation:⎧⎨⎩2i∂t znls(x, t) − �znls(x, t) − 2|znls(x, t)|2znls(x, t) = 0, x ∈Rd, t > 0,

znls(x,0) = 1

2
(ψ0(x) − iψ1(x)) ,

(1.3)

in the sense that

ψ → eit/ε2
znls + e−it/ε2

znls, φ → −2|znls|2 + Inls, ε ≤ δγ → 0, (1.4)

where Inls is the free wave defined by⎧⎪⎪⎪⎨⎪⎪⎪⎩
γ 2∂tt Inls(x, t) − �Inls(x, t) = 0, x ∈Rd, t > 0,

Inls(x,0) = φ0(x) + 2|znls(x,0)|2 = φ0(x) + 1

2
[ψ2

0 (x) + ψ2
1 (x)],

∂t Inls(x,0) = φ1(x)/γ .

The asymptotic behaviour of the solution (1.4) in the limit regime indicates that the solution ψ propagates waves with 
wavelength at O (ε2) in time and φ contains a fast outgoing initial layer with speed at O (1/γ ) in space. In fact, from 
numerical observations and formal analysis, this highly oscillatory behaviour is true in KGZ for a wide range of the δ not 
necessarily from (0, 1) for rigorous study in [34]. While note that for ε = γ , the KGZ system (1.1) may be locally ill-posed in 
the energy space due to lack of null form structure [34,35,32]. Another case γ = λε2 → 0 with some fixed λ was investigated 
in [36], where the KGZ system (1.1) was proved to converge to a different λ-dependent limit model, and the solution of KGZ 
in such case possesses different oscillatory and asymptotic behaviour. In this work, we shall focus on the case ε < γ .

The amplitude of the initial layer in φ is determined by the incompatibility of the given initial data in (1.1), which has 
a remarkable influence on the behaviour of the solution and the convergence rate in (1.4). To illustrate this, we take an 
one-dimensional example: d = 1, x = x in (1.1), γ = 2ε and
2
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ψ0(x) = sech(x2), ψ1(x) = e−x2

2
, x ∈ R, (1.5)

with the following two cases of φ0(x) and φ1(x):
(i) compatible initial data:

φ0(x) = −1

2
(ψ2

0 (x) + ψ2
1 (x)), φ1(x) = −4γ Re

(
znls(x,0)∂t znls(x,0)

)
, (1.6)

which perfectly matches with the limit (1.4) in initial position and derivative. Here Re( f ) represents the real part of f .
(ii) incompatible initial data:

φ0 = −1

2
(ψ2

0 (x) + ψ2
1 (x)) + ρ(x), φ1(x) = −4γ Re

(
znls(x,0)∂t znls(x,0)

)
, (1.7)

where we add the incompatibility

ρ(x) = g

(
x + 18

10

)
g

(
18 − x

9

)
cos(2x + π/4), g(x) = f (x)

f (x) + f (1 − x)
,

with f (x) = e−1/xχ(0,∞) and χ� being the characteristic function of the domain �. Fig. 1 displays the profiles of the 
solutions in the two cases under different ε. It can be seen that when the KGZ system (1.1) starts with initial data that has 
O (1)-incompatibility in the limit regime ε < γ 
 1, the solution contains both the rapid temporal oscillation and the fast 
outgoing initial layers of O (1)-amplitude. This complex highly oscillatory behaviour mixes numerical difficulties from the 
high-plasma-frequency limit regime [4,8,10] and the subsonic limit regime [7,6,31,30], and hence makes the computations of 
(1.1) extremely challenging in the regime ε < γ 
 1. As has been investigated in [4], the meshing strategy of the exponential 
integrator method is τ = O (ε2) in time with τ denoting the time step.

The aim of this work is to propose an efficient numerical scheme which is uniformly accurate for solving the KGZ 
system (1.1) for all 0 < ε < γ ≤ 1 under general (incompatible) initial data. To this purpose, a multiscale decomposition 
of (1.1) will be derived firstly. For component ψ , we adopt the modulated Fourier expansion [14,22,20,26] to explicitly 
express the oscillations from the high-plasma-frequency limit regime. For the component φ, we use an asymptotic consistent 
formulation motivated by that of the Zakharov system [6] in the subsonic limit regime, which extracts the initial layer. Based 
on the decomposed formulation which is in the spirit of asymptotic preserving [29], we propose a multiscale time integrator 
(MTI) via the time-splitting technique and exponential wave integrators accomplished by Fourier spectral/pseudospectral 
discretization in space. The proposed MTI scheme is explicit and uniformly accurate with first order convergence rate in 
time and spectral convergence rate in space for all parameters in the regime 0 < ε < γ ≤ 1. Extensive numerical evidences 
are provided to illustrate the accuracy and efficiency of the scheme. Finally, we apply the scheme to study the convergence 
rates of (1.1) to its limit models when ε < γ → 0+ .

The rest of the paper is organized as follows. In Section 2, we present the multiscale decomposition for the KGZ system. 
The uniformly accurate method is derived in Section 3 and numerical results are reported in Section 4. Some concluding 
remarks are drawn in Section 5. Throughout the paper, we adopt the standard Sobolev spaces as well as the corresponding 
norms [1] and denote A � B to represent that there exists a generic constant C > 0 independent of ε, γ , τ and h such that 
|A| ≤ C B .

2. A multiscale decomposition

In this section, we present a multiscale decomposition for the KGZ system (1.1) which is consistent with the limit model 
(1.3) in simultaneous limit regime ε < γ 
 1.

To handle the first equation in the KGZ system, we apply the modulated Fourier expansion of ψ in the high-plasma-
frequency limit [14,22,20]:

ψ(x, t) = eit/ε2
z(x, t) + e−it/ε2

z(x, t) + r(x, t), t ≥ 0, (2.1)

where z is the slow-varying part in terms of t/ε2 and r denotes the remainder. Plugging it into (1.1a), we get an equivalent 
equation as follows:

eit/ε2
[2i∂t − � + φ] z + e−it/ε2

[−2i∂t − � + φ] z

+ ε2∂ttr − �r + r

ε2
+ φr + ε2eit/ε2

∂tt z + ε2e−it/ε2
∂tt z = 0.

Decomposing it into a coupled system for the two unknowns z and r, we get

2i∂t z − �z + φz = 0, (2.2a)

ε2∂ttr − �r + r

ε2
+ φr + ε2eit/ε2

∂tt z + ε2e−it/ε2
∂tt z = 0. (2.2b)
3
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Fig. 1. Solution φ(x,1), φ(0, t), ψ(x,1), ψ(0, t) with (1.6) or (1.7).

Next, we describe how to set proper initial data for z and r. Based on the expansion and the given initial data, we have

z(x,0) + z(x,0) + r(x,0) = ψ0(x),

i

ε2 [z(x,0) − z(x,0)] + ∂t z(x,0) + ∂t z(x,0) + ∂tr(x,0) = ψ1(x)

ε2
.

To make it consistent with the limit Schrödinger equation (1.3), we set the initial data z(x, 0) the same as that of the limit 
equation (1.3), i.e.,

z(x,0) = 1

2
(ψ0(x) − iψ1(x)) =: z0(x), (2.3)

which immediately implies that

r(x,0) = 0, ∂tr(x,0) = −∂t z(x,0) − ∂t z(x,0),
4
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where ∂t z(x, 0) is given by (2.2a): ∂t z(x, 0) = − i
2 �z0(x) + i

2 φ0(x)z0(x).
For the density deviation φ, inspired by (1.4) and the asymptotic consistent formulation of the solution of the Zakharov 

system in the subsonic limit regime [7,6], we introduce an expansion on φ as

φ(x, t) = −2|z(x, t)|2 + I(x, t) + q(x, t), t ≥ 0, (2.4)

where I(x, t) represents the fast-outing initial layer caused by the initial incompatibility of the KGZ system, and it is defined 
by the free wave equation⎧⎪⎪⎪⎨⎪⎪⎪⎩

γ 2∂tt I − �I = 0,

I(x,0) = φ0(x) + 2|z0(x)|2,
∂t I(x,0) = φ1(x)

γ
+ 2∂t |z|2(x,0) = φ1(x)

γ
+ 2Im

(
z0(x)�z0(x)

)
,

(2.5)

where Im( f ) represents the imaginary part of f . Compared to the approximation (1.4), we consider a more detailed de-
composition which also involves the second initial layer caused by the initial incompatibility of the time derivative [39]. 
Plugging (2.4) into (1.1b), we can get the following equation on q(x, t):

γ 2∂ttq − �q = �(r2) + 2γ 2∂tt |z|2 + 2Re
[

e2it/ε2
�(z2) + 2eit/ε2

�(zr)
]
.

To summarize, by adopting the decomposition (2.1) and (2.4), we equivalently rewrite the KGZ system (1.1) into the 
following equations involving the unknowns z, r and q:

2i∂t z − �z + (−2|z|2 + q + I)z = 0, x ∈ Rd, t > 0, (2.6a)

ε2∂ttr − �r + r

ε2
+ (−2|z|2 + q + I)r + ε2eit/ε2

∂tt z + ε2e−it/ε2
∂tt z = 0, (2.6b)

γ 2∂ttq − �q = �(r2) + 2γ 2∂tt |z|2 + 2Re
[

e2it/ε2
�(z2) + 2eit/ε2

�(zr)
]
, (2.6c)

with initial data

z(x,0) = 1

2
[ψ0(x) − iψ1(x)], q(x,0) = 0, ∂tq(x,0) = 0,

r(x,0) = 0, ∂tr(x,0) = −∂t z(x,0) − ∂t z(x,0).

(2.7)

Note that the initial layer I is the free wave defined by (2.5), which can be written explicitly or solved separately and 
efficiently.

Remark 2.1. We remark that we didn’t adopt the multiscale decomposition by frequency from [3,8] for ψ , because it would 
result in a Schrödinger equation with a wave operator and a highly oscillatory potential, which is difficult to integrate in a 
uniformly accurate manner.

2.1. Formal estimates

We give a prior estimate of the decomposition. Firstly, inspired by the oscillation properties of the solution (cf. Fig. 1) 
and the theoretical results in [34,35], we assume that the solution of the KGZ system (1.1) and the initial data satisfy:

‖ψ0‖Hm+6 + ‖ψ1‖Hm+6 + ‖φ‖L∞([0,T ];Hm+6) + γ ‖∂tφ‖L∞([0,T ];Hm+2) + γ 2‖∂ttφ‖L∞([0,T ];Hm) � 1, (2.8)

where 0 < T < Tmax with Tmax being the maximal common existing time and m is an integer satisfying m > d/2 such that 
the bilinear inequality holds [1]

‖ f g‖Hm ≤ Cm,d‖ f ‖Hm‖g‖Hm .

Proposition 2.1 (A prior estimate). Under the assumption (2.8) and ε < γ , we have

‖z(t)‖Hm+6 + ‖∂t z(t)‖Hm+4 + γ ‖∂tt z(t)‖Hm+2 + γ 2‖∂3
t z(t)‖Hm � 1, t ∈ [0, T ];

‖r‖L∞([0,T ];Hm) � ε2, ‖∂tr‖L∞([0,T ];Hm) � 1;
‖q‖L∞([0,T ];Hm−1) � γ , ‖∂tq‖L∞([0,T ];Hm−2) � 1.
5
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Proof. We omit the space variable for simplicity of notation. It follows from (2.6a) and Duhamel’s formula that

z(t) = e− it
2 �z(0) + i

2

t∫
0

e− i
2 (t−s)� [φ(s)z(s)] ds.

Noticing eis� preserves Hk-norm, by applying the Minkovski’s inequality, the bilinear inequality, we get

‖z(t)‖Hm+6 ≤ ‖z(0)‖Hm+6 + 1

2

t∫
0

‖φ(s)z(s)‖Hm+6 ds

≤ ‖z(0)‖Hm+6 + Cm,d

2
‖φ‖L∞([0,T ];Hm+6)

t∫
0

‖z(s)‖Hm+6ds.

Applying the Gronwall’s inequality, we obtain

‖z‖L∞([0,T ];Hm+6) ≤ ‖z(0)‖Hm+6 eT Cm,d‖φ‖L∞([0,T ];Hm+6) � 1,

which concludes the boundedness of z by noticing the definition of z(0) (cf. (2.7)) and the assumption (2.8). For ∂t z, it 
follows from (2.6a) that

‖∂t z(t)‖Hm+4 ≤ 1

2
‖z(t)‖Hm+6 + Cm,d

2
‖φ(t)‖Hm+4‖z(t)‖Hm+4 � 1,

which directly gives the result. Similarly, we have

‖∂tt z(t)‖Hm+2 ≤ 1

2
‖∂t z(t)‖Hm+4 + Cm,d

2

[‖z(t)‖Hm+2‖∂tφ(t)‖Hm+2 + ‖∂t z(t)‖Hm+2‖φ(t)‖Hm+2

]
� 1

γ
,

‖∂3
t z(t)‖Hm ≤ 1

2
‖∂tt z(t)‖Hm+2 + Cm,d

2
[‖z(t)‖Hm‖∂ttφ(t)‖Hm + ‖∂tt z(t)‖Hm‖φ(t)‖Hm

+2‖∂t z(t)‖Hm‖∂tφ(t)‖Hm ] � 1

γ 2
,

by noting the assumption (2.8).
Next, we estimate r. Duhamel’s formula gives

r(t) = cos(t〈∇〉ε)r(0) + sin(t〈∇〉ε)
〈∇〉ε ∂tr(0)

−
t∫

0

sin((t − s)〈∇〉ε)
〈∇〉ε

[
φ(s)r(s)

ε2
+ eis/ε2

∂tt z(s) + e−is/ε2
∂tt z(s)

]
ds,

(2.9)

where 〈∇〉ε = 1
ε2

√
1 − ε2�. Noticing that r(0) = 0, (cf. (2.7)), we have

r(t) = sin(t〈∇〉ε)
〈∇〉ε ∂tr(0) −

t∫
0

sin((t − s)〈∇〉ε)
〈∇〉ε

(
φ(s)r(s)

ε2

)
ds + r1(t) + r2(t),

where

r1(t) = − Im

〈∇〉ε

⎡⎣eit〈∇〉ε
t∫

0

eis(1/ε2−〈∇〉ε)∂tt z(s)ds

⎤⎦ , r2(t) = Im

〈∇〉ε

⎡⎣e−it〈∇〉ε
t∫

0

eis(1/ε2+〈∇〉ε)∂tt z(s)ds

⎤⎦ .

Integrating the integrals in r1(t) and r2(t) by parts in different ways, we get

r1(t) = − Im

〈∇〉ε
[

eit/ε2
∂t z(t) − eit〈∇〉ε ∂t z(0)

]
− 〈∇〉ε − 1

ε2

〈∇〉ε Re

⎡⎣eit〈∇〉ε
t∫

0

eis(1/ε2−〈∇〉ε)∂t z(s)ds

⎤⎦ ,

r2(t) = −ε2Re

〈∇〉ε(1 + ε2〈∇〉ε)

⎡⎣eit/ε2
∂tt z(t) − e−it〈∇〉ε ∂tt z(0) − e−it〈∇〉ε

t∫
0

eis(1/ε2+〈∇〉ε)∂3
t z(s)ds

⎤⎦ .
6
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Noticing for any s ∈R, k ≥ 0,∥∥∥ u

〈∇〉ε
∥∥∥

Hk
≤ ε2‖u‖Hk , ‖ sin(s〈∇〉ε)u‖Hk ≤ ‖u‖Hk , ‖ cos(s〈∇〉ε)u‖Hk ≤ ‖u‖Hk ,

and

‖eis〈∇〉ε u‖Hk = ‖u‖Hk , 〈∇〉ε − 1

ε2
= −�

1 + √
1 − ε2�

,

∥∥∥(〈∇〉ε − 1

ε2

)
u
∥∥∥

Hk
≤ ‖u‖Hk+2 ,

which immediately yields that

‖r1(t)‖Hm ≤ 2ε2‖∂t z‖L∞([0,T ];Hm) + ε2T ‖∂t z‖L∞([0,T ];Hm+2) � ε2,

‖r2(t)‖Hm ≤ ε4
[

2‖∂tt z‖L∞([0,T ];Hm) + T ‖∂3
t z‖L∞([0,T ];Hm)

]
� ε4

γ 2
� ε2.

We derive that

‖r(t)‖Hm ≤ ε2‖∂tr(0)‖Hm + ‖r1(t)‖Hm + ‖r2(t)‖Hm + Cm,d‖φ‖L∞([0,T ];Hm)

t∫
0

‖r(s)‖Hm ds,

which implies that

‖r‖L∞([0,T ];Hm) ≤ eT Cm,d‖φ‖L∞([0,T ];Hm)

[
ε2‖∂tr(0)‖Hm + ‖r1(t)‖L∞([0,T ];Hm) + ‖r2(t)‖L∞([0,T ];Hm)

]
� ε2.

Differentiating (2.9) with respect to t , we get

∂tr(t) = cos(t〈∇〉ε)∂tr(0) − 1

ε2

t∫
0

cos((t − s)〈∇〉ε) (φ(s)r(s))ds + ∂tr1(t) + ∂tr2(t),

with

∂tr1(t) = Re
(

eit〈∇〉ε ∂t z(0) − eit/ε2
∂t z(t)

)
− 1

〈∇〉ε Im
(

eit/ε2
∂tt z(t)

)
+ (〈∇〉ε − 1

ε2

)
Im
(

eit〈∇〉ε
t∫

0

eis(1/ε2−〈∇〉ε)∂t z(s)ds
)
,

∂tr2(t) =
Im
[

eit/ε2
∂tt z(t) + ε2〈∇〉εe−it〈∇〉ε (∂tt z(0) + ∫ t

0 eis(1/ε2+〈∇〉ε)∂3
t z(s)ds

)]
〈∇〉ε(1 + ε2〈∇〉ε) .

Thus

‖∂tr(t)‖Hm ≤ ‖∂tr(0)‖Hm + Cm,d

ε2

t∫
0

‖φ(s)‖Hm‖r(s)‖Hm ds + 2‖∂t z‖L∞([0,T ];Hm)

+ 3ε2‖∂tt z‖L∞([0,T ];Hm) + T ‖∂t z‖L∞([0,T ];Hm+2) + Tε2‖∂3
t z‖L∞([0,T ];Hm)

� 1 + ε2

γ 2
� 1,

which completes the proof for the property of r(t).
For q(t), it follows from (2.6c) that

q(t) = 2γ

t∫
0

sin( t−s
γ |∇|)
|∇| [∂tt |z|2(s)]ds

− |∇|
γ

t∫
0

sin

(
t − s

γ
|∇|
)[

r2(s) + 2Re
(

e2is/ε2
z2(s) + 2eis/ε2

z(s)r(s)
)]

ds, (2.10)

where |∇| = √−�. From (2.6a), we get
7
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∂t |z|2 = Im(z�z), ∂tt |z|2 = Im(∂t z�z + z�∂t z),

which implies that∥∥∥∂tt |z|2
∥∥∥

Hm
� ‖∂t z‖Hm‖z‖Hm+2 + ‖z‖Hm‖∂t z‖Hm+2 � 1. (2.11)

Thus

‖q(t)‖Hm−1 � γ ‖∂tt |z|2‖Hm−1 + ‖q1(t)‖Hm−1 + 1

γ

[
‖r‖2

L∞([0,T ];Hm) + ‖r‖L∞([0,T ];Hm)‖z‖L∞([0,T ];Hm)

]
� γ + ‖q1(t)‖Hm−1 , (2.12)

where

q1(t) = −2|∇|
γ

Re

⎡⎣ t∫
0

sin(
t − s

γ
|∇|)

(
e2is/ε2

z2(s)
)

ds

⎤⎦= q2(t) + q3(t),

with

q2(t) = |∇|
γ

Im

⎡⎣e−it|∇|/γ
t∫

0

eis(2/ε2+|∇|/γ )z2(s)ds

⎤⎦ , q3(t) = −|∇|
γ

Im

⎡⎣eit|∇|/γ
t∫

0

eis(2/ε2−|∇|/γ )z2(s)ds

⎤⎦ .

Integrating q2(t) by parts, we get

q2(t) =
− ε2

γ |∇|
2 + ε2

γ |∇|
Re
[

e2it/ε2
z2(t) − e−it|∇|/γ (z2(0) + 2

t∫
0

eis(2/ε2+|∇|/γ )z(s)∂t z(s)ds
)]

,

which implies that

‖q2(t)‖Hm−1 � ε2

γ

[
‖z‖2

L∞([0,T ];Hm) + ‖z‖L∞([0,T ];Hm)‖∂t z‖L∞([0,T ];Hm)

]
� ε. (2.13)

For q3(t), we need to make a more careful investigation since it could involve a resonance. Taking Fourier transform of q3, 
we obtain

̂q3(t)(ξ) = i|ξ |
2γ

⎡⎣eit|ξ |/γ
t∫

0

eis(2/ε2−|ξ |/γ )̂z2(s)(ξ)ds − e−it|ξ |/γ
t∫

0

eis(|ξ |/γ −2/ε2)̂z2(s)(ξ)ds

⎤⎦ .

For |ξ | ≤ γ /ε2, integrating by parts, we get

̂q3(t)(ξ) =
ε2

γ |ξ |
4 − 2ε2

γ |ξ |

⎡⎣e
2it
ε2 ̂z2(t)(ξ) − e

it|ξ |
γ

(
̂z2(0)(ξ) + 2

t∫
0

e
is( 2

ε2 − |ξ |
γ )

̂z(s)∂t z(s)(ξ)ds
)

+e−2it/ε2 ̂
z2(t)(ξ) − e− it|ξ |

γ

(
̂

z2(0)(ξ) + 2

t∫
0

eis(|ξ |/γ −2/ε2) ̂z(s)∂t z(s)(ξ)ds
)⎤⎦ ,

which implies that∣∣∣̂q3(t)(ξ)

∣∣∣≤ ε2

2γ
|ξ |
[∣∣∣̂z2(t)(ξ)

∣∣∣+ ∣∣∣̂z2(0)(ξ)

∣∣∣+ ∣∣∣∣̂z2(t)(ξ)

∣∣∣∣+ ∣∣∣∣̂z2(0)(ξ)

∣∣∣∣
+2

t∫
0

(∣∣∣ ̂z(s)∂t z(s)(ξ)

∣∣∣+ ∣∣∣∣ ̂z(s)∂t z(s)(ξ)

∣∣∣∣)ds

⎤⎦ , |ξ | ≤ γ /ε2.

For |ξ | > γ /ε2, noticing that ∂̂k f
∂xk

j
(ξ) = (iξ j)

k f̂ (ξ) for k ∈N , which implies that

f̂ (ξ) = − 1
2
̂(� f )(ξ) = 1

4
̂(�2 f )(ξ).
|ξ | |ξ |

8



C. Su and X. Zhao Journal of Computational Physics 428 (2021) 110064
Hence for |ξ | > γ /ε2, we have

∣∣∣̂q3(t)(ξ)

∣∣∣≤ 1

2γ |ξ |3

⎡⎣ t∫
0

∣∣∣ ̂�2(z2(s))(ξ)

∣∣∣ds +
t∫

0

∣∣∣∣ ̂�2z2(s)(ξ)

∣∣∣∣ds

⎤⎦
� ε6

γ 4

⎡⎣ t∫
0

∣∣∣ ̂�2(z2(s))(ξ)

∣∣∣ds +
t∫

0

∣∣∣∣ ̂�2z2(s)(ξ)

∣∣∣∣ds

⎤⎦ .

Combining the estimates above, we get

‖q3(t)‖Hm−1 �
∥∥∥(1 + |ξ |)m−1

̂q3(t)(ξ)

∥∥∥
L2

� ε2

γ

[
‖z2(t)‖Hm + ‖z2(0)‖Hm + ‖z‖L∞([0,T ];Hm)‖∂t z‖L∞([0,T ];Hm)

]
+ ε6

γ 4
‖z2‖L∞([0,T ];Hm+3)

� ε,

which together with (2.12) and (2.13) concludes the estimate.
Finally, we give the estimate for ∂tq. Differentiating (2.10) with respect to t and integrating by parts for the term involving 

z2(s), we get

∂tq(t) = 2

t∫
0

cos

(
t − s

γ
|∇|
)[

∂tt |z|2(s)
]

ds

+ �

γ 2

t∫
0

cos

(
t − s

γ
|∇|
)[

r2(s) + 2Re
(

e2is/ε2
z2(s) + 2eis/ε2

z(s)r(s)
)]

ds

=
t∫

0

cos(
t − s

γ
|∇|)

[
2∂tt |z|2(s) + �

γ 2

(
r2(s) + 4Re

[
eis/ε2

z(s)r(s)
])]

ds + q4(t)

+
ε2

γ 2 �

2 + ε2

γ |∇|
Im
[

e2it/ε2
z2(t) − e− it|∇|

γ
(
z2(0) + 2

t∫
0

e
is( 2

ε2 + |∇|
γ )

z(s)∂t z(s)ds
)]

,

where

q4(t) = �

γ 2
Re

⎡⎣eit|∇|/γ
t∫

0

eis(2/ε2−|∇|/γ )z2(s)ds

⎤⎦ .

Applying similar arguments as above, we get

‖q4(t)‖Hm−2 �
ε2

γ 2
‖z‖L∞([0,T ];Hm)

(‖z‖L∞([0,T ];Hm) + ‖∂t z‖L∞([0,T ];Hm)

)+ ε4

γ 4
‖z‖2

L∞([0,T ];Hm+2)
� 1.

Thus

‖∂tq(t)‖Hm−2 � ‖∂tt |z|2‖Hm−2 + ‖q4(t)‖Hm−2 + 1

γ 2
‖r‖2

L∞([0,T ];Hm) + 1

γ 2
‖r‖L∞([0,T ];Hm)‖z‖L∞([0,T ];Hm)

+ ε2

γ 2
‖z‖2

L∞([0,T ];Hm) + ε2

γ 2
‖z‖L∞([0,T ];Hm)‖∂t z‖L∞([0,T ];Hm) � 1,

which completes the proof. �
2.2. Limit model

To end this section, we discuss about the limit models for the KGZ system (1.1) in the simultaneous limit regime.
Alternative to the limit model (1.3), we present a semi-limit model by the formal estimate results. Based on the expan-

sion (2.1) and (2.4) and the estimates ‖r‖Hm � ε2 and ‖q‖Hm−1 � γ from Proposition 2.1, we formally see that
9
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ψ → eit/ε2
zop + e−it/ε2

zop, φ → −2|zop|2 + I, ε < γ → 0+, (2.14)

where by (2.6) zop := zop(x, t) satisfies the following nonlinear Schrödinger equation with highly oscillatory potential [44]{
2i∂t zop(x, t) − �zop(x, t) + (−2|zop(x, t)|2 + I(x, t))zop(x, t) = 0, t > 0,

zop(x,0) = z0(x), x ∈Rd,
(2.15)

and I(x, t) is the potential given by the free wave equation (2.5).
Since the free wave I(x, t) quickly travels to far field when γ → 0, its effect on zop in (2.15) vanishes. Therefore, (2.15)

can be further reduced to the limit model (1.3), which has been rigorously proved in [34]. Compared to (1.3), the semi-
limit model (2.15) incorporates the impact from the oscillatory potential I to ψ and takes the second initial layer into 
consideration, which should be more accurate. In Section 4, we will investigate numerically the convergence rate of the KGZ 
system (1.1) to the limit models (1.3) and (2.15).

3. A uniformly accurate method

In this section, we are going to propose a uniformly accurate (UA) scheme based on the asymptotic consistent formulation 
(2.6) for solving the KGZ system (1.1) in the regime 0 < ε < γ ≤ 1. To do so, we consider the one-dimensional case for 
simplicity of notation, i.e., d = 1, x = x in (1.1), and extensions to high dimensions are straightforward. We truncate the 
whole space problem (1.1) with x ∈ R onto a bounded interval x ∈ � = [−L, L] with periodic boundary conditions. The 
periodic setup has been widely considered for the numerical studies of wave or dispersive type models in the literature 
[3,4,7,9,10,12,13,20,49]. Consequently, the decomposed system (2.6) is truncated consistently to

2i∂t z − ∂xxz + (−2|z|2 + q + I)z = 0, −L < x < L, t > 0, (3.1a)

ε2∂ttr − ∂xxr + r

ε2
+ (−2|z|2 + q + I)r + ε2eit/ε2

∂tt z + ε2e−it/ε2
∂tt z = 0, (3.1b)

γ 2∂tt I − ∂xx I = 0, (3.1c)

γ 2∂ttq − ∂xxq = ∂xxr2 + 2γ 2∂tt |z|2 + 2Re
[

e2it/ε2
∂xxz2 + 2eit/ε2

∂xx(zr)
]
, (3.1d)

with initial and boundary values⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
z(x,0) = z0 = 1

2
[ψ0 − iψ1], r(x,0) = q(x,0) = 0, I(x,0) = φ0 + 2|z0|2;

∂tr(x,0) = −2Re(∂t z(x,0)), ∂t I(x,0) = φ1

γ
+ 2Im(z0∂xxz0), ∂tq(x,0) = 0;

z(−L, t) = z(L, t), r(−L, t) = r(L, t), I(−L, t) = I(L, t), q(−L, t) = q(L, t), t ≥ 0.

We shall derive the scheme and meanwhile provide some clues on the UA property of the truncation error.
First of all, we denote τ = �t > 0 as the time step for discretizing the time direction and denote tn = nτ , n = 0, 1 . . .. For 

the part I(x, t), obviously we have the exact solution from the free wave equation (2.5), i.e.,

I(x, t) =
∑
l∈Z

Îl(t)eiμl(x+L), Îl(t) = cos(θlt )̂Il(0) + sin(θlt)

θl
Î ′l(0), t ≥ 0, (3.2)

where μl = π l
L , θl = μl

γ .

Splitting scheme for z. To obtain z(x, t), we split the equation for z into two subflows:

�t
k : 2i∂t z − ∂xxz = 0 and �t

p : 2i∂t z + (−2|z|2 + q + I)z = 0.

For some n ≥ 0, we apply the Lie-Trotter splitting scheme to get z(x, tn+1) as

z(x, tn+1) ≈ �τ
k ◦ �τ

p(z(x, tn)). (3.3)

Note the Lie-Trotter splitting has been identified to offer uniform first order accuracy for integrating a nonlinear Schrödinger 
equation with highly oscillatory potential [44]. The flow �τ

k can be integrated exactly in the Fourier space. As for �τ
p , we 

have

�τ
p(z(x, tn)) = z(x, tn)e

i
2

∫ τ
0 [−2|z(x,tn+s)|2+q(x,tn+s)+I(x,tn+s)]ds.

Note that in �τ
p , |z(x, tn + s)| ≡ |z(x, tn)| for 0 ≤ s ≤ τ and
10



C. Su and X. Zhao Journal of Computational Physics 428 (2021) 110064
Jn(x) :=
τ∫

0

I(x, tn + s)ds =
∑
l∈Z

[
sin(θlτ )

θl
Îl(tn) + 1 − cos(θlτ )

θ2
l

Î ′l(tn)

]
eiμl(x+L).

We just approximate q(x, tn + s) ≈ q(x, tn) to get

�τ
p(z(x, tn)) ≈ z(x, tn)e

i
2

[−2τ |z(x,tn)|2+τq(x,tn)+ Jn(x)
]
. (3.4)

Note that the truncation error here is O (τ 2), which is uniform for 0 < ε < γ ≤ 1 since ∂tq = O (1).
Exponential integrator for r. To obtain r(x, t), we firstly write the equation of r in the Fourier space:

ε2̂r′′
l (t) + μ2

l r̂l(t) + 1

ε2
r̂l(t) + f̂ l(t) + ε2eit/ε2

ẑ′′
l (t) + ε2e−it/ε2

ẑ
′′
l (t) = 0, t > 0, l ∈Z,

where for simplicity we denote

f (x, t) =
(
−2|z(x, t)|2 + q(x, t) + I(x, t)

)
r(x, t).

For some n ≥ 0, suppose that we know ̂rl(tn) and ̂r′
l (tn). Then we write the solution with the Duhamel’s formula:

r̂l(tn+1) = cos(ωlτ )̂rl(tn) + sin(ωlτ )

ωl
r̂′

l (tn) −
τ∫

0

sin(ωl(τ − s))

ε2ωl

[
f̂ l(tn + s)

+ε2ei(tn+s)/ε2
ẑ′′

l (tn + s) + ε2e−i(tn+s)/ε2
ẑ
′′
l (tn + s)

]
ds, (3.5)

where ωl =
√

1+ε2μ2
l

ε2 . To get ̂rl(tn+1), we apply proper quadrature rules to the terms in integration. For the one involving f̂ l , 
we apply the right rectangle rule to simply have:

τ∫
0

sin(ωl(τ − s))

ε2ωl
f̂l(tn + s)ds ≈ 0.

Note that f = O (r) = O (ε2) and ∂t f = O (1) since ε < γ , this quadrature error is uniformly at O (τ 2). For the other two 
terms, we take

ẑ′′
l (tn + s) ≈ ẑ′

l(tn+1) − ẑ′
l(tn)

τ
, ẑ

′′
l (tn + s) ≈ ẑ

′
l(tn+1) − ẑ

′
l(tn)

τ
, 0 ≤ s ≤ τ ,

where the truncation error is O (τ∂3
t z), and then we integrate the rest trigonometric parts exactly, which is in the spirit of 

Gautschi type quadrature [23,27]:

τ∫
0

sin(ωl(τ − s))

ε2ωl

[
ε2ei(tn+s)/ε2

ẑ′′
l (tn + s) + ε2e−i(tn+s)/ε2

ẑ
′′
l (tn + s)

]
ds

≈eitn/ε2
σl
(̂
z′

l(tn+1) − ẑ′
l(tn)

)+ e−itn/ε2
σl
(̂
z
′
l(tn+1) − ẑ

′
l(tn)

)
,

where

σl =
τ∫

0

sin(ωl(τ − s))

τωl
eis/ε2

ds = ε2

τωl(ε4ω2
l − 1)

[
ε2ωl(eiτ/ε2 − cos(ωlτ )) − i sin(ωlτ )

]
. (3.6)

Note that ∂3
t z = O (∂tt I) = O (1/γ 2), the quadrature error here is thus O (τ 2ε2/γ 2), which is uniformly at O (τ 2) by noticing 

ε < γ . The approximation for ̂rl(tn+1) in total reads as

r̂l(tn+1) ≈ cos(ωlτ )̂rl(tn) + sin(ωlτ )

ωl
r̂′

l (tn) − eitn/ε2
σl
[̂
z′

l(tn+1) − ẑ′
l(tn)

]− e−itn/ε2
σl
[̂
z
′
l(tn+1) − ẑ

′
l(tn)

]
. (3.7)

Besides the UA truncation error, another advantage of the above approximation is that we do not need to compute ẑ′′
l . 

Instead, we only need to get ̂z′
l(tn) which is directly given by the equation of z:

∂t z(x, tn) = i [−∂xxz(x, tn) + (−2|z(x, tn)|2 + q(x, tn) + I(x, tn))z(x, tn)
]
, n ≥ 0.
2

11
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Meanwhile, by the derivative of the Duhamel’s formula, we have

r̂′
l (tn+1) = − ωl sin(ωlτ )̂rl(tn) + cos(ωlτ )̂r′

l (tn) −
τ∫

0

cos(ωl(τ − s))

ε2

[
f̂ l(tn + s)

+ε2ei(tn+s)/ε2
ẑ′′

l (tn + s) + ε2e−i(tn+s)/ε2
ẑ
′′
l (tn + s)

]
ds.

We approximate the functions in the integration in the similar manner as for ̂rl(tn+1) to get

r̂′
l (tn+1) ≈ − ωl sin(ωlτ )̂rl(tn) + cos(ωlτ )̂r′

l (tn) − τ

ε2
f̂ l(tn+1)

− eitn/ε2
σ̇l
[̂
z′

l(tn+1) − ẑ′
l(tn)

]− e−itn/ε2
σ̇ l

[̂
z
′
l(tn+1) − ẑ

′
l(tn)

]
, (3.8)

where

σ̇l = 1

τ

τ∫
0

cos(ωl(τ − s))eis/ε2
ds = ε2

τ (ε4ω2
l − 1)

[
ieiτ/ε2 − i cos(ωlτ ) + ε2ωl sin(ωlτ )

]
. (3.9)

The approximations (3.7) and (3.8) complete an update of r(x, t) from tn to tn+1 in the type of the exponential (or trigono-
metric) integrator [28].

Exponential integrator for q. To obtain q(x, t), we begin similarly by writing the equation of q in the Fourier space:

γ 2̂q′′
l + μ2

l q̂l =2γ 2 ̂(|z|2)′′l − e2it/ε2
μ2

l (̂z2)l − 2eit/ε2
μ2

l (̂zr)l − e−2it/ε2
μ2

l (̂z2)l

− 2e−it/ε2
μ2

l (̂zr)l − μ2
l (̂r2)l, t > 0, l ∈Z.

The Duhamel’s formula gives

q̂l(tn+1) = cos(θlτ )̂ql(tn) + sin(θlτ )

θl
q̂′

l(tn) + An
1,l − An

2,l − An
3,l − An

4,l, (3.10)

where

An
1,l =

τ∫
0

2 sin(θl(τ − s))

θl

̂(|z|2)′′l (tn + s)ds, An
2,l =

τ∫
0

θl sin(θl(τ − s))(̂r2)l(tn + s)ds,

An
3,l =

τ∫
0

θl sin(θl(τ − s))
[

e2i(tn+s)/ε2
(̂z2)l(tn + s) + e−2i(tn+s)/ε2

(̂z2)l(tn + s)
]

ds,

An
4,l =

τ∫
0

2θl sin(θl(τ − s))
[

ei(tn+s)/ε2
(̂zr)l(tn + s) + e−i(tn+s)/ε2

(̂zr)l(tn + s)
]

ds.

Noticing that ∂tt |z|2 = O (1) (2.11), and

∂3
t |z|2 = Im(∂tt z∂xxz + 2∂t z∂xxt z + z∂xxtt z) = O (1/γ ),

we then are motivated to approximate the trigonometric kernel function with s = τ to get An
1,l ≈ 0 with a uniform trunca-

tion error at O (τ 2). Similarly, we can get An
2,l ≈ 0 with a uniform truncation error at O (τ 2) in view of the fact that r = (ε2). 

For An
3,l , to make sure that the truncation error is introduced in a uniform manner, we firstly perform an integration-by-

parts to rewrite An
3,l so that the kernel of the integration part is bounded as ε, γ → 0:

An
3,l = e2itn/ε2

⎡⎣αl(τ )(̂z2)l(tn+1) − αl(0)(̂z2)l(tn) −
τ∫

0

2αl(s)̂(z∂t z)l(tn + s)ds

⎤⎦
+ e−2itn/ε2

⎡⎣αl(τ )(̂z2)l(tn+1) − αl(0)(̂z2)l(tn) −
τ∫

0

2αl(s)̂(z∂t z)l(tn + s)ds

⎤⎦ ,

where
12
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αl(s) :=
s∫

0

θl sin(θl(τ − σ))e2iσ/ε2
dσ

= ε2θl

4 − ε4θ2
l

[
ε2θl cos(θlτ ) + 2i sin(θlτ ) − e2is/ε2

(
ε2θl cos(θl(τ − s)) + 2i sin(θl(τ − s))

)]
.

(3.11)

Then we apply the Gautschi type quadrature, i.e., ̂(z∂t z)l(tn + s) ≈ ̂(z∂t z)l(tn) and integrate the trigonometric parts exactly 
to get that

An
3,l ≈ e2itn/ε2

[
αl(τ )(̂z2)l(tn+1) − κl̂(z∂t z)l(tn)

]
+ e−2itn/ε2

[
αl(τ )(̂z2)l(tn+1) − κl

̂(z∂t z)l(tn)

]
, (3.12)

where

κl =
τ∫

0

2αl(s)ds = 2ε4θl

(4 − ε4θ2
l )2

[
4iε2θle

2iτ/ε2 − 4iε2θl cos(θlτ ) + (4 + ε4θ2
l ) sin(θlτ )

]

+ 2τε2θl

4 − ε4θ2
l

[
ε2θl cos(θlτ ) + 2i sin(θlτ )

]
. (3.13)

Note that αl = O (ε2/γ ), the local truncation error here is O (τ 2αl̂(∂tt z)l) = O (τ 2ε2/γ 2) which is at the second order uni-
formly for 0 < ε < γ ≤ 1. For An

4,l , we need to take a delicate approximation of r based on the Duhamel’s formula (3.5)
as

r(x, tn + s) ≈ cos(s/ε2)r(x, tn) + sin(s/ε2)rn
p(x), rn

p(x) :=
∑
l∈Z

r̂′
l (tn)

ωl
eiμl(x+L),

where for 0 ≤ s ≤ τ the approximation error is at the order of O (γ τ ) by noticing that r = O (ε2) and ωl = 1/ε2 + O (1). 
More importantly, this approximation separates the temporal highly oscillatory parts in r from the space variable (so as 
the Fourier modes). Then by taking z(x, tn + s) ≈ z(x, tn), we approximate An

4,l in the Gautschi-type way with a uniform 
truncation error at O (τ 2) as

An
4,l ≈

τ∫
0

2θl sin(θl(τ − s))ei(tn+s)/ε2
(

cos(s/ε2)(̂zr)l(tn) + sin(s/ε2)̂(zrp)l(tn)
)

ds

+
τ∫

0

2θl sin(θl(τ − s))e−i(tn+s)/ε2
(

cos(s/ε2)(̂zr)l(tn) + sin(s/ε2)̂(zrp)l(tn)
)

ds

= eitn/ε2
[
χ1

l (̂zr)l(tn) + χ2
l

̂(z(tn)rn
p)l

]
+ e−itn/ε2

[
χ1

l (̂zr)l(tn) + χ2
l

̂

(z(tn)rn
p)l

]
,

(3.14)

where we denote

χ1
l =

τ∫
0

2θl sin(θl(τ − s))eis/ε2
cos(s/ε2)ds (3.15a)

= 1 − cos(θlτ ) + ε2θl

4 − ε4θ2
l

[
2i sin(θlτ ) + ε2θl cos(θlτ ) − ε2θle

2iτ/ε2
]
,

χ2
l =

τ∫
0

2θl sin(θl(τ − s))eis/ε2
sin(s/ε2)ds (3.15b)

= 1

4 − ε4θ2
l

[
2ε2θl sin(θlτ ) − 4i cos(θlτ ) + i

(
4 + ε4θ2

l (e2iτ/ε2 − 1)
)]

.

To complete the integration scheme, by the derivative of the Duhamel’s formula of q, we have

q̂′
l(tn+1) = − θl sin(θlτ )̂ql(tn) + cos(θlτ )̂q′

l(tn) + Bn
1,l − Bn

2,l − Bn
3,l − Bn

4,l, n ≥ 0,
13
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where

Bn
1,l =

τ∫
0

2 cos(θl(τ − s))̂(|z|2)′′l (tn + s)ds, Bn
2,l =

τ∫
0

θ2
l cos(θl(τ − s))(̂r2)l(tn + s)ds,

Bn
3,l =

τ∫
0

θ2
l cos(θl(τ − s))

[
e2i(tn+s)/ε2

(̂z2)l(tn + s) + e−2i(tn+s)/ε2
(̂z2)l(tn + s)

]
ds,

Bn
4,l =

τ∫
0

2θ2
l cos(θl(τ − s))

[
ei(tn+s)/ε2

(̂zr)l(tn + s) + e−i(tn+s)/ε2
(̂zr)l(tn + s)

]
ds.

We approximate these integral terms in a similar way as before. For Bn
1,l , we set s = τ in the kernel function to get

Bn
1,l ≈ 2̂(|z|2)′l(tn+1) − 2̂(|z|2)′l(tn). (3.16)

For Bn
2,l , we use the left rectangle rule to get

Bn
2,l ≈ τθ2

l cos(θlτ )(̂r2)l(tn). (3.17)

For Bn
3,l , we apply the same integration-by-parts and the Gautschi’s quadrature as for An

3,l to get

Bn
3,l ≈ e2itn/ε2

[
βl(τ )(̂z2)l(tn+1) − βl(0)(̂z2)l(tn) − ρl̂(z∂t z)l(tn)

]
(3.18)

+ e−2itn/ε2
[
βl(τ )(̂z2)l(tn+1) − βl(0)(̂z2)l(tn) − ρl

̂(z∂t z)l(tn)

]
,

where

βl(s) =
s∫

0

θ2
l cos(θl(τ − σ))e2iσ/ε2

dσ = ε2θ2
l

4 − ε4θ2
l

[
2i cos(θlτ ) − ε2θl sin(θlτ )

−e2is/ε2
(

2i cos(θl(τ − s)) − ε2θl sin(θl(τ − s))
)]

,

(3.19)

ρl =
τ∫

0

2βl(s)ds = 2τε2θ2
l

4 − ε4θ2
l

[
2i cos(θlτ ) − ε2θl sin(θlτ )

]

+ 2ε4θ2
l

(4 − ε4θ2
l )2

[
(4 + ε4θ2

l ) cos(θlτ ) − (4 + ε4θ2
l )e2iτ/ε2 + 4iε2θl sin(θlτ )

]
.

(3.20)

For Bn
4,l , we adopt the similar approximation as for An

4,l to get

Bn
4,l ≈ eitn/ε2

[
χ̇1

l (̂zr)l(tn) + χ̇2
l

̂(z(tn)rn
p)l

]
+ e−itn/ε2

[
χ̇1

l (̂zr)l(tn) + χ̇2
l

̂

(z(tn)rn
p)l

]
, (3.21)

where

χ̇1
l =

τ∫
0

2θ2
l cos(θl(τ − s))eis/ε2

cos(s/ε2)ds (3.22a)

= θ sin(θlτ ) − ε2θ2
l

4 − ε4θ2
l

[
2ie2iτ/ε2 − 2i cos(θlτ ) + ε2θl sin(θlτ )

]
,

χ̇2
l =

τ∫
0

2θ2
l cos(θl(τ − s))eis/ε2

sin(s/ε2)ds (3.22b)

= 2θl

4 − ε4θ2

[
2i sin(θlτ ) + ε2θl cos(θlτ ) − ε2θle

2iτ/ε2
]
.

l

14
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Remark 3.1. If one analyzes the local truncation error induced by the above approximations to ∂tr and ∂tq, the error would 
be at O (τ 2/ε2) and O (τ 2/γ ), respectively. This would not affect the approximation error for r and q since the coefficients 
involving ∂tr and ∂tq for approximating r and q (cf. (3.7) and (3.10)) are at the order of O (ε2) and O (γ ), respectively. The 
rigorous convergence analysis is undergoing.

UA scheme. We summarize the proposed approximations (3.3), (3.4), (3.7), (3.8), (3.12), (3.14), (3.16)-(3.18) and (3.21)
above and present the full scheme for solving the decomposed system (3.1) and hence for solving the KGZ system (1.1). 
For spatial discretization, we choose an even integer N ∈ N+ to truncate the Fourier series. We denote zn(x) ≈ z(x, tn), 
rn(x) ≈ r(x, tn), ṙn(x) ≈ ∂tr(x, tn), In(x) ≈ I(x, tn), qn(x) ≈ q(x, tn) and q̇n(x) ≈ ∂tq(x, tn) as the numerical solutions for the 
decomposed system (3.1). Choosing z0(x) = z(x, 0), r0(x) = r(x, 0), ṙ0(x) = ∂tr(x, 0), I0(x) = I(x, 0), q0(x) = q(x, 0) and 
q̇0(x) = ∂tq(x, 0), we update for n ≥ 0 as

zn+1(x) = e− i
2 ∂xx e

i
2

[−2τ |zn(x)|2+τqn(x)+ Jn(x)
]
zn(x), (3.23a)

̂(qn+1)l = cos(θlτ )(̂qn)l +
sin(θlτ )

θl
(̂q̇n)l − An

l , (3.23b)

̂(q̇n+1)l = −θl sin(θlτ )(̂qn)l + cos(θlτ )(̂q̇n)l + (̂gn)l − τθ2
l cos(θlτ ) ̂((rn)2)l − Bn

l , (3.23c)

̂(rn+1)l = cos(ωlτ )(̂rn)l + sin(ωlτ )

ωl
(̂ṙn)l − eitn/ε2

σl

[
̂(żn+1)l − (̂żn)l

]
− e−itn/ε2

σl

[
̂

(żn+1)l − (̂żn)l

]
, (3.23d)

̂(ṙn+1)l = −ωl sin(ωlτ )(̂rn)l + cos(ωlτ )(̂ṙn)l − τ

ε2
̂( f n+1)l − eitn/ε2

σ̇l
[
̂(żn+1)l − (̂żn)l

]
(3.23e)

− e−itn/ε2
σ̇l
[
̂

(żn+1)l − (̂żn)l
]
,

where l = −N/2, . . . , N/2 − 1, Jn(x) =
N/2−1∑

l=−N/2
(̂ Jn)le

iμl(x+L) , with

(̂ Jn)l = sin(θltn+1) − sin(θltn)

θl
Îl(0) + cos(θltn) − cos(θltn+1)

θ2
l

Î ′l(0),

and

f n(x) =
(
−2|zn(x)|2 + qn(x) + In(x)

)
rn(x), gn(x) = 4Re

[
zn+1(x)żn+1(x) − zn(x)żn(x)

]
,

żn(x) = i

2

[
−∂xxzn(x) + (−2|zn(x)|2 + qn(x) + In(x))zn(x)

]
,

An
l = e

2i tn
ε2
[
αl(τ ) ̂((zn+1)2)l − κl

̂(zn żn)l

]
+ e

−2i tn
ε2

[
αl(τ )

̂

((zn+1)2)l − κl
̂

(zn żn)l

]
+ e

i tn
ε2
[
χ1

l
̂(znrn)l + χ2

l
̂(znrn

p)l

]
+ e

−i tn
ε2

[
χ1

l
̂(znrn)l + χ2

l
̂(znrn

p)l

]
,

Bn
l = e

2i tn
ε2
[
βl(τ ) ̂((zn+1)2)l − ρl

̂(zn żn)l

]
+ e

−2i tn
ε2

[
βl(τ )

̂

((zn+1)2)l − ρl
̂

(zn żn)l

]
+ e

i tn
ε2
[
χ̇1

l
̂(znrn)l + χ̇2

l
̂(znrn

p)l

]
+ e

−i tn
ε2

[
χ̇1

l
̂(znrn)l + χ̇2

l
̂(znrn

p)l

]
,

with

In(x) =
N/2−1∑

l=−N/2

(
cos(θltn )̂Il(0) + sin(θltn)

θl
Î ′l(0)

)
eiμl(x+L), rn

p(x) =
N/2−1∑

l=−N/2

(̂ṙn)l

ωl
eiμl(x+L).

The coefficients σl, σ̇l, αl, α̇l, κl, ρl, χ1
l , χ2

l , χ̇1
l and χ̇2

l are defined respectively in (3.6), (3.9)-(3.22). Based on the multiscale 
expansion (2.1), (2.4) and the numerical solution from the decomposed system, we have the numerical solution for the KGZ 
system (1.1): ψn(x) ≈ ψ(x, tn) and φn(x) ≈ φ(x, tn) at each time step n ∈N as

ψn = eitn/ε2
zn + e−itn/ε2

zn + rn, φn = −2|zn|2 + In + qn, (3.24)

and we refer to this scheme as multiscale time integrator (MTI) Fourier spectral method.
The proposed MTI scheme (3.24) with (3.23) is fully explicit. In practice, we would give a discretization to the space 

variable x ∈ [−L, L] with mesh size �x = 2L/N , and the Fourier coefficients in (3.23) are computed by the trigonometric 
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interpolation [42]. The computational cost at each time level is O (N log N) thanks to the fast Fourier transform. As we 
explained along the derivation of the scheme, the truncation error of MTI is indeed uniformly bounded for all 0 < ε < γ ≤ 1, 
and therefore the MTI scheme is expected to be (verified numerically in the next section) uniformly accurate (UA) for solving 
the KGZ (1.1) with first order and spectral order of convergence in time and space, respectively. Thanks to the UA property, 
the MTI scheme is super-resolution in time for the high frequencies.

Remark 3.2. A second order UA scheme for the KGZ system (1.1) in the simultaneous limit regime would be very challeng-
ing. There are two main difficulties. The first one is the integration of the nonlinear Schrödinger equation with a highly 
oscillatory potential [44] where standard Strang splitting can not provide uniform accuracy at the second order. Note that 
the highly oscillatory potential given in (2.5) or (2.6c) contains multiple frequencies which are not mono-frequencies in high 
space dimension. Another difficulty is the necessity of a higher order multiscale expansion for ψ and φ.

4. Numerical results

In this section, we present numerical results of the proposed MTI scheme (3.24) with (3.23) for solving the KGZ system 
(1.1) in the simultaneous high-plasma-frequency and subsonic limit regime ε < γ → 0+ .

4.1. Accuracy tests

We begin with two one-dimensional examples to test the accuracy of the proposed MTI scheme. The first one is an 
example with initial localized wave in the whole space. The second example is the plane wave type solution on a periodic 
box. In both cases, the chosen initial data belongs to the incompatible class, and the reference solutions are obtained by the 
EI scheme (A.1) (in the appendix) with a very small step size, e.g., τ = 10−6 and �x = 1/16 (or �x = π/128).

Example 4.1 (Whole space). We take the truncated computational domain as x ∈ � = [−2m0+3, 2m0+3] when ε = 1/2m0 for 
m0 ∈N and γ = 2ε. The expanding size of the domain is to make sure that the waves during the dynamics are always far 
away from the boundary such that the periodic boundary condition does not introduce a significant truncation error relative 
to the problem in the whole space. The initial data of (1.1) in 1D is given as

ψ0(x) = sech(x2), ψ1(x) = e−x2
/2, φ0(x) = sin(x)e−x2

, φ1(x) = sech(x2)/
√

π.

Example 4.2 (Torus). We consider the KGZ system (1.1) on an one-dimensional torus � = [−π, π ]. For ε = 1/2m0 , m0 ∈ N
and γ = eε, the initial data is given as

ψ0(x) = 2 sin(x)

2 − cos(x)
, ψ1(x) = cos2(x), φ0(x) = cos(x)

2 − sin(x)
, φ1(x) = sin(x) cos(2x)

2 − cos(x)
.

For both examples we solve the KGZ system until t = 0.5 for a wide range of ε ∈ (0, 1]. To quantify the numerical 
method, we compute the error in maximum norm, i.e.,

error = ‖ψn − ψ(·, tn)‖L∞ + ‖φn − φ(·, tn)‖L∞ .

The spatial discretization error of MTI under different �x = |�|/N and ε but fixed τ = 10−7 is shown in Fig. 2. To observe 
the temporal approximation error, we fix �x = 1/16 for Example 4.1 and �x = π/128 for Example 4.2, respectively, so that 
the spatial discretization error is negligible. The error of the MTI scheme under different τ and ε is shown in Figs. 3 and 
4, respectively for Examples 4.1 and 4.2. The numerical results for γ = σε with other σ > 1 are very similar and they are 
omitted here for brevity. To make a comparison, we show the performance of the EI scheme (A.1) for Example 4.2 in Fig. 5.

Based on the numerical results from Figs. 2-5, it is safe to draw the following conclusions:
1) The MTI scheme (3.23) is uniformly accurate for solving the KGZ system (1.1) for all 0 < ε < γ ≤ 1, where the temporal 

convergence rate is uniformly linear and the spatial accuracy is uniformly spectral when the solution is smooth in space. In 
view of the order of the introduced truncation/quadrature errors, the MTI scheme reaches its optimal convergence rate for 
all fixed 0 < ε < γ ≤ 1. Thus, we say that the MTI scheme (3.24) with (3.23) is uniformly and optimally accurate.

2) When ε becomes small, the EI method (A.1) has no accuracy or convergence at all for a wide range of time step τ
which is a common problem shared by all standard numerical methods, while in such regime the MTI scheme is much 
more accurate and therefore more efficient.

4.2. Convergence rates of KGZ to its limit models

We apply the MTI scheme to solve the KGZ system and study the dynamics of the solution in the simultaneous limit 
ε < γ → 0+ . We take the illustrative example from Section 1.
C. Su and X. Zhao Journal of Computational Physics 428 (2021) 110064
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Fig. 2. Spatial errors of MTI at t = 0.5 for Example 4.1 (left) and 4.2 (right).

Fig. 3. Temporal errors of MTI at t = 0.5 for Example 4.1 under different ε and τ .

Fig. 4. Temporal errors of MTI at t = 0.5 for Example 4.2 under different ε and τ .

Fig. 5. Comparison: errors of EI at t = 0.5 for Example 4.2 under different ε and τ .
17
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Fig. 6. Profiles of each component in (2.6) for Example 4.3 under different ε.

Example 4.3. We consider the 1D example from the Section 1: i.e., γ = 2ε with incompatible initial data (1.5) and (1.7).

Firstly, we study the behaviour of each component of the decomposition (2.6) in the limit, by which we illustrate how 
the decomposition captures the oscillation of the solutions of the KGZ equations. To do so, we solve (2.6) by using the MTI 
scheme (3.23) with a fine mesh on a large domain [−64, 64] till T = 1. The profiles of each component for different ε are 
shown in Fig. 6, where their combinations through (2.1) and (2.4) give the profiles of ψ and φ in Fig. 1. The fluctuation of 
the numerical energy:

error = |En − E(0)|/|E(0)|
during the computation is shown in Fig. 7, where En denotes the energy (1.2) of the KGZ at tn with the numerical solutions 
from the MTI scheme (3.24). To verify the order of r and q in Proposition 2.1, we plot ‖q(·, t)‖L2/ε and ‖r(·, t)‖L2/ε2 as 
functions of time under different ε in Fig. 8.
18
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Fig. 7. Energy error of the MTI scheme for KGZ in Example 4.3 under different ε.

Fig. 8. Quantity ‖q(·, t)‖L2 /ε and ‖r(·, t)‖L2 /ε2 in Example 4.3 under different ε.

Fig. 9. Convergence from KGZ (1.1) to (1.3) or (2.15) in Example 4.3: the quantities η
ψ

nls(t)/ε, η
φ

nls(t)/ε, η
ψ
op(t)/ε2 and η

φ
op(t)/ε.

Then we study the convergence rate of the KGZ system to its limit model (1.3) or (2.15) as ε < γ → 0+ . By (1.4) and 
(2.14), we denote ψnls = eit/ε2

znls + e−it/ε2
znls, φnls = −2|znls|2 + Inls, ψop = eit/ε2

zop + e−it/ε2
zop and φop = −2|zop|2 + I , and 

we define

η
φ

nls(t) := ‖φ(·, t) − φnls(·, t)‖L2 , η
ψ

nls(t) := ‖ψ(·, t) − ψnls(·, t)‖L2 ,

η
φ
op(t) := ‖φ(·, t) − φop(·, t)‖L2 , η

ψ
op(t) := ‖ψ(·, t) − ψop(·, t)‖L2 .
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Fig. 10. The solutions ψ(0, t) and φ(0, t) in Example 4.3 under different ε: exact profiles and numerical solutions from MTI with fixed τ = 0.1.

Fig. 9 shows ηφ

nls(t)/ε, ηψ

nls(t)/ε, ηφ
op(t)/ε and ηψ

op(t)/ε2 under different ε. Finally, to further illustrate the efficiency of the 
MTI scheme and the super-resolution, we show in Fig. 10 the numerical solutions obtained by MTI under a fixed large time 
step τ = 0.1 for decreasing ε.

Based on the numerical results in Figs. 6-10, we have the following observations:
1) The dynamics of the KGZ system (1.1) is captured individually through the components z, r, q, I in the decomposition 

(2.6). Among them, I and q carry the fast outing initial layer caused by the incompatible initial data and the wave operator, 
respectively, while z and r remain rather localized (cf. Fig. 6). To avoid the expanding domain for computation, one could 
consider an absorbing boundary condition for the equation of q to gain more efficiency in practical simulation.

2) The energy error of the MTI scheme converges linearly in time (see Fig. 7). The error is not only uniformly bounded 
for ε ∈ (0, 1], but it also seems to have a super-convergence in ε in the limit ε → 0 (see Fig. 7).

3) The components q and r are highly oscillatory in time (see Fig. 6), but they vanish at O (γ ) and O (ε2) (see Fig. 8), 
respectively, in the limit ε < γ → 0+ . This verifies our estimates in Proposition 2.1.

4) The KGZ system (1.1) converges to the limit model (1.3) at the first order rate (see Fig. 9), i.e., ηψ

nls(t) = O (ε) and 
η

φ

nls(t) = O (ε) as ε → 0, while its convergence rate to the semi-limit model (2.15) is improved to be quadratic in ψ , i.e., 
η

ψ
op(t) = O (ε2).

5) The MTI scheme has super-resolution to the temporal oscillations. It can correctly capture the oscillation with a 
fixed time step, no matter how strong the oscillation becomes (see Fig. 10). This significantly improves the efficiency of 
computation compared to standard numerical methods that need to fully resolve the oscillations.

5. Conclusion

We considered the numerical solution of the Klein-Gordon-Zakharov (KGZ) system in the simultaneous high-plasma-
frequency and subsonic limit regime, where two independent small parameters 0 < ε, γ ≤ 1 are involved. When ε, γ → 0, 
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the solution of the KGZ equations exhibits complicated highly oscillatory behaviour including fast temporal oscillations and 
rapid out-going initial layers, which makes standard numerical methods suffer. By applying a multiscale expansion to the 
solution in the critical case ε < γ , we decomposed KGZ into a consistent formulation with milder oscillations and an ex-
plicit description of the initial layer. Formal estimates were established for the decomposed system to explain the advantage 
of the formulation. Based on the decomposed formulation, we proposed a multiscale time integrator Fourier spectral/pseu-
dospectral method for solving KGZ, which is uniformly accurate for all 0 < ε < γ ≤ 1. Various numerical experiments were 
conducted to illustrate the efficiency and accuracy of the proposed scheme over existing methods. Convergence rates of the 
KGZ system to its limit/semi-limit model as ε < γ → 0+ were studied numerically.
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Appendix A. A benchmark algorithm

As a benchmark for reference solution and comparisons, we briefly present the exponential integrator Fourier spectral 
method [4,49] in 1D which is a classical scheme [19,26] for solving the KGZ system.

Taking the Fourier transform of the KGZ system (1.1) in 1D and using the Duhamel’s formula, one gets

ψ̂l(tn+1) = cos(ωlτ )ψ̂l(tn) + sin(ωlτ )

ωl
ψ̂ ′

l (tn) −
τ∫

0

sin(ωl(τ − s))

ε2ωl

̂(ψφ)l(tn + s)ds,

φ̂l(tn+1) = cos(θlτ )φ̂l(tn) + sin(θlτ )

θl
φ̂′

l (tn) − θl

τ∫
0

sin(θl(τ − s))̂(ψ2)l(tn + s)ds,

ψ̂ ′
l (tn+1) = −ωl sin(ωlτ )ψ̂l(tn) + cos(ωlτ )ψ̂ ′

l (tn) −
τ∫

0

cos(ωl(τ − s))

ε2
̂(ψφ)l(tn + s)ds,

φ̂′
l (tn+1) = −θl sin(θlτ )φ̂l(tn) + cos(θlτ )φ̂′

l (tn) − θ2
l

τ∫
0

cos(θl(τ − s))̂(ψ2)l(tn + s)ds.

By applying the trapezoidal rule to approximate the integrals, the explicit Deuflhard-type exponential integrator (EI) 
Fourier spectral method reads: ψn(x) ≈ ψ(tn, x), ψ̇n(x) ≈ ∂tψ(tn, x), φn(x) ≈ φ(tn, x), φ̇n(x) ≈ ∂tφ(tn, x), where for n ≥ 0, 
l = −N/2, . . . , N/2 − 1,

̂(ψn+1)l = cos(ωlτ )̂(ψn)l +
sin(ωlτ )

ωl

̂(ψ̇n)l −
τ sin(ωlτ )

2ε2ωl

̂(ψnφn)l,

̂(φn+1)l = cos(θlτ )̂(φn)l +
sin(θlτ )

θl

̂(φ̇n)l −
τθl

2
sin(θlτ ) ̂((ψn)2)l,

̂(ψ̇n+1)l = −ωl sin(ωlτ )̂(ψn)l + cos(ωlτ )̂(ψ̇n)l −
τ

2ε2

[
cos(ωlτ ) ̂(ψnφn)l + ̂(ψn+1φn+1)l

]
,

̂(φ̇n+1)l = −θl sin(θlτ )φ̂n
l + cos(θlτ )̂(φ̇n)l −

θ2
l τ

2

[
cos(θlτ ) ̂((ψn)2)l + ̂((ψn+1)2)l

]
.

(A.1)
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