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Abstract

We use classical results in smoothing theory to extract information about the rational
homotopy groups of the space of Riemannian metrics without conjugate points on a high
dimensional manifold with hyperbolic fundamental group. As a consequence, we show that
spaces of negatively curved Riemannian metrics have in general nontrivial rational homotopy
groups. We also show that smooth M -bundles over spheres equipped with fiberwise nega-
tively curved metrics represent elements of finite order in the homotopy groups πiBDiff(M)
of the classifying space for smooth M -bundles, provided i� dim M .

1 Introduction

Let M be a closed smooth manifold. A negatively curved bundle with fiber M is a smooth
M -bundle E → B whose fibers are endowed with continuously varying Riemannian metrics of
everywhere negative sectional curvature. This notion has been established in [FO10b], where
a theory for negatively curved fiber bundles is developed, in the sense that there is a space
T <0(M) with the property that equivalence classes of fiber-homotopically trivial negatively
curved bundles over a paracompact space B are in bijective correspondence with homotopy
classes of maps B → T <0(M). Here two negatively curved M -bundles E1 → B and E2 →
B are equivalent if there exists a negatively curved M -bundle E over B × [0, 1] such that E
restricted to B × {i} is fiberwise isometric to Ei, i = 1, 2 (see [FO10b, p.1399]). From a
purely topological point of view, fiber homotopically trivial smooth bundles over B with fiber
a negatively curved manifold M are classified, up to bundle equivalence, by homotopy classes
of maps B → BDiff0(M), where Diff0(M) is the group of all diffeomorphisms of M which are
homotopic to the identity on M . Thus there is a natural “forgetful” map

F : T <0(M)→ BDiff0(M).

One then wonders how much these two bundle theories differ, and this is the theme of this paper.
This question has been addressed already by Farrell and Ontaneda in [FO09, FO10a, FO10b].
A remarkable observation is that the homotopy fiber of the forgetful map F can be identified
with the space MET<0(M) of all negatively curved metrics on M , so that we have a homotopy
fibration

MET<0(M)→ T <0(M)
F−→ BDiff0(M). (1)

Farrell and Ontaneda [FO10a] have shown that the space of negatively curved metrics on M is
highly non-connected if the dimension of M is sufficiently large, thus the two bundle theories
are fundamentally different. This difference was captured in their main theorem by elements
of finite order in the homotopy groups of MET<0(M). Nevertheless, one could still hope that
the two theories were “rationally equivalent” (this kind of phenomenon occurs for example in
the theory of stable vector bundles and stable topological Rn-bundles. Indeed, BO and BTop
are only rationally equivalent). Our main result establishes that these two bundle theories are
inequivalent even if one decides to neglect torsion, at least in a range of dimensions called the
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Igusa stable range. This is done by showing that the rational homotopy groups of MET<0(M)
are in general nontrivial.

Let us now assume that M is a closed manifold that supports a Riemannian metric g without
conjugate points, that is for any geodesic γ of M no two points are conjugate along γ (e.g.
nonpositively curved metrics, or metrics with geodesic flow of Anosov type). In particular M
is an aspherical manifold and for any point p ∈ M the exponential map expp : TpM → M is a

(universal) covering map. Let METNC(M) denote the space of all such Riemannian metrics on
M . Then given any self-diffeomorphism f : M → M of M , we define the push-forward metric
g′ on M to be the unique Riemannian metric such that f : (M, g) → (M, g′) is an isometry.
We denote the push-forward metric by f∗g. This gives rise to an orbit map Φg : Diff0(M) →
METNC(M), defined by Φg(f) = f∗g, and the corresponding map in homotopy groups

Φg
∗ : πiDiff0(M)→ πiMETNC(M).

Theorem 1. Let (M, g) be a closed Riemannian n-manifold without conjugate points. Assume
that the fundamental group of M is hyperbolic. Then for all 1 < i < min{n−10

2 , n−8
3 } the map

Φg
∗ : πi(Diff0(M), id)⊗Q→ πi(METNC(M), g)⊗Q

is injective.

For the definition of a hyperbolic group we refer the reader to [BH99] or [Gro87].
Note that Theorem 1 does give elements of infinite order in πiMETNC(M) in view of the

following result of Farrell and Hsiang. First recall that a closed manifold M satisfies the strong
Borel conjecture if for all k ≥ 0, every self-homotopy equivalence of pairs (M×Dk,M×Sk−1)→
(M ×Dk,M × Sk−1) which is a homeomorphism when restricted to the boundary M × Sk−1 is
homotopic (relative to the boundary) to a homeomorphism.

Theorem (Farrell-Hsiang [FH78]). Let M be a closed aspherical smooth n-manifold that sat-
isfies both the strong Borel conjecture and Conjecture 2 in [FH78, p.326]. Then if 0 < i <
min{n−7

2 , n−4
3 }

1,

πiDiff0(M)⊗Q =


∞⊕
j=1

H(i+1)−4j(M,Q) if n is odd

0 if n is even

(2)

Some important classes of manifolds relevant to the subject of this paper which satisfy both
the strong Borel conjecture and Conjecture 2 in [FH78, p.326] are: closed negatively curved
manifolds [FJ89] or more generally closed nonpositively curved manifolds [FJ93] and closed
aspherical manifolds with hyperbolic fundamental group [BLR08], [BL12]. For all those, the
calculation (2) holds.

In the case of a negatively curved Riemannian manifold (M, g) the orbit map Φg factors
through the inclusion

MET<0(M) ↪→ METNC(M),

and since the fundamental group of M is hyperbolic, we have:

1By the time Farrell and Hsiang obtained this result the stability range was roughly i < n/6. Later Igusa
improved this range to the one stated here. See [Igu88] and [Igu02, p.252].
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Corollary 1.1. Let (M, g) be a closed negatively curved Riemannian n-manifold. Then for all
1 < i < min{n−10

2 , n−8
3 } the map

Φg
∗ : πi(Diff0(M), id)⊗Q→ πi(MET<0(M), g)⊗Q

is injective.

Remark 1. Similar corollaries can be obtained in the same way for various spaces of Riemannian
metrics. Some other examples are: the space MET≤0(M) of nonpositively curved Riemannian
metrics on a closed negatively curved manifold M (considered already in [FO15]), and the space
META(M) of Riemannian metrics with geodesic flow of Anosov type (see [Kli74] for the non-
conjugate points condition and [Rug03, Rug94] for hyperbolicity of the fundamental group).

Corollary 1.1 together with the long exact sequence in homotopy groups for the fibration (1)
imply that, in the Igusa stable range, every negatively curved bundle over an (i+ 1)-sphere has
finite order (viewed as an element in πi+1BDiff0(M)). More precisely:

Corollary 1.2. Let (M, g) be a closed negatively curved Riemannian n-manifold. Then for all
2 < i < min{n−10

2 , n−8
3 } there is a short exact sequence

0→ πiDiff0(M)⊗Q→ πiMET<0(M)⊗Q→ πiT <0(M)⊗Q→ 0.

In particular, the forgetful map F⊗ idQ : πi+1T <0(M)⊗Q→ πi+1BDiff0(M)⊗Q is trivial for
all 1 < i < min{n−10

2 , n−8
3 }.

Instead of looking at smooth negatively curved Riemannian metrics, one could consider the
weaker notion of a CAT(-1) metric on the closed smooth manifold M , that is metrics on M
with the property that every geodesic triangle is “thinner” than the corresponding comparison
triangle in the hyperbolic plane (for a precise definition see [BH99]). Let CAT−1(M) be the space
of all such metrics on M with the C0-topology. There is a continuous map β : MET<−1(M)→
CAT−1(M) given by sending each negatively curved metric M to the induced distance function
on M . Here MET<−1(M) is the space of all metrics on M with curvature less than -1.

Corollary 1.3. There exist an i > 0, a closed negatively curved manifold M and a non-trivial
smooth M -bundle over the (i + 1)-sphere Si+1, which admits a continuously varying family of
CAT(−1) metrics on the fibers and it is not a negatively curved bundle.

Proof. Take (Mn, g) to be an odd-dimensional closed negatively curved manifold such that
H(i+1)−4j(M,Q) 6= 0 for some 1 < i < min{n−10

2 , n−8
3 } and some j ≥ 1 (e.g. for i = 3 and j = 1,

any connected 19-dimensional negatively curved manifold satisfies this condition). By (2), there
is a map f : Si → Diff0(M) which represents a non-trivial class [f ] in πiDiff0(M) ⊗ Q, but
maps to zero in πiTop0(M). This is possible since πiTop0(M) is a torsion abelian group when
1 < i < min{n−7

2 , n−4
3 } by [FJ93] (see also [Far02]). Now perform the the clutching construction,

that is glue two copies of Di+1 ×M with their boundaries identified by (z, y) 7→ (z, f(z)(y)),
for (z, y) ∈ ∂Di+1 ×M . This gives rise to non-trivial smooth M -bundle over the (i+ 1)-sphere.
This bundle is not a negatively curved bundle. Indeed, if it were, then [f ] would be in the
image of the forget map F ⊗ idQ : πi+1T <0(M) ⊗ Q → πi+1BDiff0(M) ⊗ Q . But this is not
possible by Corollary 1.2. To show that the bundle admits a continuously varying family of
CAT(−1) metrics, it suffices to show that the map Si → CAT−1(M) given by z 7→ β(f(z)∗g)
extends over the (i+1)-disc. To see this, note that Top0(M) acts continuously on CAT−1(M) by
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pushing-forward the distance function induced by g. One can form the following commutative
diagram

πiDiff0(M)⊗Q //

��

πiMET<−1(M)⊗Q

β∗
��

πiTop0(M)⊗Q // πiCAT−1(M)⊗Q

As noted above, the lower left group vanishes for 1 < i < min{n−7
2 , n−4

3 }. This completes the
proof of the corollary.

Comments on other related work

1. As mentioned before Farrell and Ontaneda [FO10a] obtain torsion elements in the homo-
topy groups of the space of negatively curved Riemannian metrics. Their method would
never give infinite order elements because it depends strongly on the existence of non-
trivial elements in the homotopy groups of the space of stable topological pseudoisotopies
of the circle. But in Igusa’s stable range, those are torsion groups [Wal78].

2. Farrell and Ontaneda [FO09] find non-trivial elements of finite order in πiT <0(M), when
i � dimM , and M is a real hyperbolic manifold. But again their method fails to give
information about infinite order elements in these homotopy groups. The reason here
is that their construction relies on finding nonzero elements in πiDiff(Dn, ∂) which have
preimages under the Gromoll map πi+1Diff(Dn−1, ∂)→ πiDiff(Dn, ∂), where Diff(Dn, ∂) is
the group of diffeomorphisms of a closed disc Dn which are the identity on the boundary.
But in the Igusa stability range, this map is rationally trivial [FH78]. Nonetheless elements
of infinite order in πiT <0(M) can be obtained if we look outside Igusa’s stable range. We
elaborate on this in [BFJ18].

Our main tool to prove Theorem 1 is Morlet’s comparison theorem, which we recall in Section
2. In Section 3 we reduce Theorem 1 to two lemmas: one of pure topological nature (proved in
Section 4), and one that incorporates the geometry of (M, g) (proved in the last section).
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2 Background and notation

Throughout this paper, Top(X) denotes the group of self-homeomorphisms of a topological space
X, endowed with the compact open topology. If X is a closed smooth manifold then Diff(X)
denotes the group of smooth self-diffeomorphisms of X with the smooth topology. We denote
by Top0(X) (resp. Diff0(X)) the subgroup of Top(X) (resp. Diff(X)) consisting of all those
self-homeomorphisms (resp. self-diffeomorphisms) of X which are homotopic to the identity
map. Also, Top(n) will denote the group of homeomorphisms of Rn with the compact open
topology. We keep the customary notation O(n) for the group of orthogonal (w.r.t. Euclidean
metric) transformations of Rn with its usual topology.
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2.1 Morlet’s comparison theorem

Let M be a closed smooth n-dimensional manifold. Let TOP(M) and DIFF(M) denote the
singular and smooth singular complex of Top(M) and Diff(M) respectively. These are simpli-
cial sets whose geometric realizations are weakly homotopy equivalent to Top(M) and Diff(M)
respectively. A k-simplex of TOP(M) (resp. DIFF(M)) is a homeomorphism (resp. diffeo-
morphism) ∆k ×M → ∆k ×M which commutes with the projection to the standard k simplex
∆k. The corresponding singular and smooth singular complexes of Top0(M) and Diff0(M) are
denoted by TOP0(M) and DIFF0(M) respectively.

One advantage of working in this setting is that the simplicial group DIFF0(M) acts freely

on TOP0(M) and so the quotient TOP0(M)
DIFF0(M) is naturally a simplicial set, in fact a Kan complex.

Furthermore there is a Kan fibration

DIFF0(M)→ TOP0(M)→ TOP0(M)

DIFF0(M)
,

which gives rise to the following long exact sequence of homotopy groups

· · · → πi+1Top0(M)→ πi+1
Top0(M)

Diff0(M)

d∗−→ πiDiff0(M)→ πiTop0(M)→ · · ·

where we denote by
Top0(M)

Diff0(M)
the geometric realization of TOP0(M)

DIFF0(M) , and the homotopy groups

of |TOP0| (resp. |DIFF0|) are identified with those of Top0(M) (resp. Diff0(M)).
Assume now that M comes equipped with a Riemannian metric, and regard its tangent

bundle TM as a Euclidean vector bundle. There is an associated (right) principal O(n)-bundle
PM →M .

Note that O(n) acts on the left on the coset space
Top(n)

O(n)
. Thus we can form the balanced

product

Bn(M) := PM ×O(n)

Top(n)

O(n)
,

which is a fiber bundle over M with fiber
Top(n)

O(n)
.

The space (with the compact-open topology) of sections of Bn(M) is denoted by Γ (Bn(M)).
Note that Γ (Bn(M)) has a preferred element s0 : M → Bn(M) given by the O(n)-invariant
point id O(n) ∈ Top(n)/O(n).

The space
Top0(M)

Diff0(M)
can be related to the space of sections Γ(Bn(M)). We briefly recall how

this is done, following the ideas of [BL74]. Consider simplicial sets R
T

(M) ⊃ R
d
(M) ⊃ R

o
(M)

of topological, linear and orthogonal representations of the tangent bundle of M respectively.

That is, a k-simplex of R
T

(M) is a topological Rn-bundle isomorphism ∆k × TM → ∆k × TM
which leaves invariant the image of the zero section, and which commutes with the projection to

∆k and covers some homeomorphism ∆k×M → ∆k×M . The k-simplices of R
d
(M) and R

o
(M)

are defined similarly but the maps ∆k × TM → ∆k × TM are now vector bundle isomorphisms
and vector bundle isomorphisms which are fiberwise isometries, respectively. We also consider
a simplicial set R

t
(M) whose k-simplices are germs of topological microbundle isomorphisms

of ∆k × TM which commute with the projection onto ∆k, and cover some homeomorphism
∆k ×M → ∆k ×M .

Simplicial sets Rt(M), RT (M), Rd(M) and Ro(M) are defined analogously, the only d-
ifference is that the isomorphisms ∆k × TM → ∆k × TM must cover the identity map on
∆k ×M .
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Now recall that the tangent microbundle of M is the diagram M
∆−→M ×M pr1−−→M , where

∆ is the diagonal map and pr1 is the projection onto the first factor. Since we have fixed a
Riemannian metric on M , the exponential map gives an isomorphism between TM and the
tangent microbundle of M (see e.g. [Mil64, p.56-58]). Thus, via this isomorphism, any self-
homeomorphism f : M → M induces, by taking f × f , a microbundle automorphism of TM
which is called the topological derivative of f . This gives rise to a simplicial map (c.f. [BL77,
p.453])

δ :
TOP0(M)

DIFF0(M)
→ R

t
(M)/R

d
(M) (3)

Morlet’s comparison theorem is the statement that the topological derivative δ induces an in-
jective map on connected components and an isomorphism on higher homotopy groups, provided
M is a closed manifold of dimension 6= 4 [BL74, Proposition 4.3].

To complete the picture, we relate R
t
(M)/R

d
(M) to the space of sections Γ(Bn(M)) (or

rather its singular simplicial complex SΓ(Bn(M))) via the following two lemmas, whose proofs
are an elaboration of the argument given by Burghelea and Lashof in [BL74, Theorem 4.2 (1t)]:

Lemma 2. The simplicial sets R
t
(M)/R

d
(M) and RT (M)/Ro(M) are weakly homotopy e-

quivalent.

Lemma 3. There exits a map S : RT (M)/Ro(M) → SΓ(Bn(M)) which induces an injective
map on connected components and a weak homotopy equivalence on any connected component.

The proofs of the lemmas are deferred to the Appendix below.
By putting together the maps (3) and (6) (in the Appendix), the map S, and taking homotopy

groups we obtain a map

µ∗ : πi
Top0(M)

Diff0(M)
→ πiΓ (Bn(M)) ,

which is injective for i = 0 and an isomorphism for all i > 0 for every component that is hit.
This is called Morlet’s isomorphism.

Remark 2. There is a version of Morlet’s theorem for smooth compact manifolds with boundary
(see [BL74]). In particular it follows from this and the Alexander trick, that there is a weak

homotopy equivalence Diff(Dn, ∂)→ Ωn+1 Top(n)

O(n)
, when n 6= 4.

3 Outline of the proof of Theorem 1

Let Dn denote a closed unit disc in Rn centered at the the origin and let intDn be its interior.
Observe that the balanced product

BDn (M) = PM ×O(n)

Top(Dn)

O(n)

is a fiber bundle over M with fiber
Top(Dn)

O(n)
which has a preferred section, namely the obvious

map s1 : M = PM ×O(n)
O(n)

O(n)
→ PM ×O(n)

Top(Dn)

O(n)
.

Lemma 4. Let M be a closed smooth n-dimensional manifold with n odd. Then for all 1 <
i < min{n−8

2 , n−5
3 }

πi
(
Γ
(
BDn (M)

)
, s1

)
⊗Q = 0.
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Throughout we fix a homeomorphism ϕ : int Dn → Rn defined by

ϕ(v) =
v

1− ||v||
.

Conjugation by ϕ defines a continuous injective map intϕ : Top(Dn)→ Top(n), that is

intϕ(f) = ϕ ◦ f |int(Dn) ◦ ϕ
−1

Clearly this map is equivariant with respect to both the right and the left action of O(n),
and hence it induces a left equivariant map between orbit spaces that we keep denoting by

intϕ :
Top(Dn)

O(n)
→ Top(n)

O(n)
. Furthermore intϕ gives rise to a map between spaces of sections

intϕ :
(
Γ
(
BDn (M)

)
, s1

)
→ (Γ (Bn(M)) , s0) .

Lemma 5. Let g ∈ METNC(M). Assume that π1M is a hyperbolic group. Then for all i ≥ 0

and y ∈ ker Φg
∗ ◦ d∗ ⊂ πi+1

Top0(M)

Diff0(M)
, there exists ȳ ∈ πi+1Γ

(
BDn (M)

)
such that

intϕ∗(ȳ) = µ∗(y) ∈ πi+1Γ(Bn(M))

Proof of Theorem 1 assuming Lemma 4 and Lemma 5. If n is even the orbit map is
obviously rationally injective by (2). If n is odd then Lemma 4 and Lemma 5 imply that
ker (Φg

∗ ◦ d∗)⊗idQ = 0 for 1 < i < min{n−10
2 , n−8

3 }. But it is known (see e.g. [Far02], [FJ93]) that
πiTop0(M)⊗Q = 0 provided M is aspherical and satisfies the strong Borel conjecture and 1 <
i < min{n−7

2 , n−4
3 }. That manifolds with hyperbolic fundamental group satisfy both the strong

Borel conjecture and Conjecture 2 in [FH78, p.326], follows from [BLR08] and [BL12]. Hence

d∗⊗ idQ : πi+1
Top0(M)

Diff0(M)
⊗Q→ πiDiff0(M)⊗Q is an isomorphism when 1 < i < min{n−9

2 , n−7
3 }.

Therefore the orbit map Φg
∗ ⊗ idQ : πiDiff0(M)⊗Q→ πiMETNC(M)⊗Q must be injective for

1 < i < min{n−10
2 , n−8

3 }.

The rest of the paper is devoted to the proof of Lemma 4 and Lemma 5.

4 Proof of Lemma 4

The rationalization of a nilpotent space X will be denoted by X(0). A map f : X → Y between
nilpotent spaces is rationally k-connected if the induced map f(0) : X(0) → Y(0) between their
rationalizations is k-connected.

We have the following general fact (compare [BL77, Lemma 3.10]).

Lemma 6. Let Ei → B, i = 1, 2 be two fibrations over a finite CW-complex B whose fibers Fi,
i = 1, 2, over a point ∗ ∈ B are simply connected spaces. Let β : E1 → E2 be a continuous map
over the identity on B such that the restriction β : F1 → F2 is rationally k-connected. Then the
induced map Γ(β) : Γ(E1)→ Γ(E2) between section spaces is rationally (k−dim B)-connected.
In particular, if πjF1 ⊗Q = 0 for 1 < j ≤ `, then πjΓ(E1)⊗Q = 0 for 1 < j ≤ `− dim B.

Proof. Assume first that the fibers Fi, i = 1, 2 have the homotopy type of a CW-complex.
Fiberwise rationalize the two fibrations (see [BK72, p.40] or [Lle85]) to obtain another pair of
fibrations Fi(0) → Ei → B over B and a fiber preserving map E1 → E2. Since the restriction
β(0) : F1(0) → F2(0) of this map is assumed to be k-connected, we have that the induced map
Γ(E1) → Γ(E2) between spaces of sections is (k − dim B)-connected ([BL77, Lemma 3.10]).
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The lemma now follows in this case since Γ(Ei), i = 1, 2 is nilpotent and fiberwise localization
commutes with taking spaces of sections, as shown by Møller in [Ml87, Theorem 5.3].

In order to handle the case when the fibers Fi may not have the homotopy type of a CW-
complex, let S be the functor that assigns to a space its singular complex. We let Gi → B be
the pull-back of the fibration |SEi| → |SB| along a fixed homotopy inverse ϕ of the natural map
ψ : |SB| → B. Then there is a commutative diagram

G1
β

//

��

G2

��

ϕ∗ψ∗E1
//

��

ϕ∗ψ∗E2

��

E1
β

// E2,

where the vertical maps cover the identity map on B and restrict to weakly homotopy equiv-
alences on the fibers. Since the restriction β : F1 → F2 is rationally k-connected, so is the
restriction of β to the fiber, and hence the induced map Γ(β) : Γ(G1) → Γ(G2) is rationally
(k − dim B)-connected by the previous case. Consequently Γ(β) is rationally (k − dim B)-
connected.

Fix a point ∗ ∈ ∂Dn ⊂ Dn. Let Top(Dn, ∗) denote the (closed) subgroup of Top(Dn)
consisting of all homeomorphisms f : Dn → Dn such that f(∗) = ∗. Note that O(n − 1),
identified with the subgroup of O(n) that fixes ∗, acts naturally (on the right) on Top(Dn, ∗)

Lemma 7. The orbit spaces
Top(Dn)

O(n)
and

Top(Dn,∗)
O(n−1)

are homeomorphic.

Proof. The subgroup inclusion Top(Dn, ∗) ⊂ Top(Dn) induces a continuous injective map
Top(Dn,∗)

O(n−1)

ι−→ Top(Dn)

O(n)
. Note that for each f ∈ Top(Dn), there exists an orthogonal transforma-

tion A ∈ O(n) such that A(f(∗)) = ∗. It is easy to see that the assignment f 7→ A ◦ f induces

an inverse to ι. Thus ι is a continuous bijection. But since the orbit map Top(Dn)→ Top(Dn)

O(n)

is a closed map, ι is a closed map as well. Hence it is a homeomorphism.

Proof of Lemma 4: Since the restriction map Top(Dn, ∗) → Top(Sn−1, ∗) is a homotopy e-
quivalence (coning provides a homotopy inverse, by the Alexander trick), the induced map
Top(Dn,∗)

O(n−1)
→ Top(Sn−1,∗)

O(n−1)
is a weak homotopy equivalence, which can be seen by applying the Five

Lemma to long exact sequences in homotopy associated to the fibrations Top(Dn, ∗)→ Top(Dn,∗)
O(n−1)

and Top(Sn−1, ∗)→ Top(Sn−1,∗)
O(n)

. Thus, as
Top(Dn)

O(n)
is homeomorphic to

Top(Dn,∗)
O(n−1)

, it is weakly

homotopy equivalent to
Top(Sn−1,∗)

O(n−1)
' Top(n−1)

O(n−1)
, where the last identification is done via the

stereographic projection. It then follows from [KS77, Essay V §5] and [KM63], that
Top(Dn)

O(n)

is simply connected and πj
Top(Dn)

O(n)
⊗ Q = 0 for all 1 ≤ j ≤ n. Now, by Morlet’s comparison

theorem we have that for all j ≥ n− 1

πj+1
Top(n− 1)

O(n− 1)
' πj−(n−1)Diff(Dn−1, ∂).
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But Farrell and Hsiang [FH78] showed that when n is odd πj−(n−1)Diff(Dn−1, ∂)⊗Q = 0 if 0 <

j−(n−1) < min{n−8
2 , n−5

3 }. Hence πiTop(Dn)/O(n)⊗Q = 0 for all 1 ≤ i < n+min{n−8
2 , n−5

3 }.
The result now follows from Lemma 6.

5 Proof of Lemma 5

Let (M, g) be a closed Riemannian manifold without conjugate points. Its tangent bundle
TM

π−→ M is regarded as a Euclidean vector bundle with respect to the metric g (see [MS74,
p.21-22]).

The tangent disc bundle DM is the collection of all vectors in TM of length less than or
equal to 1. Let intDM ⊂ DM be the subbundle of tangent vectors of length strictly less than
1.

Let R
T
D(M, g) denote the simplicial set whose k-simplices are topological disc bundle iso-

morphisms
f̄ : ∆k ×DM → ∆k ×DM

fixing the zero section, which commute with the projection to ∆k and cover some homeomor-
phism f : ∆k ×M → ∆k ×M .

A simplicial subset R
o
D(M, g) ⊂ R

T
D(M, g) is defined by requiring that

f̄ |∆k×int(DM) : ∆k ×DM → ∆k ×DM

is a fiberwise isometry.
The simplicial sets Ro

D(M, g) and RT
D(M, g) are defined similarly but they must cover the

identity map on ∆k ×M . Note that the natural inclusion between simplicial sets

σD : RT
D(M, g)/Ro

D(M, g)→ R
T
D(M, g)/R

o
D(M, g)

is a homotopy equivalence, by the same argument given in [BL74, p. 12].
The map S : RT (M)/Ro(M) → SΓ(Bn(M)) from Section 2.1 can easily be adapted (see

Remark 3 in Appendix) to obtain a corresponding map

SD : RT
D(M, g)/Ro

D(M, g)→ SΓ(BDn (M)).

Now fix the fiber preserving homeomorphism φ : int(DM)→ TM defined by

φ(v) =
v

1−
√
〈v, v〉π(v)

.

We can then form a commutative diagram

R
T
D(M, g)/R

o
D(M, g)

intφ
��

RT
D(M, g)/Ro

D(M, g)
σDoo

intφ
��

SD // SΓ(BDn (M))

intϕ
��

R
t
(M)/R

d
(M) RT (M)/Ro(M)

σoo S // SΓ(Bn(M))

where the vertical maps are induced by restriction of a homeomorphism of Dn (or DM) to its
interior and then conjugation by ϕ (or φ) and σ is the homotopy equivalence (6) of the Appendix
below. Taking homotopy groups yields the following commutative diagram
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πi+1R
T
D(M, g)/R

o
D(M, g)

SD∗◦σ−1
D∗ //

intφ∗
��

πi+1SΓ(BDn (M))

intϕ∗
��

πi+1R
t
(M)/R

d
(M)

S∗◦σ−1
∗ // πi+1SΓ(Bn(M))

(4)

Proof of Lemma 5. Let f : ∆i+1 × M → ∆i+1 × M be an (i + 1)-simplex of TOP0(M)

representing an element [f ] in πi+1(TOP0(M),DIFF0(M)) ' πi+1
Top0(M)

Diff0(M)
, such that Φg

∗ ◦
d∗[f ] = 0, i.e. fz := f |{z}×M ∈ Diff0(M) for all z ∈ ∂∆i+1 and there exists a continuous map

∆i+1 → METNC(M), z 7→ gz, with the property that gz = (fz)∗g for all z ∈ ∂∆i+1. We shall
exhibit an element in πi+1Γ(BDn (M)) whose image under intϕ∗ coincides with µ∗[f ] (refer to the
notation in Section 2.1).

Fix a universal cover M̃ of M and let Γ be its group of deck transformations. The home-
omorphism ∆i+1 × M → ∆i+1 × M sending (z, x) to (z, fz(x)) lifts to a homeomorphism

∆i+1 × M̃ → ∆i+1 × M̃ which in turn restricts to a homeomorphism f̃z : M̃ → M̃ for each
z ∈ ∆i+1.

The universal cover M̃ acquires an (i+1)-parameter family of complete Riemannian metrics
g̃z = p∗gz without conjugate points. Note that for all z ∈ ∆i+1, there exists a canonical
vector bundle isomorphism (over the identity) ρgz : TM → TM such that ρgz is a fiberwise
isometry between the fixed Euclidean structure on TM (i.e. g) and the one given by the metric
gz (see [MS74, p.24]). This can be thought of as an (i + 1)-simplex R ∈ Rd(M) defined by
R(z, v) = (z, ρgz(v)), for all (z, v) ∈ ∆i+1 × TM .

Let expg̃ : TM̃ → M̃×M̃ be the exponential map with respect to the metric g̃, i.e. expg̃(v) =
(foot(v), γv(1)), where γv is the unique geodesic with initial velocity v. The corresponding map

mod Γ is denoted by expgΓ : TM → M̃ ×Γ M̃ .
Now for each z ∈ ∆i+1 define the following map:

Υz : TM
expgΓ−−−→ M̃ ×Γ M̃

f̃z×Γf̃z−−−−→ M̃ ×Γ M̃
(expgzΓ ◦ρgz )−1

−−−−−−−−−→ TM

Because the exponential map of a Riemannian metric on M̃ without conjugate points is a
diffeomorphism, these maps are Rn-bundle isomorphisms which cover fz. Moreover, when z ∈
∂∆i+1, the map Υz is a linear isomorphism. Thus we obtain a class [Υ] in the relative homotopy

group πi+1

(
R
t
(M),R

d
(M)

)
. Furthermore, by the definition of δ (see Section 2.1), we have the

equation

δ∗[f ] = [R ◦Υ] = [R] + [Υ] = [Υ] ∈ πi+1

(
R
t
(M),R

d
(M)

)
' πi+1R

t
(M)/R

d
(M), (5)

since [R] = 0.
Now we exploit the geometry at infinity of the universal cover of M to construct topological

representations of the disc bundle of M .
Observe that since M is compact, the metrics g̃z are all quasi-isometric to g̃ = p∗g, and

since the fundamental group of M is hyperbolic we can extend each self-homeomorphism f̃z to
a self-homeomorphism fz : M →M of the geometric compactification M of M̃ , whose points at
infinity are represented by g-quasi-geodesic rays in M̃ (see [BH99, p. 400-405]).

This yields a homeomorphism

Υz : DM
ExpgΓ−−−−→ M̃ ×Γ M

f̃z×Γfz−−−−→ M̃ ×Γ M
(ExpgzΓ ◦ρgz )−1

−−−−−−−−−−→ DM
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which clearly covers fz, and is a fiberwise isometry for z ∈ ∂∆i+1. Here ExpgΓ is given by the
following map mod Γ

v 7→

{(
π(v), expgπ(v)(v/1− ||v||g)

)
if ||v||g < 1

(π(v), γv(∞)) if ||v||g = 1,

where γv(∞) is the point at infinity determined by the geodesic ray M̃ with initial velocity v.

Hence the collection of maps Υz, z ∈ ∆i+1, determines a class [Υ] in πi+1

(
R
T
D(M, g),R

o
D(M, g)

)
'

πi+1

(
R
T
D(M, g)/R

o
D(M, g)

)
with the property that

intφ∗[Υ] = [Υ],

The result now follows from equation (5) and the commutativity of diagram (4).

Appendix

Here we prove Lemma 2 and Lemma 3, following ideas from [BL74].

Proof of Lemma 2. Consider the following composition

σ : RT (M)/Ro(M)→ Rt(M)/Ro(M)→ Rt(M)/Rd(M)→ R
t
(M)/R

d
(M) (6)

induced by the obvious maps. We will prove that σ is a homotopy equivalence. The rightmost
map is a weak homotopy equivalence by [BL74, Proposition 1.4]). The leftmost map is a weak
equivalence by Kister-Mazur theorem. In fact, consider the fiber bundle E(M)→M whose fiber
over x ∈M is the space EMB(U0, TxM) of germs of embeddings of U0 into TxM fixing the origin,
for some neighbourhood U0 of the origin in TxM . Similarly we define the bundle T (M) → M
with fiber the space Top(TxM, 0) of self-homeomorphisms of TxM fixing the origin. There are
obvious simplicial isomorphisms RT (M) → SΓ(T (M)) and Rt(M) → SΓ(E(M)) which make
the following diagram commutative

RT (M)

��

// SΓ(T (M))

��

Rt(M) // SΓ(E(M)).

It follows from Kister’s theorem that the right vertical map is a weak homotopy equivalence.
To see this, note that the restriction of T (M) → E(M) to an individual fiber is the map
Top(Rn, 0) → EMB(U0,Rn). This map factors as the composite Top(Rn, 0) → Emb(Rn, 0) →
EMB(U0,Rn) where the middle term is the space of continuous self-embeddings of Rn fixing the
origin. Kister [Kis64] showed that the first map is a homotopy equivalence. The second map
is also a homotopy equivalence as can be seen by first passing to the corresponding simplicial
fibration between their singular complexes, and then changing PL-equivalences by continuous
embeddings in [KL66, Lemma 1.5. Part c) and e)] to show that the fiber is contractible.

An obstruction theory argument now shows that the map between section spaces is also a
weak homotopy equivalence (see for example [BL77, Lemma 3.10]) . Therefore the map on the
left is a weak homotopy equivalence.

It is now easy to see that the vertical left map induces the desired weak homotopy equivalence

RT (M)/Ro(M)→ Rt(M)/Ro(M)

11



Finally, note that since O(n) is homotopy equivalent to GLn(R), it also follows that Ro(M) ⊂
Rd(M) is a weak homotopy equivalence and hence so is the middle map in (6). This completes
the proof.

We now prove Lemma 3.
Let G be a topological group and H a closed subgroup of G such that G → G/H has local

cross sections. For example G = Top(Rn, 0) or Top(Dn, 0) and H = O(n).
Let B0 : X → B be a fiber bundle with fiber Y and structure group H. Suppose that action

of H on Y extends to an action of G on Y , so that we can also we regard B0 as a bundle with
structure group G.

Let RG be the simplicial set with k-simplices given by commutative diagrams

∆k ×X F //

%%

∆k ×X

yy

∆k ×B

where F is a G-equivalecnce, i.e. an isomorphism between bundles with structure group G.
Likewise one defines the simplicial set RH , and observe that there is an inclusion RH ⊂ RG.

Following Burghelea-Lashof [BL74, p.29] and Steenrod [Ste51, p. 44-45], we define a simplicial
map

Ŝ : RG/RH → SΓ (PHX ×H G/H) ,

where PHX → B is the principal H-bundle associated to B0. The map is defined as follows:
let {Vj , φj} be a local coordinate system for B0 and let {Vj , φ′j} be the corresponding local
coordinate system for PHX ×H G/H → B.

Given a k-simplex F : ∆k ×X → ∆k ×X of RG, for each t ∈ ∆k we obtain a map

φ−1
j ◦ Ft ◦ φj : Vj × Y → Vj × Y

which preserves the first component. Hence it is determined by some map

λtj : Vj → G,

such that φ−1
j ◦ Ft ◦ φj(x, y) = (x, λtj(x)y).

Let now ρ : G→ G/H be the quotient map. Then the map

s : ∆k ×B → ∆k × PHX ×H ×G/H

defined by s(t, x) = φ′j(x, ρ(λtj(x))), x ∈ Vj is a section of the bundle ∆k× (PHX ×H ×G/H)→
∆k×B, and hence a k-simplex of SΓ (PHX ×H G/H). This gives a map RG → SΓ (PHX ×H G/H)
which is independent of choices of {Vj , φj} and which induces the desired map

Ŝ : RG/RH → SΓ (PHX ×H G/H) .

Proposition 8. The map Ŝ sends the 0-simplicies of RG/RH into a union, say Γ0 (PHX ×H G/H),
of path components of Γ (PHX ×H G/H). Furthermore Ŝ : RG/RH → SΓ0 (PHX ×H G/H) is
a simplicial isomorphism.

Assuming this proposition, the proof of Lemma 3 is straightforward:

Proof of Lemma 3. Set G = Top(Rn, 0) and H = O(n) in the previous proposition. Then
compose Ŝ with the map Γ(PH×HG/H)→ Γ(Bn(M)), induced by the inclusion G→ Top(Rn) =
Top(n).

12



Remark 3. Now set G = Top(Dn, 0) and H = O(n) in the previous proposition and compose
Ŝ with the map Γ(PH ×H G/H) → Γ(BDn (M)), induced by the inclusion G → Top(Dn). This
gives the map SD from Section 5.

In order to prove Proposition 8 we restate the theorem in [Ste51, p. 45]. First regard B0

as a Y -bundle B : X
π−→ B with structure group G. An (H,Y )-bundle structure on B is an

equivalence class of pairs [(B1, F1)]

• B1 is a bundle X1
π1−→ B with fiber Y and structure group H.

• F1 : X1 → X is a G-equivalence over B.

• Two pairs (B1, F1) and (B2, F2) are equivalent if and only if there exists an H-equivalence
F : X1 → X2 over B such that F2 ◦ F = F1.

Let S(H,Y )(B) denote the set of equivalence classes of (H,Y )-bundle structures on B. Denote
by π′ : PHX ×H G/H → B the bundle projection. For each equivalence class [(B1, F1)], note
that F1 : X1 → X determines a collection of maps {λj : Vj → G}. Together, they determine a
map B → PHX ×H G/H

x 7→ φ′j(x, ρ(λj(x))),

for x ∈ Vj , which is a section of the bundle PHX ×H G/H. Thus we have a map

S : S(H,Y )(B)→ Γ(PHX ×H G/H).

Let q : EH → BH be the universal H-bundle and consider the H-bundle map h̄0 : PHX →
EH covering a map h0 : B → BH which classifies the bundle PHX → B. Identify EH and EG
so that G acts on EH on the right with orbit space BG and let ĥ0 : PHX ×H G/H → BH be
given by [x, ρ(α)] 7→ q(h̄0(x) · α), for (x, α) ∈ PHX ×G.

Remark 4. ĥ0 : PHX ×H G/H → BH is a G/H-bundle map over i ◦ h0 : B → BG where
i : BH → BG is the quotient map.

Lemma 9. The following holds:

1. S is a bijection.

2. B
S([B1,F1])−−−−−−→ PH ×H G/H

ĥ0−→ BH is a classifying map for B1.

We now proceed to prove Prosposition 8 assuming Lemma 9.

Proof of Prosposition 8. For any 0-simplex F : X → X of RG one has Ŝ(F ) = S[(B0, F )].
So by the first part of Lemma 9, the map Ŝ is monic on the 0-simplices. Thus to show the first
part of Proposition 8 it suffices to show that if st, t ∈ [0, 1] is a path in Γ(PHX ×H G/H) such
that s0 ∈ im(Ŝ), then s1 ∈ im(Ŝ). In fact, suppose that Ŝ(F ) = s0 by Lemma 9 there exists
[(B1, F1)] such that S([B1, F1]) = s1. By Part 2. of Lemma 9, since s1 is path connected to
s0, there exists an H-equivalence h : B1 → B0 (because their classifying maps are homotopic).
Hence Ŝ(F1 ◦ h−1) = S([B0, F1 ◦ h−1]) = S[B1, F1] = s1.

This shows the first part of the proposition. The second part follows from a similar argument.

We now prove the Lemma 9.

13



Proof of Lemma 9. The first part is the same as [Ste51, 9.4, p. 44-45]. To show the second

part, it suffices to find an H-bundle map PHX1 → EH covering B
S[B1,F1]−−−−−→ PHX ×H G/H

ĥ0−→
BH, where PHX1 is the associated principal H-bundle of B1 : X1 → B.

Since there is a natural H-bundle map PGX = PHX×HG→ EH given by [x, α] 7→ h̄0(x) ·α,
covering ĥ0 : PHX ×H G/H → BH; we only need to give an H-bundle map PHX1 → PGX

covering the map B
S[B1,F1]−−−−−→ PHX ×H G/H.

This map is defined via the following commutative diagram

(πH1 )−1(Vj) // (πG)−1(Vj)

Vj ×H //

ϕHj

OO

Vj ×G

φGj

OO

where {Vj , φGj } is a local coordinate system for the principal G-bundle πG : PGX → B, and

{Vj , φHj } is a local coordinate system for the principal H-bundle PHX1
πH1−−→ B. The lower

horizontal map is given by (x, h) 7→ (x, λj(x)h) and {λj : Vj → G} is induced by F1.
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