
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SIAM J. SCI. COMPUT. c© 2018 Society for Industrial and Applied Mathematics
Vol. 40, No. 2, pp. A929–A953

A UNIFORMLY AND OPTIMALLY ACCURATE METHOD FOR THE
ZAKHAROV SYSTEM IN THE SUBSONIC LIMIT REGIME∗
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Abstract. We present two uniformly accurate numerical methods for discretizing the Zakharov
system (ZS) with a dimensionless parameter 0 < ε ≤ 1, which is inversely proportional to the
acoustic speed. In the subsonic limit regime, i.e., 0 < ε � 1, the solution of ZS propagates waves
with O(ε)- and O(1)-wavelengths in time and space, respectively, and/or rapid outgoing initial layers
with speed O(1/ε) in space due to the singular perturbation of the wave operator in ZS and/or the
incompatibility of the initial data. By adopting an asymptotic consistent formulation of ZS, we
present a time-splitting exponential wave integrator (TS-EWI) method via applying a time-splitting
technique and an exponential wave integrator for temporal derivatives in the nonlinear Schrödinger
equation and wave-type equation, respectively. By introducing a multiscale decomposition of ZS, we
propose a time-splitting multiscale time integrator (TS-MTI) method. Both methods are explicit
and convergent exponentially in space for all kinds of initial data, which is uniformly for ε ∈ (0, 1].
The TS-EWI method is simpler to be implemented and it is only uniformly and optimally accurate
in time for well-prepared initial data, while the TS-MTI method is uniformly and optimally accurate
in time for any kind of initial data. Extensive numerical results are reported to show their efficiency
and accuracy, especially in the subsonic limit regime. Finally, the TS-MTI method is applied to
study numerically convergence rates of ZS to its limiting models when ε→ 0+.
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1. Introduction. We consider the dimensionless Zakharov system (ZS) in d-
dimensions (d = 3, 2, 1) for describing the propagation of Langmuir waves in plasma
[48]

(1.1)

i∂tE(x, t) + ∆E(x, t)−N(x, t)E(x, t) = 0, x ∈ Rd, t > 0,

ε2∂ttN(x, t)−∆N(x, t)−∆|E(x, t)|2 = 0, x ∈ Rd, t > 0,

E(x, 0) = E0(x), N(x, 0) = Nε
0 (x), ∂tN(x, 0) = Nε

1 (x), x ∈ Rd,

where t is time, x ∈ Rd is the spatial coordinate, E := E(x, t) is a complex-valued
function representing the varying envelope of a highly oscillatory electric field, N :=
N(x, t) is a real-valued function representing the fluctuation of the plasma ion density
from its equilibrium state, 0 < ε ≤ 1 is a dimensionless parameter which is inversely
proportional to the ion sound speed, and E0(x), Nε

0 (x), and Nε
1 (x) are given functions

satisfying
∫
Rd N

ε
1 (x)dx = 0.
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A930 WEIZHU BAO AND CHUNMEI SU

The ZS (1.1) is a classical model for describing mutual interaction between a
dispersive wave and a nondispersive (acoustic) wave [18, 30, 40, 42, 48]. It is widely
applied in various physical problems, such as in plasma physics (interactions be-
tween Langmuir and ion acoustic waves [40, 48]), in hydrodynamics (interactions be-
tween short-wave and long-wave gravitational disturbances in the atmosphere [18]), in
the theory of molecular chains (interactions of the intramolecular vibrations forming
Davydov solitons with the acoustic disturbances in the chain [17]), and so on. In fact,
the ZS can be formally derived from the Euler–Maxwell system for a plasma as two
interpenetrating fluids—an electron fluid and an ion fluid—under the electromagnetic
field by considering a long-wavelength small-amplitude Langmuir oscillation and using
asymptotic expansion. For details of the derivation, we refer the reader to [19, 44, 45]
and references therein.

It is well known that the ZS (1.1) conserves the wave energy [7, 13]

(1.2) M(t) := ‖E(·, t)‖2 =

∫
Rd
|E(x, t)|2dx ≡

∫
Rd
|E0(x)|2dx =M(0), t ≥ 0,

and the Hamiltonian [7, 13]

(1.3) L(t) :=

∫
Rd

[
|∇E|2 +N |E|2 +

1

2

(
|∇U |2 + |N |2

)]
dx ≡ L(0), t ≥ 0,

where U := U(x, t) is defined as

(1.4) −∆U(x, t) = ε∂tN(x, t), x ∈ Rd, lim
|x|→∞

U(x, t) = 0, t ≥ 0.

For the ZS (1.1) with ε = 1, i.e., O(1)-acoustic-speed regime, there are extensive
analytical and numerical results in the literature. For the well-posedness in the energy
space, we refer the reader to [12, 16, 24, 43] and references therein. In this regime, dif-
ferent efficient and accurate numerical methods have been proposed and analyzed in
the literature, such as the finite difference method [14, 15, 26], the time-splitting spec-
tral method [8, 34], the exponential wave integrator (EWI) spectral method [7, 39],
the Jacobi-type method [11], the Legendre–Galerkin method [33], the discontinuous-
Galerkin method [47], etc. The analytical and numerical results have been extended
to the generalized ZS [29, 30, 34] and the vector ZS [7, 34, 44]. However, for the ZS
(1.1) with 0 < ε� 1, i.e., in the subsonic limit regime, the analysis and efficient com-
putation are mathematically and numerically rather complicated issues. The main
difficulty is due to that there exist highly oscillatory waves with wavelength at O(ε)
and amplitude at O(1) in time (cf. Figure 1(a)) and/or rapid outgoing initial layers
with wave speed at O(ε−1) and amplitude at O(1) in space (cf. Figure 1(b)).

Formally, when ε→ 0+, E(x, t)→ Es(x, t) andN(x, t)→ −ρs(x, t) with ρs(x, t) :=
|Es(x, t)|2, where Es(x, t) satisfies the nonlinear Schrödinger equation (NLSE) with
cubic nonlinearity [35, 38, 41]

(1.5)
i∂tEs(x, t) + ∆Es(x, t) + |Es(x, t)|2Es(x, t) = 0, x ∈ Rd, t > 0,

Es(x, 0) = E0(x), x ∈ Rd.

Multiplying the first equation in (1.5) by Es(x, t) and subtracting from its conjugate,
we get

(1.6) ∂tρs(x, t) = −2 Im
(
Es(x, t) ∆Es(x, t)

)
, x ∈ Rd, t ≥ 0,
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UNIFORMLY ACCURATE METHODS FOR THE ZAKHAROV SYSTEM A931

where Im(f) and f denote the imaginary and complex conjugate parts of f , respec-
tively. Convergence rates of the subsonic limit from the ZS (1.1) to the NLSE (1.5)
and initial layers have been analyzed in [35, 38, 41] and references therein. Based on
their results, one can decompose the initial data (Nε

0 , N
ε
1 ) in (1.1) as

(1.7)
Nε

0 (x) = −ρs(x, 0) + εαω0(x) = −|E0(x)|2 + εαω0(x), x ∈ Rd,

Nε
1 (x) = −∂tρs(x, 0) + εβω1(x) = 2 Im

(
E0(x) ∆E0(x)

)
+ εβω1(x),

where α ≥ 0 and β ≥ −1 are parameters describing the incompatibility of the initial
data of the ZS (1.1) with respect to that of the NLSE (1.5) in the subsonic limit regime
such that the Hamiltonian (1.3) is bounded, and ω0(x) and ω1(x) are two given real
functions independent of ε and satisfying

∫
Rd ω1(x)dx = 0. Due to the incompatibility

of the initial data and/or the singular perturbation of the wave operator, the solution
of the ZS (1.1) propagates highly oscillatory waves with wavelength at O(ε) and O(1)
in time and space, respectively, and amplitude at O(1) (cf. Figure 1a), and/or rapid
outgoing initial layers with speed at O(1/ε) and amplitude at O(1) in space (cf. Figure
1b). To illustrate this, Figure 1 displays the solution of (1.1) with (1.7) under d = 1,
α = β = 0 and

E0(x) =
1√
2
g

(
x+ 18

10

)
g

(
18− x

9

)
sin
(x

2

)
e
π
6 i, ω1(x) = e−x

2/3 sin(2x),

ω0(x) = g

(
x+ 22

10

)
g

(
22− x

10

)
sin
(

2x+
π

6

)
, x ∈ R,

(1.8)

with χΩ the characteristic function of the domain Ω and

(1.9) g(x) =
f(x)

f(x) + f(1− x)
, f(x) = e−1/xχ(0,∞), x ∈ R.

t
0 0.5 1 1.5 2

N
(
4
,
t)

-1.5

-1

-0.5

0

0.5

(a)

ε = 1/2

ε = 1/22

ε = 1/23

x
-90 -60 -30 0 30 60 90

N
(
x
,
2
)

-1

-0.5

0

0.5

(b)

ε = 1/2

ε = 1/23

ε = 1/25

Fig. 1. Profiles of N(x = 4, t) (a) and N(x, t = 2) (b) of (1.1) with (1.7), (1.8), and (1.9)
under d = 1, α = β = 0 for different ε.

In fact, based on the analysis in [13, 35, 38, 41], when α ≥ 2 and β ≥ 1, the leading
order oscillation is due to the term ε2∂ttN in the ZS, and when either 0 ≤ α < 2 and/or
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A932 WEIZHU BAO AND CHUNMEI SU

−1 ≤ β < 1, the leading order oscillation is due to the incompatibility of the initial
data.

This highly temporal oscillatory nature and/or rapid spatial outgoing initial layers
in the solution of the ZS (1.1) make the numerical approximation extremely challeng-
ing and costly in the subsonic limit regime, i.e., 0 < ε � 1. Different numerical
methods have been adopted to simulate the dynamics of the ZS in the subsonic limit
regime. For example, Bao and Sun [7] presented a Crank–Nicolson leap-frog time-
splitting spectral method for solving the ZS, and the numerical experiments suggest
that, when ε is small, it requires the meshing strategy h = O(ε), τ = O(ε) with h
the mesh size and τ the time step, for initial data with O(ε) wavelength in space.
Recently, by using rigorous numerical analysis, Cai and Yuan [13] established error
bounds which depend explicitly on h and τ as well as the small parameter ε ∈ (0, 1]
of the Crank–Nicolson finite difference (CNFD) method for the ZS (1.1) with initial
data at O(1) wavelength in space. Based on their analytical and numerical results,
the CNFD method converges at second order in space and 4/3 order in time for α ≥ 2
and β ≥ 1, which is uniformly for ε ∈ (0, 1]; and it is not uniformly accurate in
either space or time when α = 0 or β = −1. Specifically, when α = 0 or β = −1,
in order to obtain “correct” physical solution when 0 < ε� 1, the meshing strategy
(or ε-scalability) is required as h = O(ε1/2) and τ = O(ε3/2). This is a strict and/or
strange requirement on the mesh size and time step in the subsonic limit regime since
the wavelength in space is at O(1), which is independent of ε ∈ (0, 1]. Very recently, by
introducing an asymptotic consistent formulation of the ZS (1.1), Bao and Su [6] pro-
posed a uniformly accurate finite difference method and established its error bounds
(here and afterwards “uniformly” means the error is independent of ε). In space,
it is optimally accurate at second order for any initial data (“optimally” means the
uniform convergence rate coincides with that of the local truncation error); and in
time, it is uniformly accurate at 4/3 order when α ≥ 1 and β ≥ 0 and, respectively, at

1 + min{α,1+β}
2+min{α,1+β} order when 0 ≤ α < 1 and/or −1 ≤ β < 0 [6]. Thus the method is

uniformly and optimally accurate (UOA) in space. However, it is uniformly accurate
while not optimally accurate at second order in time for the ZS (1.1) in the subsonic
limit regime.

The main aim of this paper is to propose new numerical methods for the ZS (1.1),
which are uniformly and optimally accurate in both space and time for ε ∈ (0, 1].
In the proposed numerical methods, we always adopt the spectral discretization for
spatial derivatives. By adopting an asymptotic consistent formulation of ZS [6], we
present a time-splitting exponential wave integrator (TS-EWI) method for the ZS
(1.1) by applying a time-splitting technique and an EWI for temporal derivatives in
the NLSE and wave-type equations, respectively. The method is UOA in both space
and time when α ≥ 1 and β ≥ 0, and it is uniformly accurate in time when 0 ≤ α < 1
or −1 ≤ β < 0. By introducing a multiscale decomposition of the ZS (1.1), we
propose a time-splitting multiscale time integrator (TS-MTI) method which is UOA
in both space and time for all kinds of initial data. Another advantage of the TS-MTI
method is that the bounded computational domain can be taken as ε-independent,
which is very important in high dimensions. Finally, the TS-MTI method is applied
to numerically study convergence rates of the ZS (1.1) to its limiting models when
ε→ 0+.

The rest of the paper is organized as follows. In section 2, we recall the asymp-
totic consistent formulation of the ZS and present the TS-EWI method. In section 3,
we introduce a multiscale decomposition of the ZS and propose the TS-MTI method.
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Extensive numerical results are reported in section 4 to demonstrate that the pro-
posed methods are uniformly and/or optimally accurate for ε ∈ (0, 1]. Finally, some
concluding remarks are drawn in section 5. Throughout the paper, we adopt the
standard Sobolev spaces.

2. A time-splitting exponential wave integrator (TS-EWI) method. In
this section, we begin with a review of the asymptotic consistent formulation intro-
duced in [6] for the ZS (1.1) and propose the TS-EWI method by using a time-splitting
technique and an EWI for temporal derivatives in the NLSE and wave-type equations,
respectively.

2.1. An asymptotic consistent formulation. As introduced in [6], denote
G(x, t) as the solution of the homogeneous wave equation

(2.1) ∂ttG(x, t)− 1

ε2
∆G(x, t) = 0, x ∈ Rd, t > 0,

with initial data by noting (1.7)

G(x, 0) = Nε
0 (x) + |E0(x)|2 = εαω0(x) := G0(x), x ∈ Rd,

∂tG(x, 0) = Nε
1 (x)− 2 Im(∆E0(x)E0(x)) = εβω1(x) := G1(x),

(2.2)

and let

(2.3) F (x, t) = N(x, t) + |E(x, t)|2 −G(x, t), x ∈ Rd, t ≥ 0.

Plugging (2.3) into (1.1) and noting (2.1) and (2.2), we obtain an asymptotic consis-
tent formulation (ACF) for the ZS (1.1) [6]

i∂tE(x, t) + ∆E(x, t) +
[
|E(x, t)|2 − F (x, t)−G(x, t)

]
E(x, t) = 0,

∂ttF (x, t)− 1

ε2
∆F (x, t)− ∂tt|E(x, t)|2 = 0, x ∈ Rd, t > 0,

E(x, 0) = E0(x), F (x, 0) ≡ 0, ∂tF (x, 0) ≡ 0, x ∈ Rd.

(2.4)

When ε → 0+, formally we have F (x, t) → 0 and E(x, t) → Esop(x, t) satisfying the
following NLSE with an oscillatory potential (NLSE-OP) [6]

i∂tEsop(x, t) + ∆Esop(x, t) +
[
|Esop(x, t)|2 −G(x, t)

]
Esop(x, t) = 0, t > 0,

Esop(x, 0) = E0(x), x ∈ Rd.
(2.5)

Here we want to emphasize several advantages of the ACF (2.4) over the ZS (1.1)
in the subsonic limit regime: (a) the initial data in (1.1) is usually classified into
three different categories as (i) well-prepared initial data, i.e., α ≥ 2 and β ≥ 1,
(ii) less ill-prepared initial data, i.e., 1 ≤ α < 2 (β ≥ 0) or 0 ≤ β < 1 (α ≥ 0),
and (iii) ill-prepared initial data, i.e., 0 ≤ α < 1 or −1 ≤ β < 0, while the initial
data in (2.4) is always well-prepared; (b) although the wavelengths in time for N in
(1.1) and F in (2.4) are at O(ε), however, the amplitudes of N and F are at O(1)
and O(ε2), respectively (cf. Figures 2 and 3); (c) the highly oscillatory waves and/or
rapid outgoing initial layers with amplitude at O(1) due to the incompatibility of the
initial data in (1.1) are removed by G in (2.1), which can be solved separately and
independently (cf. Figures 2 and 3); and (d) for practical computations, in general, due
to fast decay of E at far field and O(ε2) in amplitude of F , the bounded computational
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x
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Fig. 2. Decomposition of N(x, t = 2) = −ρ(x, 2) + F (x, 2) +G(x, 2) of (1.1) with (1.7), (1.8),
and (1.9) under d = 1, α = β = 0 for different ε.

t
0 0.5 1 1.5 2
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-0.5

0

0.5
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(a)

ε = 1/22
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−ρ(4, t)

G(4, t)

2F (4, t)

t
0 0.5 1 1.5 2

-1
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0

0.5

1

(b)

ε = 1/23

N (4, t)

−ρ(4, t)

G(4, t)

2F (4, t)

Fig. 3. Decomposition of N(x = 4, t) = −ρ(4, t) + F (4, t) + G(4, t) of (1.1) with (1.7), (1.8),
and (1.9) under d = 1, α = β = 0 for different ε.

domain can be chosen much smaller in using the ACF (2.4) compared to that in
adopting (1.1) if the simple homogeneous Dirichlet boundary condition is adopted,
especially when 0 < ε� 1.

In order to present the TS-EWI method, for simplicity of notation and without
loss of generality, we only present the method in one dimension (1D). Generalizations
to higher dimensions are straightforward. Similar to most works for the simulation
of the ZS [6, 8, 13, 34], the ACF (2.4) will be truncated into a bounded domain Ω
with homogeneous Dirichlet boundary conditions. In general, due to fast decay of
the solution at far field, the truncation error can be negligible when Ω is chosen large
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enough. In 1D, the ACF (2.4) with d = 1 can be approximated by

(2.6)

i∂tE(x, t) + ∂xxE(x, t) +
[
|E(x, t)|2 − F (x, t)−G(x, t)

]
E(x, t) = 0,

∂ttF (x, t)− 1

ε2
∂xxF (x, t)− ∂tt|E(x, t)|2 = 0, x ∈ Ω = (a, b), t > 0,

E(x, 0) = E0(x), F (x, 0) ≡ 0, ∂tF (x, 0) ≡ 0, x ∈ Ω,

E(a, t) = E(b, t) = 0, F (a, t) = F (b, t) = 0, t ≥ 0.

2.2. An EWI for the wave-type equation. Let τ = ∆t > 0 be the time
step size, and denote the time steps as tk := kτ for k = 0, 1, 2, . . . . Choose a mesh
size h := (b − a)/M with M being a positive integer, and denote the grid points as
xj := a+ jh for j = 0, 1, . . . ,M . Define the index sets

TM = {j | j = 1, 2, . . . ,M − 1}, T 0
M = {j | j = 0, 1, . . . ,M},

and denote

XM :=
{
v = (v0, v1, . . . , vM )

T | v0 = vM = 0
}
⊆ CM+1 with ‖v‖2l2 = h

M−1∑
j=1

|vj |2,

YM := span {sin(µl(x− a)) | l = 1, 2, . . . ,M − 1} ,

with

(2.7) µl =
lπ

b− a
, θl =

µl
ε

= O

(
1

ε

)
, l ∈ TM .

For any function ψ(x) ∈ H1
0 (Ω) and φ(x) ∈ C0(Ω) and vector φ = (φ0, φ1, . . . , φM )T ∈

XM , let PM : H1
0 (Ω) → YM be the standard L2-projection operator, and let IM :

C0(Ω)→ YM or IM : XM → YM be the standard interpolation operator as

(2.8) (PMψ)(x) =

M−1∑
l=1

ψ̂l sin (µl(x− a)) , (IMφ)(x) =

M−1∑
l=1

φ̃l sin (µl(x− a)) ,

where ψ̂l and φ̃l are the sine and discrete sine transform coefficients of the function
ψ(x) and vector φ (with φj = φ(xj) for j ∈ T 0

M when involved), respectively, defined
as

(2.9) ψ̂l =
2

b− a

∫ b

a

ψ(x) sin(µl(x− a))dx, φ̃l =
2

M

M−1∑
j=1

φj sin

(
jlπ

M

)
, l ∈ TM .

For the wave-type equation in (2.6), we discretize it in space by the sine spectral
method and in time by an EWI which has been widely used for discretizing second-
order ODEs [27, 28] and oscillatory PDEs [2, 3, 32]. Specifically, find FM := FM (x, t),
i.e.,

(2.10) FM (x, t) =

M−1∑
l=1

F̂l(t) sin(µl(x− a)),

such that

(2.11) ∂ttFM −
1

ε2
∂xxFM = PM (∂ttρ) with ρ := ρ(x, t) = |E(x, t)|2.
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Substituting (2.10) into (2.11) and noticing the orthogonality of sin(µl(x − a)) for
l ∈ TM , we obtain with t = tk + s for k ≥ 0 and s ∈ R

(2.12)
d2

ds2
F̂l(tk + s) + θ2

l F̂l(tk + s)− d2

ds2
(̂ρk)l(s) = 0, l ∈ TM ,

where

ρk(x, s) := ρ(x, tk + s), (̂ρk)l(s) = ρ̂l(tk + s),

(̂ρk)
′
l(s) = (̂∂sρ)l(tk + s), (̂ρk)

′′
l (s) = (̂∂ssρ)l(tk + s).

(2.13)

The variation-of-constant formula for (2.12) gives [27, 28]

(2.14) F̂l(tk+s) = cos(θls)F̂l(tk)+
sin(θls)

θl
F̂ ′l (tk)+

1

θl

∫ s

0

(̂ρk)
′′
l (ω) sin (θl(s− ω))dω.

Differentiating (2.14) with respect to s, we obtain
(2.15)

F̂ ′l (tk + s) = −θl sin(θls)F̂l(tk) + cos(θls)F̂
′
l (tk) +

∫ s

0

(̂ρk)
′′
l (ω) cos (θl(s− ω))dω.

For k = 0, setting s = τ in (2.14) and (2.15) and using the initial condition in (2.4),
integrating by parts, and approximating integrals via the Gautschi-type quadrature
[3, 23, 31], we get

F̂l(t1) = cos(τθl)F̂l(0) +
sin(τθl)

θl
F̂ ′l (0) +

1

θl

∫ τ

0

(̂ρ0)
′′
l (ω) sin (θl(τ − ω))dω

=
1

θl

∫ τ

0

(̂ρ0)
′′
l (ω) sin (θl(τ − ω))dω

= − sin(τθl)

θl
(̂ρ0)

′
l(0) +

∫ τ

0

(̂ρ0)
′
l(ω) cos (θl(τ − ω))dω

≈ − sin(τθl)

θl
(̂ρ0)

′
l(0) +

∫ τ

0

[
(̂ρ0)

′
l(0) + w (̂ρ0)

′′
l (0)

]
cos (θl(τ − ω))dω

= − sin(τθl)

θl
(̂ρ0)

′
l(0) +

sin(τθl)

θl
(̂ρ0)

′
l(0) + dl (̂ρ0)

′′
l (0)

= dl (̂ρ0)
′′
l (0), l ∈ TM ;(2.16)

(̂F )
′
l(t1) =

∫ τ

0

(̂ρ0)
′′
l (ω) cos (θl(τ − ω))dω

= (̂ρ0)
′
l(τ)− cos(τθl)(̂ρ0)

′
l(0)− θl

∫ τ

0

(̂ρ0)
′
l(ω) sin(θl(τ − ω))dω

≈ (̂ρ0)
′
l(τ)− cos(τθl)(̂ρ0)

′
l(0)− θl

∫ τ

0

[
(̂ρ0)

′
l(0) + w (̂ρ0)

′′
l (0)

]
sin(θl(τ − ω))dω

= (̂ρ1)
′
l(0)− cos(τθl)(̂ρ0)

′
l(0)− [1− cos(τθl)](̂ρ0)

′
l(0)− bl θl (̂ρ0)

′′
l (0)

= (̂ρ1)
′
l(0)− (̂ρ0)

′
l(0)− bl θl (̂ρ0)

′′
l (0),(2.17)
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where

al =

∫ τ

0

sin(θl(τ − ω))dω =
1− cos(τθl)

θl
= O(ε),

bl =

∫ τ

0

ω sin(θl(τ − ω))dω =
τθl − sin(τθl)

θ2
l

= O(ε),

cl =

∫ τ

0

cos(θl(τ − ω))dω =
sin(τθl)

θl
= O(ε),

dl =

∫ τ

0

ω cos(θl(τ − ω))dω =
1− cos(τθl)

θ2
l

= O(ε2), l ∈ TM .

For k ≥ 1, summing (2.14) with s = τ and s = −τ together, and approximating
integrals via the Gautschi-type quadrature [3, 23, 31], we obtain

F̂l(tk+1) = 2 cos(τθl)F̂l(tk)− F̂l(tk−1) +
1

θl

∫ τ

0

(̂ρk+)
′′

l
(ω) sin(θl(τ − ω))dω

≈ 2 cos(τθl)F̂l(tk)− F̂l(tk−1) +
1

θl

∫ τ

0

(̂ρk+)
′′

l
(0) sin(θl(τ − ω))dω

= 2 cos(τθl)F̂l(tk)− F̂l(tk−1) + 2
al
θl

(̂ρk)
′′
l (0)

= 2 cos(τθl)F̂l(tk)− F̂l(tk−1) + 2dl (̂ρk)
′′
l (0),(2.18)

where (̂ρk+)
′′

l
(ω) = (̂ρk)

′′
l (ω) + (̂ρk)

′′
l (−ω) is an even function satisfying (̂ρk+)

′′′

l
(0) = 0.

Carrying out a similar procedure to (2.15) with subtraction instead of summation, we
get

F̂ ′l (tk+1) = F̂ ′l (tk−1)− 2θl sin(τθl)F̂l(tk) +

∫ τ

0

(̂ρk+)
′′

l
(ω) cos(θl(τ − ω))dω

≈ F̂ ′l (tk−1)− 2θl sin(τθl)F̂l(tk) +

∫ τ

0

(̂ρk+)
′′

l
(0) cos(θl(τ − ω))dω

= F̂ ′l (tk−1)− 2θl sin(τθl)F̂l(tk) + 2cl (̂ρk)
′′
l (0).(2.19)

Multiplying the first equation in (2.6) by E(x, t) and subtracting from its conju-
gate, we get

(2.20) ∂tρ(x, t) = −2 Im
(
E(x, t) ∂xxE(x, t)

)
, x ∈ R, t ≥ 0.

Differentiating (2.20) with respect to t, we obtain

(2.21) ∂ttρ(x, t) = −2 Im
(
∂tE(x, t) ∂xxE(x, t) + E(x, t) ∂xxtE(x, t)

)
.

Taking t = tk in (2.20) and (2.21), noting (2.13) with s = 0, we have

∂tρ(x, tk) = −2 Im
(
E(x, tk) ∂xxE(x, tk)

)
,

∂ttρ(x, tk) = −2 Im
(
∂tE(x, tk) ∂xxE(x, tk) + E(x, tk) ∂xxtE(x, tk)

)
,

(2.22)

where

∂tE(x, tk) = i
[
∂xxE(x, tk) + E(x, tk)

(
|E(x, tk)|2 − F (x, tk)−G(x, tk)

)]
.

Then (̂ρk)
′
l(0) and (̂ρk)

′′
l (0) (l ∈ TM ) are the sine transform coefficients of ∂tρ(x, tk)

and ∂ttρ(x, tk), respectively, for k ≥ 0.
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2.3. A time-splitting method for NLSE. For the NLSE in (2.6), we adopt
the time-splitting sine pseudospectral (TSSP) method, which has been widely used
in the literature [4, 5, 8, 10, 34, 36, 46]. From time t = tk to t = tk+1 by writing
t = tk + s, the NLSE in (2.6) is solved in three splitting steps. One solves first

(2.23) i∂sE(x, tk + s) + ∂xxE(x, tk + s) = 0, s ≥ 0,

for a half time step of length τ/2, followed by solving the equation

(2.24) i∂sE(x, tk + s) =
[
−|E(x, tk + s)|2 + F (x, tk + s) +G(x, tk + s)

]
E(x, tk + s)

for time step τ , and followed by integrating (2.23) for another τ/2.
For the free Schrödinger equation (2.23) with a homogeneous Dirichlet bound-

ary condition, one can discretize it in space by the sine spectral method and then
integrate the ODEs exactly in phase space (or Fourier space). Multiplying (2.24) by
E(x, tk + s) and then summing it with its complex conjugate [8, 34], one can deduce
that ∂s|E(x, tk + s)|2 = 0 for s ≥ 0, which suggests that |E(x, tk + s)| ≡ |E(x, tk)| for
s ≥ 0 and x ∈ Ω and (2.24) is indeed a linear ODE for each fixed x ∈ Ω. Thus we can
integrate (2.24) analytically and obtain

(2.25)
E(x, tk + τ) = E(x, tk)ei

∫ τ
0 [|E(x,tk)|2−F (x,tk+s)−G(x,tk+s)]ds

= E(x, tk)eiτ [|E(x,tk)|2−Fk+1/2(x)−Gk+1/2(x)],

where

F k+1/2(x) =
1

τ

∫ τ

0

F (x, tk + s)ds ≈ 1

2
(F (x, tk) + F (x, tk+1)),(2.26)

Gk+1/2(x) =
1

τ

∫ τ

0

G(x, tk + s)ds, x ∈ Ω.(2.27)

2.4. The TS-EWI method. Combining the TSSP method for the NLSE and
EWI for the wave-type equation in (2.6), we immediately obtain the TS-EWI method.
In practical computation, the integrals for computing the sine transform coefficients in
(2.16)–(2.19) are usually approximated by numerical quadratures on the grid points.
Let Ekj , F kj , and Ḟ kj be the approximations of E(xj , tk), F (xj , tk), and ∂tF (xj , tk),

respectively, and denote ρkj = |Ekj |2, ρ̇kj , and ρ̈kj as the approximations of ρ(xj , tk),

∂tρ(xj , tk), and ∂ttρ(xj , tk), respectively, for j ∈ T 0
M and k ≥ 0. Choosing E0

j =

E0(xj), F
0
j = Ḟ 0

j = 0 for j ∈ T 0
M , the TS-EWI method for computing Ek+1

j and F k+1
j

reads as

F k+1
j =

M−1∑
l=1

˜(F k+1)l sin

(
jlπ

M

)
,

E
(1)
j =

M−1∑
l=1

e−iτµ
2
l /2 (̃Ek)l sin

(
jlπ

M

)
, j ∈ T 0

M ,

E
(2)
j = E

(1)
j e

iτ

[
|E(1)
j |

2−(Fkj +Fk+1
j )/2−G

k+1
2

j

]
,

Ek+1
j =

M−1∑
l=1

e−iτµ
2
l /2 (̃E(2))l sin

(
jlπ

M

)
,

(2.28)
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where

˜(F k+1)l =

{
dl(̃ρ̈0)l, k = 0,

2 cos(τθl)(̃F k)l − ˜(F k−1)l + 2dl(̃ρ̈k)l, k ≥ 1,

G
k+ 1

2
j =

1

τ

∫ τ

0

G(xj , tk + s)ds, ρ̈kj = −2 Im
[
Ėkj DxxE

k
j + Ekj DxxĖ

k
j

]
,

(2.29)

with

Ėkj = i
[
DxxE

k
j + (|Ekj |2 − F kj −Gkj )Ekj

]
, Gkj = G(xj , tk), j ∈ T 0

M , k ≥ 0.

Here G(x, t) is the solution of the wave equation (2.1) with initial data (2.2) and Dxx

is the sine pseudospectral approximation to ∂xx, which is defined as [1]

(2.30) Dxxψj = −
M−1∑
l=1

sin(µ2
l τ)

τ
(̃ψ)l sin

(
jlπ

M

)
, j ∈ T 0

M .

Finally, let Nk
j and Ṅk

j be the approximations of N(xj , tk) and ∂tN(xj , tk), re-

spectively, and take N0
j = Nε

0 (xj) and Ṅ0
j = Nε

1 (xj) for j ∈ T 0
M . Noting (2.3), we

have for k ≥ 0,

(2.31) Nk+1
j = −|Ek+1

j |2 + F k+1
j +Gk+1

j , Ṅk+1
j = −ρ̇k+1

j + Ḟ k+1
j + Ġk+1

j , j ∈ T 0
M ,

where

Ġk+1
j = ∂tG(xj , tk+1), Ḟ k+1

j =

M−1∑
l=1

˜(Ḟ k+1)l sin

(
jlπ

M

)
,

with

˜(Ḟ k+1)l =

{
(̃ρ̇1)l − (̃ρ̇0)l − blθl(̃ρ̈0)l, k = 0,

˜(Ḟ k−1)l − 2θl sin(τθl)(̃F k)l + 2cl(̃ρ̈k)l, k ≥ 1,

ρ̇kj = −2 Im
(
EkjDxxE

k
j

)
, j ∈ T 0

M , k ≥ 0.

The TS-EWI method (2.28) for the ZS (2.6) is explicit, time symmetric, easy
to be implemented, and very efficient due to the fast discrete sine transform (DST).
The memory cost is O(M), and the computational cost per time step is O(M logM).
Moreover, it conserves the wave energy (1.2) in the discretized level, i.e.,

(2.32) ‖Ek‖2l2 := h

M−1∑
j=1

|Ekj |2 ≡ ‖E0‖2l2 = h

M−1∑
j=1

|E0(xj)|2, k ≥ 0.

We remark here that for the linear wave equation (2.1), one can either get its
analytical solution by the d’Alembert formula [21] or find its numerical solution on
a bounded computational domain with a proper boundary condition via the method
of line discretization in space and then integrate in time analytically to get Gkj , Ġkj ,

and G
k+ 1

2
j for k ≥ 0 and j ∈ T 0

M [6]. If one solves it numerically on a bounded
computational domain with the simple homogeneous Dirichlet boundary condition,
then the bounded computational domain Ωε has to be chosen as ε-dependent due to
the fact that the rapid outgoing waves are at wave speed O

(
1
ε

)
and at amplitude
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O(1) to avoid the truncation error. Of course, if one adapts the accurate and/or
high order perfect matched layer (PML) [9] or the transparent boundary condition
(TBC) [22, 25] or the absorbing boundary condition (ABC) [20] for the linear wave
equation (2.1) during the truncation, then one can choose the bounded computational
domain as ε-independent, which can be significantly smaller compared to Ωε in the
subsonic limit regime, i.e., 0 < ε� 1.

3. A time-splitting multiscale time integrator (TS-MTI) method. In
this section, we introduce a multiscale decomposition of the ZS (1.1) and present
the TS-MTI method by applying a time-splitting technique and a multiscale time
integrator for temporal derivatives in the NLSE and wave-type equations, respectively.

3.1. A multiscale decomposition. Let τ = ∆t > 0 be the time step size, and
denote the time steps as tk := kτ for k = 0, 1, 2, . . . . Here we present a multiscale
decomposition for the solution of the ZS (1.1) on the time interval [tk, tk+1] with given
initial data at t = tk as

(3.1) Ek0 (x) := E(x, tk), Nk
0 (x) := N(x, tk), Nk

1 (x) := ∂tN(x, tk), x ∈ Rd.

Similar to the introduction of the ACF for the ZS (1.1), for k ≥ 0, we introduce
F k(x, s) ∈ R as

(3.2) F k(x, s) = N(x, tk + s) + |E(x, tk + s)|2 −Gk(x, s), x ∈ Rd, 0 ≤ s ≤ τ,

where Gk(x, s) ∈ R is the solution of the homogeneous wave equation

(3.3) ∂ssG
k(x, s)− 1

ε2
∆Gk(x, s) = 0, x ∈ Rd, 0 ≤ s ≤ τ,

with initial data by noting (3.1)

Gk(x, 0) = Nk
0 (x) + |Ek0 (x)|2 := Gk0(x), x ∈ Rd,

∂sG
k(x, 0) = Nk

1 (x)− 2 Im
(
Ek0 (x)∆Ek0 (x)

)
:= Gk1(x).

(3.4)

Plugging (3.2) into (1.1) and noting (3.3) and (3.4), we obtain a multiscale decompo-
sition formulation (MDF) for the ZS (1.1) with Ek(x, s) := E(x, tk + s) for s ∈ [0, τ ]
as

(3.5)

i∂sE
k(x, s) + ∆Ek(x, s) +

[
|Ek(x, s)|2 − F k(x, s)−Gk(x, s)

]
Ek(x, s) = 0,

∂ssF
k(x, s)− 1

ε2
∆F k(x, s)− ∂ss|Ek(x, s)|2 = 0, x ∈ Rd, s ∈ [0, τ ],

Ek(x, 0) = Ek0 (x), F k(x, 0) ≡ 0, ∂sF
k(x, 0) ≡ 0, x ∈ Rd.

After solving the decomposed system (3.5), we can get immediately Ek+1
0 (x) :=

Ek(x, τ) = E(x, tk+1) = Ek+1(x, 0), F k(x, τ), and ∂sF
k(x, τ). Then we can re-

construct Nk+1
0 (x) := N(x, tk+1) and Nk+1

1 (x) := ∂tN(x, tk+1) via (3.2) as

N(x, tk+1) = −|Ek+1
0 (x)|2 + F k(x, τ) +Gk(x, τ), x ∈ Rd,

∂tN(x, tk+1) = −∂s|Ek|2(x, τ) + ∂sF
k(x, τ) + ∂sG

k(x, τ)

= 2 Im(Ek+1
0 (x)∆Ek+1

0 (x)) + ∂sF
k(x, τ) + ∂sG

k(x, τ),

(3.6)
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Fig. 4. Decomposition of N(x, t = 2) = −ρ(x, 2) +FMD(x, 2) +GMD(x, 2) of (1.1) with (1.7),
(1.8), and (1.9) under d = 1, α = β = 0 via the MDF (3.2)–(3.6) with τ = 0.5 for different ε.

which immediately implies that

Gk+1
0 (x) = Nk+1

0 (x) + |Ek+1
0 (x)|2 = F k(x, τ) +Gk(x, τ), x ∈ Rd,

Gk+1
1 (x) = Nk+1

1 (x)− 2 Im
(
Ek+1

0 (x)∆Ek+1
0 (x)

)
= ∂sF

k(x, τ) + ∂sG
k(x, τ).

(3.7)

We remark here that F k(x, τ) 6= F k+1(x, 0) and Gk(x, τ) 6= Gk+1(x, 0). Define

(3.8) GMD(x, tk + s) = Gk(x, s), FMD(x, tk + s) = F k(x, s), 0 ≤ s < τ, k ≥ 0;

then we know GMD(x, t) satisfies the homogeneous wave equation (3.3) over each
interval [tk, tk+1) for k ≥ 0 and

FMD(x, tk) ≡ 0, ∂tF
MD(x, tk) ≡ 0, x ∈ Rd.

Of course, GMD(x, t) and FMD(x, t) have jumps at t = tk for k ≥ 1.
Here we want to emphasize several advantages of the MDF (3.2)–(3.6) over the

ACF (2.4) in the subsonic limit regime: (a) the initial data for F k in (3.5) is always
zero for all k ≥ 0, while F (x, tk) in (2.4) is nonzero when k ≥ 1; (b) the amplitude of
F k in (3.5) (and thus FMD(x, t)) is atO(min{ε2, τ2}) for k ≥ 0, while the amplitude of
F in (2.4) is at O(ε2) (cf. Figures 4 and 5); (c) due to the homogeneous initial condition
of F k, the essential support of FMD in the MDF (3.2)–(3.6) is [−C− τ

ε , C+ τ
ε ] ([−C,C]

is the essential support of E, which is independent of ε because of its convergence to
the solution of the Schrödinger equation (1.5) [38]), which implies that the support of
FMD can be essentially independent of 0 < ε ≤ 1 when τ . ε subject to truncation
error depending on O(τ2), while that of F in (2.4) is still at [−C− t

ε , C+ t
ε ] (cf. Figures

2 and 4); and (d) for practical computations, in general, due to fast decay of E at
far field, and essentially bounded support of F k when τ . ε and at O(min{ε2, τ2}) in
amplitude of F k, the bounded computational domain can be chosen independent of
0 < ε ≤ 1 in using the MDF (3.2)–(3.6) compared to that in adopting the ACF (2.4),
especially in the regime τ = O(ε) and 0 < ε� 1.

D
ow

nl
oa

de
d 

05
/1

9/
22

 to
 1

83
.1

73
.1

70
.1

1 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A942 WEIZHU BAO AND CHUNMEI SU

t
0 0.5 1 1.5 2

-1

-0.5

0

0.5

1

(a)

ε = 1/22

N(4, t)
−ρ(4, t)
GMD(4, t)
4FMD(4, t)

t
0 0.5 1 1.5 2

-1.5

-1

-0.5

0

0.5

1

(b)

ε = 1/23

N(4, t)
−ρ(4, t)
GMD(4, t)
4FMD(4, t)

Fig. 5. Decomposition of N(x = 4, t) = −ρ(4, t) + FMD(4, t) +GMD(4, t) of (1.1) with (1.7),
(1.8), and (1.9) under d = 1, α = β = 0 via the MDF (3.2)–(3.6) with τ = 0.5 for different ε.

3.2. The TS-MTI method. Similar to section 2 for discretizing the ACF (2.4),
the MDF (3.5) can be discretized in a similar way. Specifically, we can truncate (3.5)
in 1D on a bounded interval Ω = (a, b) with a homogeneous Dirichlet boundary
condition. Then the NLSE in (3.5) can be discretized by the TSSP method with
details omitted here for brevity. The wave-type equation in (3.5) will be discretized
in space by the sine spectral method and in time by the EWI method, i.e., find

(3.9) F kM (x, s) =

M−1∑
l=1

(̂F k)l(s) sin(µl(x− a)), a ≤ x ≤ b, 0 ≤ s ≤ τ.

Plugging (3.9) into (3.5), noticing the initial condition, and using the variation-of-
constant formula, we get

(̂F k)l(s) =
1

θl

∫ s

0

(̂ρk)
′′
l (ω) sin (θl(s− ω))dω,

(̂F k)
′
l(s) =

∫ s

0

(̂ρk)
′′
l (ω) cos (θl(s− ω))dω,

(3.10)

where ρk(x, s) = |Ek(x, s)|2 for 0 ≤ s ≤ τ , a ≤ x ≤ b, and k ≥ 0. Setting s = τ , using
the same approach as in (2.16) and (2.17), we get

(̂F k)l(τ) =
1

θl

∫ τ

0

(̂ρk)
′′
l (ω) sin (θl(τ − ω))dω ≈ dl (̂ρk)

′′
l (0),

(̂F k)
′
l(τ) =

∫ τ

0

(̂ρk)
′′
l (ω) cos (θl(τ − ω))dω ≈ (̂ρk)

′
l(τ)− (̂ρk)

′
l(0)− blθl(̂ρk)

′′
l (0).

Let F k,1j , Ḟ k,1j be the approximations of F k(xj , τ) and ∂tF
k(xj , τ), respectively,

for j ∈ T 0
M and k ≥ 0. Using the same notation as in section 2.4, a TS-MTI for
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computing Ek+1
j , F k,1j , and Ḟ k,1j reads for j ∈ T 0

M , k ≥ 0, as

F k,1j =

M−1∑
l=1

dl (̃ρ̈k)l sin

(
jlπ

M

)
, E

(1)
j =

M−1∑
l=1

e−iτµ
2
l /2 (̃Ek)l sin

(
jlπ

M

)
,

E
(2)
j = E

(1)
j eiτ

[
|E(1)
j |

2−
F
k,1
j
2 −G

k, 1
2

j

]
, Ek+1

j =

M−1∑
l=1

e−iµ
2
l
τ
2 (̃E(2))l sin

(
jlπ

M

)
,

Ḟ k,1j =

M−1∑
l=1

[
(̃ρ̇k+1)l − (̃ρ̇k)l − bl θl (̃ρ̈k)l

]
sin

(
jlπ

M

)
,

(3.11)

where

ρkj = |Ekj |2, ρ̇kj = −2 Im
(
EkjDxxE

k
j

)
, ρ̈kj = −2 Im

[
Ėkj DxxE

k
j + Ekj DxxĖ

k
j

]
,

G
k, 12
j =

1

τ

∫ τ

0

Gk(xj , s)ds, Ėkj = i
[
DxxE

k
j +

(
|Ekj |2 −Gk(xj , 0)

)
Ekj
]
.

Again, noting (3.2), we have for j ∈ T 0
M and k ≥ 0

(3.12) Nk+1
j = −|Ek+1

j |2 +F k,1j +Gk(xj , τ), Ṅk+1
j = −ρ̇k+1

j + Ḟ k,1j + ∂sG
k(xj , τ).

The TS-MTI method (3.11) for the ZS (2.6) is explicit, easy to be implemented,
and very efficient due to the DST. The memory cost is O(M), and the computational
cost per time step is O(M logM). Moreover, it conserves the wave energy (2.32) in
the discretized level.

4. Numerical results. In this section, we report numerical results to demon-
strate the uniform convergence of the TS-EWI method and optimal convergence of
the TS-MTI method for ε ∈ (0, 1]. Furthermore, we apply the TS-MTI method to
numerically study convergence rates of the ZS to its limiting models (1.5) and (2.5)
in the subsonic limit regime.

4.1. Accuracy test. Two examples are presented to test the spatial/temporal
accuracy for ε ∈ (0, 1]. Let Eτ,hε and Nτ,h

ε be the numerical solution of (1.1) in 1D
with mesh size h and time step τ . To quantify the numerical methods, we define the
error functions as

eτ,hε (T ) :=
‖IM (Eτ,hε )− E(·, T )‖H1

‖E(·, T )‖H1

, nτ,hε (T ) :=
‖IM (Nτ,h

ε )−N(·, T )‖L2

‖N(·, T )‖L2

,

eτ,h∞ (T ) := max
0<ε≤1

{eτ,hε (T )}, nτ,h∞ (T ) := max
0<ε≤1

{nτ,hε (T )}.

Example 1. The well-known solitary-wave solution of the ZS (1.1) with d = 1 is
given in [29, 37] as

E(x, t) =
√

2B2(1− C2ε2) sech(B(x− Ct))ei[(C/2)x−((C/2)2−B2)t],

N(x, t) = −2B2sech2(B(x− Ct)), x ∈ R, t ≥ 0,
(4.1)

where B and C are constants. The initial condition is taken as

(4.2) E0(x) = E(x, 0), N0(x) = N(x, 0), N1(x) = ∂tN(x, 0), −∞ < x <∞,
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A944 WEIZHU BAO AND CHUNMEI SU

Table 1
Spatial errors of the TS-EWI method at time T = 1 for Example 1.

eτ,hε (1) h = 1 h = 1/2 h = 1/4 h = 1/8

ε = 1/2 9.20E-2 4.68E-4 1.17E-8 1.65E-12
ε = 1/22 1.05E-1 5.21E-4 1.15E-8 1.32E-12
ε = 1/23 1.09E-1 5.20E-4 1.12E-8 9.41E-13
ε = 1/24 1.10E-1 5.17E-3 1.14E-8 7.84E-13
ε = 1/25 1.10E-1 5.13E-3 1.15E-8 7.40E-13
ε = 1/26 1.10E-1 5.13E-3 1.15E-8 7.09E-13
ε = 1/210 1.10E-1 5.13E-3 1.15E-8 7.10E-13
ε = 1/220 1.10E-1 5.13E-3 1.15E-8 7.09E-13

nτ,hε (1) h = 1 h = 1/2 h = 1/4 h = 1/8

ε = 1/2 5.72E-2 6.15E-4 1.02E-8 2.09E-12
ε = 1/22 4.76E-2 3.08E-4 4.14E-9 9.01E-13
ε = 1/23 4.08E-2 2.07E-4 4.37E-9 6.63E-13
ε = 1/24 3.96E-2 1.86E-4 2.89E-9 5.59E-13
ε = 1/25 3.94E-2 1.84E-4 2.30E-9 3.34E-13
ε = 1/26 3.94E-2 1.83E-4 2.26E-9 5.76E-13
ε = 1/210 3.94E-2 1.83E-4 2.29E-9 5.85E-13
ε = 1/220 3.94E-2 1.83E-4 2.29E-9 5.80E-13

where E(x, 0), N(x, 0), Nt(x, 0) are obtained from (4.1) by setting t = 0. Here we
choose B = C = 1 in (4.1) and test spatial and temporal discretization errors. The
problem is solved on the interval [−32, 32] with homogeneous Dirichlet boundary
conditions by using either TS-EWI or TS-MTI.

Table 1 shows the spatial errors of the TS-EWI method at T = 1 under different
ε and h with a very small time step τ = 10−6 such that the discretization error
in time is negligible. The results for the TS-MTI method are similar, which are
omitted here for brevity. Tables 2 and 3 display the temporal errors at T = 1 with
a fixed mesh size h = 1/16 for the TS-EWI and TS-MTI methods, respectively. It
can be clearly observed that for solitary-wave solution, both TS-EWI and TS-MTI
methods converge uniformly and optimally for ε ∈ (0, 1] in both space and time with
exponential and quadratic convergence rates, respectively. Furthermore, generally
speaking, the TS-MTI method is superior to the TS-EWI method in accuracy for
fixed ε and τ , especially when ε ≥ ε0 = 1/25.

Example 2. The initial data of the ZS (1.1) is chosen as

E0(x) = e−x
2/2, N0(x) = −|E0(x)|2 + εαω0(x), N1(x) = εβe−x

2/3 sin(2x),

ω0(x) = g

(
x+ 25

10

)
g

(
25− x

10

)
sin(2x), x ∈ R,

where α ≥ 0 and β ≥ −1 are two parameters describing the incompatibility of the
initial data of the ZS (1.1) with respect to the limiting NLSE (1.5) and g is given in
(1.9).

Since the analytical solution of the problem is not available, the “reference” so-
lution is obtained numerically by the TS-MTI method with a very fine mesh size
h = 1/64 and a small time step τ = 10−6. By using TS-EWI, the problem is trun-
cated on a bounded interval Ωε = [−30− 1

ε , 30 + 1
ε ], which is large enough such that

the homogeneous Dirichlet boundary condition does not introduce significant errors.
On the contrary, by using TS-MTI, it is enough to truncate the problem on a bounded
interval Ω = [−32, 32], which is ε-independent.
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Table 2
Temporal errors of the TS-EWI method for Example 1.

eτ,hε (1) τ0 = 0.2 τ0/4 τ0/42 τ0/43 τ0/44 τ0/45 τ0/46

ε = 1/2 8.47E-2 1.48E-2 1.11E-3 7.10E-5 4.45E-6 2.78E-7 1.74E-8
rate - 1.26 1.87 1.99 2.00 2.00 2.00

ε = 1/23 3.26E-2 3.04E-3 2.13E-4 1.36E-5 8.55E-7 5.35E-8 3.34E-9
rate - 1.71 1.92 1.98 2.00 2.00 2.00

ε = 1/25 2.85E-2 1.76E-3 1.13E-4 7.25E-6 4.56E-7 2.86E-8 1.79E-9
rate - 2.01 1.98 1.98 1.99 2.00 2.00

ε = 1/27 2.81E-2 1.76E-3 1.09E-4 6.85E-6 4.31E-7 2.70E-8 1.69E-9
rate - 2.00 2.00 2.00 2.00 2.00 2.00

ε = 1/29 2.81E-2 1.75E-3 1.10E-4 6.87E-6 4.30E-7 2.69E-8 1.68E-9
rate - 2.00 2.00 2.00 2.00 2.00 2.00

ε = 1/211 2.81E-2 1.75E-3 1.10E-4 6.89E-6 4.30E-7 2.69E-8 1.68E-9
rate - 2.00 2.00 2.00 2.00 2.00 2.00

ε = 1/215 2.81E-2 1.75E-3 1.10E-4 6.89E-6 4.31E-7 2.69E-8 1.68E-9
rate - 2.00 2.00 2.00 2.00 2.00 2.00

nτ,hε (1) τ0 = 0.2 τ0/4 τ0/42 τ0/43 τ0/44 τ0/45 τ0/46

ε = 1/2 1.15E-1 2.32E-2 1.84E-3 1.18E-4 7.40E-6 4.63E-7 2.89E-8
rate - 1.15 1.83 1.98 2.00 2.00 2.00

ε = 1/23 2.63E-2 2.46E-3 1.78E-4 1.14E-5 7.14E-7 4.47E-8 2.79E-9
rate - 1.71 1.90 1.98 2.00 2.00 2.00

ε = 1/25 1.25E-2 8.66E-4 7.27E-5 3.60E-6 2.28E-7 1.43E-8 8.94E-10
rate - 1.93 1.79 2.17 1.99 2.00 2.00

ε = 1/27 1.20E-2 8.16E-4 4.92E-5 3.17E-6 2.01E-7 1.26E-8 7.88E-10
rate - 1.94 2.03 1.98 1.99 2.00 2.00

ε = 1/29 1.20E-2 8.13E-4 5.10E-5 3.10E-6 1.99E-7 1.25E-8 7.81E-10
rate - 1.94 2.00 2.02 1.98 2.00 2.00

ε = 1/211 1.20E-2 8.13E-4 5.11E-5 3.19E-6 1.94E-7 1.25E-8 7.80E-10
rate - 1.94 2.00 2.00 2.02 1.98 2.00

ε = 1/213 1.20E-2 8.13E-4 5.11E-5 3.20E-6 1.99E-7 1.22E-8 7.80E-10
rate - 1.94 2.00 2.00 2.00 2.02 1.98

ε = 1/215 1.20E-2 8.13E-4 5.11E-5 3.19E-6 2.00E-7 1.25E-8 7.61E-10
rate - 1.94 2.00 2.00 2.00 2.00 2.02

The spatial discretization errors for the TS-EWI and TS-MTI methods behave
similarly to Table 1, and thus they are omitted here for brevity. Table 4 shows the
temporal discretization errors of the TS-EWI method at T = 1 with a fixed mesh size
h = 1/8 for α = 1 and β = 0, and, respectively, Table 5 displays that for α = β = 0.
Figure 6 plots the temporal errors of the TS-MTI method at T = 1 with a fixed mesh
size h = 1/8 for α = 1 and β = 0, Figure 7 depicts similar results for α = β = 0, and
Figure 8 displays temporal errors for larger time T = 5 for α = 0 and β = −1.

From Tables 4 and 5 and Figures 6–8, we can draw the following observations:
(i) Both TS-EWI and TS-MTI converge uniformly and optimally at exponential

order in space for any kind of initial data.
(ii) The TS-MTI method converges uniformly and optimally at second order in

time for all kinds of initial data (cf. Figures 6–8).
(iii) The TS-EWI method converges uniformly and optimally at second order

in time when α ≥ 1 and β ≥ 0 (cf. Table 4). However, when 0 ≤ α < 1 and/or
−1 ≤ β < 0, it converges uniformly but not optimally at second order in time (cf.
Table 5).

4.2. Convergence rates of the ZS to its limiting models when ε → 0.
Here we apply the TS-MTI method to study numerically convergence rate of the ZS
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Table 3
Temporal errors of the TS-MTI method for Example 1.

eτ,hε (1) τ0 = 0.2 τ0/4 τ0/42 τ0/43 τ0/44 τ0/45 τ0/46

ε = 1/2 4.17E-2 3.51E-3 2.31E-4 1.46E-5 9.12E-7 5.70E-8 3.57E-9
rate - 1.78 1.96 1.99 2.00 2.00 2.00

ε = 1/23 2.95E-2 1.51E-3 9.18E-5 5.74E-6 3.59E-7 2.24E-8 1.40E-9
rate - 2.14 2.02 2.00 2.00 2.00 2.00

ε = 1/25 2.89E-2 1.70E-3 7.86E-5 4.73E-6 2.95E-7 1.84E-8 1.15E-9
rate - 2.05 2.21 2.03 2.00 2.00 2.00

ε = 1/27 2.82E-2 1.80E-3 1.05E-4 4.85E-6 2.92E-7 1.82E-8 1.14E-9
rate - 1.99 2.05 2.22 2.03 2.00 2.00

ε = 1/29 2.81E-2 1.76E-3 1.13E-4 6.58E-6 3.03E-7 1.82E-8 1.14E-9
rate - 2.00 1.98 2.05 2.22 2.03 2.00

ε = 1/211 2.81E-2 1.75E-3 1.10E-4 7.05E-6 4.11E-7 1.89E-8 1.14E-9
rate - 2.00 2.00 1.98 2.05 2.22 2.03

ε = 1/213 2.81E-2 1.75E-3 1.10E-4 6.90E-6 4.41E-7 2.57E-8 1.18E-9
rate - 2.00 2.00 2.00 1.98 2.05 2.22

ε = 1/215 2.81E-2 1.75E-3 1.10E-4 6.89E-6 4.31E-7 2.75E-8 1.61E-9
rate - 2.00 2.00 2.00 2.00 1.98 2.05

nτ,hε (1) τ0 = 0.2 τ0/4 τ0/42 τ0/43 τ0/44 τ0/45 τ0/46

ε = 1/2 5.60E-2 5.05E-3 3.31E-4 2.08E-5 1.30E-6 8.13E-8 5.08E-9
rate - 1.73 1.97 2.00 2.00 2.00 2.00

ε = 1/23 1.86E-2 1.11E-3 6.87E-5 4.30E-6 2.69E-7 1.68E-8 1.05E-9
rate - 2.03 2.01 2.00 2.00 2.00 2.00

ε = 1/25 1.29E-2 8.57E-4 3.32E-5 1.74E-6 1.06E-7 6.64E-9 4.16E-10
rate - 1.96 2.34 2.13 2.02 2.00 2.00

ε = 1/27 1.20E-2 8.40E-4 5.14E-5 1.94E-6 1.06E-7 6.46E-9 4.02E-10
rate - 1.92 2.02 2.36 2.10 2.02 2.00

ε = 1/29 1.20E-2 8.15E-4 5.26E-5 3.17E-6 1.15E-7 6.48E-9 4.01E-10
rate - 1.94 1.98 2.03 2.39 2.07 2.01

ε = 1/211 1.20E-2 8.13E-4 5.12E-5 3.29E-6 1.97E-7 7.08E-9 4.04E-10
rate - 1.94 1.99 1.98 2.03 2.40 2.07

ε = 1/213 1.20E-2 8.13E-4 5.11E-5 3.20E-6 2.06E-7 1.23E-8 4.42E-10
rate - 1.94 2.00 2.00 1.98 2.03 2.40

ε = 1/215 1.20E-2 8.13E-4 5.11E-5 3.19E-6 2.00E-7 1.29E-8 7.71E-10
rate - 1.94 2.00 2.00 2.00 1.98 2.03
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Fig. 6. Temporal errors of the TS-MTI method for Example 2 with α = 1, β = 0.D
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Table 4
Temporal errors of the TS-EWI method for Example 2 with α = 1, β = 0.

eτ,hε (1) τ0 = 0.2 τ0/2 τ0/22 τ0/23 τ0/24 τ0/25 τ0/26 τ0/27

ε = 1/2 3.28E-2 1.37E-2 4.27E-3 1.15E-3 2.95E-4 7.44E-5 1.86E-5 4.66E-6
rate - 1.26 1.68 1.89 1.97 1.99 2.00 2.00

ε = 1/23 1.13E-2 1.98E-3 5.10E-4 1.30E-4 3.25E-5 8.15E-6 2.04E-6 5.09E-7
rate - 2.52 1.96 1.98 1.99 2.00 2.00 2.00

ε = 1/25 7.47E-3 1.26E-3 2.88E-4 7.17E-5 1.79E-5 4.48E-6 1.12E-6 2.80E-7
rate - 2.56 2.13 2.01 2.00 2.00 2.00 2.00

ε = 1/27 7.37E-3 1.16E-3 2.81E-4 7.08E-5 1.74E-5 4.37E-6 1.09E-6 2.73E-7
rate - 2.67 2.04 1.99 2.02 1.99 2.00 2.00

ε = 1/29 7.36E-3 1.15E-3 2.80E-4 6.99E-5 1.75E-5 4.37E-6 1.09E-6 2.73E-7
rate - 2.67 2.04 2.00 2.00 2.00 2.00 2.00

nτ,hε (1) τ0 = 0.2 τ0/2 τ0/22 τ0/23 τ0/24 τ0/25 τ0/26 τ0/27

ε = 1/2 5.13E-2 2.09E-2 6.62E-3 1.85E-3 4.83E-4 1.22E-4 3.07E-5 7.67E-6
rate - 1.30 1.66 1.83 1.94 1.98 2.00 2.00

ε = 1/22 4.16E-2 1.24E-2 3.23E-3 8.15E-4 2.05E-4 5.12E-5 1.28E-5 3.20E-6
rate - 1.75 1.94 1.98 2.00 2.00 2.00 2.00

ε = 1/23 6.01E-2 4.90E-3 3.46E-4 8.16E-5 2.00E-5 4.97E-6 1.24E-6 3.09E-7
rate - 3.62 3.82 2.08 2.03 2.01 2.00 2.00

ε = 1/24 3.62E-3 2.87E-2 1.36E-3 1.01E-4 2.38E-5 5.88E-6 1.46E-6 3.66E-7
rate - -2.98 4.40 3.75 2.09 2.02 2.01 2.00

ε = 1/25 1.13E-3 5.86E-4 8.40E-3 2.57E-4 1.66E-5 3.92E-6 9.67E-7 2.41E-7
rate - 0.95 -3.84 5.03 3.95 2.08 2.02 2.00

ε = 1/26 8.18E-4 1.94E-4 8.59E-5 1.72E-3 4.60E-5 2.20E-6 5.19E-7 1.28E-7
rate - 2.08 1.17 -4.33 5.23 4.39 2.08 2.02

ε = 1/27 7.28E-4 1.55E-4 4.01E-5 1.46E-5 3.21E-4 8.05E-6 3.02E-7 7.19E-8
rate - 2.23 1.95 1.45 -4.45 5.32 4.74 2.07

ε = 1/28 6.73E-4 1.50E-4 3.65E-5 9.41E-6 2.91E-6 5.79E-5 1.42E-6 4.88E-8
rate - 2.17 2.04 1.95 1.69 -4.31 5.35 4.86

ε = 1/29 6.41E-4 1.48E-4 3.63E-5 9.03E-6 2.30E-6 6.42E-7 1.03E-5 2.50E-7
rate - 2.12 2.03 2.01 1.97 1.84 -4.01 5.37

nτ,h∞ (1) 6.01E-2 2.87E-2 8.40E-3 1.85E-3 4.83E-4 1.22E-4 3.07E-5 7.67E-5
rate - 1.07 1.77 2.18 1.94 1.99 1.99 2.00
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Fig. 7. Temporal errors of the TS-MTI method for Example 2 with α = β = 0.
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Table 5
Temporal errors of the TS-EWI method for Example 2 with α = β = 0.

eτ,hε (1) τ0 = 0.2 τ0/2 τ0/22 τ0/23 τ0/24 τ0/25 τ0/26 τ0/27

ε = 1/22 3.51E-2 9.92E-3 2.98E-3 7.98E-4 2.03E-4 5.11E-5 1.28E-5 3.20E-6
rate - 1.82 1.74 1.90 1.97 1.99 2.00 2.00

ε = 1/23 5.70E-2 1.05E-2 2.55E-3 6.37E-4 1.59E-4 3.98E-5 9.95E-6 2.49E-6
rate - 2.44 2.04 2.00 2.00 2.00 2.00 2.00

ε = 1/24 3.01E-2 1.01E-2 2.07E-3 5.01E-4 1.24E-4 3.10E-5 7.75E-6 1.94E-6
rate - 1.57 2.29 2.05 2.01 2.00 2.00 2.00

ε = 1/25 1.56E-2 1.38E-2 1.93E-3 4.06E-4 9.82E-5 2.44E-5 6.08E-6 1.52E-6
rate - 0.17 2.84 2.25 2.05 2.01 2.00 2.00

ε = 1/26 8.65E-3 5.54E-3 5.34E-3 4.63E-4 1.01E-4 2.44E-5 6.04E-6 1.51E-6
rate - 0.64 0.05 3.53 2.20 2.05 2.01 2.00

ε = 1/27 7.37E-3 1.65E-3 1.56E-3 1.49E-3 1.18E-4 2.51E-5 6.08E-6 1.51E-6
rate - 2.16 0.08 0.06 3.66 2.24 2.05 2.01

ε = 1/28 7.36E-3 1.15E-3 4.06E-4 4.01E-4 3.83E-4 3.02E-5 6.28E-6 1.52E-6
rate - 2.67 1.51 0.02 0.07 3.66 2.27 2.05

ε = 1/29 7.36E-3 1.15E-3 2.80E-4 1.01E-4 1.01E-4 9.64E-5 7.60E-6 1.57E-6
rate - 2.67 2.04 1.47 0.01 0.07 3.66 2.28

ε = 1/210 7.36E-3 1.15E-3 2.80E-4 6.99E-5 2.54E-5 2.53E-5 2.41E-5 1.90E-6
rate - 2.67 2.04 2.00 1.46 0.00 0.07 3.66

eτ,h∞ (1) 5.70E-2 1.38E-2 5.34E-3 1.49E-3 3.83E-4 9.64E-5 2.41-5 6.03E-6
rate - 2.05 1.37 1.84 1.96 1.99 2.00 2.00

nτ,hε (1) τ0 = 0.2 τ0/2 τ0/22 τ0/23 τ0/24 τ0/25 τ0/26 τ0/27

ε = 1/2 5.33E-2 2.05E-2 6.29E-3 1.78E-3 4.68E-4 1.19E-4 2.98E-5 7.46E-6
rate - 1.38 1.70 1.82 1.93 1.98 1.99 2.00

ε = 1/22 6.65E-2 2.40E-2 6.69E-3 1.73E-3 4.36E-4 1.09E-4 2.73E-5 6.83E-6
rate - 1.47 1.84 1.96 1.99 2.00 2.00 2.00

ε = 1/23 1.20E-1 3.72E-3 4.69E-4 1.17E-4 2.94E-5 7.36E-6 1.84E-6 4.60E-7
rate - 5.01 2.98 2.00 1.99 2.00 2.00 2.00

ε = 1/24 1.05E-2 1.19E-1 2.36E-3 4.01E-4 9.50E-5 2.35E-5 5.84E-6 1.46E-6
rate - -3.50 5.66 2.56 2.08 2.02 2.00 2.00

ε = 1/25 3.36E-3 3.44E-3 7.06E-2 7.48E-4 1.35E-4 3.19E-5 7.88E-6 1.96E-6
rate - -0.03 -4.36 6.56 2.47 2.08 2.02 2.00

ε = 1/26 9.67E-4 8.78E-4 8.70E-4 2.88E-2 2.18E-4 3.45E-5 8.18E-6 2.02E-6
rate - 0.14 0.01 -5.05 7.05 2.66 2.08 2.02

ε = 1/27 4.17E-4 3.45E-4 2.29E-4 2.15E-4 1.07E-2 6.60E-5 8.68E-6 2.05E-6
rate - 0.28 0.59 0.09 -5.64 7.34 2.93 2.08

ε = 1/28 2.16E-4 1.47E-4 1.20E-4 6.23E-5 5.40E-5 3.86E-3 2.09E-5 2.18E-6
rate - 0.55 0.29 0.95 0.21 -6.16 7.53 3.26

ε = 1/29 1.73E-4 6.23E-5 5.18E-5 4.17E-5 1.78E-5 1.38E-5 1.38E-3 6.89E-6
rate - 1.47 0.27 0.31 1.23 0.37 -6.65 7.64

ε = 1/210 1.63E-4 4.19E-5 2.01E-5 1.82E-5 1.45E-5 5.39E-6 3.58E-6 4.90E-4
rate - 1.96 1.06 0.15 0.32 1.43 0.59 -7.10

nτ,h∞ (1) 1.20E-1 1.19E-1 7.06E-2 2.88E-2 1.07E-2 3.86E-3 1.38E-3 4.90E-4
rate - 0.01 0.75 1.29 1.43 1.47 1.48 1.49

(1.1) to its limiting model—the NLSE (1.5) and its semilimiting model—the NLSE-
OP (2.5). In order to do so, we take d = 1 in (1.1) and choose the same initial data
as in Example 2.

Let (E,N) be the solution of the ZS (1.1) which is obtained numerically by the
TS-MTI method (3.11) on a bounded interval Ω = [−32, 32] with a very fine mesh
h = 1/16 and a small time step τ = 10−4. Similarly, let Es and Esop be the solutions of
the NLSE (1.5) and the NLSE-OP (2.5), respectively, which are obtained numerically
on Ω by the time-splitting sine pseudospectral method with h = 1/16 and τ = 10−4.
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Fig. 8. Temporal errors of the TS-MTI method for Example 2 for T = 5.

Denote Ns(x, t) = −|Es|2 + G(x, t) and Nsop(x, t) = −|Esop|2 + G(x, t) with G(x, t)
being the solution of the wave equation (2.1) with initial data (2.2). Define the error
functions as

ηse(t) := ‖E(·, t)− Es(·, t)‖H1 , η
F

(t) := ‖N(·, t) + |E(·, t)|2 −G(·, t)‖L2 ,

ηsope(t) := ‖E(·, t)− Esop(·, t)‖H1 , ηsopn(t) := ‖N(·, t)−Nsop(·, t)‖L2 .

Figure 9 plots the errors between the solutions of the ZS (1.1) and the NLSE
(1.5), i.e., ηse(t) and η

F
(t), with compatible initial data, i.e., ω0(x) ≡ 0 and ω1(x) ≡ 0

in (1.7) for different ε > 0; Figures 10 and 11 show similar results for α = 1, β = 0
and α = 0, β = −1 in (1.7), respectively. Finally, Figure 12 depicts the errors between
the solutions of the ZS (1.1) and the NLSE-OP (2.5), i.e., ηsope(t) and ηsopn(t), for
ill-prepared initial data, i.e., α = 0, β = −1 in (1.7).

t
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(b)

ε = 0.1
ε = 0.05
ε = 0.025

Fig. 9. Convergence behavior between the ZS (1.1) and the NLSE (1.5) under compatible initial
data (1.7), i.e., ω0 = ω1 ≡ 0.

From Figures 9–12, we can draw the following conclusions:
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Fig. 10. Convergence behavior between the ZS (1.1) and the NLSE (1.5) under less ill-prepared
initial data (1.7), i.e., α = 1, β = 0.
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Fig. 11. Convergence behavior between the ZS (1.1) and the NLSE (1.5) under ill-prepared
initial data (1.7), i.e., α = 0, β = −1.

(i) The solution E of the ZS (1.1) converges to Es of the NLSE (1.5), and N
converges to Ns when ε→ 0+. In addition, we have the following convergence rates:

‖E(·, t)− Es(·, t)‖H1 + ‖N(·, t)−Ns(·, t)‖L2 ≤ C0ε
min{2,1+α,2+β},

‖F (·, t)‖L2 = ‖N(·, t) + |E(·, t)|2 −G(·, t)‖L2 ≤ C1ε
2, 0 ≤ t ≤ T,

(4.3)

where C0 and C1 are two positive constants which are independent of ε ∈ (0, 1], which
is consistent with the analytical results in [38].

(ii) The solution E of the ZS (1.1) converges to Esop of the NLSE-OP (2.5), and
N converges to Nsop when ε → 0+. In addition, we have the following (uniformly)
quadratic convergence rate for any kind of initial data:

(4.4) ‖E(·, t)− Esop(·, t)‖H1 + ‖N(·, t)−Nsop(·, t)‖L2 ≤ C2ε
2, 0 ≤ t ≤ T,

where C2 > 0 is a constant independent of ε. Based on the above results, we can see
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Fig. 12. Convergence behavior between the ZS (1.1) and the NLSE-OP (2.5) under ill-prepared
initial data (1.7), i.e., α = 0, β = −1.

that the NLSE-OP (2.5) is a more accurate limiting model to approximate the ZS
in the subsonic limit, compared to the NLSE (1.5), especially for ill-prepared initial
data.

5. Conclusion. Two uniformly accurate numerical methods were proposed for
the Zakharov system (ZS) with a dimensionless parameter 0 < ε ≤ 1 which is inversely
proportional to the acoustic speed. The time-splitting exponential wave integrator
(TS-EWI) method was designed by adopting an asymptotic consistent formulation
of the ZS, and the time-splitting multiscale time integrator (TS-MTI) method was
proposed by introducing a multiscale decomposition of the solution of the ZS. Both
methods are explicit and uniformly and optimally accurate (UOA) at spectral order
in space. The TS-MTI method is uniformly and optimally accurate at second order
in time for all kinds of initial data, while the TS-EWI is UOA at second order in
time for reasonably well-prepared initial data. Another advantage of the TS-MTI
method is that the bounded computational domain can be taken as ε-independent,
while the bounded computational domain for the TS-EWI method needs to be taken
as ε-dependent, especially when τ = O(ε) and 0 < ε� 1. By adopting our numerical
method, we observed numerically that the nonlinear Schrödinger equation (NLSE)
with an oscillatory potential is a more accurate limiting model to the ZS in the sub-
sonic limit, compared to the NLSE with cubic nonlinearity, especially for ill-prepared
initial data.
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