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A Universal Map for Fractal Structures in Weak Solitary Wave Interactions
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Fractal scatterings in weak solitary wave interactions is analyzed for generalized nonlinear
Schrödiger equations (GNLS). Using asymptotic methods, these weak interactions are reduced to
a universal second-order map. This map gives the same fractal scattering patterns as those in the
GNLS equations both qualitatively and quantitatively. Scaling laws of these fractals are also derived.
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Solitary wave interactions is a fascinating mathemati-
cal phenomenon, and it arises in numerous physical appli-
cations such as water waves and nonlinear optics [1, 2, 3].
Strong interactions occur when two solitary waves are ini-
tially far apart but move toward each other at moderate
or large speeds. Weak interactions would occur if the two
waves are initially well separated, and their relative veloc-
ities are small. In integrable wave equations, strong inter-
actions of solitary waves are elastic, and their weak inter-
actions exhibit interesting but simple dynamics [1, 2, 4].
In non-integrable systems, however, solitary wave inter-
actions can be extremely complicated. Indeed, one of the
most important developments in the nonlinear wave the-
ory in recent years is the discovery of fractal scatterings
of solitary wave interactions in non-integrable equations
[5, 6, 7, 8, 9, 10, 11]. On the analysis of fractal scat-
terings, some progress has been made. For strong inter-
actions, various collective-coordinate ODE models based
on qualitative variational methods have been derived and
analyzed [6, 7, 8, 11]. From the variational ODEs, a sepa-
ratrix map was derived, showing chaotic scatterings [11].
On weak interactions, a simple asymptotically-accurate
ODE model was derived for the generalized NLS equa-
tions [10]. This ODE system offered the first glimpse of
universal fractal scatterings in weak wave interactions,
but these fractal patterns were not analyzed.
In this letter, we analyze fractal scattering patterns

in weak solitary wave interactions for generalized nonlin-
ear Schrödiger equations. Using asymptotic methods, we
reduce these weak interactions to a simple second-order
map which contains no free parameters. It is shown that
this universal map gives a complete characterization of
fractal structures in these wave interactions. In addition,
the scaling laws of these fractals for different initial con-
ditions are analytically derived. These results provide
a deep understanding of weak solitary-wave interactions
for various physical applications.
The generalized nonlinear Schrödinger equations we

consider in this paper are

iUt + Uxx + F (|U |2)U = 0, (1)

where F (·) is a general function. These equations gov-
ern various physical wave phenomena in nonlinear op-
tics, fiber communications and fluid dynamics [1, 2, 3].

This equation admits solitary waves of the form U =
Φ(x − ξ)eiφ, where Φ(θ) is a localized positive func-
tion, ξ = V t + x0 is the wave’s center position, and
φ = 1

2
V (x − ξ) + (β + 1

4
V 2)t − η0 is the wave’s phase.

This wave has four free parameters: velocity V , ampli-
tude parameter β, initial position x0, and initial phase η0.
In weak interactions, two such solitary waves are initially
well separated and have small relative velocities and am-
plitude differences. Then they would interfere with each
other through tail overlapping. When time goes to infin-
ity, they either separate from each other or form a bound
state. The exit velocity, defined as ∆V∞ = |V2−V1|t→∞,
depends on the initial conditions of the two waves.
To study weak interactions in Eq. (1), we select

two different nonlinearities which are cubic-quintic and
quadratic-cubic respectively:

F (|U |2) = |U |2 + γ|U |4, F (|U |2) = |U |2 + δ|U |. (2)

Here γ and δ are real parameters. To illustrate results of
weak interactions, we take γ = 0.0003 and δ = −0.0015.
The initial conditions are taken as

x0,1 = −x0,2 = −5, V0,k = 0, β0,k = 1 (k = 1, 2), (3)

φ0,1 = 0, and the initial phase difference ∆φ0 = φ0,2 −
φ0,1 is used as the control parameter. In our numerical
simulations of Eq. (1), the discrete Fourier transform
is used to evaluate the spatial derivative ∂xx, while the
fourth-order Runge-Kutta method is used to advance in
time. The exit velocity ∆V∞ versus ∆φ0 graphs for these
two nonlinearities are plotted in Fig. 1. These graphs are
fractals [10]. It is amazing that these fractals appear for
such small values of γ and δ, where Eq. (1) is simply
a weakly perturbed NLS equation. Notice that the frac-
tals for these two different nonlinearities are very similar,
signaling their universality in weak wave interactions.
To analyze this fractal-scattering phenomena, the

Karpman-Solov’ev method [4] was applied, and the fol-
lowing simple set of dynamical equations for solitary wave
parameters were derived [10]:

ζττ = cosψeζ , ψττ = (1 + ε) sinψeζ. (4)

Here ψ = ∆φ, ζ = −
√
β∆ξ,

τ =
√

16β3/2c2/P t, ε = P/(2βPβ)− 1, (5)
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FIG. 1: Exit velocity versus initial phase difference graphs
for initial conditions (3): (a) cubic-quintic nonlinearity; (b)
quadratic-cubic nonlinearity.

∆ξ and ∆φ are the distance and phase difference between
the two waves, β = (β1,0+β2,0)/2, c is the tail coefficient
of the solitary wave with propagation constant β, and
P (β) is the power function of the wave. These reduced
ODEs capture fractal scatterings of weak wave interac-
tions such as in Fig. 1 both qualitatively and quanti-
tatively [10], and they represent an important first step
toward the understanding of these phenomena. However,
the fractal structures in the PDEs (1) and ODEs (4) have
not been analyzed previously. Below we give a complete
characterization for the first time of this fractal scatter-
ing by analyzing the ODEs (4).
If ε = 0, Eq. (4) is integrable. It has two conserved

quantities, energy E and momentum M :

E = (ζ̇2 − ψ̇2)/2− eζ cosψ, M = ζ̇ψ̇ − eζ sinψ. (6)

Introducing two complex quantities

C =
√

(E + iM)/2, F = −acoth[(ζ̇ + iψ̇)/2C)]/C, (7)

the analytical solution of Eq. (4) can be found to be

Y (τ) = ln
[

2C2
0csch

2C0(τ − τ0 + F0)
]

, (8)

where Y = ζ + iψ, and C0, F0 are the initial values
of C and F . The third conserved quantity of Eq. (4)
is Im(F ). Behaviors of the above integrable solutions
should be noted. When E > 0, or E ≤ 0 but M 6= 0,
ζ → −∞ (a degenerate saddle point) as τ → ∞, and thus
these solutions are escape orbits. When E < 0 and M =
0, the orbits are periodic with period Tp =

√
2π/

√

|E|.
Orbits with E = M = 0 separate the escape orbits from
the periodic ones, hence we call them separatrix orbits.
The formulae for separatrix orbits can be readily found
to be

Ys(τ) = − ln[σA−1/2i+ (τ − τM )/
√
2]2. (9)

Here A = eζM , ζM is the maximum of ζ(τ), τM is the

time when ζ = ζM , and σ is the sign of ψ̇ at τ = τM .
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FIG. 2: (color online) (a) A typical ζ solution (blue solid)
when ∆φ0 is in the fractal region, and the correspondingM(τ )
curve (red dashed); (b) plots of the perturbed solution ζ(τ )
(blue solid), the unperturbed solution (red dashed), as well
as the separatrix solution (black dash-dotted) from the n-th
saddle approach to the next.

In the general case where ε 6= 0, Eq. (4) is still a
Hamiltonian system with the conserved Hamiltonian

H(ζ, ζ̇, ψ, ψ̇) = E + εψ̇2/[2(1 + ε)], (10)

where E is given in Eq. (6). But E,M and Im(F ) are
not conserved anymore. In order to determine the fractal
structures as shown in Fig. 1, we need to calculate the
exit velocity, which corresponds to |ζ̇∞| for Eq. (4). If
the orbit has non-zero exit velocity, then from Eqs. (6)
and (10), we find that

|ζ̇∞| =
√

H +
√

H2 +M2
∞
/(1 + ε). (11)

Since H is conserved, to get |ζ̇∞|, we only need to find
M∞. For arbitrary values of ε, it is impossible to calcu-
late M∞ analytically. However, when ε≪ 1 as in Fig. 1
(where ε = 0.001 for both nonlinearities), the calculation
of M∞ can be done. In this case, Eq. (4) is weakly per-
turbed from the integrable case (ε = 0), thus we will use
asymptotic techniques in our calculations below.
To motivate our analysis, we first illustrate in Fig. 2(a)

a typical ζ solution when the initial condition lies in the
sensitive region of Fig. 1. We see that ζ undergoes several
large oscillations, then escapes to −∞. Each oscillation
corresponds to a “bounce” in the two-wave interactions.
These bouncing sequences are the key to the existence
of fractal structures, similar to other physical systems
[5, 6, 7, 8, 9]. Each local minimum of ζ will be called a
saddle approach [11]. The corresponding M(τ) curve is
also plotted in Fig. 2(a). We see that M changes very
little near a saddle approach, but changes significantly
near maxima of ζ. Below we will calculate the change in
M from one saddle approach to another. It turns out the
M formula will be coupled to E and F , thus we need to
calculate the changes in E,M and F simultaneously. To
carry out these calculations, we notice two facts. One is
that from one saddle approach to the next, the perturbed
and unperturbed (i.e. integrable) solutions remain close
to each other since ε ≪ 1. The other fact is that at
each saddle approach, En,Mn ≪ 1. This is so since ini-
tial E0,M0 are always small for weak wave interactions,
and they will remain small when ε≪ 1. To simplify our
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analysis, we also assume that at each saddle approach,
Mn/En ≪ 1. This assumption is satisfied for many ini-
tial conditions such as (3).
Now we calculate E,M and F from the n-th saddle

approach to the next. From Eqs. (4) and (6), we get

∆Mn =

∫ τn+1

τn

dM

dτ
dτ =

∫ τn+1

τn

εeζ sinψζ̇dτ. (12)

In view of the first fact above, the perturbed orbit in the
above formula can be approximated by the integrable
orbit [see Fig. 2(b)]. Due to the second fact, we can
further approximate the integrable orbit by a separatrix
orbit. Notice that the separatrix orbit (9) has three pa-
rameters. To select the appropriate parameters in the
separatrix, we note that most contributions to the inte-
gral of (12) come from the ζ-maximum region, thus it is
natural to ask the separatrix solution to have the same ζ-
maximum point as the integrable solution [see Fig. 2(b)].
Then in view of Eq. (8), the above requirement selects σ
and A in the separatrix (9) as

σn = sgn {Im [−2Cncoth(Cn(τ
∗

u + Fn))]} ; (13)

An = 2
∣

∣C2
ncsch

2 [Cn(τ
∗

u + Fn)]
∣

∣ . (14)

Here τn + τ∗u is the time the unperturbed solution ζu
reaches the maximum. Due to the assumptionMn/En ≪
1, the unperturbed solution (to leading order) is a pe-

riodic solution with period Tp =
√
2π/

√

|En|. Thus
τ∗u = Tp/2, and τn+1 = τn + Tp. Utilizing the above
results and noticing Tp ≫ 1, Eq. (12) is asymptotically
approximated by

∆Mn = ε

∫ +∞

−∞

eζs sinψsζ̇sdτ = σnεπAn/2. (15)

By similar calculations and utilizing the symmetry prop-
erties of the separatrix solution (9), we find that

∆En = ε

∫ +∞

−∞

eζs sinψsψ̇sdτ = 0. (16)

To calculate Fn+1, notice from Eqs. (4) and (7) that
F satisfies a linear inhomogeneous ODE:

dF

dτ
= − Ė + iṀ

2(E + iM)
F +D, (17)

where D is a function of (ζ, ψ) whose expression is easy
to obtain. The homogeneous solution of this ODE is
C−1(τ). Thus by using the method of variation of pa-
rameters, we can integrate the inhomogeneous ODE (17)
from τn to τn+1 and get

Fn+1 = Fn
Cn

Cn+1

+

∫ τn+1

τn

√
E + iMDdτ

√

En+1 + iMn+1

. (18)

Due to the second fact of En,Mn ≪ 1, we can approxi-
mate the solution (ζ, ψ) in D by the separatrix solution

(9). Then to leading order in ε, we get

Fn+1 = Fn
Cn

Cn+1

+
(τ̂ + iα)

√
E + iM

∣

∣

τn+1

τn
√

En+1 + iMn+1

. (19)

Here τ̂ = τ − τn − Tp/2, and α =
√
2σnA

−1/2
n .

Iteration equation (19) is quite complicated. Below,
we simplify it. From Eq. (16), we get En = E0. Under
our assumption of Mn/En ≪ 1, to leading order, Eq.
(19) becomes

Fn+1 =
π

√

2|E0|
+ (Fn +

π
√

2|E0|
)(1 − Mn+1 −Mn

2E0

i).(20)

At the initial saddle approach, we find from Eq. (7) that

Re(F0) = −π/
√

2|E0|. Then solving Eq. (20), we get

Fn = π(2|E0|)−1/2 [2n− 1− iSnMn/2E0] , (21)

where Sn+1Mn+1 = 2nMn+1 − (2n − Sn)Mn. Now we
introduce a new variable Qn:

Qn − 2nMn = −SnMn = −(2|E0|)3/2Im[Fn]/π. (22)

Then substituting formula (21) into (13), (14), keeping
only their leading order terms inMn/En, and putting the
resulting expressions into (15), we obtain the simplified
iteration equations as

Mn+1 =Mn − sgn(Qn)8|E0|3ε/πQ2
n, (23)

Qn+1 = Qn + 2Mn+1. (24)

These equations are derived asymptotically near the sep-
aratrix orbit (9), and will be called the separatrix map.
This map can be further normalized. Let

G = 8|E0|3ε/π, M̃n = G−1/3Mn, Q̃n = G−1/3Qn, (25)

then the normalized separatrix map is

M̃n+1 = M̃n − sgn(εQ̃n)

Q̃2
n

, (26)

Q̃n+1 = Q̃n + 2M̃n+1. (27)

This is a simple but important second-order area-
preserving map, and it does not have any parameters in
it (except a sign of ε). This universal map governs weak
two-wave interactions in generalized NLS equations (1).
Now we compare this map’s predictions with direct

PDE simulations. Here we take the cubic-quintic non-
linearity in (2) with γ and initial conditions as for Fig.

1(a). For the map, we iterate it to infinity to get M̃∞ (in
practice, 500 iterations performed), which in turn gives

|ζ̇∞| from formula (11). With the variable scalings (5)
and (25) considered, the exit velocity graph predicted
from the map (26)-(27) is shown in Fig. 3(b), while that
from the PDE simulations is shown in Fig. 3(a). Com-
paring these two graphs, it is clear that the map gives
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FIG. 3: (color online) (a,b) The exit-velocity versus initial-
phase-difference graphs from (a) PDE simulations and (b)

map predictions; (c) the map’s |M̃∞| graph in the (Q̃0, M̃0)
plane; (d,e) exit-velocity versus initial-phase-difference graphs
of the PDE for ε = 0.01 and 0.001 respectively; (f) plots
of the accumulation points φL and φR versus ε from PDE
simulations (circles and squares) and map predictions (solid
and dashed lines).

a good replication of the PDE’s fractal structure both
qualitatively and quantitatively.
The separatrix map (26)-(27) exhibits a fractal struc-

ture in the graph of |M̃∞| as a function of initial val-

ues (Q̃0, M̃0), which is displayed in Fig. 3(c) (with
sgn(ε) = 1). This fractal of the map completely de-
termines the fractal structures in the PDEs (1). For in-
stance, for initial conditions (3), the corresponding initial
values of the map are

Q̃0 = M̃0 = −2−1(π/ε)1/3 tan(∆φ0). (28)

As ∆φ0 varies, Eq. (28) gives a parameterized curve

in the (Q̃0, M̃0) plane, which is the white straight line
in Fig.3 (c). This line cuts cross the fractal of the
map in Fig. 3(c), and the intersection is precisely the
fractal structure as observed in Fig. 1 for the PDE
[see also Fig. 3(a,b)]. The scaling laws for fractals of
the PDEs can be readily derived from Eq. (28) and
Fig. 3(c). Let P1 and P2 denote the two accumula-

tion points of the map’s fractal, which are (Q̃0, M̃0) =
(1.271, 1.271) and (0.741, 0.741) as marked in Fig. 3(c).
The corresponding accumulation points φR and φL in
the fractal structures of the PDEs are marked in Fig.
3(d). Here φL and φR are the left and right ends of
the fractal region. Then according to scalings (28),
we find that φR = −atan(1.482ε1/3/π1/3), and φL =
−atan(2.542ε1/3/π1/3). Hence the map analytically pre-
dicts that the fractal region of the PDE shrinks to
∆φ0 = 0 as ε → 0, and its shrinking speed is propor-
tional to ε1/3 for ε≪ 1. This is precisely what happens.
To illustrate, we choose two γ values 0.0029 and 0.0003
in Eq. (2), which correspond to ε = 0.01 and 0.001 re-
spectively. The fractal structures of the PDEs for these
γ values are displayed in Fig. 3(d,e). It is seen that the
fractal region indeed shrinks as ε decreases. We further
recorded the φL and φR values in the PDE fractals at a
number of ε values, and the data is plotted in Fig. 3(f).
The theoretical formulae of φL and φR above are also
plotted for comparison. It is seen that the PDE values
and the map’s analytical predictions agree perfectly, con-
firming the asymptotic accuracy of the map (26)-(27).

In summary, we have asymptotically analyzed weak
solitary wave interactions in the generalized nonlinear
Schrödinger equations and obtained a simple universal
map. This map gives a complete analytical characteriza-
tion of universal fractal structures in these wave interac-
tions. We expect that this work will stimulate research
in other physical systems where weak solitary wave inter-
actions arise, such as nonlinear optics, water waves and
Bose-Einstein condensates.
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