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Abstract

It is known that weak interactions of two solitary waves in generalized nonlinear Schrödinger (NLS) equations exhibit fractal dependence
on initial conditions, and the dynamics of these interactions is governed by a universal two-degree-of-freedom ODE system [Y. Zhu J. Yang,
Universal fractal structures in the weak interaction of solitary waves in generalized nonlinear Schrödinger equations, Phys. Rev. E 75 (2007)
036605]. In this paper, this ODE system is analyzed comprehensively. Using asymptotic methods along separatrix orbits, a simple second-order
map is derived. This map does not have any free parameters after variable rescalings, and thus is universal for all weak interactions of solitary
waves in generalized NLS equations. Comparison between this map’s predictions and direct simulations of the ODE system shows that the map
can capture the fractal-scattering phenomenon of the ODE system very well both qualitatively and quantitatively.
c© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

Interactions of solitary waves in nonlinear wave equations
are a fascinating mathematical phenomena, and they also
arise in numerous physical and engineering applications [1,2].
Strong interactions, often called collisions, occur when two
solitary waves are initially far apart but move toward each
other at moderate or large speeds. Weak interactions would
occur if the two waves are initially well separated, and their
relative velocities are small or zero. If the wave equations are
integrable, strong interactions of solitary waves are elastic [1],
and their weak interactions exhibit interesting but simple
behaviors [2–5]. For certain integrable systems with higher-
order corrections, if they can be asymptotically transformed
to integrable equations, then their solitary wave interactions
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would closely resemble those in integrable systems [6–8].
On the other hand, in some non-integrable equations, solitary
wave interactions are extremely complicated, and they can
depend on initial conditions (such as velocities or phases)
in a very sensitive, fractal manner. This fractal-scattering
phenomenon was discovered first for kink-antikink collisions
in the φ4 model [9–14] and later in several other physical
systems as well [15–20]. For these strong interactions, a
resonant energy exchange mechanism between the collision and
internal/radiation modes was found responsible for this chaotic
scattering. For weak interactions, fractal scattering has been
found as well in several wave systems [21–23].

Intrigued by these fractal scattering phenomena, the math-
ematical analysis ensued. For strong interactions, approximate
collective-coordinate ODE models based on variational meth-
ods were first derived, and they were found to exhibit qualita-
tively similar fractal scattering as in the PDEs [14,16,24,20].
To further the mathematical analysis, Goodman and Haber-
man studied these collective-coordinate ODE models using
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Fig. 2.1. Exit velocity (1V∞) versus the initial phase difference (1φ0) graphs in the PDE (2.1) with nonlinearity (2.3); (a, b) are for initial conditions (2.4) and
(2.5) respectively (after [23]).
sophisticated dynamical systems methods [25–28]. Perform-
ing asymptotic analysis along separatrix (homoclinic) orbits,
they derived separatrix maps which lead to the prediction
of n-bounce resonance windows. For weak interactions, the
mathematical analysis can be made more rigorous. Unlike
the collective-coordinate ODE models for strong interactions
which were approximate and PDE-dependent, Zhu and Yang
derived a simple and asymptotically accurate ODE model for
weak interactions in generalized NLS equations with arbitrary
nonlinearities [23]. Due to the simplicity and universality of
this ODE model, its rigorous mathematical analysis is highly
desirable. However, this ODE model is quite different from the
collective-coordinate ODE models studied in [25–28], and it
has not been analyzed yet.

In this paper, we develop a comprehensive mathematical
analysis for this universal ODE model for weak interactions of
solitary waves. Our main result is the asymptotic derivation of
the following simple second-order map near separatrix orbits

Mn+1 =Mn −
sgn(εQn)

Q2
n

, (1.1)

Qn+1 = Qn + 2Mn+1, (1.2)

where Mn is the (scaled) momentum of the ODE system at
subsequent saddle approach points, Qn is an auxiliary variable
whose role will be made clear later, and ε is a perturbation
parameter in the ODE system. This map does not have any
free parameters, and thus is universal for all weak solitary-wave
interactions in the generalized NLS equations. Comparison
between this map’s predictions and direct simulations of the
ODE system shows that this map captures all the fractal-
scattering phenomenon of the ODE system very well both
qualitatively and quantitatively. Thus this map is a very valuable
and reliable tool for the understanding of fractal scattering in
weak solitary wave interactions.

A brief derivation of the separatrix map (1.1)–(1.2) was
presented in [29]. The full analysis is detailed in this article.

2. Preliminaries and earlier works

In a previous paper [23], weak interactions in the generalized
NLS equation

iUt + Uxx + N (|U |
2)U = 0 (2.1)
were studied. This equation admits solitary waves of the form

U = Φ(x − ξ)eiφ, (2.2)

where Φ(θ) is a localized positive function, ξ = V t + x0
is the wave’s center position, and φ =

1
2 V (x − ξ) + (β +

1
4 V 2)t − η0 is the wave’s phase. This wave has four free
parameters: velocity V , amplitude β, initial position x0, and
initial phase η0. For weak interactions, two such solitary waves
are initially well separated with small relative velocities and
amplitude differences. They interfere with each other through
tail overlapping. When time goes to infinity, they either separate
from each other with constant velocities or form a bound
state. The exit velocity, defined as 1V∞ = |V2 − V1|t→∞,
depends on the initial conditions of the two waves. When
the two waves form a bound state, 1V∞ = 0. In [23], it
was shown that, for a large class of nonlinearities N (|U |

2),
this weak interaction depends on the initial conditions in a
sensitive fractal manner. An example is shown in Fig. 2.1. In
this example, the nonlinearity is

N (|U |
2) = α|U |

2
+ δ|U |

4, (2.3)

with α = 1, δ = 0.04. For two sets of initial conditions (equal
and unequal initial amplitudes respectively)

x0,1 = −x0,2 = −5, V0,1 = V0,2 = 0,

β0,1 = β0,2 = 1, φ0,1 = 0,
(2.4)

and

x0,1 = −x0,2 = −5, V0,1 = V0,2 = 0,

β0,1 = 1.0325, β0,2 = 0.9675, φ0,1 = 0,
(2.5)

both with the initial phase difference 1φ0 = φ0,2 − φ0,1 as the
control parameter, the exit velocity 1V∞ versus 1φ0 graphs
are plotted in Fig. 2.1. These graphs are fractals (see [23] for
details). To analyze this phenomenon, the Karpman–Solov’ev
method [3] was applied (see also [4]), and the following
simple set of dynamical equations for soliton parameters were
derived [23]:{
ζττ = cosψeζ ,
ψττ = (1 + ε) sinψeζ .

(2.6)
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Fig. 2.2. Exit velocity (1V∞) versus the initial phase difference (1φ0) graphs obtained from the reduced ODEs (2.6); (a, b) correspond to Fig. 2.1(a, b) respectively
(after [23]).
Here

ψ = 1φ, ζ = −
√
β1ξ,

τ =

√
16β3/2c2

P
t, ε =

P

2βPβ
− 1,

(2.7)

1ξ and 1φ are the distance and phase difference between the
two waves, β = (β1,0 + β2,0)/2, c is the tail coefficient of
the solitary wave with propagation constant β, and P(β) is the
power function of the wave. Note that for the integrable cubic
NLS equation where N (|U |

2) = |U |
2, P(β) = 4

√
β, and thus

ε = 0. This reproduces the results in [3,4] as a special case.
Utilizing these reduced equations, we can predict the 1V∞

versus 1φ0 graphs for initial conditions (2.4) and (2.5), which
correspond to

ζ0 = −10, ζ̇0 = ψ̇0 = 0, (2.8)

and

ζ0 = −10, ζ̇0 = 0, ψ̇0 = −0.01167, (2.9)

with ε = 0.13665 for (2.6) (see [23]). The results are displayed
in Fig. 2.2. These graphs are also fractals [23]. Comparing
them with the original Fig. 2.1 from PDE simulations, we
see that they agree very well. Thus, the reduced ODEs (2.6)
completely capture the fractal scattering dynamics of the PDEs
both qualitatively and quantitatively. Because of this, the study
of fractal scattering in the PDEs (2.1) can then be reduced to
the study of the ODEs (2.6).

The ODEs (2.6) are a very interesting new dynamical
system. It is universal (for the generalized NLS equations with
arbitrary nonlinearities) and simple-looking, yet its dynamics
are extremely rich. In [23], some basic properties of these
ODEs were analyzed. It was observed that fractal structures
bifurcate from singularity points of the system (2.6) with
ε = 0. Conditions for the appearance of fractal structures
were also stipulated from numerical observations. However, our
understanding of the fractal scattering in this ODE system was
very limited. For instance, we still did not know why and under
what conditions fractal scattering occurs in the system (2.6).
Neither did we know many details on these fractal structures
and how they depend on parameters (such as ε). This motivates
us to analyze the system (2.6) in detail in this paper.
If ε = 0, then by defining Y = ζ + iψ , (2.6) simplifies
to Yττ = eY . Multiplying this equation by Ẏ and integrating
once, we find that Ẏ 2/2 − eY is a constant. Thus for the general
(ε 6= 0) case, we define the energy E and momentum M to be
the real and imaginary parts of Ẏ 2/2 − eY , i.e.

E =
1
2
(ζ̇ 2

− ψ̇2)− eζ cosψ, (2.10)

and

M = ζ̇ ψ̇ − eζ sinψ. (2.11)

We also define

C =

√
E + iM

2
. (2.12)

Then for the unperturbed system (ε = 0), we have

1
2

Ẏ 2
− eY

= 2C2. (2.13)

We further introduce a quantity

F = −
1
C

acoth
(
ζ̇ + iψ̇

2C

)
(2.14)

which will be used in our later analysis. Here acoth(z) =
1
2 ln x+1

x−1 is the inverse hyperbolic cotangent function. In this
paper, C(τ ) and F(τ ) need to be smooth with respect to τ .
This can be achieved by piecing together appropriate branches
of the multi-valued functions

√
· and acoth(·) when their

arguments cross over the branch cuts in the complex plane. To
uniquely determine these functions, we let Im(

√
·) ≥ 0 and

Im(acoth(·)) ∈ [0, π) at the initial time τ = τ0. Under these
choices, functions C and F are continuous when M changes
from positive values to negative ones for E < 0. These choices
result in the formula for Re(F0) given below (6.2) and the initial
conditions below the map (6.11)–(6.12). More will be said on
this in Section 6.

Eq. (2.6) is a two-degree-of-freedom Hamiltonian system
with the conserved Hamiltonian

H(ζ, ζ̇ , ψ, ψ̇) = E +
ε

2(1 + ε)
ψ̇2, (2.15)

where E is given in (2.10). Much is known concerning two-
degree-of-freedom Hamiltonian systems. However, most of
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those studies focused on two coupled Newtonian particles
with positive masses [30–32], while the present system (2.6)
depicts two coupled Newtonian particles whose masses are
of different signs. Thus many previous techniques cannot
be applied. In recent studies by Goodman and Haberman
on approximate ODE models for strong wave interactions,
Melnikov-type analysis was successfully carried out [25–28].
In those studies, the ODEs, which were also two-degree-of-
freedom Hamiltonian systems, could be decoupled, with the
coupling terms treated as small perturbations. Unfortunately,
the present system (2.6) cannot be decoupled. Hence those
methods cannot be directly applied. For (2.6), one has to work
in the four-dimensional phase space at all times, and its analysis
is more complex. However, we will show that the idea of
Melnikov-type calculations is very helpful for the study of the
present system.

In the next sections, we analyze the ODEs (2.6) in detail.
Our analysis is structured as follows. In Section 3, we show
for the integrable case (ε = 0) that solutions with E = 0 and
M = 0 correspond to a one parameter family of separatrices.
In Section 4, we determine the dynamics of E,M and F for
the perturbed system where ε � 1. In Section 5 for the
perturbed system, we analyze orbits in which a saddle approach
is followed by a near separatrix orbit followed by another
saddle approach. Here a saddle approach is a local minimum
of ζ where separation between the two waves is largest (the
reason for this name is given at the beginning of Section 5).
In this way, we derive a separatrix map for En,Mn , and Fn
at a sequence of saddle approaches. We show that the change
of En is approximately zero. In Section 6, we simplify the
map assuming Mn/En � 1. In this way, we obtain the simple
second order separatrix map (1.1) and (1.2) for the momentum
changes from one saddle approach to the next.

3. Integrable solutions and separatrix orbits

In this section, we study solutions of the integrable system
(2.6) with ε = 0, which is needed for later analysis. Note that
some of the results in this section have been obtained before
in [23], but they will be reformulated here for the convenience
of the present investigations. In this case, both E and M are
conserved. Since (2.6) is a two-degree-of-freedom Hamiltonian
system, according to Liouville’s theorem, (2.6) is integrable. In
the present case, we have also found a third conserved quantity.
Indeed, utilizing (2.6), (2.13), (2.14) and the derivative formula
acoth′(z) = 1/(1 − z2), one can easily verify that dF/dτ = 1.
Hence Im(F) is the third conserved quantity. The analytical
solution of this integrable system is [23]

Y (τ ) = ln
[
2C2

0 csch2C0(τ − τ0 + F0)
]
, (3.1)

where C0 and F0 are the initial values of C and F at τ = τ0.
Here csch(z) = 1/ sinh(z) is the hyperbolic cosecant function.
The asymptotic behaviors of these solutions can be easily
determined [23]. If we let C0 = a + ib, where a, b are the
real and imaginary parts of C0, then if a 6= 0,

Y (τ ) → −2|a|τ − sgn(a)2bτ i, τ → ∞. (3.2)
We see that ζ escapes to −∞ with exit velocity 2|a|, and thus
we call these orbits escape orbits. For these orbits, the sign of
ψ̇∞ is only determined by the sign of M since sgn(ψ̇∞) =

−sgn(ab) = −sgn(M). Physically, the sign of ψ̇∞ is related
to the final energy distribution between two solitary waves after
interactions. If a = 0 but b 6= 0, i.e. E < 0 and M = 0, then
the orbits are periodic orbits with period

Tp =
π

|b|
=

√
2π

√
|E |

. (3.3)

If a = b = 0, i.e. E = M = 0, then the right hand side of
(2.13) is zero. Integrating this first-order equation, we readily
find that the solution can be written as

Ys(τ ) = − ln
[
iσ A−

1
2 + (τ − τM )/

√
2
]2
, (3.4)

where A = eζM , ζM is the maximum of ζ , τM is the time when
ζ = ζM , and σ is the sign of ψ̇ at τ = τM . This solution
can also be obtained by taking C0 → 0 in Eq. (3.1). Escape
orbits are unbounded, while periodic orbits are bounded. The
orbits (3.4) separate the unbounded orbits from bounded ones,
and hence they are called separatrix orbits. On these orbits,
ζ → −∞, ζ̇ → 0 and ψ̇ → 0 as τ → ±∞. Notice that the
separatrix orbits are not unique since ζM is a free parameter,
and σ can be ±1. These orbits can be regarded as a special kind
of periodic orbits with Tp = +∞.

The separatrix orbits above were presented through explicit
formulas. It is also insightful to view these orbits in the four-
dimensional phase space. First, by eliminating time from (2.10)
and (2.11) with E = M = 0, we get dζ/dψ = sinψ/(1 −

cosψ), so that an elementary integration yields an explicit one
parameter family of separatrix curves,

2eζ = A(1 − cosψ), (3.5)

where A is a positive constant (this formula can also be obtained
directly from (3.4)). It is seen that when ζ = ζM , ψ =

(2n + 1)π , where n is an integer, and hence the constant A
in (3.5) is the same as the one in (3.4). When ζ → −∞,
ψ → 2nπ . We can show that ζ = −∞ and ψ = 2nπ are
degenerate saddle point equilibrium points. To do so, we utilize
(2.10) and (2.11) (with E = M = 0) as well as (3.5), and we
find that

ζ̇ 2
= 2eζ (1 − eζ /A). (3.6)

This is a single well potential for ζ , with ζ = −∞ being a
degenerate saddle point. Thus, the solution has the property
that ζ → −∞ as τ → ±∞. Similarly, we can derive the ψ̇2

equation as well, which shows that ψ = 2nπ are also saddle
points. Each separatrix curve (3.5) connects an equilibrium
point ζ = −∞, ψ = 2nπ to its adjacent one ζ = −∞,
ψ = 2(n ± 1)π , and thus is a heteroclinic orbit. This contrasts
with separatrix curves in one degree of freedom Hamiltonian
systems, which are usually homoclinic orbits connecting one
saddle point ζ = −∞ to itself. The only exception occurs if
ψ = 2nπ is a constant for all time τ , in which case ζM = +∞,
and the solution develops a finite-time singularity at τ = τM
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(see [23] and below). Such special separatrix orbits are then
homoclinic orbits connecting the saddle point ζ = −∞ to itself
(with a finite time singularity at ζ = +∞ in between).

We note that solution (3.1), for general values of E and
M , can develop finite-time singularities for certain initial
conditions. If a 6= 0, then the condition for singular solutions is

S(τ = τ0) = 2k, k = 0,±1; ±2, . . . , (3.7)

where the function S(τ ) is defined as

S =
2|C |

2Im(F)
πRe(C)

. (3.8)

If a = 0, the condition is Im(F0) = 0. These singular
solutions are important, since it was observed from numerical
computations that these solutions lead to fractal structures when
ε > 0 [23]. Physically, singularities in ODEs (2.6) represent
strong collisions of two solitary waves in the PDEs (2.1) (see
Fig. 14 in [23]).

4. Behavior of the weakly perturbed system

From the previous section, we know that in the integrable
case, the exit velocity is 2|a|, which is a smooth function of
initial conditions. Thus fractal scattering cannot occur (see Fig.
11(4) in [23] for a graph of the exit velocity function in this
case). When the system is perturbed, i.e. ε 6= 0, however, fractal
scattering appears (see Section 2 and [23]). Below, we analyze
this phenomenon when ε � 1, so that the system is weakly
perturbed.

In the perturbed system (2.6), most orbits escape in which
case ζ approaches −∞ with a non-zero exit velocity when
τ → ∞ (see Fig. 2.2). For these escape orbits, we have

ζ̇ 2
∞ −

ψ̇2
∞

1 + ε
= 2H, ζ̇∞ψ̇∞ = M∞. (4.1)

Thus, the exit velocity |ζ̇∞| is given by

|ζ̇∞| =

√
H +

√
H2 + M2

∞/(1 + ε). (4.2)

Since H is always conserved, to obtain ζ̇∞, we only need to
know M∞. It turns out that M∞ is coupled to E∞ and F∞. To
find these quantities, we first determine how M, E and F evolve
with time. In the integrable case, M and E are conserved, and
Ḟ = 1. In the perturbed case, however, we find from (2.6) that

dM

dτ
= εeζ sinψζ̇ , (4.3)

dE

dτ
= −εeζ sinψψ̇, (4.4)

dF

dτ
= −

Ė + iṀ
2(E + iM)

F + D1 + D2, (4.5)

where

D1 = −
(ζ̇ + iψ̇)(Ė + iṀ)

2eζ+iψ (E + iM)
, (4.6)

D2 = 1 + ε sin2 ψ + iε sinψ cosψ. (4.7)
Fig. 4.1. Evolutions of ζ, ψ as well as E,M, F in the perturbed (blue solid)
and unperturbed (red dashed) systems with the same initial conditions (2.8) and
ψ0 = −0.1081. In the perturbed system, ε = 0.001.

Before proceeding further, let us use a numerical example
to illustrate typical solutions as well as the time evolution of
(E,M, F) in order to gain some intuitive understanding and to
motivate our analysis. For this purpose, we let ε = 0.001 and
take the initial condition as (2.8) with ψ0 = −0.1081, which
lies in the sensitive regions of the initial-conditions space (see
Fig. 2.2(a)). The time evolutions of the solutions (ζ, ψ) and
quantities (E,M, F) are plotted in Fig. 4.1 (solid lines). We see
that ζ undergoes five oscillations and then escapes to −∞. Each
oscillation corresponds to a “bouncing” motion in the two-wave
interactions, similar to those found in all other physical systems
exhibiting fractal scattering [10,15,18,27]. Each bounce occurs
at a local maximum of ζ , where the two waves are closest and
the most energy exchanges between them take place. Hence
we call each ζ -maximum a bounce. After a bounce, the two
waves retreat from each other, but may turn around and bounce
again. Each local minimum of ζ (where separation between the
two waves is largest) is called a saddle approach for reasons
given in the beginning of Section 5. Saddle approaches create
sensitive dependence on initial conditions, and sequences of
saddle approaches (repeated bounces) lead to fractal scattering.
For each orbit, we use indices n = 0, 1, 2, . . . to label its saddle-
approach sequence. All variables with subscript n represent
values of these variables at the nth saddle approach.

Next we examine the evolutions of E,M and F . It is
seen that E and M are initially small (which holds for all
weak two-wave interactions) and remain small throughout
interactions. They stay roughly constant in the vicinities
of saddle approaches, but undergo significant changes near
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bouncing points. This is understandable, since interactions are
the weakest at maximal separations (saddle approaches) and the
strongest at minimal separations (bouncing points). This can
also be seen from (4.3)–(4.5). From one saddle approach to
the next, the net change of E is approximately zero, but the
net change of M is significant and is comparable to M itself.
The evolution of Im(F) is similar to those of M , but Re(F)
approximately grows linearly with time since Ḟ = 1 in the
integrable case.

From the above observations, we see that if we have a way of
determining the net change 1M from one saddle approach to
another, then we would be able to obtain the final value M∞

after interactions, and hence ascertain the exit velocity |ζ̇∞|

from (4.2). The exact calculation of this 1M is not possible in
the perturbed system (2.6). However, it can be calculated near
a separatrix asymptotically when ε � 1, which will be done in
the next section.

As mentioned above, saddle approaches are important for
the onset of fractal scattering. Saddle approaches are local-
minimum points of ζ . The necessary and sufficient conditions
for the existence of saddle approaches are that

ζ̇ = 0, ζ̈ = cosψeζ > 0, (4.8)

as the case of ζ̇ = ζ̈ = 0 at a ζ -minimum cannot occur since
ζτττ 6= 0 there. Thus in view of H ’s definition (2.15) as well
as ε � 1, the Hamiltonian H must be negative at a saddle
approach. The same holds for E as well. In the next analysis,
we only consider regions of initial conditions where H < 0.
For regions with H ≥ 0, fractal structures cannot exist.

5. The separatrix map in the perturbed system

In weak solitary wave interactions, E and M are initially
small since ζ0 � −1, ζ̇0, ψ̇0 � 1 (see (2.10) and (2.11)).
Because ε � 1, E and M will remain small during later
evolutions. Thus we expect the perturbed solutions in (2.6) to be
near the separatrix solutions. It is known that chaotic motions
often arise around separatrix orbits, and this is what happens in
our system (2.6).

On the analysis of solution dynamics near separatrix orbits,
some previous work is highly relevant. For weakly damped
conservative systems with a linear saddle point, solutions are
a large sequence of nearly homoclinic orbits (near a unique
separatrix) where solutions slow down near the linear saddle
point (because it is an equilibrium), pass near the saddle point,
and then accelerate to follow near the unique separatrix. The
points on the orbit which are closest to the saddle point are
called saddle approaches. Since most of the time in the orbit
is spent near a saddle point (where the motion is slow), the
change in time from one saddle approach to the next can be
approximated by the average period of the unperturbed periodic
orbits at the energy levels of the two saddle approaches. This
heuristic result can be justified more rigorously. The change in
energy, on the other hand, can be approximated by using the
Melnikov functions [33–35]. Similar ideas were used recently
by Goodman and Haberman [25–28] for strong solitary wave
interactions, where chaotic scattering occurs near a unique
separatrix which connects a degenerate saddle point (at infinity)
to itself. In their calculations, the change in time between
two bounces (rather than between two saddle approaches) was
derived by matched asymptotic expansions, while the change in
energy was obtained from Melnikov functions.

For our more complicated two degree of freedom system
(2.6), solutions behave similarly. The saddle point here is also
at ζ = −∞. When the solution is near the separatrix, the ζ -
minimum should be asymptotically near the saddle point ζ =

−∞. Indeed, in the numerical example of Fig. 4.1, each local ζ -
minimum is large and negative, and hence is a saddle approach
asymptotically near ζ = −∞. Between two saddle approaches,
there is a separatrix (3.4) with a ζ -maximum of ζM near which
the perturbed solution lies. However, a unique feature of our
system (2.6) is that (2.6) has a family of separatrices (3.4), so
that ζM may vary from one orbit to the next (see Fig. 4.1). This
differs from dynamical systems treated previously where the
separatrix was always unique [25–28,33]. Due to this special
feature, the determination of ζM in a separatrix orbit is a novel
aspect in our analysis.

In this section, we asymptotically calculate the changes
of M, E, F from one saddle approach to the next for (2.6)
when ε � 1. The resulting map is called the separatrix map
because our calculation will be performed near separatrix orbits
(3.4) in view of the discussions above. In this calculation, the
quantities En,Mn, Fn at the nth saddle approach are given,
which uniquely determine this saddle approach (see (3.1)).
Recall that saddle approaches exist only when En < 0. Thus
in this section, En is required to be always negative. Our aim
is to calculate these quantities at the (n + 1)st saddle approach
by integrating (4.3)–(4.5). Note that at a saddle approach, ζ̇ =

0, and thus only three quantities, namely E,M and Im(F),
are sufficient to characterize a saddle approach. Re(F) is not
needed. However, we find that it is algebraically easier to
work with the whole complex function F rather than just its
imaginary part.

The calculations we will perform are asymptotic in the
regime ε � 1, En � 1 and Mn � 1. Because ε � 1, the
perturbed solution is close to the unperturbed solution between
two adjacent saddle approaches (if they start at the same initial
conditions, see Fig. 4.1). Because En,Mn � 1, the solutions
(both perturbed and unperturbed) will be close to the separatrix
solutions. The outline of our analysis is the following. We
first derive changes in momentum (5.6) and energy (5.7) from
one saddle approach to the next by Melnikov integrals along
a separatrix (3.4). The parameters of the separatrix orbit are
determined by requiring it to have the same ζ -maximum point
as the unperturbed solution (3.1). It is found that the energy
change is nearly zero, so that the energy at saddle approaches
does not change. To find the change in F , we use the method of
variation of parameters to integrate the linear inhomogeneous
Eq. (4.5) from one saddle approach to the next. The time
between the two saddle approaches is not simple to get in
general, so we approximate it under the additional assumption
that Mn/En � 1. In this case, the unperturbed orbit is
approximately a periodic orbit with period (3.3), and this period
gives the needed time.
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It is noted that in the previous analysis by Goodman and
Haberman on variational ODEs for strong wave interactions
[25–28], the time between two saddle approaches was obtained
by the matching method. That is not necessary in our case
because we have explicit closed-form expressions for the
unperturbed solutions which give this time directly (under our
assumption). This closed-form expression of the unperturbed
solution also enables us to select the appropriate separatrix orbit
from its family (3.4).

In the above outline of our analysis, we made the assumption
that Mn/En � 1. Regarding the validity of this assumption,
let us look at the example in Fig. 4.1. In this case, the ratio
Mn/En is indeed small (on the order of 0.1) before the fourth
(last major) bounce. After the fourth bounce, M/E is not small.
But now, M and E do not change much, so there is no need to
do calculations in that region. Thus this assumption is satisfied
for this example.

In more general cases, let us consider the equal initial
amplitude and velocity case, where M0/E0 = tan(ψ0) (see
initial conditions (2.8)). In this case, it has been observed in our
numerics [23] that the ψ0-region of fractal scattering shrinks to
the point ψ0 = 0 as ε → 0. Thus in the fractal region (which
is the focus of our interest), M/E is initially small and remains
small when ε � 1. In other cases (such as initial conditions
(2.9)), M/E may not be small initially inside the fractal region
(see Fig. 6.2). But we find that in such orbits, M/E usually does
become small after the first major bounce. Thus this assumption
holds at subsequent saddle approaches. If this assumption is still
made for the initial saddle approach (even though it really does
not hold there), our prediction for M∞ turns out to be still very
good, as Fig. 6.2 will show.

We now start our analysis by integrating (4.3)–(4.5) from
one saddle approach to the next. Let us consider M first. From
(4.3), we have

1Mn = Mn+1 − Mn =

∫ τn+1

τn

εeζ sinψζ̇dτ, (5.1)

where τn and τn+1 are the times of the nth and (n + 1)st
saddle approaches. Note that in previous studies by Goodman
and Haberman on strong solitary wave interactions [25–28]),
the discrete times tn, tn+1, . . . were chosen to be bounce times
rather than saddle approaches. This needs to be kept in mind
when comparing the present analysis with theirs. Since ε � 1,
the perturbed solution inside the integrand will be approximated
by the unperturbed solution. Thus we obtain

1Mn =

∫ (τn+1)u

τn

εeζu sinψu ζ̇udτ, (5.2)

which is asymptotically accurate. Here the variables with
subscript ‘u’ represent the unperturbed solutions. Since
En,Mn � 1, we can further approximate the unperturbed
solutions in the integrand of (5.2) by separatrix solutions (3.4),
and this approximation is also asymptotically accurate. Notice
that separatrix orbits (3.4) are not unique, since there are three
parameters σ, ζM and τM in them. We now show how to select
the appropriate separatrix orbit which best approximates the
Fig. 5.1. Plots of the perturbed solution ζ(τ ) (blue solid), the unperturbed
solution (red dashed), as well as the separatrix solution (green dash-dot) in our
analysis. The inset is a magnification of the small box at the ζ -maximum. (For
interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

unperturbed solution. We cannot ask the separatrix orbit to start
at the same nth saddle approach since ζ of the separatrix orbits
does not have local minima. Notice that most contributions to
the integral of (5.2) come from the ζ -maximum region, thus
it is natural to ask the separatrix solution to have the same
ζ -maximum point as the unperturbed solution. In addition,
since σ is the sign of ψ̇ at the ζ -maximum in the separatrix
orbits, it is the sign of ψ̇u at the ζ -maximum. A valuable
feature of our system (2.6) is that the unperturbed equations
admit explicit closed-form solutions (see (3.1)). This makes it
easy to implement the above requirements. These requirements
uniquely determine the separatrix orbit (3.4) and lead to the
following conditions,

σn = sgn
{
Im
[
−2Cncoth(Cn(τ

∗
u + Fn))

]}
; (5.3)

An = 2
∣∣∣C2

ncsch2 [Cn(τ
∗
u + Fn)

]∣∣∣ . (5.4)

Here τn + τ ∗
u is the time where ζu reaches its maximum.

However, we still do not know τ ∗
u due to the complexity of

the integrable solution (3.1). This is where the assumption
Mn/En � 1 comes in. Due to this assumption, we can expand
the general solution as a series in Mn/En . From its leading-
order term, which is a periodic solution with period (3.3), we
find the leading-order approximation for τ ∗

u as

τ ∗
u =

1
2

Tp =
π

√
2|En|

, (5.5)

which is asymptotically accurate when En � 1 and Mn/En �

1.
To clearly illustrate our ideas, we plot the perturbed solution,

the unperturbed solution, and the separatrix solution together
in Fig. 5.1. This figure was generated with typical numerical
values in fractal regions, and thus is not just a schematic plot.
From this figure, we see that (i) the unperturbed solution is very
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close to the perturbed solution; (ii) the separatrix solution is
very close to the unperturbed solution near the ζ -maximum.
Away from the ζ -maximum, the separatrix orbit and the other
two orbits start to deviate from each other. But in those regions,
the contributions to the integral of (5.2) are negligible since ζ is
large negative. Thus our separatrix-orbit approximation for the
unperturbed solution is valid.

When the separatrix solution (3.4) is substituted into (5.2),
we readily find that

1Mn = ε

∫
+∞

−∞

eζs sinψs ζ̇sdτ =
1
2
επσn An, (5.6)

where σn and An are given by (5.3) and (5.4). Note that
in the near separatrix approximation, the saddle approaches
τn and τn+1 are asymptotically large, so that τn and τn+1
are approximated by −∞ and +∞ respectively in the above
calculations, as is usual for Melnikov type integrals. This 1Mn
is asymptotically accurate when ε � 1, En,Mn � 1, and
Mn/En � 1.

By similar calculations from (4.4) and utilizing the
symmetry properties of separatrix solutions (3.4) (i.e. ζs(τ ) is
an even function of τ − τM , ψ̇s is even, and sinψs is odd), we
find that

1En = ε

∫
+∞

−∞

eζs sinψsψ̇sdτ = 0. (5.7)

In other words, the energy does not change from one saddle
approach to another. This is precisely what Fig. 4.1 shows. This
fact is rather dramatic, and it contributes to the rather simple
map we will obtain in Section 6 (see (6.11)–(6.12)).

The 1Mn formula (5.6) depends on Fn (in view of (5.4)),
and thus we also need to calculate 1Fn in order to continue
the iteration. Unlike E and M , the F equation (4.5) cannot be
integrated directly over time, because the right hand side of
(4.5) involves E,M and F , which can not be asymptotically
approximated by such values in the unperturbed system (see
Fig. 4.1). Thus different techniques must be used to calculate
Fn+1. Here we notice that (4.5) is an inhomogeneous linear
ODE for F . Recalling the definition (2.12) of C , we see that
a homogeneous solution of this ODE is F = 1/C(τ ). Thus by
the method of variation of parameters, we find that the solution
of (4.5) is

F(τ ) =
1

C(τ )

[
FnCn +

∫ τ

τn

C(s) [D1(s)+ D2(s)] ds

]
, (5.8)

where the initial conditions F(τn) = Fn,C(τn) = Cn have
been used. Thus, the exact value of Fn+1 is

Fn+1 = Fn
Cn

Cn+1

+

∫ τn+1
τn

√
E(τ )+ iM(τ ) [D1(τ )+ D2(τ )] dτ

√
En+1 + iMn+1

. (5.9)

To calculate the integral asymptotically in the above equation,
note from (4.6) that∫ τn+1

τn

√
E + iM D1dτ = −

∫ τn+1

τn

Ẏ e−Y Ė + iṀ

2
√

E + iM
dτ. (5.10)
Since E,M � 1, the perturbed solution lies near the separatrix
orbit (3.4) whose parameters are specified by (5.3) and (5.4).
Thus we can approximate Y in the term Ẏ e−Y by this separatrix
solution Ys . One may notice from Fig. 5.1 that the perturbed
solution is well approximated by the separatrix solution only
near the bounce point (where ζ is maximal), but not near
saddle approaches. However, near saddle approaches, (Ė +

iṀ)/
√

E + iM � 1 since ζ is large negative (in fact, it is
an exponentially small function of ζ ), thus the contribution
to the integral of (5.10) near saddle approaches is negligible.
Hence our approximation of the perturbed solution in Ẏ e−Y

by the separatrix solution is justified in the whole interval
[τn, τn+1], and the resulting approximation to the integral in
(5.10) is asymptotically accurate when E,M � 1. On the
separatrix orbit, we easily see that Ẏse−Ys = −(τ̂ + iα), where
τ̂ = τ−τn −Tp/2, and α = σn

√
2/An . Here the approximation

(5.5) for the time of the separatrix peak has been used. Then
using integration by parts, we get∫ τn+1

τn

√
E + iM D1dτ = (τ̂ + iα)

√
E + iM

∣∣∣τn+1

τn

−

∫ τn+1

τn

√
E + iMdτ. (5.11)

Regarding the D2 integral in (5.9), recalling the expression
(4.7), we see that to leading order in ε,∫ τn+1

τn

√
E + iM D2dτ =

∫ τn+1

τn

√
E + iMdτ. (5.12)

Substituting (5.11) and (5.12) into (5.9), we find that

Fn+1 = Fn
Cn

Cn+1
+

(τ̂ + iα)
√

E + iM
∣∣τn+1

τn
√

En+1 + iMn+1
. (5.13)

Under the assumption of Mn/En � 1, the unperturbed orbit
can be asymptotically approximated by a periodic orbit with
period Tp, where Tp is given in (3.3) with E replaced by En .
Thus τn+1 = τn + Tp.

Summarizing our calculations and recalling the definition
(2.12) for C as well as the expressions above for τ̂ and α,
we find that E,M and F from the nth saddle approach to the
(n + 1)st one are given by the following separatrix map,

En+1 = En, (5.14)

Mn+1 = Mn +
1
2
επσn An, (5.15)

Fn+1 = Fn
Cn

Cn+1
+

π
√

2|En|

(
1 +

Cn

Cn+1

)
+ i

√
2 σn A

−
1
2

n

(
1 −

Cn

Cn+1

)
, (5.16)

where σn and An are given by (5.3), (5.4) and (5.5). This map
was derived using the separatrix-orbit approximation as well as
information on the periodic orbits of the unperturbed system.
They are asymptotically accurate when ε � 1, Mn, En � 1,
and Mn/En � 1.
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6. Simplification of the separatrix map

The separatrix map (5.14)–(5.16) is quite complicated. It
turns out that, under the same assumption Mn/En � 1 we have
made above, this map can be greatly simplified. This will be
done in this section.

Due to (5.14), En = E0 for any n. Thus we will use E0 to
replace En . Next, due to the assumption Mn/En � 1, we can
expand Cn/Cn+1 as

Cn

Cn+1
= 1 −

Mn+1 − Mn

2E0
i, (6.1)

which is asymptotically accurate. In addition, the third term
in the right hand side of (5.16) is of higher order in Mn/E0
compared to the first two terms. Thus, to leading order in
Mn/E0,

Fn+1 = Fn

(
1 −

Mn+1 − Mn

2E0
i
)

+
π

√
2|E0|

×

(
2 −

Mn+1 − Mn

2E0
i
)
. (6.2)

Notice that at the first (0th) saddle approach, ζ̇0 = 0, and
C0 =

√
E0/2+O(Mn/E0). In addition, |ψ̇0| ≤

√
2|E0| in view

of (2.10) and (4.8). Thus from (2.14) and recalling our choices
for branches of

√
· and acoth(·) below (2.14), the leading-order

approximation for Re(F0) under the assumption Mn/E0 � 1
is that

Re(F0) = −π/
√

2|E0|. (6.3)

Then the general formula for Fn can be derived as

Fn =
π

√
2|E0|

(
2n − 1 − Ŝn

Mn

2E0
i
)
, (6.4)

where

Ŝn+1 Mn+1 = 2nMn+1 − (2n − Ŝn)Mn . (6.5)

This formula can be easily verified. Inserting (6.4) and (6.5)
into (6.2) and neglecting second-order terms in Mn/E0 due to
the assumption Mn/En � 1 and (5.14), we see that (6.2) is
satisfied. Notice from (6.4) that

Ŝn = −
Im(Fn)2E0

√
2|E0|

πMn
. (6.6)

Recalling the definition (3.8) for S(τ ), the above expression of
Ŝn is simply the leading-order term of Sn = S(τn) under the
assumption Mn/En � 1. Thus we will treat Ŝn = Sn below by
neglecting the higher order error.

Substituting formula (6.4) into (5.3)–(5.5) and keeping only
the leading order terms with respect to Mn/E0, we find that

σn = sgn

(
4
√

2|E0|

(2n − Sn)π

E0

Mn

)
= −sgn [(2n − Sn)Mn] , (6.7)

An =
16|E0|

(2n − Sn)2π2

E2
0

M2
n
. (6.8)
Here we have used the asymptotic expansions of coth(nπ i +

z) = coth(z) → 1/z and csch2(nπ i + z) = csch2(z) → 1/z2

as z → 0 for any integer of n. Introducing a new variable

Qn ≡ (2n − Sn)Mn, (6.9)

then, according to (6.5), we have

Qn+1 = Qn + 2Mn+1. (6.10)

Substituting (6.7) and (6.8) into (5.15) and combining it with
(6.10), we finally obtain the following simplified separatrix
map,

Mn+1 = Mn − sgn(Qn)
8|E0|

3ε

πQ2
n
, (6.11)

Qn+1 = Qn + 2Mn+1 (6.12)

with initial conditions M0 and Q0, where Q0 = −S0 M0 in
view of (6.9). Here initial value S0 is calculated from (3.8) and
(2.14). Again, this map is asymptotically accurate when ε � 1,
Mn, En � 1, and Mn/En � 1, which we have confirmed by
comparing their predictions with direct numerical solutions of
the ODEs.

We must emphasize that the above initial condition Q0 =

−S0 M0 is directly connected with our choices of branches for
functions

√
· and acoth(·) below (2.14) at the initial time. If

other branches are chosen for those functions, then one can see
from (2.14) that Re(F0) may differ from (6.3) by a multiple
of period Tp = π

√
2/|E0| (to the leading order in M0/E0),

and both S0 and Ŝ0 may change by a multiple of 2 in view of
(3.8) and (6.5). Similar changes occur to Fn , Sn and Ŝn as well.
In this case, we need to change the definition (6.9) of Qn by
an amount of a multiple of 2Mn . This change in the definition
of Qn cancels out the change in Sn and thus leaves the value
of Qn invariant for different choices of functional branches
(see (6.9)). More importantly, it would leave the separatrix
map (6.11) and (6.12) invariant as well. Consequently different
choices of functional branches give the same results from the
map, which is to be expected. To avoid a definitional change
to Qn (and hence Q0) associated with different choices of
functional branches, our choices of branches below (2.14) are
advised, in which case Q0 = −S0 M0. Notice that our branch
choices are different from those adopted by software MATLAB,
where Re(

√
·) ≥ 0 and Im(acoth(·)) ∈ (−π/2, π/2] were used.

Hence if one computes the initial value Q0 in MATLAB, two
judgements are needed: (i) if Im(

√
·) < 0, then use −

√
·; (ii) if

Im(acoth(·)) < 0, then use acoth(·)+ π i .
The momentum values Mn in the above map are the key

for predicting the exit velocities (see (4.2)). The quantity
Qn is an auxiliary variable, but it is very important as well.
Indeed, if Qn = 0, then |Mn+1| = ∞, which means that
the ODE solution develops singularities right after the nth
saddle approach. In the fractal structures, initial conditions for
singularity solutions are the peak positions of various “hills”
(see Fig. 2.2). Thus, using our map and the condition Qn = 0,
we can predict all the peak positions of the fractal. It is easy
to show that singularities occur if and only if Sn = 2n for
some n ≥ 0 (where the singularity appears right after the nth
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Fig. 6.1. The exit velocity (|ζ̇∞|) versus the initial phase difference (ψ0)
graphs for the initial conditions (2.8) with ε = 0.001. Top: from direct ODE
simulations; bottom: from the separatrix map (6.11) and (6.12).

saddle approach), or initially M0 = 0, S0 6= 0 (where the
singularity appears right after the 0th saddle approach). The
former condition corresponds to the singularity condition (3.7)
of the integrable system, while the latter condition corresponds
to the singularity condition of Im(F0) = 0 when a = 0
below (3.8).

The separatrix map (6.11)–(6.12) gives the momentum
changes between two saddle approaches. In a typical ODE
orbit, there are only a finite number of saddle approaches
(see Fig. 4.1), but we wish to predict Mτ=∞. To do so, we
notice that in an ODE orbit, after the last saddle approach, M
quickly approaches a constant and does not change anymore
(see Fig. 4.1). For the separatrix map (6.11)–(6.12), if we
formally iterate them beyond the last saddle approach, we find
that Mn also quickly approaches a constant, and Mτ=∞ is well
approximated by Mn=∞. Thus, in the text below, we will use
Mn=∞ to predict Mτ=∞. The validity of this approximation
will be seen in Figs. 6.1 and 6.2.

In the above analysis, E0,M0, F0 represent the E,M, F
values at the first saddle approach. In the ODE system, we have
initial conditions. If the initial conditions happen to be at the
first saddle approach, i.e., ζ̇0 = 0 and ψ0 ∈ (−π/2, π/2)[the
latter condition is to guarantee ζ̈0 > 0 so that ζ0 is a local
minimum, see (4.8)], then the map (6.11) and (6.12) can be
iterated directly to infinity to get M∞. In cases where the
initial conditions are not at the first saddle approach, notice that
from the initial time to the first saddle approach, the perturbed
solution is very close to the unperturbed solution when ε � 1,
and E,M, Im(F) are conserved in the unperturbed system.
Thus, we can obtain the map’s initial conditions from the initial
conditions of the ODEs. This way, we can use the map (6.11)
and (6.12) to predict M∞ for general initial conditions.

Now we compare the map’s predictions with numerical
solutions of the ODEs (2.6). As for the PDE and ODE systems,
we consider the two initial conditions (2.8) and (2.9), with φ0
Fig. 6.2. The exit velocity (|ζ̇∞|) versus the initial phase difference (ψ0)
graphs for the initial conditions (2.9) with ε = 0.001. Top: from direct ODE
simulations; bottom: from the separatrix map (6.11) and (6.12).

as the control parameter. In ODEs (2.6), we take ε = 0.001.
For the map (6.11) and (6.12), we iterate them to infinity to get
M∞, which in turn gives ζ̇∞ from (4.2) (in practice, the map is
iterated a large number of times, and the resulting M value is
taken for M∞).

First, we consider initial conditions (2.8), which is the equal-
initial-amplitude case. We only need to consider the interval
ψ0 ∈ (−π/2, π/2), where H < 0 (see the end of Section 4).
Then all initial points in this case are saddle approaches. Using
(3.8) and (2.14), we find that S0 = −1 for all these initial
conditions. In this case, the |ζ̇∞| versus ψ0 graphs from both
direct ODE simulations and the separatrix map (6.11) and
(6.12) are displayed together in Fig. 6.1. Due to symmetry,
we only plot the chaotic regions in the left half interval ψ0 ∈

(−π/2, 0). It is seen that in the chaotic regions, |ψ0| is small,
and thus M0/E0 is small. By comparing the map’s predictions
with the direct ODE values, it is clear that the map gives
an accurate qualitative replication of the fractal structure in
the ODEs. Even the quantitative comparison between the two
shows good agreement.

Next, we consider initial conditions (2.9), which is the
unequal-initial-amplitude case. In this case, H < 0 in the
entire ψ0 interval (−π

2 ,
3π
2 ). The |ζ̇∞| versus ψ0 graphs from

ODE simulations and from the map (6.11) and (6.12) are
displayed together in Fig. 6.2. In this case, M0/E0 is not
small in most parts of the ψ0 interval, and thus assumption
Mn/En � 1 is not met initially. In addition, the initial
points are not saddle approaches in general. However, the |ζ̇∞|

graph from the separatrix map (6.11) and (6.12) still gives a
very good approximation to the ODE graph both qualitatively
and quantitatively. The reason for this has been given in the
last section. These excellent agreements between the map’s
predictions and ODE solutions show that the map (6.11) and
(6.12) is a very valuable tool for the understanding of fractal
scattering in weak two-wave interactions.
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Lastly, we note that the map (6.11) and (6.12) can be
normalized into a very simple form. Let

G =
8|E0|

3ε

π
, Mn = G−1/3 Mn,

Qn = G−1/3 Qn .

(6.13)

Then our map becomes

Mn+1 =Mn −
sgn(εQn)

Q2
n

, (6.14)

Qn+1 = Qn + 2Mn+1, (6.15)

as we have written down in Section 1 (see (1.1)–(1.2)).
Eliminating the variable Mn , this map can be rewritten into
a single equation for Q:

Qn+1 − 2Qn +Qn−1 +
2sgn(ε)

|Qn|3
Qn = 0, (6.16)

which is a stationary discrete NLS equation with an unusual
nonlinear term. These normalized maps are second-order, and
they do not have any parameters in it (except a sign of ε). In
addition, they are universal for all weak two-wave interactions
in the generalized NLS Eq. (2.1). In [23], it was observed that
fractal scattering arises in ODEs (2.6) only when ε > 0, not
ε < 0. This implies that the normalized maps (6.14)–(6.15)
and (6.16) have completely different behaviors for positive and
negative signs of ε. Detailed analysis of these maps as well as
their predictions for the solutions of ODEs (2.6) will be made
in a separate article [36].

7. Conclusions and discussions

In this paper, we analyzed fractal scattering in the ODEs
(2.6) which govern weak interactions between two solitary
waves in generalized nonlinear Schrödinger equations. Using
asymptotic methods near separatrix orbits, a simple second-
order map (6.11)–(6.12) is derived. This map does not have any
free parameters after variable rescalings (see (6.14)–(6.15)),
and thus is universal for all weak solitary-wave interactions in
generalized NLS equations. Comparisons between this map’s
predictions and solutions of the ODE system show that the
map can capture the fractal-scattering phenomenon of the ODE
system very well both qualitatively and quantitatively.

The separatrix map (6.14) and (6.15) is the main result of
this paper. It is a simple second-order map, yet it exhibits
the same fractal scattering as in the corresponding ODE
and PDE systems. Due to its simplicity, this map merits
further investigation, so that a deeper understanding on weak
interactions of solitary waves can be reached. At the moment,
many questions on the ODEs (2.6) remain. For instance, why
does fractal scattering appear only for ε > 0, not ε < 0? How
do fractal structures change as ε varies? These questions can
be answered by analyzing the map (6.14)–(6.15), which will be
done in a forthcoming article [36].
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