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We propose an explicit numerical method for the periodic Korteweg—de Vries equation. Our method is
based on a Lawson-type exponential integrator for time integration and the Rusanov scheme for Burgers’
nonlinearity. We prove first-order convergence in both space and time under a mild Courant-Friedrichs—
Lewy condition T = O(h), where t and h represent the time step and mesh size for solutions in the
Sobolev space H3 (=7, 7)), respectively. Numerical examples illustrating our convergence result are
given.
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1. Introduction

Consider the Korteweg—de Vries (KdV) equation

u,+u,, +uu, =0, x€2=(-mm), t>0,

(1.1)

u(x,0) = ug(x), xe 2,

where we impose periodic boundary conditions for practical implementation. The KdV equation is a
generic model for the study of weakly nonlinear long waves. It describes the propagation of shallow
water waves in a channel (Korteweg & de Vries, 1895) and is widely applied in science and engineering,
such as in plasma physics where it gives rise to ion acoustic solitons (Das & Sarma, 1998), and in
geophysical fluid dynamics where it describes long waves in shallow seas and deep oceans (Ostrovsky
& Stepanyants, 1989; Osborne, 1995). The KdV equation is also relevant for studying the interaction
between nonlinearity and dispersion.

For the well-posedness of the periodic KdV equation we refer to Bourgain (1993), Colliander
et al. (2003) and Gubinelli (2012). It was shown in Colliander et al. (2003) that the equation is
globally well-posed for initial data in H®(§2) with s > —1/2. For its numerical solution various
methods have been proposed and analyzed in the literature, such as finite difference methods (FDM)
(Vliegenthart, 1971; Taha & Ablowitz, 1984; Helal & Mehanna, 2007; Holden et al., 2014), finite
element methods (Winther, 1980; Arnold & Winther, 1982; Aksan & (")zdeg, 2006; Dutta et al., 2015),
Fourier spectral methods (Chan & Kerkhoven, 1985; Maday & Quarteroni, 1988; Rashid et al., 2004;
Rashid, 2006, 2007), splitting methods (Holden et al., 1999, 2011; Klein, 2008) and Petrov—Galerkin
methods for the KdV equation with nonperiodic boundary condition (Ma & Sun, 2000, 2001; Shen,
2003). Numerical methods for the Kadomtsev—Petviashvili equation, which is a two-dimensional
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2400 A. OSTERMANN AND C. SU

generalization of the KdV equation, were considered in Einkemmer & Ostermann (2018) and Klein
& Roidot (2011).

For FDM, linear stability has been analyzed in Goda (1975), Taha & Ablowitz (1984) and
Vliegenthart (1971). The explicit leap-frog scheme in Taha & Ablowitz (1984) and the Lax—Friedrichs
scheme in Vliegenthart (1971) require both the rather severe stability condition = O(h?®), where ©
and & represent the discretization parameters in time and space, respectively. To weaken the stability
restriction some implicit FDM were proposed in Goda (1975) and Taha & Ablowitz (1984). Recently
the Lax—Friedrichs scheme with an implicit dispersion was proved to converge uniformly to the
solution of the KdV equation for initial data in H? under the stability condition 7 = o3’
for both the decaying case on the full line and the periodic case (Holden et al., 2014). However,
no convergence rate was obtained. Very recently, for the 6-right winded FDM, which applies the
Rusanov scheme for the hyperbolic flux term and a 4-point 8-scheme for the dispersive term, first-
order convergence in space was proved under a hyperbolic Courant-Friedrichs—Lewy (CFL) condition
T = O(h) for > % and under an Airy CFL condition T = O(h3) for § < 1, for solutions in H®(R)
(Courtes et al., 2017).

On the other hand, the numerical approximation by Fourier spectral/pseudospectral methods has
been studied by many authors (Ma & Guo, 1986; Maday & Quarteroni, 1988). Maday & Quarteroni
(1988) showed that for solutions in H" the error of the Fourier spectral method is of order O(h" -1
in the L? norm, while the error of the pseudospectral method is of order O(A"2) in the H' norm.
The corresponding L? estimate for the Fourier pseudospectral method was established in Ma & Guo
(1986) with the aid of artificial viscosity, to avoid the nonlinear instability caused by the aliasing
error. More specifically, first-order convergence in time was shown in Ma & Guo (1986) for the fully
discrete pseudospectral method under the stability condition T = O(h?) for explicit and © = O(h?) for
implicit discretization of the nonlinear term. For the rigorous analysis of splitting methods we refer to
Holden et al. (2011, 2013).

Nowadays, exponential time integration methods are widely applied for parabolic and hyperbolic
problems (Hochbruck & Ostermann, 2010; Bao et al., 2013; Hofmanova & Schratz, 2017). In particular,
a distinguished exponential-type integrator was derived for the KdV equation by Hofmanova & Schratz
(2017) using a ‘twisting’ technique. For this integrator first-order convergence in time was proved
without any CFL condition required. However, the success of this scheme strongly depends on the
particular form of the equation. The resulting key relation k% + k; — (ky + ky)® = =3(k; + ky)kk, in
Fourier space allows one to integrate the stiff part involving 83 exactly without loss of regularity. Such
an integrator, however, can hardly be extended to more general equations, e.g., the fifth-order KdV
equation, without additional regularity assumptions. Furthermore, the spatial error was not considered
in Hofmanova & Schratz (2017).

In the present paper we propose a Fourier pseudospectral method based on a classical Lawson-type
exponential integrator, which integrates the linear part exactly, and the Rusanov scheme for Burgers’
nonlinearity with an added artificial viscosity. The method is explicit, implemented with fast Fourier
transform (FFT) and efficient in practical computation. First-order convergence in both space and time
is shown under a mild CFL condition T = O(h). Moreover, the method can be easily extended to other
dispersive equations with Burgers’ nonlinearity.

The rest of this paper is organized as follows. In Section 2 we present the necessary notation, the
numerical scheme and the main convergence result. Section 3 is devoted to the details of the error
analysis. Numerical results are reported in Section 4 to illustrate our error bounds.

Throughout the paper C represents a generic constant, which is independent of the discretization
parameters and the exact solution u.
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2. The Fourier pseudospectral method

We make use of standard Sobolev spaces and denote by || - || and (-, -) the norm and inner product in
L?(£2), respectively. For m € N we denote by ng”(Q) the H™ functions on the one-dimensional torus
2 = (—m,m). In particular, these functions have derivatives up to order m — 1 that are all 27 -periodic.
The space is equipped with the standard norm || - ||,, and semi-norm | - |,,,.

Let © = Ar > 0 be the time step size and denote the temporal grid points by #, := kt for
k=0,1,2,... Given a mesh size h := 2w /(2N + 1) with N being a positive integer let

xj:=—n+jh, j=0,1,...,2N,

be the spatial grid points in [—, 7). Denote

N
Xy = span{eikx:lklgN}, Xy = [v: Z vkeikaR] C Xy,
k=—N
YN = {V:(VO,VI,...,VZN)€C2N+l}, ?NZYNQR2N+1.

For any u,v € C(52), define the following discrete inner product and norm by

2N

(), =h > uCve), Il = ().

J=0

For a periodic function v(x) and a vector v € Yy, let Py : L*(£2) — Xy be the standard orthogonal
projection operator and I, : C(§2) — X, or I, : Yy — X be the interpolation operator (Shen et al.,
2011), i.e.,

(Pyv, @) = (v, ), for all ¢ € Xy;
(INV)(xj) = v(xj), or (INV)(xj) =V, j=0,...,2N.
More specifically Pyv and Iyv can be written as
N N
Py = > T G = D v,
I=—N I=—N

where’v\l and v; are the Fourier and discrete Fourier coefficients, respectively, defined as

27 1 2N

1 : - e
v, = v(x) e ™ dx, = N > vie™, I=-N,...,N.
=0

27 Jo
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It was proved in Shen ef al. (2011) that for any u,v € C(£2),
(u,v), = (Uyu,Iyv), Iulll, = lyull. (2.1)

The semidiscrete pseudospectral method for (1.1) consists in finding u, in X y such that

1
du, (x,0) + dju, (x,1) + 5zr,v((ui)x)(x, n=0 xeR=(-mmn), t>0, 0

u, (x,0) = Iy(up)(x), x € £2.

Thus, by Duhamel’s formula, we have
—793 1" —(t—5)03 2
u(t, +7)=e "“u /() — 3 A e XIN((uN)X(tn + s)) ds.

By applying the approximation u, (1, + s) ~ u, (1,) and the first-order Lawson method (Lawson, 1967;
Hochbruck & Ostermann, 2005) we get a first-order approximation as

(1, + )~ (1) = 5 (), 0,))- 2.3)

To ensure the stability we apply the Rusanov scheme (see, e.g., Trangenstein, 2009; Courtes et al., 2017)
for Burgers’ nonlinearity, which consists of a centered hyperbolic flux and an added artificial viscosity.
The scheme then reads as

ho
T2, n= 0 = Iy, (2.4

Wi = R = TR0 ((0)) + S e s,

N

where the constant c is the so-called Rusanov coefficient, which has to satisfy a certain condition (cf.
(3.30)). Moreover, we have used the notation

vix+h) —v(x—h)
2h ’

v(x 4+ h) —2v(x) + v(x — h)

ng(x) = 2

va(x) =

where v(x) = v(x £ 27). Similarly, for a vector v € Y),, define the standard finite difference operators
as

Viig —V; Vi — 20+ v, :
0 Jj+1 Jj—1 2 Jj+1 J Jj—1 ; .
3xvj:T> 5ij=T, 8;_%:—, ]ZO,],...,ZN,

with v;; oy 1y = v; when necessary.
We are now in the position to present the main result of the paper.
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THEOREM 2.1 Assume that the solution of (1.1) satisfies u € C(0, T; HS (£2)) and let ¢, > 0 be given
by condition (3.30). Then, for ¢ > ¢, there exists A, > 0 such that for all 2 < hq and © < h/c, the error
of scheme (2.4) satisfies

|}y —u@,)| <M@+h), nt<T. (2.5)

Here both of the constants M and h depend on T, ¢ and ||u||LOO(0’T;HS(Q)) (cf. (3.32) and (3.31)).

3. Error estimate

The purpose of this section is to prove Theorem 2.1.

3.1 Some lemmas

We recall three lemmas from the literature and then prove an additional lemma. All these lemmas are
used in the proof of Theorem 2.1.
LEMMA 3.1 (Shen et al., 2011). For any u € Hg’(.Q) and0<pu<m

|Pyu —ull, < CH"lul,,. [|Pyull,, < Cllull,. 3.1)
In addition, if m > 1, then

yu — ull, < CH" Flul,,,  yull,, < Cllull,. (3.2)

LemMA 3.2 (Nikolski’s inequality; Shen ef al., 2011). Forany u € Xy and1 <p < g < oo

Npy+ 1
||u||ms( gﬂ ) lullps

where p,, is the smallest even integer > p. In particular, for p = 2 and g = oo, we have

=
Q=

lullgoo < h™ "2 ul]. (3.3)

LemmA 3.3 (Bernstein’s inequality; Shen ez al., 2011). Forany u € Xy and 0 < < m
llull,, < CH* ™ |lul| ,. (3.4

LEmMA 3.4 Fora = (ag,ay,. .. ,aZN), b= (bo,bl,...,sz) € ?N, we have

(a,87b), = —(8Fa,85b) (3.5)
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2404 A. OSTERMANN AND C. SU

and

4
> (6ka)’ = 5 > [ (6Fa)’ - (60a)’]. (3.6)
j=0 j=0
h2 2N 3 4h2 2N 3
Z j+15 =73 z (5;:“]') ’ Z j+18 a; = 3 Z (‘Sgaj) ’ (3.7
j=0 J=0
2N 1 2N 1 2N
> 87a;80(ab); = — > aa; 8tb+ o > a; ja;,,80b;. (3.8)
=0 j=0 j=0

Proof. The identity (3.5) is the discrete version of the integration by parts formula:

2N 1 2N
(a,82b) Za( i1 —2bj+ b ) =~ Za( 1—bj)—}—lZaJ.(bj—b]_1)
j =0 j=0
2N 2N
=> a8 b — > a;,,87b; = —hz )(85) = (87 a.57D) .
=0 J=0

The equalities (3.6)—(3.8) were established in Courtes et al. (2017) for infinite sequences. By applying
the same arguments we can get (3.6)—(3.8) for periodic sequences here. We refer to Courtes et al. (2017)
for details. 0

3.2 Local error analysis

We introduce the local truncation error £”t! as defect
. T
£ = u(n,, ) — e R, + 5 7% [ag(u(tn)z) - chéfu(tn)] . n>0. (3.9)

The local error can be bounded as follows.

LEMma 3.5 Foru € C(0,T; HS(.Q)) we have
IE™) < MyT? + MyTh,

where M3 and M, depend on [[ul joo o 7.113 (2y) @nd ||ull oo (0. 7:12(52))» TESPecCtively.

Proof. 'We first recall

1 [T ;
ulty1) = e ut,) = 5 /0 TR (1, + 5) ds
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and that e’ is a linear isometry for all # € R. This yields that

16 = 5 /0 e IR0, 4 5) - ), )] as]

cth

+ 2 e et - e, ]| + S

2

—133¢2
He 0 52u(r )

| /OT“ = 90, ), + 9] ds| + 5 0,0, — 0D +

82u(r,)

For the first part we get
T 3
n=| / (v =) eI 83 ) + 0, | 1, + ) s |
0
T
= ” / (t — %) e (TR [3ux8$u + 3(8%14)2 —u?d%u — 2uu)2c] (t, +5) dsH
0
2 2 2
= Ce? sup [l [Ntglloe + 102ul00 + o + el o o |

0<t<T

2 2 3
< Ct” sup (llull3 + llull3),
0<t<T

where we employed equation (1.1) and the Sobolev imbedding theorem H3(£2) — W>°(£2). Further,
using Taylor expansion and Holder’s inequality, we have

h=—| /Oh(h — 0 [26AC +y1,) = 26 = v | @y

Th1/2 T h 5 5 . ) 12
<— (/_H/O [ax(u )+ yut,) — 82 (u )(._y,;n)] dydx)
< thl|dZ @ eI < 2th (llugt) o lu) 1y + lut,) o llut,) )
< Cth|lu(t,)|3 < Cth sup |ul?.

0<t<T

A similar calculation shows that
cT h
2 2
b= 5| [ = [+ v+ 2u =510 0]

T h 2 1/2
< cthl/z(/ /0 [aju(- vt + 0%u(- —y, tn)] dydx)
-

<2cth sup |ull,,
0<t<T

which completes the proof. (]
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3.3  Proof of Theorem 2.1

Proof. Denote o} = Py(u(t,)) and n" = u) — ol € X v- In view of (3.1) and the triangle inequality it
is sufficient to show

0"l < M(t + h), (3.10)

where M is independent of 7 and A for 0 < nt <T.
The proof is given by induction. For n = 0 it is obvious by using Lemma 3.1

In°1l = Iy () — Py ()|l < Chllugll;. (3.11)

Suppose the claim is true for n = 0, 1,...,k. We prove that %t < M(t + h). Subtracting (2.4)

. . . .. . _ 33
from the projection of (3.9) in X, and noticing that the operator Py, commutes with e 707 we get for

n=0,1,...,k

3 T .3 2 cth __ 33
pH = ey = 2 e [180((1)) = Pl | + T2 e el — Pyt

= e [ st = Tt () - (@)?) + . G.12)
where
et = 2 [Pl — vl (@))7) | - e e,

It follows from Lemma 3.1, (2.1) and Lemma 3.5 that

IA

1671 = 3 | Padtw)®) = 1yslwie,) D) | + 3 |2 (e, = @) | + 1Py

o (wtt)? = (@})°)

IA

Crnlsdw, )l + 5 |

+ My (z? + Th)
N

T
< Crhllu,)*l, + 5 Hu(;,f _ (w")ZH1 + My(e? + Th)

N
< Cthlu) 13 + Crllut,) + o Il lu(t,) — 1l + M5 + h)

< Cthllu(t,) |5 + Cthllu(t,) |l |lut,)ll, + M5t 4+ th) < Msy(c* + th), (3.13)
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where M5 depends on [|ul| ;7. H3 @) Here for the third inequality we used the properties

h 2

1 g
4h2/ (v(x+h)—v(x—h))2dx—4h2 (/_hv/(x+y)dy) dx
<L // (v + ) dydx = b2,

1 1 g
4h & (V(x R = v = h)) = 7 2 (/hV/(xj Y dy)
j=0 M=

0,112
8Vl

2

0,112
8cvilTy

1 2N 2 5
< E,Z;‘/h (o5 +0) dy =i

and the well-known bilinear estimate ||fgll; < CIfll;ligll;. For simplicity of notation we denote

no__ n no_ .n no_ .n n+l _ on+l n o.n .n n+l
S Uy (x;), W} = wy (%), n = (x;) and g = "7 (xj). Recall that ui, o, i, & € R by

definition. Applying (3.12), Young’s inequality, (2.1) and (3.5) we obtain

th
”nn+1”2 _ Hnn+ ct 52 n_ _[N‘SO(( ) . (“’:)2) +§n+1”2

2 2

| S ensZn — 1,820 - 20,80

+7t ('7" + " ehstn" — IyY (")) — 2IN5)?(’7nw?/))
< 1+l + ( ) e+ 5 |||ch52 "= 8 =28 (I
4T <77n + {n+1,Ch8§T]n _ 8}?((7«)")2) — 28)?(7']"(1);1/)>
N
2 2y ¢ 2h 2,12 4 T80 HIN3
= (Dl + ( ) 16" + S s + s
h
N
N N !

_T< 502 )> —2r<n”,82(n"w1’\’,)>}v —2r<§"+1,82(n”w1';)>]v. (3.14)
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Next we estimate the terms in (3.14) separately by using similar arguments as in Courtes et al. (2017).
By definition and (3.6) we have

2h 2 2 _ Ao’ = 2. m\2 2.2 2 0 2
8" 113 2 ) = (|||6;fn"|||,v—|||axn"|||N). (3.15)
j=0

Moreover, it follows from (3.3), by induction ||n"|| < M(t + h) and the assumption t < h/c that
"o < H 210" < MR (0 + 1) < M+ 1/0R'? < ¢, (3.16)

whenever
h<h =M 2*1+¢) 72 (3.17)

Thus, when i < h; we have
‘E2 2N
anﬁ((n")z)n& Z O (ty +1y)” < T U s NI NE. (B18)
j=0

In view of the Sobolev inequality and (3.1) we have
o}l < Cllwilly < Cllut)lly <My, 19,0} 0 < Cllwgll, < Cllu(t,)ll, < M,, (3.19)

where M, and M, depend on ||“||L°°(0,T;Hg((z)) and ”u”LOO(O,T;HI%((Z))’ respectively. This yields

2N
P I = *h Y (1180 + ol 150 )
j=0
<l 2 2 2 2
§2tth((n}-’+1) (8%01) + (@) (8%7) )
Jj=0

2 2 2 2 2 0 2
< 202110, e I 17 + 222 0 100 18007 112

< 20 (MBI + M 169" 12 (3.20)
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Applying (3.7) and (3.16) we obtain

2 2 2N
cth 2 0 2
- ) <8x77n,8x((77n) )>N = E 77] r’/-‘,—l X 7’]] - § 77/ 177/+18 77]
j=0
22 2N 252 2N
ct°h 3 2ct*h 3
— + 0
- 6 Z (‘Sx /n) + 3 z (anjr‘l)
j=0 =0

2
3 2t
= =S D ) I e 18 .

Similarly, using (3.8), (3.19) and the assumption ct < h yields

2N

2, 2.1 <0 2 + 2 0
—ct h<8xnn’6x (f/”wZ)>N =cT annn;?-‘rl(sx wj —ct 2 :’7}1—1’7/"1+15ij”
: =

< 22110, || " 17 < 2My 1)1

Some tedious calculations give

2N
{880 })) = D (6007 3y + ) (i 800] 4 80f)

2N
= Tzhz (87 /+1 (fer + ) + 220 Dy (g + 0fy) (800]) (80
j=0
2N

2
T
< 222l o " e 11870 N, + —= 0" oo 19,y ool 2 1y (14| + 1] 1)

=0
2 0 2 T 2
< 2ty oo 10" I oo 180" 1, + ZTE”U"”LOO N9, Ml oo [l I
2 0 2 2
< 20°M |10 [l NS0 1, + 2M5T|In™ |1~

Applying Young’s inequality we have

2N
th<§n+1’5%’7"> =ct ) ¢! (”}lﬂ =21 + ’7/"'71)
N j:0
2N C‘L’2 2N 2
<2 G+ D (77;[4-1 — 2+ )
=0 =0

2N 2N
2
<2¢ (G 20 3 ) = Ze"THE 4 20 ")

j=0 j=0

2409

(3.21)

(3.22)

(3.23)

(3.24)
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Furthermore, a straightforward calculation yields that

2N 2N
T 2 T 2 2
O, = =5 3 () = 2)%) = =3 22 [ () = w2 O)°]
Jj=0
- 2N 5 5 3 ‘L']’l3 2N 3
gz[n,ﬂ =3 () 30 () = ()] = S D )’
J= j=0
(3.25)
—21(n", 82 (n" e, thnJ i 8F @l < To@) il I? < Myzlin"|I*. (3.26)
Similarly, one derives that
-1 <§n+1,82((7]n)2)> _ 2_[ <§n+]’82(nnw;ll)>
N N
- 2N 5 5
1
—524;'* () = () + 201 = 200y ]
2N ) 2 2N 2
<2Z<:"“) += ||n I3 32 (i =m0 + 5 2 (acir — i@ )
Jj=0 j=0 j=0
T2 112
=[S0 e (e 4 1 1) 11| = <[ 162 4+ v+ MD IR 32D)
Combining (3.14) and (3.15)—(3.27), we obtain that
3 2
In" P < (1 4+ A)lIn"|1? +(1+ + )uc"“n + Bt |80
2N
+Th Y (h—ct) ( - c) (801>, (3.28)
j=0

where

_3+C+5M2+2TM2 +M /C
B =2M7 — & + In"ll 0 (2M; + 5¢/3).
Applying (3.16) we get
B <2M} —c*+2M(1 + 1/¢) (M + ¢) h'/2,
which implies that B < 0 whenever

¢ >co=2M,, (3.29)

2202 Aey 61 uo Jasn uiwpy j00y Ateiqi] ABojouyos | ® 8ousiog [euoneN Aq |LSE88GS/66EZ/v/0/o1onie/eulewi/woo dno-olwapese)/:sdyy Wol) papeojumod



A LAWSON-TYPE EXPONENTIAL INTEGRATOR 2411

h<hy= ¢ - 2M; 2 3.30
R W ES VA Y (3-30)

and

where M| is given by (3.20) depending on ||ul ;g 7. HL(2))- It is easily observed that iy < h;. In view
of (3.17) we have

h 1 2c .

géjnf’ —c< ="l —c < -3 <0, if h<h,.
This together with the CFL condition ct < & and (3.29) yields that forn =0, .. ., k,

™% < (1 + T CMy, o)™ 1 + @uc”*ln2
< (1 +1C(Myp, ) In"|I* + TC(M3, ©)(t + h)%,
where C(c, d) indicates that C depends on ¢ and d. Hence,
117 < e Y212 4 1 CMy, ) (x + h)?
< TCMO k2 4 T C(M, ) (T + h)P (1 +e7CM29) <

S e(k+1)‘[C(M2,C)||n0”2 + TC(M3,C)(T +h)2(1 +eTC(M2,C) + . +ek1’C(M2,C))

C(M;,c)
< L+ DTCM2,0) 02 4 3 T4 h2
<e 7=l —C(Mz,c)( )

< Iy, o) (T + 1),
which gives the error (3.10) for n = k + 1 by setting
M = C(T,Mj,¢) = TCM292C1 2\, ). (3.31)

This concludes the proof. U

4. Numerical experiments

In this section we present some numerical experiments to illustrate our analytic convergence rate given
in Theorem 2.1. In practical computation the interpolation 7 is implemented via FFT, which is very
efficient.

Example 1. The well-known solitary-wave solution of the KdV equation (1.1) is given by

u(x,f) = 121 sech®>(WA(x —4rt —a)), aeR, i > 0. (4.1)
It represents a single bump moving to the right with speed 4. Here we choose A = 1/4 and the torus

§£2 = (=30,30), which is large enough such that the periodic boundary conditions do not introduce
significant errors, i.e., the soliton is far enough away from the boundary for the considered time interval.
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FIG. 1. Numerical simulation for the solitary-wave solution (4.1). (a) The error of the first-order scheme (2.4) at T = 2 for various
choices of i and c. The time step size t satisfies T = h/c. The broken line has slope one. (b) The numerical solution at 7' = 10, 20
was obtained by the scheme (2.4) with 7 = 1/200 and t = h/4.

— — - Initial

F1G. 2. Numerical simulation for the initial value (4.2). (a) The error of the first-order scheme (2.4) at T = 3 for various choices
of h with ¢ = 3 and t = h/m. The broken line has slope one. (b) The numerical solution at 7 = 3 was computed with the scheme
(2.4) using h = 71/2” andt = h/m.

Figure 1(a) displays the discretization errors for the scheme (2.4) at T = 2 for various choices of
h and ¢ with t = h/c. The results for t = dh with d < 1/c are similar, which are omitted here for
brevity. It can be clearly observed that the scheme (2.4) converges linearly in space under the condition
T < h/c. Moreover, the error decreases as ¢ gets smaller, which is reasonable due to the fact that ¢
is the coefficient of the added artificial viscosity. The constraint of ¢ > ¢ is verified by the fact that
the numerical solution blows up when &2 < 1/320 for ¢ = 2. On the other hand, the solution also
explodes when t = dh with d > 1/c, which shows the CFL condition t < %/c in Theorem 2.1 is
sharp. Figure 1(b) illustrates the time evolution of the solitary wave and the corresponding first-order
approximate solutions for fixed # = 1/200 and T = h/4.

Example 2. The initial data of the KdV equation (1.1) is now chosen as

ug(x) =3 sech2(2x) sin(x), x €[—m,m]. “4.2)
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The initial data and the numerical solution for T = 3 with ¢ = 3, h = /2! and r = h/x are displayed
in Fig. 2 (b), where the reference solution is obtained by the second-order exponential integrator of
Hofmanova & Schratz (2017) with t = 107 and & = 7/2'5. The error of the scheme (2.4) with
¢ = 3 and T = h/m is shown in Fig. 2 (a). The graph clearly shows first-order convergence of the
scheme (2.4).
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