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Uniform error bounds of a finite difference method for the

Klein-Gordon-Zakharov system in the subsonic limit regime

via an asymptotic consistent formulation∗

Weizhu Bao† Chunmei Su‡

Abstract

We establish uniform error bounds of a finite difference method for the Klein-
Gordon-Zakharov system (KGZ) with a dimensionless parameter ε ∈ (0, 1], which is in-
versely proportional to the acoustic speed. In the subsonic limit regime, i.e. 0 < ε≪ 1,
the solution propagates highly oscillatory waves in time and/or rapid outgoing initial
layers in space due to the singular perturbation in the Zakharov equation and/or the
incompatibility of the initial data. Specifically, the solution propagates waves with
O(ε)-wavelength in time and O(1)-wavelength in space as well as outgoing initial lay-
ers in space at speed O(1/ε). This high oscillation in time and rapid outgoing waves
in space of the solution cause significant burdens in designing numerical methods and
establishing error estimates for KGZ. By adapting an asymptotic consistent formula-
tion, we propose a uniformly accurate finite difference method and rigorously establish
two independent error bounds at O(h2+ τ2/ε) and O(h2 + τ + ε) with h mesh size and
τ time step. Thus we obtain a uniform error bound at O(h2 + τ) for 0 < ε ≤ 1. The
main techniques in the analysis include the energy method, cut-off of the nonlinearity
to bound the numerical solution, the integral approximation of the oscillatory term,
and ε-dependent error bounds between the solutions of KGZ and its limiting model
when ε→ 0+. Finally, numerical results are reported to confirm our error bounds.

Key words. Klein-Gordon-Zakharov system, subsonic limit, highly oscillatory, uniform
error bound, finite difference method, asymptotic consistent formulation
AMS Subject Classifications. 35Q55, 65M06, 65M12, 65M15

1 Introduction

We study the Klein-Gordon-Zakharov (KGZ) system which describes the interaction be-
tween a Langmuir wave and an ion acoustic wave in plasma [20]:

∂ttE(x, t)− 3v20∆E(x, t) + ω2
pE(x, t) + ω2

pN(x, t)E(x, t) = 0, x ∈ Rd, t > 0,

∂ttN(x, t)− c2s∆N(x, t)−
n0ε0
4mN0

∆|E|2(x, t) = 0, x ∈ Rd, t > 0,
(1.1)
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where t is time, x ∈ Rd (d = 1, 2, 3) is the spatial coordinate, E(x, t) and N(x, t) are real-
valued functions representing the fast time scale component of the electric field raised by
electrons and the ion density fluctuation from the constant equilibrium, respectively. Here
v0 is the electron thermal velocity, ωp is the electron plasma frequency, cs is the acoustic
speed, n0 is plasma charge number, ε0 is vacuum dielectric constant, m is ion mass and
N0 is electron density. It can be derived from the Euler equations for the electrons and
ions, coupled with the Maxwell equation for the electron field by negeleting the magnetic
effect and further assuming that ions move much slower than electrons (cf. [12, 15, 29, 35]
for physical and formal derivations and [31] for mathematical justifications).

For scaling the KGZ system (1.3), we introduce

t̃ =
t

ts
, x̃ =

x

xs
, Ẽ(x̃, t̃) =

E(x, t)

Es
, Ñ(x̃, t̃) =

N(x, t)

Ns
, (1.2)

where ts =
1
ωp
, xs =

√
3v0
ωp

, Es = 2cs

√
mN0

n0ε0
and Ns = 1 are the dimensionless time, length,

electric field and ion density unit, respectively. Plugging (1.2) into (1.3) and removing all
˜ followed by replacing N(x, t) and E(x, t) by N ε(x, t) and Eε(x, t), respectively, we get
the following dimensionless KGZ system as

∂ttE
ε(x, t) −∆Eε(x, t) + Eε(x, t) +N ε(x, t)Eε(x, t) = 0, x ∈ Rd, t > 0,

ε2∂ttN
ε(x, t)−∆N ε(x, t)−∆|Eε|2(x, t) = 0, x ∈ Rd, t > 0,

(1.3)

where the dimensionless parameter 0 < ε :=
√
3v0
cs

≤ 1 is inversely proportional to the speed
of sound. Here we consider the case where the thermal electron velocity is much smaller
than the ion-acoustic speed, i.e. 3v20 ≪ c2s, which gives 0 < ε ≪ 1, i.e. the KGZ system
in the subsonic limit regime. To study the dynamics of the KGZ system (1.3), the initial
data is usually given as

Eε(x, 0) = E0(x), ∂tE
ε(x, 0) = E1(x), N ε(x, 0) = N ε

0 (x), ∂tN
ε(x, 0) = N ε

1 (x). (1.4)

As is known, (1.3) is time symmetric or time reversible and conserves the total energy
[20, 21], i.e. for t ≥ 0

Hε(t) :=

∫

Rd

[
|∂tE

ε|2 + |∇Eε|2 + |E|2 +
ε2

2
|∇ϕε|2 +

1

2
|N ε|2 +N ε|Eε|2

]
dx ≡ Hε(0),

where ϕε is defined by ∆ϕε = ∂tN
ε with lim

|x|→∞
ϕε = 0.

There have been extensive studies for the KGZ system in the literatures for ε = ε0 with
ε0 > 0 a fixed constant, i.e. O(1)-acoustic-speed regime. Along the analytical part, for the
derivation of the KGZ from two-fluid Euler-Maxwell system, we refer to [12, 31]; and for
the well-posedness of the Cauchy problem, we refer to [23,25,26,33]. Along the numerical
part, we refer to [34] for finite difference method and [7,10] for exponential-wave-integrator
Fourier pseudospectral method. However, in the subsonic limit regime, the analysis and
efficient computation of the KGZ system are rather complicated [12, 20] due to the high
oscillation in time and/or rapid outgoing waves in space of the solution as ε→ 0+.
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Based on the results in [14, 22], in the subsonic limit, i.e. ε → 0+, the KGZ system
collapses to the Klein-Gordon (KG) equation. Formally we have Eε → Ek, where Ek :=
Ek(x, t) is the solution of the KG equation [14,22]:

∂ttEk(x, t)−∆Ek(x, t) + Ek(x, t) − Ek(x, t)
3 = 0, x ∈ Rd, t > 0,

E(x, 0) = E0(x), ∂tE(x, 0) = E1(x), x ∈ Rd.
(1.5)

The KG (1.5) conserves the energy

H(t) :=

∫

Rd

[
|∂tEk|

2 + |∇Ek|
2 + |Ek|

2 −
1

2
|Ek|

4

]
dx ≡ H(0), t ≥ 0.

Different convergence rates can be obtained due to the incompatibility of the initial data
(E0, E1, N

ε
0 , N

ε
1 ) for (1.3) with respect to (1.5), which can be characterized as

N ε
0 (x) = −E0(x)

2 + εαω0(x), N ε
1 (x) = −2E0(x)E1(x) + εβω1(x), x ∈ Rd, (1.6)

where α ≥ 0 and β ≥ −1 are given parameters and ω0(x) and ω1(x) are given functions,
which are all independent of ε. Similar to the properties of the solutions of the Zakharov
system in the subsonic limit regime [21, 24, 27], when 0 < ε ≪ 1, the solution of the KGZ
system propagates waves with wavelength O(ε) and O(1) in time and space, respectively
(cf. Fig. 1.1a), and/or rapid outgoing initial layers at speed O(1/ε) in space (cf. Fig.
1.1b). More precisely, when α ≥ 2 and β ≥ 1, the leading oscillation comes from the ε2∂tt
term; and otherwise from the incompatibility of the initial data. To illustrate the temporal
oscillation and rapid outgoing wave phenomena, Figure 1.1 shows the solutions N ε(x, 1),
N ε(1, t) of the KGZ (1.3) for d = 1 and the initial data

E0(x) =
1

2
ψ

(
x+ 15

8

)
ψ

(
15− x

7

)
cos

(x
2

)
, E1(x) =

1

2
ψ

(
x+ 10

5

)
ψ

(
10− x

5

)
sin

(x
2

)
,

ω0(x) = ψ

(
x+ 18

10

)
ψ

(
18 − x

9

)
sin

(
2x+

π

6

)
, ω1(x) = e−x2/3 sin(2x), (1.7)

with

ψ(x) =
ϕ(x)

ϕ(x) + ϕ(1 − x)
, ϕ(x) = e−1/xχ(0,∞), (1.8)

and χ being the characteristic function, α = β = 0 in (1.6) for different ε, which was
obtained numerically by the exponential-wave-integrator sine pseudospectral method on a
bounded interval [−200, 200] with the homogenous Dirichlet boundary condition [7].

The highly temporal oscillatory nature in the solution of the KGZ (1.3) brings significant
numerical difficulties, especially in the subsonic limit regime, i.e. 0 < ε ≪ 1. To the best
of our knowledge, there are few results concerning error estimates of different numerical
methods for KGZ with respect to mesh size h and time step τ as well as the parameter
0 < ε ≤ 1. Recently, a conservative finite difference method (FDM) was proposed and
analyzed in the subsonic limit regime [28], where it was proved that in order to obtain
‘correct’ oscillatory solutions, the FDM requests the meshing strategy (or ε-scalability)
h = O(ε1/2) and τ = O(ε3/2). The reason is due to that N ε(x, t) does not converge as
ε→ 0+ when α = 0 or β = −1 [21,27,30] (cf. Figure 1.1).
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Figure 1.1: The temporal oscillation (a) and rapid outgoing wave in space (b) of the KGZ
(1.3) for d = 1.

The main aim of this paper is to propose and analyze a finite difference method for
KGZ, which is uniformly accurate in both space and time for 0 < ε ≤ 1. The key points
in designing the uniformly accurate finite difference method include (i) reformulating KGZ
into an asymptotic consistent formulation and (ii) adopting an integral approximation of
the oscillatory term. To establish the error bounds, we apply the energy method, cut-off
technique for treating the nonlinearity and the inverse estimates to bound the numerical
solution, and the limiting equation via a nonlinear Klein-Gordon equation with an oscil-
latory potential. The error bounds of our new numerical method significantly relax the
meshing strategy of the standard FDM for KGZ in the subsonic limit regime [28].

The rest of the paper is organized as follows. In section 2, we introduce an asymp-
totic consistent formulation of KGZ, present a finite difference method and state our main
results. Section 3 is devoted to the details of the error analysis. Numerical results are
reported in section 4 to confirm our error bounds. Finally some conclusions are drawn in
section 5. Throughout the paper, we adopt the standard Sobolev spaces as well as the
corresponding norms and denote A . B to represent that there exists a generic constant
C > 0 independent of ε, τ , h, such that |A| ≤ C B.
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2 A finite difference method and its error bounds

In this section, we present a uniformly accurate finite difference method based on an asymp-
totic consistent formulation of KGZ and give its uniform error bounds.

2.1 An asymptotic consistent formulation

Following [8], we introduce

F ε(x, t) = N ε(x, t) + |Eε(x, t)|2 −Gε(x, t), x ∈ Rd, t ≥ 0, (2.1)

where Gε(x, t) represents initial layer caused by the incompatibility of the initial data (1.6),
which is the solution of the linear wave equation

∂ttG
ε(x, t)−

1

ε2
∆Gε(x, t) = 0, x ∈ Rd, t > 0,

Gε(x, 0) = εαω0(x), ∂tG
ε(x, 0) = εβω1(x).

(2.2)

Substituting (2.1) into the KGZ (1.3), we can reformulate it into an asymptotic consistent
formulation

∂ttE
ε(x, t)−∆Eε(x, t) +

[
1− Eε(x, t)2 + F ε(x, t) +Gε(x, t)

]
Eε(x, t) = 0,

∂ttF
ε(x, t)−

1

ε2
∆F ε(x, t) − ∂tt|E

ε(x, t)|2 = 0, x ∈ Rd, t > 0,

Eε(x, 0) = E0(x), ∂tE
ε(x, 0) = E1(x), F ε(x, 0) = 0, ∂tF

ε(x, 0) = 0.

(2.3)

In the subsonic limit regime, i.e. ε → 0+, formally we have Eε(x, t) → Ek(x, t) and
F ε(x, t) → 0, where Ek(x, t) is the solution of the KG (1.5). Moreover, as ε → 0+,
formally we can also get Eε(x, t) → Ẽε(x, t), where Ẽε := Ẽε(x, t) is the solution of the
Klein-Gordon equation with an oscillatory potential Gε(x, t) (KG-OP)

∂ttẼ
ε(x, t)−∆Ẽε(x, t) +

[
1− Ẽε(x, t)2 +Gε(x, t)

]
Ẽε(x, t) = 0,

Ẽε(x, 0) = E0(x), ∂tẼ
ε(x, 0) = E1(x), x ∈ Rd.

(2.4)

Inspired by the convergence of the Zakharov system to the nonlinear Schrödinger equation
in the subsonic limit regime [24] and the analytical analysis of the KGZ converging to the
KG [14], we can obtain the following result concerning on the convergence from the KGZ
(1.3) to the KG-OP (2.4)

‖F ε‖L2 + ‖F ε‖L∞ + ‖Eε(·, t)− Ẽε(·, t)‖H1 ≤ CT ε, 0 ≤ t ≤ T, (2.5)

where 0 < T < T ∗ with T ∗ > 0 being the maximum common existence time for the
solutions of the KGZ (1.3) and the KG-OP (2.4) and CT is a positive constant independent
of ε. To illustrate this, Figure 2.2 depicts the convergence behavior between the solutions
of the KGZ (1.3) and the KG-OP (2.4), where ηε2(t) := 1

ε‖F
ε(·, t)‖L2 + ‖∂tF

ε(·, t)‖L2 +
‖∂ttF

ε(·, t)‖L2 , ηε∞(t) := 1
ε‖F

ε(·, t)‖L∞ + ‖∂tF
ε(·, t)‖L∞ + ‖∂ttF

ε(·, t)‖L∞ and ηεe(t) :=

‖Eε(·, t) − Ẽε(·, t)‖H1 for different ε with the same initial data as in (1.7) for d = 1 and
α = β = 0.
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Figure 2.2: Time evolution of ηε2(t), η
ε
∞(t) and ηεe(t).

2.2 A uniformly accurate finite difference method

For simplicity of notation, we will only present the numerical method for the KGZ system
on one space dimension, and the extensions to higher dimensions are straightforward.
Practically, similar to most works for computation of the Zakharov-type equations [8,9,13,
19,28], (2.3) is truncated on a bounded interval Ω = (a, b) with the homogeneous Dirichlet
boundary condition:

∂ttE
ε(x, t) − ∂xxE

ε(x, t) +
[
1− Eε(x, t)2 + F ε(x, t) +Gε(x, t)

]
Eε(x, t) = 0,

∂ttF
ε(x, t)−

1

ε2
∂xxF

ε(x, t)− ∂tt|E
ε(x, t)|2 = 0, x ∈ Ω, t > 0,

Eε(x, 0) = E0(x), ∂tE
ε(x, 0) = E1(x), F ε(x, 0) = 0, ∂tF

ε(x, 0) = 0, x ∈ Ω,

Eε(a, t) = Eε(b, t) = 0, F ε(a, t) = F ε(b, t) = 0, t ≥ 0,

(2.6)

where Gε(x, t) is defined as (2.2) with homogeneous Dirichlet boundary condition for d = 1,

∂ttG
ε(x, t) −

1

ε2
∂xxG

ε(x, t) = 0, x ∈ Ω, t > 0,

Gε(x, 0) = εαω0(x), ∂tG
ε(x, 0) = εβω1(x), x ∈ Ω; Gε(a, t) = Gε(b, t) = 0, t ≥ 0.

(2.7)

As ε→ 0, formally we have Eε(x, t) → Ẽε(x, t) and F ε(x, t) → 0, where Ẽε(x, t) is the
solution of the KG-OP

∂ttẼ
ε(x, t)− ∂xxẼ

ε(x, t) +
[
1− Ẽε(x, t)2 +Gε(x, t)

]
Ẽε(x, t) = 0,

Ẽε(x, 0) = E0(x), ∂tẼ
ε(x, 0) = E1(x), x ∈ Ω; Ẽε(a, t) = Ẽε(b, t) = 0, t ≥ 0.

(2.8)

Choose a mesh size h := ∆x = b−a
M with M being a positive integer and a time step

τ := ∆t > 0 and denote the grid points and time steps as

xj := a+ jh, j = 0, 1, · · · ,M ; tk := kτ, k = 0, 1, 2, · · · .

Define the index sets

TM = {j | j = 1, 2, · · · ,M − 1}, T 0
M = {j | j = 0, 1, · · · ,M}.
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Let Eε,k
j and F ε,k

j be the approximations of Eε(xj, tk) and F ε(xj , tk), respectively, and

denote Eε,k = (Eε,k
0 , Eε,k

1 , · · · , Eε,k
M )T , F ε,k = (F ε,k

0 , F ε,k
1 , · · · , F ε,k

M )T ∈ R(M+1) as the nu-
merical solution vectors at t = tk. The finite difference operators are the standard notations
as:

δ+x E
k
j =

Ek
j+1 − Ek

j

h
, δ+t E

k
j =

Ek+1
j − Ek

j

τ
, δctE

k
j =

Ek+1
j − Ek−1

j

2τ
,

δ2tE
k
j =

Ek+1
j − 2Ek

j +Ek−1
j

τ2
, δ2xE

k
j =

Ek
j+1 − 2Ek

j + Ek
j−1

h2
.

In this paper, we consider the finite difference discretization of (2.6) as following

δ2tE
ε,k
j =

(
δ2x − 1 + |Eε,k

j |2 − F ε,k
j −Hε,k

j

) Eε,k+1
j + Eε,k−1

j

2
,

δ2t F
ε,k
j =

1

2ε2
δ2x(F

ε,k+1
j + F ε,k−1

j ) + δ2t |E
ε,k
j |2, j ∈ TM , k ≥ 1.

(2.9)

where we apply an average of the oscillatory potential Gε over the interval [tk−1, tk+1]

Hε,k
j =

∫ 1

−1
(1− |s|)Gε(xj, tk + sτ)ds, j ∈ TM , k ≥ 1. (2.10)

Meanwhile, the boundary and initial conditions are discretized as

Eε,k
0 = Eε,k

M = F ε,k
0 = F ε,k

M = 0, k ≥ 0; Eε,0
j = E0(xj), F ε,0

j = 0, j ∈ T 0
M . (2.11)

Next we consider the value of the first step Eε,1
j and F ε,1

j . By Taylor expansion, we get

Eε,1
j as

Eε,1
j = E0(xj) + τE1(xj) +

τ2

2
∂ttE

ε(xj , 0), F ε,1
j =

τ2

2
∂ttF

ε(xj , 0), j ∈ TM , (2.12)

where by (2.6),

∂ttE
ε(x, 0) = E′′

0 (x)− E0(x)−N ε
0 (x)E0(x), ∂ttF

ε(x, 0) = 2E1(x)
2 + 2E0(x)∂ttE

ε(x, 0).

In practical computation, Hε,k
j in (2.10) can be obtained by solving the wave equation

(2.7) via the sine pseudospectral discretization in space followed by integrating in time in
phase space exactly [8] as

Hε,k
j = εα

M−1∑

l=1

(̃ω0)l sin

(
jlπ

M

)∫ 1

−1
(1− |s|) cos (θl(tk + sτ)) ds

+ εβ
M−1∑

l=1

(̃ω1)l
θl

sin

(
jlπ

M

)∫ 1

−1
(1− |s|) sin (θl(tk + sτ)) ds

= 2
M−1∑

l=1

sin

(
jlπ

M

)[
εα(̃ω0)l cos (θltk) + εβ

(̃ω1)l
θl

sin (θltk)

]∫ 1

0
cos (θlsτ) (1− s)ds,

=
4

τ2

M−1∑

l=1

1

θ2l
sin

(
jlπ

M

)
sin2

(
θlτ

2

)[
εα(̃ω0)l cos (θltk) + εβ

(̃ω1)l
θl

sin (θltk)

]
,
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where for l ∈ TM ,

θl =
lπ

ε(b− a)
, (̃ω0)l =

2

M

M−1∑

j=1

ω0(xj) sin

(
jlπ

M

)
, (̃ω1)l =

2

M

M−1∑

j=1

ω1(xj) sin

(
jlπ

M

)
.

2.3 Main results

For simplicity of notation, we denote

α∗ := min{α, 1 + β} ≥ 0.

Let T ∗ > 0 be the maximum common existence time for the solution to the KGZ (2.6) and
the KG-OP (2.8). Then for 0 < T < T ∗, according to the known results in [1, 21, 24, 27],
we can assume the exact solution (Eε(x, t), F ε(x, t)) of the KGZ (2.6) and the solution
Ẽε(x, t) of the KG-OP (2.8) are smooth enough and satisfy

(A)

‖Eε‖W 4,∞(Ω) + ‖∂tE
ε‖W 2,∞(Ω) + ‖∂ttE

ε‖W 2,∞(Ω) + ε‖∂3t E
ε‖W 2,∞(Ω) . 1,

‖Ẽε‖W 4,∞(Ω) + ‖∂tẼ
ε‖W 2,∞(Ω) + ‖∂ttẼ

ε‖W 2,∞(Ω) . 1, ‖∂3t Ẽ
ε‖L∞(Ω) .

1

ε1−α∗ ,

‖F ε‖W 4,∞(Ω) . ε, ‖∂tF
ε‖W 4,∞(Ω) + ‖∂ttF

ε‖W 2,∞(Ω) + ε‖∂3t F
ε‖W 2,∞(Ω) . 1.

Furthermore, we assume that the initial data satisfies

(B) ‖E0‖W5,∞(Ω)+‖E1‖W5,∞(Ω)+‖ω0‖W3,∞(Ω)+‖ω1‖W3,∞(Ω) . 1.

It can be concluded from (2.2) and assumption (B) that

‖∂mt G
ε‖W 3,∞(Ω) . εα

∗−m, m = 0, 1, 2, 3. (2.13)

To measure the error between the exact solution and the numerical solution of the KGZ
system, we introduce some notations. Denote

XM = {v = (vj)j∈T 0
M
| v0 = vM = 0} ⊆ RM+1.

The norms and inner products over XM are defined as

‖u‖2 = h
M−1∑

j=1

|uj |
2, ‖δ+x u‖

2 = h
M−1∑

j=0

|δ+x uj |
2, ‖u‖∞ = sup

j∈T 0
M

|uj |,

(u, v) = h

M−1∑

j=1

ujvj, 〈u, v〉 = h

M−1∑

j=0

ujvj, u, v ∈ XM .

Then it is easy to get

(−δ2xu, v) = 〈δ+x u, δ
+
x v〉, ((−δ2x)

−1u, v) = (u, (−δ2x)
−1v), u, v ∈ XM . (2.14)

Define the error functions eε,k, f ε,k as

eε,kj = Eε(xj, tk)− Eε,k
j , f ε,kj = F ε(xj , tk)− F ε,k

j , j ∈ T 0
M , 0 ≤ k ≤

T

τ
.

Then we have the following error estimates for the finite difference discretization (2.9) with
(2.10)-(2.12).
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Theorem 2.1 Under the assumptions (A)-(B), there exist h0 > 0 and τ0 > 0 sufficiently
small and independent of ε such that, when 0 < h ≤ h0, 0 < τ ≤ τ0, the scheme (2.9) with
(2.10)-(2.12) satisfies the following error estimates

‖eε,k‖+ ‖δ+x e
ε,k‖+ ‖f ε,k‖ . h2 +

τ2

ε
, 0 ≤ k ≤

T

τ
, ε ∈ (0, 1], (2.15)

‖eε,k‖+ ‖δ+x e
ε,k‖+ ‖f ε,k‖ . h2 + τ2 + τεα

∗

+ ε. (2.16)

Thus by taking the minimum, we have the uniform ε-independent error bound

‖eε,k‖+ ‖δ+x e
ε,k‖+ ‖f ε,k‖ . h2 + τ, 0 ≤ k ≤

T

τ
, ε ∈ (0, 1]. (2.17)

3 Error analysis

To prove Theorem 2.1, we will get the error bound (2.15) by using the energy method
and (2.16) via the limiting equation KG-OP (2.8), which can be displayed in the following
diagram [3–5,8].

(Eε,k, F ε,k)
O(h2+τ2+τεα

∗
+ε1+α∗

)
//

O(h2+τ2/ε)
**❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

(Ẽε, 0)

O(ε)

��

(Eε, F ε)

To simplify notations, for a function V (x, t), and a grid function V k ∈ XM (k ≥ 0), we
denote for k ≥ 1

(V )(x, tk) =
V (x, tk+1) + V (x, tk−1)

2
, x ∈ Ω; [V ]kj =

V k+1
j + V k−1

j

2
, j ∈ T 0

M .

To bound the numerical solution, following the idea in [2–4, 6, 32], we truncate the
nonlinearity to a global Lipschitz function with compact support in d-dimensions, then
the error can be achieved if the numerical solution is close to the bounded exact solution.
Choose a smooth function ρ(s) ∈ C∞(R) such that

ρ(s) =





1, |s| ≤ 1,

∈ [0, 1], |s| ≤ 2,

0, |s| ≥ 2,

and set

M0 = max

{
sup

ε∈(0,1]
‖Eε‖L∞(ΩT ), sup

ε∈(0,1]
‖Ẽε‖L∞(ΩT )

}
,

where ΩT = Ω × [0, T ], which is well defined by assumption (A). For s ≥ 0, y1, y2 ∈ R,
define

ρB(s) = s2ρ(s/B), B =M0 + 1, (3.1)

and

g(y1, y2) =
1

2

∫ 1

0
ρ′B(sy1 + (1− s)y2)ds =

ρB(y1)− ρB(y2)

2(y1 − y2)
.
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Then ρB(s) is global Lipschitz and there exists CB > 0, such that

|ρB(s1)− ρB(s2)| ≤ CB |s1 − s2|, ∀s1, s2 ≥ 0. (3.2)

Set Êε,0 = Eε,0, F̂ ε,0 = F ε,0, Êε,1 = Eε,1, F̂ ε,1 = F ε,1, and define Êε,k, F̂ ε,k ∈ XM for
k ≥ 1 as following

δ2t Ê
ε,k
j = (δ2x − 1−Hε,k

j )[Êε]kj +
(
ρB(Ê

ε,k
j )− F̂ ε,k

j

)
g(Êε,k+1

j , Êε,k−1
j ),

δ2t F̂
ε,k
j =

1

2ε2
δ2x(F̂

ε,k+1
j + F̂ ε,k−1

j ) + δ2t ρB(Ê
ε,k
j ).

(3.3)

Here (Êε,k, F̂ ε,k) can be viewed as another approximation of (Eε(xj , tk), F
ε(xj, tk)). Ap-

plying standard fixed point arguments (refer to [4]), we can get that (3.3) is uniquely
solvable for sufficiently small τ .

Define the error function êε,k, f̂ ε,k ∈ XM as

êε,kj = Eε(xj , tk)− Êε,k
j , f̂ ε,kj = F ε(xj , tk)− F̂ ε,k

j , j ∈ T 0
M , k ≥ 0.

Regarding the error bounds on (êε,k, f̂ ε,k), we have the following estimates.

Theorem 3.1 Under the assumption (A), there exists τ1 > 0 sufficiently small, when
0 < τ ≤ τ1, the scheme (3.3) satisfies the following error estimates

‖êε,k‖+ ‖δ+x ê
ε,k‖+ ‖f̂ ε,k‖ . h2 +

τ2

ε
, 0 ≤ k ≤

T

τ
, 0 < ε ≤ 1.

In order to prove it, we introduce the local truncation error ξ̂ε,kj , η̂ε,kj ∈ XM as

ξ̂ε,kj = δ2tE
ε(xj, tk)− (δ2x − 1−Hε,k

j )(Eε)(xj , tk)

− [ρB(E
ε(xj , tk))− F ε(xj , tk)] g (E

ε(xj , tk+1), E
ε(xj , tk−1))

= δ2tE
ε(xj, tk)−

[
δ2x − 1 + |Eε(xj , tk)|

2 −Hε,k
j − F ε(xj, tk)

]
(Eε)(xj , tk),

η̂ε,kj = ε2δ2t F
ε(xj , tk)− δ2x(F

ε)(xj , tk)− ε2δ2t ρB(E
ε(xj , tk))

= ε2δ2t F
ε(xj , tk)− δ2x(F

ε)(xj , tk)− ε2δ2t |E
ε(xj , tk)|

2, j ∈ TM , k ≥ 1.

(3.4)

For the local truncation error, we have the following error bounds.

Lemma 3.1 Under the assumption (A), we have for j ∈ TM

|ξ̂ε,kj | . h2+
τ2

ε
, |η̂ε,kj | . h2+ τ2, 1 ≤ k ≤

T

τ
−1; |δct η̂

ε,k
j | . h2+

τ2

ε
, 2 ≤ k ≤

T

τ
−2.
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Proof. By (2.6) and Taylor expansion, we have

δ2tE
ε(xj , tk) =

∑

m=±1

∫ 1

0
(1− s)∂ttE

ε(xj , tk +msτ)ds

=

∫ 1

−1
(1− |s|)

(
∂xxE

ε − Eε + (Eε)3 − EεF ε − EεGε
)
(xj , tk + sτ)ds

= ∂xxE
ε(xj , tk)−Eε(xj , tk) + Eε(xj , tk)

3 − Eε(xj , tk)F
ε(xj , tk)

+
τ2

6

∫ 1

−1
(1− |s|)3∂tt

(
∂xxE

ε − Eε + (Eε)3 − EεF ε
)
(xj , tk + sτ)ds

−

∫ 1

−1
(1− |s|)Eε(xj , tk + sτ)Gε (xj, tk + sτ) ds.

Similarly, by Taylor expansion, one can easily get that

[
δ2x − 1 + |Eε(xj , tk)|

2 −Hε,k
j − F ε(xj , tk)

]
(Eε)(xj , tk)

= ∂xxE
ε(xj , tk) +

[
|Eε(xj, tk)|

2 − 1−Hε,k
j − F ε(xj , tk)

]
Eε(xj , tk)

+
h2

6

∫ 1

−1
(1− |s|)3(∂4xE

ε)(xj + sh, tk)ds +
τ2

2

∫ 1

−1
(1− |s|)∂2x∂

2
tE

ε(xj , tk + sτ)ds

+
τ2

2

[
|Eε(xj , tk)|

2 − 1−Hε,k
j − F ε(xj , tk)

] ∫ 1

−1
(1− |s|)∂ttE

ε(xj , tk + sτ)ds.

Note that by (2.10), we have

∫ 1

−1
(1− |s|)Eε(xj , tk + sτ)Gε (xj, tk + sτ) ds− Eε(xj , tk)H

ε,k
j

= τEε
t (xj , tk)

∫ 1

0
s(1− s) [Gε (xj , tk + sτ)−Gε (xj, tk − sτ)] ds+A1

= τ2Eε
t (xj , tk)

∫ 1

0
s(1− s)

∫ s

−s
∂tG

ε (xj, tk + θτ) dθds+A1,

where

A1 = τ2
∫ 1

−1
(1− |s|)Gε (xj , tk + sτ)

∫ s

0
(s− θ)∂ttE

ε(xj, tk + θτ)dθds.

Accordingly, by the assumption (A) and (2.13), we deduce that

|ξ̂ε,kj | . h2‖∂4xE
ε‖L∞ + τ2

[
‖∂2x∂

2
tE

ε‖L∞ + ‖∂2tE
ε‖L∞(1 + ‖Gε‖L∞ + ‖F ε‖L∞ + ‖Eε‖2L∞)

+ ‖∂tE
ε‖L∞(‖∂tG

ε‖L∞ + ‖∂tF
ε‖L∞) + ‖Eε‖L∞(‖∂tE

ε‖2L∞ + ‖∂2t F
ε‖L∞)

]

. h2 +
τ2

ε
, j ∈ TM , 1 ≤ k ≤

T

τ
− 1.
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Similar expansion gives

η̂ε,kj =
ε2τ2

6

∫ 1

−1
(1− |s|)3

[
∂4t F

ε(xj , tk + sτ)− ∂4t |E
ε|2(xj , tk + sτ)

]
ds

−
τ2

2

∫ 1

−1
(1− |s|)∂2x∂

2
t F

ε(xj , tk + sτ)ds−
h2

6

∫ 1

−1
(1− |s|)3(∂4xF

ε)(xj + sh, tk)ds,

which implies

|η̂ε,kj | . h2‖∂4xF
ε‖L∞ + τ2

(
‖∂2x∂

2
t F

ε‖L∞ + ε2‖∂4t F
ε‖L∞ + ε2‖∂4t |E

ε|2‖L∞

)

. h2 + τ2, j ∈ TM , 1 ≤ k ≤
T

τ
− 1.

Applying δct to η̂ε,kj for 2 ≤ k ≤ T
τ − 1, one can deduce that

|δct η̂
ε,k
j | . h2‖∂4x∂tF

ε‖L∞ + τ2(‖∂2x∂
3
t F

ε‖L∞ + ε2‖∂5t F
ε‖L∞ + ε2‖∂5t |E

ε|2‖L∞)

. h2 +
τ2

ε
, j ∈ TM , 2 ≤ k ≤

T

τ
− 2.

Thus the proof is completed. �

For the initial step, we have the following estimates.

Lemma 3.2 Under the assumption (A), the first step errors of the discretization (2.12)
satisfy

êε,0j = f̂ ε,0j = 0, |êε,1j |+ |δ+x ê
ε,1
j |+ |f̂ ε,1j | .

τ3

ε
, |δ+t ê

ε,0
j |+ |δ+t f̂

ε,0
j | .

τ2

ε
.

Proof. By the definition of Êε,1
j , one can derive that

|êε,1j | =
τ3

2

∣∣∣∣
∫ 1

0
(1− s)2∂3tE

ε(xj , sτ)ds

∣∣∣∣ . τ3‖∂3tE
ε‖L∞ .

τ3

ε
,

which implies that |δ+t ê
ε,0
j | . τ2

ε . Similarly, |δ+x ê
ε,1
j | . τ3‖∂x∂

3
tE

ε‖L∞ . τ3

ε . It follows from
(2.12) and assumption (A) that

|f̂ ε,1j | =
τ3

2
|

∫ 1

0
(1− s)2∂3t F

ε(xj , sτ)ds| . τ3‖∂3t F
ε‖L∞ .

τ3

ε
.

Recalling that f̂ ε,0j = 0, we can get that |δ+t f̂
ε,0
j | . τ2

ε , which completes the proof. �

Subtracting (3.3) from (3.4), we have the error equations for j ∈ TM , 1 ≤ k < T
τ ,

δ2t ê
ε,k
j = (δ2x − 1−Hε,k

j )
êε,k+1
j + êε,k−1

j

2
+ rkj + ξ̂ε,kj ,

δ2t f̂
ε,k
j =

1

2ε2
δ2x(f̂

ε,k+1
j + f̂ ε,k−1

j ) + δ2t p
k
j + η̂ε,kj ,

(3.5)
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where

rkj =
(
|Eε|2 − F ε

)
(Eε)(xj, tk)−

(
ρB(Ê

ε,k
j )− F̂ ε,k

j

)
g(Êε,k+1

j , Êε,k−1
j ),

pkj =|Eε(xj , tk)|
2 − ρB(Ê

ε,k
j ).

(3.6)

By the property of ρB (cf. (3.2)), one can easily get that

|pkj | = |ρB(E
ε(xj, tk))− ρB(Ê

ε,k
j )| ≤ CB |ê

ε,k
j |, j ∈ TM , 0 ≤ k ≤

T

τ
. (3.7)

By the definition of g(·, ·), and noting that (Eε)(xj , tk) = g
(
Eε(xj, tk+1), E

ε(xj , tk−1)
)
, it

is known from [13] that for j ∈ TM , 1 ≤ k ≤ T
τ − 1,

∣∣∣g(Êε,k+1
j , Êε,k−1

j )
∣∣∣ . 1,

∣∣∣(Eε)(xj , tk)− g(Êε,k+1
j , Êε,k−1

j )
∣∣∣ .

∑

l=k±1

|êε,lj |. (3.8)

Proof of Theorem 3.1. Multiplying both sides of the first equation of (3.5) by 2τδct ê
ε,k
j ,

summing together for j ∈ TM , we obtain for 1 ≤ k ≤ T
τ − 1,

‖δ+t ê
ε,k‖2 − ‖δ+t ê

ε,k−1‖2 +
1

2
(‖δ+x ê

ε,k+1‖2 − ‖δ+x ê
ε,k−1‖2 + ‖êε,k+1‖2 − ‖êε,k−1‖2)

= (−Hε,k[êε]k + rk + ξ̂ε,k, êε,k+1 − êε,k−1).
(3.9)

For analyzing the second equation of (3.5), we introduce ûε,k+1/2 ∈ XM by

−δ2xû
ε,k+1/2
j = δ+t (f̂

ε,k
j − pkj ).

Multiplying both sides of the second equation of (3.5) by τε2(û
ε,k+1/2
j + û

ε,k−1/2
j ), summing

together for j ∈ TM , we have

ε2(‖δ+x û
ε,k+1/2‖2 − ‖δ+x û

ε,k−1/2‖2) +
1

2
(‖f̂ ε,k+1‖2 − ‖f̂ ε,k−1‖2)

= ([f̂ ε]k, pk+1 − pk−1) + τ(η̂ε,k, ûε,k+1/2 + ûε,k−1/2), 1 ≤ k ≤
T

τ
− 1.

(3.10)

Introduce a discrete ‘energy’ by

Ak = ‖δ+t ê
ε,k‖2 +

1

2
(‖êε,k‖2 + ‖êε,k+1‖2 + ‖δ+x ê

ε,k‖2 + ‖δ+x ê
ε,k+1‖2)

+ ε2‖δ+x û
ε,k+1/2‖2 +

1

2
(‖f̂ ε,k+1‖2 + ‖f̂ ε,k‖2), 0 ≤ k ≤

T

τ
− 1.

(3.11)

Combining (3.9) and (3.10), we get for 1 ≤ k ≤ T
τ − 1

Ak −Ak−1 = (−Hε,k[êε]k + rk + ξ̂ε,k, êε,k+1 − êε,k−1)

+ ([f̂ ε]k, pk+1 − pk−1) + τ(η̂ε,k, ûε,k+1/2 + ûε,k−1/2).
(3.12)
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Now we estimate the terms in (3.12) respectively. By the definition of rk, it can be
induced that

rkj =
(
|Eε(xj, tk)|

2 − F ε(xj , tk)
) (

(Eε)(xj, tk)− g(Êε,k+1
j , Êε,k−1

j )
)

+ g(Êε,k+1
j , Êε,k−1

j )
(
pkj − f̂ ε,kj

)
.

(3.13)

In view of assumption (A), (3.7) and (3.8), we derive that

|rkj | . |êε,k+1
j |+ |êε,kj |+ |êε,k−1

j |+ |f̂ ε,kj |. (3.14)

This implies that

(−Hε,k[êε]k + rk + ξ̂ε,k, êε,k+1 − êε,k−1)

= τ(−Hε,k[êε]k + rk + ξ̂ε,k, δ+t ê
ε,k + δ+t ê

ε,k−1)

. τ(1 + ‖Hε,k‖∞)(‖rk‖2 + ‖ξ̂ε,k‖2 +
∑

l=k±1

‖êε,l‖2 +

k∑

l=k−1

‖δ+t ê
ε,l‖2)

. τ(‖ξ̂ε,k‖2 +Ak +Ak−1). (3.15)

It can be easily get from (3.8) and assumption (A) that

pk+1 − pk−1 = Eε(xj , tk+1)
2 − Eε(xj , tk−1)

2 − 4τg(Êε,k+1
j , Êε,k−1

j )δct Ê
ε,k
j

= 2((Eε)(xj , tk)− g(Êε,k+1
j , Êε,k−1

j ))(Eε(xj , tk+1)− Eε(xj , tk−1))

+ 2g(Êε,k+1
j , Êε,k−1

j )(êε,k+1
j − êε,k−1

j )

. τ‖Eε
t ‖L∞(|êε,k+1

j |+ |êε,k−1
j |) + τ(|δ+t ê

ε,k
j |+ |δ+t ê

ε,k−1
j |),

which yields for 1 ≤ k ≤ T
τ − 1,

([f̂ ε]k, 2τδctp
k) . τ

[ k∑

l=k−1

‖δ+t ê
ε,l‖2 +

∑

l=k±1

(‖êε,l‖2 + ‖f̂ ε,l‖2)
]
. τ(Ak +Ak−1). (3.16)

Hence it can be concluded from (3.12), (3.15) and (3.16) that

Ak −Ak−1 − τ(η̂ε,k, ûε,k+1/2 + ûε,k−1/2) . τ
(
‖ξ̂ε,k‖2 +Ak +Ak−1

)
. (3.17)
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Applying (2.14), Sobolev inequality and Cauchy inequality, we obtain

−
Ak

4
+ τ

k∑

l=1

(
η̂ε,l, ûε,l+1/2 + ûε,l−1/2

)

= −
Ak

4
+

k∑

l=1

(
(−δ2x)

−1η̂ε,l, f̂ ε,l+1 − pl+1 − (f̂ ε,l−1 − pl−1)
)

= −
Ak

4
− 2τ

k−1∑

l=2

(
δct (−δ

2
x)

−1η̂ε,l, f̂ ε,l − pl
)

+

k+1∑

l=k

(
(−δ2x)

−1η̂ε,l−1, f̂ ε,l − pl
)
−

1∑

l=0

(
(−δ2x)

−1η̂ε,l+1, f̂ ε,l − pl
)

. A0 + τ
k−1∑

l=2

(‖δct η̂
ε,l‖2 +Al) +

2∑

l=1

‖η̂ε,l‖2 +
k∑

l=k−1

‖η̂ε,l‖2. (3.18)

Summing the equation (3.17) together for k = 1, 2, · · · ,m ≤ T
τ − 1, applying (3.18), we

obtain that

Am . A0 + τ

m∑

l=1

Al +

2∑

l=1

‖η̂ε,l‖2 +

m∑

l=m−1

‖η̂ε,l‖2 + τ

m∑

l=1

‖ξ̂ε,l‖2 + τ

m−1∑

l=2

‖δct η̂
ε,l‖2. (3.19)

By Lemma 3.2 and the discrete Sobolev inequality, we deduce that

ε‖δ+x û
ε,1/2‖ . ε‖δ+t (f̂

ε,0 − p0)‖ . ε‖δ+t f̂
ε,0‖+ ε‖δ+t ê

ε,0‖ . τ2, (3.20)

which together with Lemma 3.2 yields that

A0 . τ4/ε2.

Applying Lemma 3.1 and (3.19), it can be concluded that there exists τ1 > 0 such that
when τ ≤ τ1, we have

Am .

(
h2 +

τ2

ε

)2

+ τ

m−1∑

i=1

Ai.

Applying discrete Gronwall inequality, for sufficiently small τ , we can conclude that

Am .

(
h2 +

τ2

ε

)2

, 0 ≤ m ≤
T

τ
− 1,

which completes the proof of Theorem 3.1 by recalling (3.11). �

Theorem 3.2 Under the assumptions (A)-(B), there exists τ2 > 0 sufficiently small, when
0 < τ ≤ τ2 and 0 < h ≤ 1

2 , the scheme (3.3) satisfies the following error estimates

‖êε,k‖+ ‖δ+x ê
ε,k‖+ ‖f̂ ε,k‖ . h2 + τ2 + τεα

∗

+ ε1+α∗

, 0 ≤ k ≤
T

τ
.
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Define another error function

ẽε,kj = Ẽε(xj , tk)− Êε,k
j , f̃ ε,kj = −F̂ ε,k

j , j ∈ TM , 0 ≤ k ≤
T

τ
,

where Ẽε(x, t) is the solution of the KG-OP (2.8). The local truncation error ξ̃ε,k, η̃ε,k ∈
XM is defined as

ξ̃ε,kj = δ2t Ẽ
ε(xj, tk)− (δ2x − 1−Hε,k

j )(Ẽε)(xj , tk)

− ρB(Ẽ
ε(xj , tk))g

(
Ẽε(xj , tk+1), Ẽ

ε(xj , tk−1)
)

= δ2t Ẽ
ε(xj, tk)−

(
δ2x − 1 + |Ẽε(xj , tk)|

2 −Hε,k
j

)
(Ẽε)(xj, tk),

η̃ε,kj = −ε2δ2t ρB(Ẽ
ε(xj , tk)) = −ε2δ2t |Ẽ

ε(xj , tk)|
2.

(3.21)

Lemma 3.3 Under the assumption (A), we can obtain the following error bounds

‖ξ̃ε,k‖ . h2 + τ2 + τεα
∗

, ‖η̃ε,k‖ . ε2, ‖δct η̃
ε,k‖ . ε1+α∗

.

Proof. Similar to the proof of Lemma 3.1, we can get that

ξ̃ε,kj =−
h2

6

∫ 1

−1
(1− |s|)3(∂4xẼ

ε)(xj + sh, tk)ds

+
τ2

6

∫ 1

−1
(1− |s|)2∂tt

[
∂xxẼ

ε − Ẽε + |Ẽε|3
]
(xj , tk + sτ)ds

−
τ2

2

∫ 1

−1
(1− |s|)∂2x∂

2
t Ẽ

ε(xj , tk + sτ)ds−A2

−
τ2

2

(
|Ẽε(xj, tk)|

2 − 1−Hε,k
j

)∫ 1

−1
(1− |s|)∂ttẼ

ε(xj , tk + sτ)ds,

where

A2 =

∫ 1

−1
(1− |s|)Ẽε(xj , tk + sτ)Gε (xj, tk + sτ) ds − Ẽε(xj, tk)H

ε,k
j

= τ

∫ 1

−1
(1− |s|)Gε (xj , tk + sτ)

∫ s

0
∂tẼ

ε(xj, tk + θτ)dθds

. τ‖Gε‖L∞‖∂tẼ
ε‖L∞ . τεα

∗

.

Hence we can conclude from assumption (A) that

‖ξ̃ε,k‖ . h2 + τ2 + τεα
∗

.

Note that by assumption (A), it is easy to get that

∂3t |Ẽ
ε|2 = 6∂tẼ

ε∂ttẼ
ε + 2Ẽε∂3t Ẽ

ε . εα
∗−1,

which indicates that
‖η̃ε,k‖ . ε2, ‖δct η̃

ε,k‖ . ε1+α∗

,

the proof is completed. �

Analogous to Lemma 3.2, we have the error bounds for ẽε,k, f̃ ε,k at the first step.
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Lemma 3.4 Under the assumptions (A) and (B), the first step errors of the discretization
(2.12) satisfy

ẽε,0j = f̃ ε,0j = 0, |ẽε,1j |+|δ+x ẽ
ε,1
j | . τ3+τ2εα

∗

, |f̃ ε,1j |+|δ+t ẽ
ε,0
j | . τ2+τεα

∗

, |δ+t f̃
ε,0
j | . τ.

Proof. It follows from (2.4) and (2.6) that ∂ttE
ε(xj , 0) = ∂ttẼ

ε(xj , 0). By (2.12) and
assumption (B), one gets that

ẽε,1j =
τ3

2

∫ 1

0
(1− s)2∂3t Ẽ

ε(xj, sτ)ds

=
τ3

2

∫ 1

0
(1− s)2∂t

(
∂xxẼ

ε − Ẽε + |Ẽε|3 − ẼεGε
)
(xj , sτ)ds

=
τ3

2

∫ 1

0
(1− s)2∂t

(
∂xxẼ

ε − Ẽε + |Ẽε|3
)
(xj , sτ)ds

+
τ2

2
E0(xj)ε

αω0(xj)− τ2
∫ 1

0
(1− s)Ẽε(xj, sτ)G

ε(xj , sτ)ds

. τ3 + τ2εα
∗

.

Thus this gives that |δ+t ẽ
ε,0
j | . τ2 + τεα

∗
. Similar arguments can deduce that |δ+x ẽ

ε,1
j | .

τ3 + τ2εα
∗
. By the definition, we have

|f̃ ε,1j | = |F ε,1
j | . τ2|∂ttF

ε(xj , 0)| . τ2.

The remaining conclusions are direct. �

Proof of Theorem 3.2. Subtracting (3.3) from (3.21), one has the error equations

δ2t ẽ
ε,k
j = (δ2x − 1−Hε,k

j )[ẽε]kj + r̃kj + ξ̃ε,kj ,

ε2δ2t f̃
ε,k
j = δ2x[f̃

ε]kj + ε2δ2t p̃
k
j + η̃ε,kj , j ∈ TM , 1 ≤ k ≤

T

τ
− 1,

(3.22)

where

r̃kj = |Ẽε(xj, tk)|
2(Ẽε)(xj , tk)−

(
ρB(Ê

ε,k
j )− [F̂ ε]kj

)
g(Êε,k+1

j , Êε,k−1
j ),

p̃kj = |Ẽε(xj, tk)|
2 − ρB(Ê

ε,k
j ),

Suppose ũε,k+
1

2 ∈ XM is the solution to the equation

−δ2xũ
ε,k+ 1

2

j = δ+t (f̃
ε,k
j − p̃kj ), j ∈ TM , 0 ≤ k ≤

T

τ
− 1.

Denote

Ãk =‖δ+t ẽ
ε,k‖2 +

1

2

(
‖ẽε,k‖2 + ‖ẽε,k+1‖2 + ‖δ+x ẽ

ε,k‖2 + ‖δ+x ẽ
ε,k+1‖2

)

+ ε2‖δ+x ũ
ε,k+1/2‖2 +

1

2

(
‖f̃ ε,k‖2 + ‖f̃ ε,k+1‖2

)
.
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Applying the same approach as in the former part, there exists τ2 > 0 sufficiently small
independent of ε such that

Ãk . Ã0 + τ

k−1∑

l=1

Ãl +

2∑

l=1

‖η̃ε,l‖2 +

k∑

l=k−1

‖η̃ε,l‖2 + τ

k∑

l=1

‖ξ̃ε,l‖2 + τ

k−1∑

l=2

‖δtη̃
ε,l‖2.

By Lemma 3.4 and the discrete Sobolev inequality, we deduce that

ε‖δ+x ũ
ε,1/2‖ . ε‖δ+t f̃

ε,0‖+ ε‖δ+t ẽ
ε,0‖ . ετ.

which together with Lemma 3.4 yields that

Ã0 . (τ2 + τεα
∗

+ ετ)2.

Applying Lemma 3.3, it can be concluded that when 0 < τ ≤ τ2,

Ãk . (h2 + τ2 + ετ + τεα
∗

+ ε1+α∗

)2 + τ

k−1∑

i=1

Ãi.

It follows from discrete Gronwall inequality that

Ãk . (h2 + τ2 + ετ + τεα
∗

+ ε1+α∗

)2,

implying that

‖ẽε,k‖+ ‖δ+x ẽ
ε,k‖+ ‖f̃ ε,k‖ . h2 + τ2 + ετ + τεα

∗

+ ε1+α∗

.

Using the assumption (B) and the triangle inequality, we obtain that

‖êε,k‖+ ‖δ+x ê
ε,k‖ . ‖ẽε,k‖+ ‖δ+x ẽ

ε,k‖+ ‖Eε(·, tk)− Ẽε(·, tk)‖H1

. h2 + τ2 + τεα
∗

+ ε,

‖f̂ ε,k‖ . ‖f̃ ε,k‖+ ‖F ε(·, tk)‖L2 . h2 + τ2 + τεα
∗

+ ε,

which completes the proof of Theorem 3.2. �

Proof of theorem 2.1. Now we have proved the two types of estimates (2.15) and (2.16)
for (Êε,k, F̂ ε,k), which is the solution of the modified finite difference discretization (3.3)
with (2.10) and (2.12). Hence we can get the uniform error bounds for (Êε,k, F̂ ε,k):

‖êε,k‖+ ‖δ+x ê
ε,k‖+ ‖f̂ ε,k‖ . h2 + τ,

which together with the inverse inequality [32] yields

‖Êε,k‖∞ − ‖Eε(·, tk)‖L∞ ≤ ‖êε,k‖∞ . ‖δ+x ê
ε,k‖ . h2 + τ, 0 ≤ k ≤

T

τ
.

Thus there exists h0 > 0 and τ3 > 0 sufficiently small such that when 0 < h ≤ h0 and
0 < τ ≤ τ3,

‖Êε,k‖∞ ≤ 1 + ‖Eε(·, tk)‖∞ ≤ 1 +M0, 0 ≤ k ≤
T

τ
.

Set τ0 = min{τ1, τ2, τ3}, when 0 < h ≤ h0, 0 < τ ≤ τ0, (3.3) collapses to (2.9), i.e.
(Êε,k, F̂ ε,k) are identical to (Eε,k, F ε,k), which completes the proof. �
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Remark 3.1 The error bounds in Theorem 2.1 are still valid in higher dimensions, e.g.
d = 2, 3. The key point is the discrete Sobolev inequality in higher dimensions as [4, 32]

‖ψh‖∞ ≤
1

Cd(h)
‖ψh‖H1 , with Cd(h) ∼





1

|lnh|
, d = 2,

h1/2, d = 3.

where ψh is a mesh function over Ω with homogeneous Dirichlet boundary condition. Thus
by requiring an additional condition on the time step τ

τ = o(Cd(h)),

the same error bounds can be obtained.

4 Numerical results

In this section, we present numerical results for the KGZ (2.6) by the finite difference
discretization (2.9) with (2.10)-(2.12). In our experiment, the initial condition is set as

E0(x) = e−x2

sinx, E1(x) = sech(x2/2) cos x,

ω0(x) = sech(x2) cos(3x), ω1(x) = sech(x2) sin(4x),

and the parameters α and β are chosen as
Case I. α = 1 and β = 0;
Case II. α = 0 and β = −1.

In practical computation, the truncated domain is set as Ωε =
[
−30− 1

ε , 30 +
1
ε

]
, which

is large enough such that the homogeneous Dirichlet boundary condition does not intro-
duce significant errors. Similar to the truncation for the Zakharov system, the bounded
computational domain Ωε has to be chosen as ε-dependent due to that the rapid outgoing
waves are at wave speed O

(
1
ε

)
and the homogeneous Dirichlet boundary condition is taken

at the boundary. The computational ε-dependent domain can be fixed as ε-independent
if one applies absorbing boundary condition (ABC) [16] or transport boundary condition
(TBC) [17,18], or perfected matched layer (PML) [11] for the wave-type equations in (2.6)
and (2.2) during the truncation (refer to [8]).

To quantify the numerical errors, we introduce the error functions as follows

eε(tk) :=
‖eε,k‖+ ‖δ+x e

ε,k‖

‖Eε(·, tk)‖H1

, nε(tk) :=
‖nε,k‖

‖N ε(·, tk)‖L2

,

where eε,k = Eε(·, tk)− Eε,k, nε,k = N ε(·, tk)−N ε,k. The “exact” solution is obtained by
the EWI-SP method [4] with very small mesh size h = 1/64 and time step τ = 10−6. The
errors are displayed at t = 1. For spatial error analysis, we set a time step τ = 10−5, such
that the temporal error can be neglected; for temporal error analysis, the mesh size h is
set as h = 2.5× 10−4 such that the spatial error can be ignored.

Table 4.1 depicts the spatial errors for Case II initial data, which clearly demonstrates
that our numerical method is uniformly second order accurate in h for all ε ∈ (0, 1]. The
result for Case I initial data is similar, which is omitted here for brevity.



20

Table 4.1: Spatial errors at time t = 1 for Case II, i.e. α = 0, β = −1.

eε(1) h0 = 0.2 h0/2 h0/2
2 h0/2

3 h0/2
4 h0/2

5

ε = 1 1.57E-2 4.05E-3 1.02E-3 2.56E-4 6.39E-5 1.60E-5
rate - 1.95 1.99 2.00 2.00 2.00

ε = 1/2 1.35E-2 3.48E-3 8.76E-4 2.19E-4 5.49E-5 1.37E-5
rate - 1.95 1.99 2.00 2.00 2.00

ε = 1/22 1.30E-2 3.35E-3 8.44E-4 2.11E-4 5.29E-5 1.32E-5
rate - 1.95 1.99 2.00 2.00 2.00

ε = 1/23 1.32E-2 3.42E-3 8.60E-4 2.15E-4 5.39E-5 1.35E-5
rate - 1.95 1.99 2.00 2.00 2.00

ε = 1/24 1.33E-2 3.43E-3 8.65E-4 2.17E-4 5.42E-5 1.36E-5
rate - 1.95 1.99 2.00 2.00 2.00

ε = 1/25 1.33E-2 3.44E-3 8.66E-4 2.17E-4 5.43E-5 1.36E-5
rate - 1.95 1.99 2.00 2.00 2.00

ε = 1/26 1.33E-2 3.44E-3 8.66E-4 2.17E-4 5.42E-5 1.36E-5
rate - 1.95 1.99 2.00 2.00 2.00

ε = 1/27 1.33E-2 3.44E-3 8.65E-4 2.17E-4 5.42E-5 1.36E-5
rate - 1.95 1.99 2.00 2.00 2.00

ε = 1/28 1.33E-2 3.43E-3 8.65E-4 2.17E-4 5.42E-5 1.36E-5
rate - 1.95 1.99 2.00 2.00 2.00

nε(1) h0 = 0.2 h0/2 h0/2
2 h0/2

3 h0/2
4 h0/2

5

ε = 1 1.91E-2 4.79E-3 1.20E-3 2.99E-4 7.49E-5 1.87E-5
rate - 2.00 2.00 2.00 2.00 2.00

ε = 1/2 1.61E-2 3.98E-3 9.92E-4 2.48E-4 6.20E-5 1.55E-5
rate - 2.02 2.00 2.00 2.00 2.00

ε = 1/22 6.59E-3 1.67E-3 4.18E-4 1.05E-4 2.62E-5 6.56E-6
rate - 1.98 2.00 2.00 2.00 1.99

ε = 1/23 5.30E-3 1.35E-3 3.39E-4 8.49E-5 2.13E-5 5.33E-6
rate - 1.97 1.99 2.00 2.00 2.00

ε = 1/24 5.12E-3 1.30E-3 3.28E-4 8.20E-5 2.05E-5 5.15E-6
rate - 1.97 1.99 2.00 2.00 1.99

ε = 1/25 5.06E-3 1.29E-3 3.23E-4 8.10E-5 2.03E-5 5.09E-6
rate - 1.97 1.99 2.00 2.00 1.99

ε = 1/26 5.03E-3 1.28E-3 3.21E-4 8.05E-5 2.02E-5 5.08E-6
rate - 1.97 1.99 2.00 2.00 1.99

ε = 1/27 5.01E-3 1.28E-3 3.21E-4 8.02E-5 2.01E-5 5.07E-6
rate - 1.97 1.99 2.00 2.00 1.99

ε = 1/28 5.01E-3 1.27E-3 3.20E-4 8.01E-5 2.01E-5 5.07E-6
rate - 1.97 1.99 2.00 1.99 1.99

Tables 4.2 and 4.3 present the temporal errors for Cases I and II, respectively, from
which we can conclude that the method is uniformly convergent in time for both initial
data. Specifically, Table 4.2 shows the method is uniformly second order accurate for Eε,
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Table 4.2: Temporal errors at time t = 1 for Case I, i.e. α = 1, β = 0.

eε(1) τ0 = 0.05 τ0/2 τ0/2
2 τ0/2

3 τ0/2
4 τ0/2

5 τ0/2
6 τ0/2

7

ε = 1 6.34E-3 1.64E-3 4.16E-4 1.05E-4 2.62E-5 6.59E-6 1.67E-6 4.20E-7
rate - 1.95 1.98 1.99 1.99 1.99 1.98 1.99

ε = 1/2 5.19E-3 1.35E-3 3.42E-4 8.61E-5 2.16E-5 5.43E-6 1.37E-6 3.45E-7
rate - 1.95 1.98 1.99 1.99 1.99 1.98 1.99

ε = 1/22 5.17E-3 1.34E-3 3.41E-4 8.58E-5 2.15E-5 5.41E-6 1.37E-6 3.45E-7
rate - 1.95 1.98 1.99 1.99 1.99 1.98 1.99

ε = 1/23 5.17E-3 1.34E-3 3.41E-4 8.58E-5 2.15E-5 5.41E-6 1.37E-6 3.45E-7
rate - 1.95 1.98 1.99 1.99 1.99 1.98 1.99

ε = 1/24 5.16E-3 1.34E-3 3.40E-4 8.56E-5 2.15E-5 5.40E-6 1.37E-6 3.45e-7
rate - 1.95 1.98 1.99 1.99 1.99 1.98 1.99

ε = 1/25 5.14E-3 1.34E-3 3.39E-4 8.55E-5 2.15E-5 5.39E-6 1.36E-6 3.44E-7
rate - 1.94 1.98 1.99 1.99 1.99 1.98 1.98

ε = 1/26 5.13E-3 1.33E-3 3.39E-4 8.54E-5 2.15E-5 5.39E-6 1.36E-6 3.45E-7
rate - 1.95 1.97 1.99 1.99 1.99 1.98 1.98

ε = 1/27 5.00E-3 1.30E-3 3.29E-4 8.32E-5 2.09E-5 5.26E-6 1.33E-6 3.36E-7
rate - 1.95 1.98 1.98 1.99 1.99 1.98 1.98

ε = 1/28 5.01E-3 1.30E-3 3.29E-4 8.29E-5 2.09E-5 5.25E-6 1.33E-6 3.36E-7
rate - 1.95 1.98 1.99 1.99 1.99 1.98 1.98

nε(1) τ0 = 0.05 τ0/2 τ0/2
2 τ0/2

3 τ0/2
4 τ0/2

5 τ0/2
6 τ0/2

7

ε = 1 6.59E-3 1.70E-3 4.29E-4 1.08E-4 2.70E-5 6.78E-6 1.71E-6 4.28E-7
rate - 1.96 1.98 1.99 2.00 2.00 1.99 2.00

ε = 1/2 1.87E-2 4.85E-3 1.23E-3 3.08E-4 7.71E-5 1.93E-5 4.85E-6 1.21E-6
rate - 1.95 1.98 1.99 2.00 2.00 1.99 2.00

ε = 1/22 1.50E-2 4.63E-3 1.24E-3 3.15E-4 7.90E-5 1.98E-5 4.96E-6 1.24E-6
rate - 1.70 1.90 1.98 1.99 2.00 2.00 2.00

ε = 1/23 8.65E-3 3.50E-3 1.44E-3 4.36E-4 1.13E-4 2.83E-5 7.09E-6 1.77E-6
rate - 1.31 1.28 1.73 1.95 1.99 2.00 2.00

ε = 1/24 5.55E-3 1.96E-3 9.14E-4 4.87E-4 1.86E-4 5.02E-5 1.27E-5 3.18E-6
rate - 1.50 1.10 0.91 1.39 1.89 1.99 2.00

ε = 1/25 4.97E-3 1.45E-3 5.53E-4 2.66E-4 1.56E-4 7.76E-5 2.38E-5 6.09E-6
rate - 1.78 1.39 1.06 0.77 1.01 1.70 1.97

ε = 1/26 4.70E-3 1.30E-3 4.38E-4 1.81E-4 8.58E-5 4.86E-5 2.86E-5 1.12E-5
rate - 1.85 1.57 1.27 1.08 0.82 0.76 1.36

ε = 1/27 4.19E-3 1.20E-3 3.57E-4 1.41E-4 6.30E-5 2.96E-5 1.55E-5 9.45E-6
rate - 1.81 1.75 1.34 1.16 1.09 0.93 0.72

ε = 1/28 3.96E-3 1.12E-3 3.28E-4 1.12E-4 4.84E-5 2.26E-5 1.07E-5 5.30E-6
rate - 1.83 1.77 1.55 1.21 1.10 1.08 1.01

while for N ε, it is second order in time when τ . ε or ε . τ2 (cf. upper and lower triangle
parts, respectively). There is a resonance regime when τ ∼ ε where the convergence rate
degenerates to the first order, which agrees with the analysis (2.15)-(2.16). For α = 0,
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Table 4.3: Temporal errors at time t = 1 for Case II, i.e. α = 0, β = −1.

eε(1) τ0 = 0.05 τ0/2 τ0/2
2 τ0/2

3 τ0/2
4 τ0/2

5 τ0/2
6 τ0/2

7

ε = 1 6.34E-3 1.64E-3 4.16E-4 1.05E-4 2.62E-5 6.59E-6 1.67E-6 4.20E-7
rate - 1.95 1.98 1.99 1.99 1.99 1.98 1.99

ε = 1/2 5.48E-3 1.42E-3 3.62E-4 9.11E-5 2.29E-5 5.74E-6 1.45E-6 3.65E-7
rate - 1.94 1.98 1.99 1.99 1.99 1.98 1.99

ε = 1/22 5.16E-3 1.34E-3 3.41E-4 8.58E-5 2.16E-5 5.41E-6 1.37E-6 3.42E-7
rate - 1.95 1.98 1.99 1.99 1.99 1.98 1.99

ε = 1/23 5.20E-3 1.35E-3 3.44E-4 8.66E-5 2.18E-5 5.46E-6 1.38E-6 3.47E-7
rate - 1.94 1.98 1.99 1.99 1.99 1.98 1.99

ε = 1/24 5.47E-3 1.42E-3 3.59E-4 9.04E-5 2.27E-5 5.71E-6 1.44E-6 3.63E-7
rate - 1.95 1.98 1.99 1.99 1.99 1.98 1.99

ε = 1/25 5.77E-3 1.63E-3 4.04E-4 1.00E-4 2.51E-5 6.30E-6 1.59E-6 4.01E-7
rate - 1.83 2.01 2.01 2.00 1.99 1.99 1.99

ε = 1/26 5.52E-3 1.98E-3 5.67E-4 1.32E-4 3.15E-5 7.81E-6 1.96E-6 4.93E-7
rate - 1.48 1.80 2.11 2.06 2.01 1.99 1.99

ε = 1/27 5.45E-3 1.92E-3 8.40E-4 2.40E-4 5.20E-5 1.18E-5 2.88E-6 7.26E-7
rate - 1.51 1.19 1.81 2.21 2.13 2.04 1.99

ε = 1/28 5.45E-3 1.90E-3 8.42E-4 4.03E-4 1.13E-4 2.35E-5 5.17E-6 1.24E-6
rate - 1.52 1.17 1.06 1.83 2.27 2.19 2.06

nε(1) τ0 = 0.05 τ0/2 τ0/2
2 τ0/2

3 τ0/2
4 τ0/2

5 τ0/2
6 τ0/2

7

ε = 1 6.59E-3 1.70E-3 4.29E-4 1.08E-4 2.70E-5 6.78E-6 1.71E-6 4.28E-7
rate - 1.96 1.98 1.99 2.00 2.00 1.99 2.00

ε = 1/2 1.33E-2 3.45E-3 8.73E-4 2.19E-4 5.49E-5 1.38E-5 3.46E-6 8.65E-7
rate - 1.95 1.98 1.99 2.00 2.00 1.99 2.00

ε = 1/22 9.61E-3 2.97E-3 7.98E-4 2.03E-4 5.09E-5 1.28E-5 3.20E-6 8.00E-7
rate - 1.70 1.89 1.98 1.99 2.00 2.00 2.00

ε = 1/23 5.55E-3 2.30E-3 9.03E-4 2.77E-4 7.21E-5 1.81E-5 4.54E-6 1.14E-6
rate - 1.27 1.35 1.70 1.94 1.99 2.00 2.00

ε = 1/24 3.92E-3 1.35E-3 6.30E-4 3.13E-4 1.17E-4 3.23E-5 8.18E-6 2.05E-6
rate - 1.54 1.10 1.01 1.43 1.85 1.98 2.00

ε = 1/25 3.91E-3 1.19E-3 4.18E-4 1.89E-4 1.07E-4 4.80E-5 1.53E-5 3.96E-6
rate - 1.71 1.51 1.14 0.82 1.16 1.65 1.95

ε = 1/26 3.53E-3 1.37E-3 4.38E-4 1.49E-4 6.27E-5 3.45E-5 1.84E-5 7.03E-6
rate - 1.37 1.64 1.55 1.25 0.86 0.91 1.39

ε = 1/27 3.31E-3 1.27E-3 5.49E-4 1.78E-4 5.74E-5 2.26E-5 1.11E-5 6.51E-6
rate - 1.38 1.21 1.63 1.63 1.35 1.02 0.77

ε = 1/28 3.18E-3 1.20E-3 5.47E-4 2.52E-4 7.81E-5 2.34E-5 8.60E-6 3.80E-6
rate - 1.41 1.13 1.12 1.69 1.74 1.45 1.18

β = −1, the upper and lower triangle parts of Table 4.3 suggest that the method is second
and first order in time when τ . ε and ε . τ , respectively. Moreover, the upper triangle
parts of Tables 4.2 and 4.3 show the order of the errors at O(τ2/ε) for nε (cf. each column),
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which confirms our error analysis in Section 3.

5 Conclusion

We presented a uniformly accurate finite difference method and carried out its rigorous error
bounds for the Klein-Gordon Zakharov (KGZ) system in d (d = 1, 2, 3) dimensions, which
involves a dimensionless parameter ε ∈ (0, 1]. When 0 < ε≪ 1, i.e. subsonic limit regime,
the solution of KGZ propagates highly oscillatory waves in time and/or rapid outgoing
waves in space. Our method was designed by reformulating KGZ into an asymptotic
consistent formulation followed by adopting an integral approximation for the oscillating
term. By applying the energy method and the limiting equation, two independent error
bounds were obtained, which depend explicitly on the parameter ε, mesh size h and time
step τ . Thus it can be established that the method is uniformly convergent for ε ∈ (0, 1]
with quadratic and linear convergence in space and time, respectively. The error bounds
is confirmed by the numerical results, which also suggest that our estimates are sharp.
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