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NONLINEAR WAVES IN SHALLOW HONEYCOMB LATTICES∗
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Abstract. The linear spectrum and corresponding Bloch modes of shallow honeycomb lattices
near Dirac points are investigated. Via perturbation theory, the dispersion relation is found to
have threefold degeneracy at leading order with eigenvalue splitting at the following two orders; i.e.,
the threefold eigenvalue splits into single and double values. Multiscale perturbation methods are
employed to describe the nonlinear dynamics of the associated wave envelopes. The dynamics of
the envelope depends on different asymptotic balances whereupon a three-level nonlinear Dirac-type
equation or a two-level nonlinear Dirac equation is derived. The analysis agrees well with direct
numerical simulations.
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1. Introduction. Two-dimensional honeycomb (HC) lattices have attracted con-
siderable interest in both physics and applied mathematics, stimulated in part by the
recent fabrication of the material graphene [1, 2], which itself has atoms arranged in
an HC lattice structure. This special structure also arises in the Bose–Einstein con-
densation (BEC) [3, 4] and nonlinear optical beam propagation in photonic crystals
[5, 6, 7, 8].

Interestingly, a central equation in all of the above applications is the lattice
nonlinear Schrödinger (NLS) equation, which is given in dimensionless form as

(1.1) i∂zψ +Δψ − δV (r)ψ + σ|ψ|2ψ = 0,

where r = (x, y) ∈ R
2, V (r) is a real-valued, periodic, and smooth function, δ > 0, and

σ are constants. For the local and global well-posedness of the initial value problem
with arbitrary initial conditions, see, for example, [9, 10].

In graphene, the nonlinear effect is negligible, i.e., σ = 0; here (1.1) describes
the dynamics of the quantum states of the electrons. In nonlinear optics, this equa-
tion describes electromagnetic waves propagating in inhomogeneous, Kerr nonlinear
media. The equation can be derived from the Maxwell equations by assuming a
unidirectionally polarized field and the paraxial approximation (see, e.g., [11, 12]);
here z is the propagation direction, V (r) represents the spatial variation of the linear
refractive index, and σ is the nonlinear coefficient which is positive for focusing or
negative for defocusing nonlinearity. In BECs, the above NLS equation is often called
the Gross–Pitaevskii (GP) equation. In this context, it describes the dynamics of a
macroscopic quantum state of ultracold atoms being trapped in an optical lattice in
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NONLINEAR WAVES IN SHALLOW HONEYCOMB LATTICES 241

the mean-field limit. The nonlinearity is due to two-particle interactions, and the
nonlinear coefficient σ corresponds to the scattering length (see, e.g., [13, 14]).

Whereas in graphene the dynamics of quantum states are linear, in optics or BECs
nonlinearity often plays a significant role. In HC lattice investigations of photonics,
researchers have used the term photonic graphene. The resulting wave propagation in
HC photonic lattices has led to interesting and novel phenomena which has not been
found in other lattices. Examples include, but are not limited to, two-dimensional
gas of fermions and corresponding dynamics [1, 2, 3], conical diffraction [6, 7], broken
time-reversal symmetry [8], etc. Hence it is important to develop a fundamental
understanding of the wave dynamics, both linear and nonlinear, in HC lattices.

A linear eigenvalue problem naturally associated with (1.1) is obtained by taking
σ = 0 and ψ(z, r) = ϕ(r)e−iμz . Namely, we are led to the Schrödinger eigenvalue
problem

Hϕ = (−Δ+ δV (r))ϕ = μϕ,

where μ ∈ R is the eigenvalue and ϕ(r) is the corresponding eigenfunction. From
Bloch–Floquet theory [15], the eigenfunction has the form ϕ(r) = eik·rU(r;k), where
U(r;k) has the same periodicity as the potential V (r); k is termed the Bloch wave
vector and μ(k) in terms of k is called the dispersion relation. For a fixed k, μ(k)
usually has infinitely many values, denoted as μ(n)(k), n ≥ 1; μ(n)(k) is called the
nth band of the dispersion relation. Between two nearby bands there can exist an
interval where a real-valued dispersion relation (or eigenvalue) μ(k) does not exist;
this interval is called a band gap. Further details are included in section 2.

In general position the wave dynamics associated with the 2+1-dimensional NLS
equation (1.1) is complex. Without nonlinearity (σ = 0), an initial condition can
be decomposed into Bloch components due to the completeness of Bloch modes in
L2(R2) [16]. The superposition principle ensures that each component propagates on
its own following the dispersion relation [15]. However, in the nonlinear case (σ �= 0),
the superposition principle no longer holds and different Bloch components influence
each other due to nonlinear interactions. In many applications the dynamics of the
wave packets associated with one or several Bloch modes, where the envelope scale
is much longer than the lattice scale, are of central interest. The asymptotic method
of multiple scales is useful and leads to envelope equations on a slow evolution scale.
In order to study such phenomena the original 2+1-dimensional governing equation
(1.1) is computationally difficult due to the large ratio between the envelope and
lattice scales; furthermore inserting the fine lattice scale is unwieldy. In addition the
governing equation does not indicate the key physical and mathematical basis of the
underlying envelopes. Hence in order to understand the macroscopic dynamics, it is
important to understand Bloch theory and derive homogenized equations by averaging
out the lattice scale.

Recently, considerable progress has been made in developing homogenized equa-
tions associated with the lattice NLS equation (1.1) in the case of simple lattices (hav-
ing a basis of one minima per unit cell). Generally speaking, as long as the dispersion
relation μ(k) is analytic in the neighborhood of a point k0 and we consider a single
envelope, the resulting envelope equation is the scalar NLS equation where ∇μ(k0) is
the group velocity and next order dispersion is determined by the second derivatives
of μ(k0) [17, 18]. Similarly if the initial input contains more than one envelop, the
dynamics can be governed by nonlinear coupled mode equations [19, 20, 21, 22, 23].
There can also be degenerate cases where two adjacent bands intersect each other at
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242 MARK J. ABLOWITZ AND YI ZHU

a point, k0. For instance if μ(n)(k0) = μ(n+1)(k0), coupled NLS-type equations can
be derived so long as each band is analytic in the neighborhood of k0 [18]. In terms of
solutions of the effective NLS-type equations, localized pulses, i.e., solitons, can exist
in band gaps. They are usually called gap solitons (nonlinear localized modes lying
in the band gaps). Gap solitons associated with both simple and coupled NLS-type
equations have been investigated [24, 25, 26, 27].

However, HC lattices have some special features, which we mention below, that
distinguish themselves from any of the above cases. An HC lattice is a two-dimensional
periodic lattice whose minima are arranged in a hexagonal structure as shown in Fig-
ure 2.1(b). It can be seen as a hexagonal lattice with a basis of two minima per unit
cell. Physically speaking, a honeycomb lattice can be generated by interfering three
plane waves [6],

(1.2) V (r) =
∣∣eik0b1·r + eik0b2·r + eik0b3·r∣∣2 − 3,

where b1 = (0, 1), b2 = (−
√
3
2 ,− 1

2 ), and b3 = (
√
3
2 ,− 1

2 ) and k0 is a constant (typ-
ical lattice wave number). A special feature of HC lattices is that the lowest two
bands touch each other at distinct points (K and K′ in Figure 2.1(c)). This is dif-
ferent from a typical band intersection. These isolated touching points of the two-
dimensional dispersion surface are usually called Dirac points. In the vicinity of these
Dirac points, the dispersion relation is not analytic at these points; it has a coni-
cal structure (see, e.g., Figure 3.1(a)). This nonanalytic behavior in the dispersion
relation leads to the major differences from the above studies. Physically speaking,
the conical nature of the dispersion relation at the Dirac points gives rise to the ex-
istence of massless Dirac fermions in graphene [1, 2] and conical wave diffraction in
photonics applications [6, 7, 28, 29]. In some applications, nonlinearity can be very
important, which in turn gives rise to markedly different dynamics from the linear
case. This further motivates the study of the nonlinear dynamics associated with
the Dirac points.

In (1.1), if δ � 1, the potential V (r) has very deep wells at their minima. The
associated study, called the tight-binding limit, leads to analytical results for both
Bloch theory [30] and nonlinear wave dynamics [31, 32] where novel discrete systems
and their continuum limits are obtained. In the latter case, the wave envelopes as-
sociated with points which are not near the Dirac points are governed by effective
NLS equations. However, in the vicinity of Dirac points, the envelope equations are
governed by Dirac equations, which in turn leads to conical wave diffraction which
agrees with experiment observations [31, 32].

On the other hand, the shallow HC potential limit, i.e., δ � 1, is also an important
limit to consider in photonic crystals and BECs. To date there are very few results
on the HC lattices in this limit, the persistence of Dirac points and corresponding
wave dynamics. The only aspects studied to date involve the linear problem [8]. The
slowly varying nonlinear wave envelope equations and associated asymptotic analysis
in the neighborhood of the Dirac points for the shallow lattice problem discussed
in this paper are new. The nonlinear envelope system allows one to readily study
the behavior of a Dirac wave packet; this is difficult to do within the framework of
the original NLS equation since large-scale variations and all Bloch components are
contained. These envelope equations allow one to study, for example, the nonlinear
effects associated with the wave dynamics and the diffraction wave patterns, both
of which can potentially be observed in experiment. In simple lattices such wave
diffraction patterns are not found.
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NONLINEAR WAVES IN SHALLOW HONEYCOMB LATTICES 243

The paper is organized as follows. In section 2 the HC potential and the essentials
of the Bloch theory for the linear Schrödinger equation with a periodic potential, which
will be needed in what follows, are given. Section 3 focuses on the lowest Bloch mode
band and outlines the perturbation results at a Dirac point. These points have special
properties. There are three modes. The dispersion curves as a function of potential
strength, assumed small here, are developed for the lowest bands. At leading order
the dispersion curve has a triple root at special points called Dirac points. At the
next two subsequent orders the triple root separates into two double and one simple
root. Indeed we find this to hold perturbatively at many subsequent orders. Similarly
when we have a strong lattice potential, (i.e., in the tight-binding limit [30]), the
dispersion relation is degenerate at these special points. We conjecture that there is
indeed a degeneracy for arbitrary δ. In section 4 the envelope associated with the
Bloch modes are shown to satisfy nonlinear wave equations of Dirac type. There
are different equations depending on the assumed maximal balance between weak
nonlinearity and the slow evolution of the envelope and how this slowness depends on
the shallowness of the potential. We note that even when there is no spatial variation,
the (“Landau”-type) equations are not trivial. We investigate two balances. In the
faster evolution we find a third order evolution system. Corresponding to typical
initial conditions we find that this system evolves into a triangular structure. In the
slower evolution case, the equations decouple into a coupled second order system and
a third single equation. The coupled second order system is a nonlinear Dirac system
which possesses conical diffraction, with and without a “notch.” Conical diffraction
was found experimentally and computationally in [6]. A discrete and continuous
nonlinear Dirac system was derived in the strong potential (tight-binding) limit and
shown to possess conical diffraction in the neighborhood of a Dirac point; discrete
and continuous NLS-type equations were derived away from Dirac points [31, 32].

2. Preliminaries. We consider the Schrödinger operator H = −Δ+V (r) acting
in L2(R2) in the sense of Hilbertian integrals [15], where V (r) is a smooth, real-valued,
periodic potential. We denote v1 and v2 as the two primitive lattice vectors. The set

Ω =

⎧⎨
⎩

2∑
j=1

qjvj : qj ∈ [0, 1]

⎫⎬
⎭

is the primitive unit cell. In the dual spectral space, the primitive reciprocal lattice
vectors k1 and k2 satisfy vi · kj = 2πδij , where δij is the Kronecker delta function.
Similarly the primitive reciprocal unit cell, i.e., the Brillouin zone, is defined by

Ω′ =

⎧⎨
⎩

2∑
j=1

qjkj : qj ∈
[
− 1

2
,
1

2

]⎫⎬
⎭ .

The characteristic vectors of the HC lattice (1.2) are

v1 =
4π

3k0

(√
3

2
,
1

2

)
, v2 =

4π

3k0

(√
3

2
,−1

2

)
,

k1 =
√
3k0

(
1

2
,

√
3

2

)
, k2 =

√
3k0

(
1

2
,−

√
3

2

)
.

It is useful to note that the potential can be written as

V (r) = eik1·r + eik2·r + ei(k1+k2)·r + c.c.,

D
ow

nl
oa

de
d 

04
/2

0/
22

 to
 1

83
.1

73
.1

68
.1

5 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

244 MARK J. ABLOWITZ AND YI ZHU

x
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−3

0

3

6

(a) (b) (c)

Fig. 2.1. The HC potential (a), the connection of local minima (b), and its Brillouin zone (c).
The dots and circles are the positions of local minima. The shaded regions in (b) and (c) are the
primitive unit cell and the Brillouin zone, respectively.

where c.c. represents the complex conjugate.
An HC lattice is a special two-dimensional lattice whose local minima (called

sites) are arranged in a hexagonal structure. The construction of the HC lattice and
its Brillouin zone is shown in Figure 2.1. There are two sites per unit cell. We remark
that the above primitive and reciprocal unit cells are parallelograms generated by
v1, v2, and k1, k2 respectively. However, in the literature hexagonal tiles (Wigner–
Seitz cells) are often used as the unit cells in the physical and reciprocal lattices [33].
The two representations, parallelograms and hexagons, are essentially the same due
to the periodicity. For example, in Figure 2.1(b) the shaded region and the hexagon
surrounded by the dotted line are both equivalent representations of the unit cell.

It is also noted that equilateral triangular lattices, sometimes referred to as hexag-
onal lattices, and HC lattices have the same periodicity. In the tight-binding limit,
the difference is essential. Triangular lattices have only one minimum per cell and as
such they are simple lattices; on the other hand, HC lattices have two minima per
cell. In the shallow potential case, the lowest bands of dispersion relation in different
lattices are completely different. The lowest eigenvalue of HC lattices at Dirac points
is degenerate (see below), while the lowest eigenvalue of triangle lattices is simple [34].

According to Floquet–Bloch theory (see, for example, [16, 15]), the eigenfunction,
referred as a Bloch mode, of the Schrödinger operator H is of the form

ϕ(r,k) = eik·rU(r;k),

where k ∈ Ω′ is the Bloch wave vector (often called the quasi-momentum) and U(r;k)
for any k ∈ Ω′ has the same periodicity as V (r). The real-valued eigenvalue μ(k) as a
function of k is usually called the dispersion relation of the potential V (r). For each
k ∈ Ω′, we have the following eigenvalue problem in L2

per(Ω):

HkU(r;k) = μ(k)U(r;k),
(2.1)

U(r+ vj ;k) = U(r;k), j = 1, 2,

where the operator Hk is defined as

(2.2) Hk = −Δ− 2ik · ∇+ |k|2 + δV (r).

The spectrum of the operator Hk is discrete, i.e.,

σ(Hk) =
⋃
n≥1

μ(n)(k);
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NONLINEAR WAVES IN SHALLOW HONEYCOMB LATTICES 245

they can be ordered as

μ(1)(k) ≤ μ(2)(k) ≤ μ(3)(k) ≤ · · · .

μ(n)(k) as a function of k is called the nth band of the dispersion relation. μ(n)(k)
is continuous and periodic, i.e., μ(n)(k + kl) = μ(n)(k), l = 1, 2. As k varies over the
Brillouin zone Ω′, the range of each branch μ(n)(k) is a closed interval of the real axis.
The spectrum of the Schrödinger operator H is the union of these intervals,

(2.3) σ(H) =
⋃
n≥1

{
μ(n)(k) : k ∈ Ω′

}
.

Thus, the spectrum has a band structure. The adjunct intervals can sometimes over-
lap each other, which results in band intersection. In some cases, there can exist a
gap between two adjunct intervals, which is termed a band gap. The corresponding
Bloch modes are also indexed by n, and the Bloch modes {ϕ(n)(k) = eik·rU (n)(r;k) :
n ≥ 1; k ∈ Ω′} are complete in L2(R2). It is noted that each band μ(n)(k) is con-
tinuous in k but is usually not analytic, e.g., at the intersection points. An explicit
construction of the dispersion relation and corresponding Bloch modes is not known
in the general case. However, in the tight-binding limit δ � 1 and shallow potential
limit δ � 1, explicit results can be found via perturbation theory.

Regarding the HC lattices, the dispersion bands μ(1)(k) and μ(2)(k) behave in
a conical manner near the Dirac points: K = 1

3 (k1 − k2), K
′ = 1

3 (k2 − k1). In the
tight-binding limit δ, it has been shown that the dispersion relation has the expansion

μ1,2(k) ∼ μ0 ±
√
3τl
2 |k − K| to leading order where τ is a constant, which is called

nearest neighbor hopping energy [30]. This conical behavior is not found in simple
two-dimensional lattices. In the next section we examine the dispersion relation at
the Dirac points in the shallow lattice limit: δ � 1.

3. Bloch modes at Dirac points in shallow HC lattices. If the potential
intensity is very large, i.e., δ � 1, called the tight-binding limit, the Bloch modes are
localized at the minima, and they can be well approximated by the superposition of
orbitals. In this paper, we consider the opposite limit δ � 1, sometimes called the
nearly free limit; here all Bloch modes are represented by plane waves (see below).
The linear perturbation theory for generic two-dimensional shallow periodic potentials
is standard (see, for example, [33]). In this section we will analyze perturbation theory
for the HC lattice at special points, which is important for our subsequent study of
nonlinear wave dynamics. At these points there is degeneracy; the linear perturbation
theory is nontrivial and must be done carefully.

Define another operator,

Lk = −Δ− 2ik · ∇+ |k|2.

Since δ � 1, the Schrödinger operator Hk can be treated as a perturbation of the
operator Lk. Note that all eigenfunctions are in the function space L2

per(Ω) and the
derivatives are in the weak sense.

For convenience, we will take k0 = 1. If k0 �= 1, one can define new scales r̃ = k0r,
σ̃ = σ

k2
0
, and z̃ = zk20 so that the equation in the new coordinates is invariant. When

k0 = 1, the lattice scale is |v1| = |v2| = 4π
3 . Appropriate initial conditions should

take this moderate number into account when doing computational simulations.
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We then expand the eigenvalue μ and eigenfunction U in an expansion in δ,

μ = μ0 + δμ1 + δ2μ2 + · · · , U = U0 + δU1 + δ2U2 + · · · ,
where Us ∈ L2

per(Ω), s = 0, 1, 2, 3, . . . . To simplify notation we have omitted the su-
perscript since we are interested in the lowest eigenvalue, or eigenvalues if degeneracy
is involved.

Substituting the Taylor expansions of μ and U into the eigenvalue problem (2.1)
yields the following hierarchy of the equations:

O(1) : (Lk − μ0)U0 = 0,(3.1)

O(δ) : (Lk − μ0)U1 = −V (r)U0 + μ1U0 := F1,(3.2)

O(δ2) : (Lk − μ0)U2 = −V (r)U1 + μ2U0 + μ1U1 := F2,(3.3)

O(δn) : (Lk − μ0)Un = −V (r)Un−1 +

n∑
m=0

μmUn−m := Fn.(3.4)

For our purposes it is sufficient to expand the hierarchy to the order O(δ2).
As mentioned above we do not investigate general values of k in the Brillouin

zone. Rather we study two special points, called Dirac points, K = 1
3 (k1 − k2) and

K′ = 1
3 (k2 − k1). They lie at the corners of Wigner–Seitz cell (see Figure 2.1(b)).

Due to the underlying symmetries in HC lattices, the dispersion relation at these two
points has degeneracies which will be shown below. We obtain the result associated
with k = K; the result associated with k = K′ is similar.

3.1. Solutions to the order O(1) equation. Recall that we are studying the
case where k = K and k0 = 1. Substituting the form

U0 = ei(mk1+nk2)·r,

where m,n ∈ Z, into (3.1) yields after some manipulation

(3m− 3n+ 2)2 + 3(m+ n)2 = 4μ0.

There are infinitely many values of μ0 for different choices of (m,n). Each value
is a leading order value of a dispersion band. Since here we are interested in the
lowest band dynamics, we take only the smallest value for μ0. It can be seen that the
minimum value of μ0 is μ0 = 1, which is obtained when (m,n) = (0, 0), (−1, 0), (0, 1),
and the next one is μ0 = 4.

To clarify the situation, the eigenvalues are written as

μ
(1)
0 = μ

(2)
0 = μ

(3)
0 < μ

(4)
0 ≤ · · · ,

where we note that the eigenvalues μ(1), μ(2), μ(3) are the same at order O(1). The
corresponding eigenfunctions are of the form

U0 = C0 + C1e
−ik1·r + C2e

ik2·r,

where C0, C1, C2 are arbitrary constants and will be determined at subsequent or-
ders. The eigenvalue μ0 has threefold degeneracy. Namely, the eigenspace of LK

corresponding to μ0 = 1, i.e., the kernel of LK − μ0, is a three-dimensional subspace
of L2

per(Ω). We denote it as

E = Span
{
1, e−ik1·r, eik2·r} .

Since the leading order eigenvalues of HK are equal, we continue to higher order
to distinguish them. We consider the lowest three eigenvalues together due to the
degeneracy.

D
ow

nl
oa

de
d 

04
/2

0/
22

 to
 1

83
.1

73
.1

68
.1

5 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

NONLINEAR WAVES IN SHALLOW HONEYCOMB LATTICES 247

3.2. Solutions to order O(δ) equation. The leading order eigenvalue has
multiplicity 3, in other words, the difference among μ(1), μ(2), μ(3) is order O(δ), so we
continue to higher orders to see whether/how the eigenvalue splits upon perturbation.

The forcing term on the right-hand side of O(δ), equation (3.2), is

F1 = (−V (r) + μ1)(C0 + C1e
−ik1·r + C2e

ik2·r).

The Fredholm alternative requires the following three solvability conditions:

(3.5) 〈F1, 1〉 = 0, 〈F1, e
−ik1·r〉 = 0, 〈F1, e

ik2·r〉 = 0,

where we define the inner product in L2
per(Ω),

〈f, g〉 = 1

|Ω|
∫
Ω

f(r)g(r)dr,

and g(r), hereinafter, means the complex conjugate of g(r) and |Ω| is the area of the
unit cell Ω.

After some calculation the three solvability conditions lead to the following linear
matrix problem:

(3.6)

⎛
⎝ μ1 −1 −1

−1 μ1 −1
−1 −1 μ1

⎞
⎠
⎛
⎝ C0

C1

C2

⎞
⎠ =

⎛
⎝ 0

0
0

⎞
⎠ .

The above matrix problem has nontrivial solutions if and only if the determinant
of the matrix is zero. Then we get

(3.7) μ3
1 − 3μ1 − 2 = 0.

It has a simple root 2 and a double root −1. We denote μ
(1)
1 = μ

(2)
1 = −1 and μ

(3)
1 = 2.

The three-dimensional eigenspace E is decomposed into the direct sum of two
subspaces under perturbation. Namely, there is a one-dimensional eigenspace which

corresponds to μ
(3)
1 = 2 and a two-dimensional eigenspace which corresponds to μ

(1)
1 =

μ
(2)
1 = −1.

Solving the above matrix problem (3.6) yields the corresponding eigenfunctions.

For μ
(1)
1 = μ

(2)
1 = −1, we obtain two linearly independent eigenfunctions,

U
(1)
0 =

√
3

3
(1 + ηe−ik1·r + η̄eik2·r),(3.8)

U
(2)
0 =

√
3

3
(1 + η̄e−ik1·r + ηeik2·r),(3.9)

where η = e
2πi
3 and η̄ = e−

2πi
3 .

For μ
(3)
1 = 2, we find the eigenfunction, which is

(3.10) U
(3)
0 =

√
3

3
(1 + e−ik1·r + eik2·r).

It can be verified that the above eigenfunctions are orthonormal, i.e.,

〈U (m)
0 , U

(n)
0 〉 = δmn, m, n = 1, 2, 3.
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In addition, the following orthonormal relations hold:

(3.11) 〈V (r)U
(m)
0 , U

(n)
0 〉 = μ

(m)
1 δmn, m, n = 1, 2, 3,

which is directly from the solvability conditions (3.5). We will see that the above
eigenfunctions are convenient in the derivation of the envelope dynamics in the next
section.

So far, we have obtained the lowest eigenvalues of HK to order O(δ). At leading
order, the eigenvalues are the same, so the eigenspaces are mixed together and form a
three-dimensional nullspace of LK−μ0. But at order O(δ) this nullspace splits into a
direct sum of a one-dimensional eigensubspace and a two-dimensional eigensubspace;
namely,

E = E1 ⊕ E2 = Span
{
U

(1)
0 , U

(2)
0

}
⊕ Span

{
U

(3)
0

}
.

So, at order O(δ) we can now distinguish between the eigenvalues which were equal
at O(δ). However, the eigenspaces for the first two eigenvalues are still mixed.

In order to get U1(r), we need to solve the inhomogeneous equation (3.2). Due
to the Fredholm alternative there exists a unique solution in E

⊥ (the orthogonal
complement of E in L2(R2)) for a given U0(r) ∈ E1 or U0(r) ∈ E2. Without loss
of generality, we restrict U1 ∈ E

⊥ and take the homogeneous solution to vanish.
Then we can define the inverse operator (LK − μ0)

−1 : E
⊥ → E

⊥. And for any

f(r) =
∑′

m,nf̂m,ne
i(mk1+nk2)·r ∈ E

⊥

(LK − μ0)
−1f =

∑
m,n

′ 4f̂m,n

(3m− 3n+ 2)2 + 3(m+ n)2 − 4μ0
ei(mk1+nk2)·r,

where
∑′

m,n means the sum excludes (m,n) = (0, 0), (−1, 0), (1, 0).
We denote

U
(s)
1 = (LK − μ0)

−1
[(
μ
(s)
1 + V (r)

)
U

(s)
0

]
, s = 1, 2, 3.

Since we have encountered eigenspace splitting, we need to consider the two cases
separately.

The lowest three eigenvalues of problem (2.1), counting the multiplicity, have the
forms μ(1) = 1 − δ +O(δ2), μ(2) = 1 − δ + O(δ2), and μ(3) = 1 + 2δ +O(δ2). Thus
μ(3) separates from μ(1) and μ(2) at order O(δ), while μ(1) and μ(2) remain equal.

Since the first two eigenvalues μ(1) and μ(2) are the same at this order, their
corresponding eigenspaces do not separate. The associated eigenfunction has, at order
O(1), the forms

(3.12) U0 = α1U
(1)
0 + α2U

(2)
0 ,

and at order O(δ)

(3.13) U1 = α1U
(1)
1 + α2U

(2)
1 ,

where α1, α2 are constants.
The eigenfunction for μ(3) at the first two orders are

U0 = α3U
(3)
0 ,

U1 = α3U
(3)
1 .
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3.3. Solutions to order O(δ2) equation. In this section, we investigate
whether the eigenvalues μ(1) and μ(2), which are equal at order O(δ), separate at
O(δ2).

Substituting (3.12) and (3.13) into (3.3) and using the solvability conditions yields

(3.14)

(
μ2 +

2
3 0
0 μ2 +

2
3

)(
α1

α2

)
=

(
0
0

)
.

Note that there are three solvability conditions. However, the orthogonality to U
(3)
0

turns out to be a compatibility condition which is satisfied automatically. In addition,
we have used the following relation:

(3.15) 〈(μ(m)
1 − V (r))U

(m)
1 , U

(n)
0 〉 = 2

3
δmn, m, n = 1, 2, 3,

which can be verified for the HC lattice (1.2).

The existence of the nontrivial solutions yields a double root μ
(1)
2 = μ

(2)
2 = −2/3.

So the two-dimensional eigenspace at order O(δ2) does not split. In other words, the
lowest eigenvalue of Hk is degenerate to order O(δ2) at k = K.

Similarly, for μ
(3)
1 = −2, we only use the orthogonality to U

(3)
0 and get μ

(3)
2 =

−5/3. Note that the orthogonality to U
(1)
0 and U

(2)
0 is automatically satisfied.

From the Fredholm condition, we can define the functions

U
(s)
2 = (LK − μ0)

−1
[
(μ

(s)
1 − V (r))U

(1)
1 + μ

(s)
2 U

(1)
0

]
, s = 1, 2, 3.

Then the corresponding eigenfunction of μ
(1)
2 = μ

(2)
2 = −2/3 at order O(δ2) has

the form

U2 = α1U
(1)
2 + α2U

(2)
2 ,

and the corresponding eigenfunction μ
(3)
2 = −5/3 has the form

U2 = α3U
(3)
2 .

3.4. Bloch mode structure. So far we have explicitly solved the eigenvalue
problem of the operator Hk to order O(δ2) at k = K. To order O(δ2), the operator
HK has three discrete eigenvalues, μ(1) = 1−δ− 2

3δ
2+O(δ3), μ(2) = 1−δ− 2

3δ
2+O(δ3),

and μ(3) = 1 + 2δ − 5
3δ

2 + O(δ3). As discussed above, the lowest two eigenvalues,

μ(1) and μ(2), are the same at this order. The eigenspaces corresponding to the two
eigenvalues are mixed. In other words, the lowest eigenvalue is degenerate to order
O(δ2), and the eigenspace corresponding to the eigenvalue μ = 1− δ− 2

3δ
2 +O(δ3) is

two-dimensional. The corresponding Bloch modes to order O(δ2) are

ϕ(1)(r) = eiK·r
(
U

(1)
0 + δU

(1)
1 + δ2U

(1)
2

)
+O(δ3),

ϕ(2)(r) = eiK·r
(
U

(2)
0 + δU

(2)
1 + δ2U

(2)
2

)
+O(δ3).

The eigenspace corresponding to the next higher eigenvalue, μ = 1 + 2δ − 5
3δ

2 +
O(δ3), is one-dimensional and the corresponding Bloch mode is

ϕ(3)(r) = eiK·r
(
U

(3)
0 + δU

(3)
1 + δ2U

(3)
2

)
+O(δ3).
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(a) (b)

Fig. 3.1. The dispersion surfaces (a) μ(1)(k), μ(2)(k) and (b) μ(3)(k) in the vicinity of K
when δ = 0.4. μ(1)(k) and μ(2)(k) touch each other at the Dirac point K.

In principle, we can solve the perturbation hierarchy to any order in δ. However,
this is out of the scope of this paper. From the quantities

μ(s)
n = 〈V (r)U

(s)
n−1, U

(s)
0 〉,

U (s)
n = (LK − μ0)

−1

[
(μ

(s)
1 − V )U

(s)
n−1 +

n∑
m=2

μmUn−m

]

we conjecture that μ
(1)
n = μ

(2)
n for all n ≥ 1 and indeed for any finite value of δ.

This conjecture is supported by careful numerical simulations. Our simulations show
that |μ(2) − μ(1)| has the same order as our numerical accuracy, which is O(10−11)
for any δ. The conjecture means that the lowest eigenvalue of the operator HK with
an HC lattice is degenerate with a multiplicity 2. To the best of our knowledge, this
conjecture has not yet been rigorously proven. In this paper, we do not need the full
description of the eigenvalue problem at any order. The description up to the order
O(δ2) is sufficient for our requirements.

Since here we wish to study the dynamics in the vicinity of Dirac points, the
Bloch mode structure at a general point in the Brillouin zone Ω′ is not considered.
The Bloch mode structure at the other Dirac point k = K′ can be obtained similarly
and is omitted in this paper. We also note that the Taylor expansion of the linear
dispersion relation μ(k) around a point k0 is closely related to the linear part of
the corresponding envelope equations. So we included the calculation of μ(k) when
|k−K| � 1 in section 5.

The dispersion surfaces μ(1)(k), μ(2)(k), μ(3)(k) in the neighborhood of K are cal-
culated numerically. The numerical scheme used here is the Fourier–Galerkin method.
It converts the differential operator eigenvalue problem to a finite matrix eigenvalue
problem by truncating the number of Fourier modes of eigenfunctions to a finite num-
ber; see, for example, [11, 12]. The results are shown in Figure 3.1. We see that the
first two bands intersect with each other at the Dirac point K. The third dispersion
surface, which is distinct, lies above the first two. The analytical structure of the
dispersion surfaces are explained further in section 5.

We can also support our analysis with a numerical comparison. In Figure 3.2, we
plot the residual between the “true” eigenvalue obtained from a numerical simulation
and the analytical result up to order O(δ2). Since our analysis is accurate to order
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0 0.02 0.04 0.06
−0.02

−0.01

0

0.01

0.02

 

 

δ3

R
es

id
ua

l o
f μ μ(1)

μ(3)

Fig. 3.2. The residual of the dispersion relation, i.e., the difference between direct numerical
simulation and the asymptotic results at the Dirac point. The solid line corresponds to μ(1) (= μ(2))
and the dashed line corresponds to μ(3). This relation suggests our asymptotic result is accurate to
order O(δ2).

O(δ2), the residuals should be order O(δ3). We can see that the dependence of
residuals on δ3 is, in fact, roughly linear.

4. Envelope wave dynamics at the Dirac points. In many applications,
researchers are interested in the macroscopic dynamics of one or several Bloch en-
velopes. The original equation (1.1) governs the dynamics of all Bloch components
and contains both lattice and envelope scales. So homogenized equations are often
derived to describe and provide insight into the macroscopic dynamics. In HC lat-
tices, we will focus on the dynamics of the envelopes associated with the Dirac points.
With the analytic knowledge of the Bloch modes at the Dirac points, developed in
the previous section, the envelope equations can be derived by the method of multiple
scales.

We employ the transformation

(4.1) ψ = ψ̃eiK·r−iμ0z

and assume ψ̃ depends on slow scales as follows: ψ̃ = ψ̃(r,R, Z1, Z2), with R =
εr = (X,Y ), Z1 = δz, Z2 = δ2z. It is noted that ψ̃ does not depend on the fast
time z because we are only interested in the envelopes of the Bloch modes associated
with the lowest eigenvalues μ(1), μ(2), μ(3) and the components associated with higher
eigenvalues are not included.

The equation for ψ̃ is
(4.2)(LK − μ0 + δV (r)− iδ∂Z1 − iδ2∂Z2 − 2ε(iK+∇r) · ∇R − ε2ΔR

)
ψ̃ − σ|ψ̃|2ψ̃ = 0,

where ∇r = (∂x, ∂y), ∇R = (∂X , ∂Y ), and ΔR = ∂XX + ∂Y Y .

Then we expand the envelope ψ̃ in a series in δ:

ψ̃ = ψ0 + δψ1 + δ2ψ2 + · · · .
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We will use the following integrals, which can be directly calculated:

〈∇U (s)
0 , U

(s)
0 〉 = −iK,(4.3)

〈∇U (1)
0 , U

(2)
0 〉 = 〈∇U (2)

0 , U
(3)
0 〉 = 〈∇U (3)

0 , U
(1)
0 〉 = 1

2
(−1, i),(4.4)

〈∇U (2)
0 , U

(1)
0 〉 = 〈∇U (1)

0 , U
(3)
0 〉 = 〈∇U (3)

0 , U
(2)
0 〉 = 1

2
(1, i).(4.5)

Due to the cubic nonlinearity, we also need to compute the four wave mixing
terms:

1

|Ω|
∫
Ω

U
(s)
0 U

(l)
0 U

(p)
0 U

(q)
0 dr, s, l, p, q = 1, 2, 3.

Most of the integrals turn out to vanish except

1

|Ω|
∫
Ω

∣∣∣U (s)
0

∣∣∣4 dr =
5

3
, s = 1, 2, 3,

1

|Ω|
∫
Ω

∣∣∣U (s)
0

∣∣∣2 ∣∣∣U (l)
0

∣∣∣2 dr =
2

3
, s, l = 1, 2, 3, s �= l,

1

|Ω|
∫
Ω

(
U

(s)
0

)2 (
U

(l)
0 U

(p)
0

)
dr =

1

|Ω|
∫
Ω

U
(s)
0 U

(l)
0

(
U

(p)
0

)2

dr = −1

3
, s �= l �= p.

Note that we are interested in the envelope dynamics associated with the lowest
eigenvalues which at leading order has a threefold degeneracy. In this problem one
has a number of different and interesting small parameter balances. Next we discuss
two of them. We always balance the nonlinearity to the slow spatial parameter, i.e.,
ε = |σ|. We note that sometimes researchers take σ = ±1 and balance the slow
spatial parameter with nonlinearity by scaling the amplitude of the envelope with an
appropriate power of ε.

4.1. The case: ε = |σ| = δ. In this subsection we employ the balance of slow
space, slow time, and nonlinearity.

Substituting the expansion for ψ̃ into (4.2) yields the following equations taken
to O(δ):

O(1) : (LK − μ0)ψ0 =0,

O(δ) : (LK − μ0)ψ1 =−V (r)ψ0 + i∂Z1ψ0 + 2(iK+∇r) · ∇Rψ0 + sgn(σ)|ψ0|2ψ0.

Solving the order O(1) equation yields

ψ0 = A1(R, Z1)U
(1)
0 +A2(R, Z1)U

(2)
0 +A3(R, Z1)U

(3)
0 .

Here As(R, Z1) are the envelopes associated with the three Bloch modes ϕ(s), s =
1, 2, 3. To solve the O(δ) equation, we use the three solvability conditions, which yield
the envelope equations

i∂Z1A1 +A1 + ∂+A2 + ∂−A3 + sgn(σ)Φ1 = 0,(4.6a)

i∂Z1A2 +A2 + ∂+A3 + ∂−A1 + sgn(σ)Φ2 = 0,(4.6b)

i∂Z1A3 − 2A3 + ∂+A1 + ∂−A2 + sgn(σ)Φ3 = 0,(4.6c)

where

∂− = (−∂X + i∂Y ), ∂+ = (∂X + i∂Y ),
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and

Φ1 =
1

3

[(
5|A1|2 + 4|A2|2 + 4|A3|2

)
A1 −A2

2A3 −A2
3A2 − 2A2A3A1

]
,

Φ2 =
1

3

[(
5|A2|2 + 4|A1|2 + 4|A3|2

)
A2 −A2

1A3 −A2
3A1 − 2A1A3A2

]
,

Φ3 =
1

3

[(
5|A3|2 + 4|A1|2 + 4|A2|2

)
A3 −A2

1A2 −A2
2A1 − 2A1A2A3

]
.

These equations are Dirac-type with suitable linear phase and nonlinear interaction
terms; note that the A3 component has a different phase correction term from the
A1 and A2 components. We remark that even when there is no space variation the
equations are not trivial due to the four wave interaction components. The differential
equations for space-independent solutions are sometimes called Landau equations,
which here describes certain nonlinear interband transitions.

(a) (b) (c)

(f)(e)(d)

Fig. 4.1. Numerical simulations of envelope dynamics in (top panels) the original NLS equation
(1.1) and (bottom panels) the asymptotic Dirac system (4.6).

To support our analysis, a numerical comparison is presented here. The numerical
scheme used in this paper to integrate all evolution equations is the pseudospectral
method in space with a fourth order Runge–Kutta method in time; see, for example,
[12]. The initial condition we choose for the NLS equation (1.1) is always a wide
gaussian multiplied by a Bloch mode. In the simulation of Figure 4.1, the initial

condition for (1.1) is ψ(r, z = 0) = e−(X2+Y 2)U
(1)
0 . This initial condition corresponds

to A1(R, Z1 = 0) = e−(X2+Y 2), A2(R, Z1 = 0) = A3(R, Z1 = 0) = 0. In Figure 4.1,
the panels (a)–(c) show the intensity patterns of ψ(r, z) for different propagation
distances with the above initial input. Here the parameters are δ = ε = σ = 0.2.
Panels (d)–(f) depict the intensity of the superposition of A1, A2, and A3 at the
corresponding propagation distances. From the figure, we see that an initial radially
symmetric gaussian (for componentA1) separates into a triangular diffraction pattern.

In optics, this phenomenon is referred to as diffraction of propagating beams in a
crystal with a transversely varying index of refraction. Figure 4.1 shows the pattern
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of the diffraction when the incident beam is a superposition of three gaussian beams
with input angles being K, K − k1, and K + k2. Researchers can easily study the
nonlinear diffraction patterns of other combinations of incident angles where the initial
conditions of the envelope equation would be different.

4.2. The case: ε = |σ| = δ2. In this subsection we employ the balance of
slow space and nonlinearity with δ2. Substituting (4.1) into (1.1) yields the following
hierarchy of equations to O(δ2):

O(1) : (LK − μ0)ψ0 = 0,

O(δ) : (LK − μ0)ψ1 = −V (r)ψ0 + i∂Z1ψ0,

O(δ2) : (LK − μ0)ψ2 = −V (r)ψ1+i∂Z1ψ1+i∂Z2ψ0+2(iK+∇r)·∇Rψ0+sgn(σ)|ψ0|2ψ0.

Solving the hierarchy is similar to what was done above. The order O(1) equation
gives us that

ψ0 =

3∑
s=1

As(R, Z1, Z2)U
(s)
0 .

Fredholm conditions at O(δ) give the Z1 dependence of each envelope As. Namely,

i∂Z1As − μ
(s)
1 As = 0, s = 1, 2, 3,

where we have used the orthogonality relations (3.11). Thus we get

ψ0 =

3∑
s=1

As(R, Z2)U
(s)
0 e−iμ

(s)
1 Z1 .

Solving the order O(δ) equation we get

ψ1 =
3∑

s=1

As(R, Z2)U
(s)
1 e−iμ

(s)
1 Z1 .

Note that the homogeneous solutions are chosen to be zero, and their effect can be
included in higher order equations in the usual manner.

Using 〈(
μ
(m)
1 − V (r)

)
U

(m)
1 , U

(n)
0

〉
= −μ(m)

2 δmn, m, n = 1, 2, 3,

and applying the three solvability conditions at O(δ2) yields the following equations:

i∂Z2A1 +
2

3
A1 + ∂+A2 + ∂−A3e

−3iZ2/δ + sgn(σ)Φ̃1 = 0,

i∂Z2A2 +
2

3
A2 + ∂+A3e

−3iZ2/δ + ∂−A1 + sgn(σ)Φ̃2 = 0,

i∂Z2A3 − 5

3
A3 + (∂+A1 + ∂−A2)e

3iZ2/δ + sgn(σ)Φ̃3 = 0,

where

Φ̃1 =
1

3

[(
5|A1|2+4|A2|2+4|A3|2

)
A1−A2

2A3e
3iZ2/δ−A2

3A2e
−6iZ2/δ−2A2A3A1e

−3iZ2/δ
]
,

Φ̃2 =
1

3

[(
5|A2|2+4|A1|2+4|A3|2

)
A2−A2

1A3e
3iZ2/δ−A2

3A1e
−6iZ2/δ−2A1A3A2e

−3iZ2/δ
]
,

Φ̃3 =
1

3

[(
5|A3|2+4|A1|2+4|A2|2

)
A3−A2

1A2e
3iZ2/δ−A2

2A1e
3iZ2/δ−2A1A2A3e

6iZ2/δ
]
.
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In the above equations we see that there are rapidly varying terms. This is due to
the dispersion relation being μ1 = −1,−1, 2 at O(δ).

One can average out the fast phase (via another multiple scales procedure), and
the equations reduce to

i∂Z2A1 +
2

3
A1 + ∂+A2 + sgn(σ)

1

3

(
5|A1|2 + 4|A2|2 + 4|A3|2

)
A1 = 0,(4.7)

i∂Z2A2 +
2

3
A2 + ∂−A1 + sgn(σ)

1

3

(
5|A2|2 + 4|A1|2 + 4|A3|2

)
A2 = 0,(4.8)

i∂Z2A3 − 5

3
A3 + sgn(σ)

1

3

(
5|A3|2 + 4|A1|2 + 4|A2|2

)
A3 = 0.(4.9)

Note that the A3 equation is only a phase modulation. So if A3 is initially zero, then
it remains zero. In other words, if the A3 component is initially much weaker than
the A1 and A2 components, then we may consider the detached equations (4.7) and
(4.8) alone without A3.

Rescaling the phases of A1 and A2 (i.e., Ãs = Ase
−i 23Z2 and dropping the tilde

above As) yields the following coupled nonlinear Dirac system:

i∂Z2A1 + ∂+A2 + sgn(σ)
1

3

(
5|A1|2 + 4|A2|2

)
A1 = 0,(4.10a)

i∂Z2A2 + ∂−A1 + sgn(σ)
1

3

(
5|A2|2 + 4|A1|2

)
A2 = 0.(4.10b)

It is noted that the Dirac system can also be derived in the tight-binding limit.
The equation in that limit is similar in that the linear terms are the same; however,
the nonlinear terms are somewhat different [32].

This nonlinear Dirac system governs the dynamics of the envelopes associated
with the lowest eigenvalues μ(1) and μ(2). We compare the dynamics between the
original NLS equation (1.1) and the reduced Dirac equation (4.10) via numerical sim-
ulations. The initial condition for the original NLS equation (1.1) is still a gaussian:

ψ(r, z = 0) = e−(X2+Y 2)U
(1)
0 but now ε = δ2 = σ = 0.22 = 0.04. The numerical

comparison shows very good agreement. For the envelope equations the initial con-
ditions are that A1 is a gaussian while A2 is zero. Interestingly when A1 is initially
a unit gaussian and A2 is a unit gaussian multiplied by a constant phase term, eiθ0 ,
a “notch” forms where the direction of the notch is determined by the phase θ0; see
Figure 4.2 below.

(a) (b) (c)

Fig. 4.2. The conical diffraction with a “notch.” Initially, A1 is a unit gaussian, A2 is a unit
gaussian multiplied by eiθ0 , and θ0 is a constant phase: (a) 0; (b) −π/2; (c) −2π/3.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 4.3. Numerical simulations of conical diffraction in (top panels) the original NLS equation
(1.1) and (middle and bottom panels) the reduced Dirac system (4.10). Here A1 is shown in the
middle panels and A2 is shown in the bottom panels.

(a) (b) (c)

Fig. 4.4. The phase comparison for linear and nonlinear Dirac equations. (a) sgn(σ) = 0;
(b) sgn(σ) = 1; (c) sgn(σ) = −1.

The above phenomenon shown in Figure 4.3 is called conical diffraction. Basically,
conical diffraction is a linear phenomenon and corresponds to the dispersion relation
being conical in the neighborhood of Dirac points. This weak nonlinearity has limited
effects on the intensity of the envelope, but can affect the phase—see Figure 4.4. On
the other hand, strong nonlinearity can change the diffraction pattern significantly
[29, 35]. The detailed analysis is outside the scope of this paper.
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5. Linear dispersion relations of the envelope equations. In the coupled
mode system (4.6) at order O(δ), neglecting the nonlinear terms and transforming to
Fourier spectral space, i.e., Aj ∼ Âje

−iω(q)Z1+iq·R, yields⎛
⎝ ω + 1 ∂̂+ ∂̂+

∂̂+ ω + 1 ∂̂−
∂̂− ∂̂− ω − 2

⎞
⎠
⎛
⎝ Â1

Â2

Â3

⎞
⎠ =

⎛
⎝ 0

0
0

⎞
⎠ ,

where ∂̂+ = −iq1 − q2 and ∂̂− = iq1 − q2. Here q = (q1, q2) is the Fourier wave vector
of the envelope and ω(q) is the linear dispersion relation of the envelope equation.

The determinant of the above coefficient matrix gives the equation

(5.1) (ω + 1)2(ω − 2)− 2(ω + 1)(q21 + q22)− (ω − 2)(q21 + q22)− 2q2(−3q21 + q22) = 0.

Solving the above equation yields the envelope dispersion relation ω(q). Since the dis-
persion relation is represented by the roots of a cubic equation, it has three branches.

This envelope dispersion relation (the evolution of a Fourier mode) will give us
the dispersion relation of the original eigenvalue problem (2.1), i.e., the evolution of
a Bloch mode in the neighborhood of the Dirac point. The dispersion relations of the
evolution system and the general dispersion relation are connected; we discuss this
further. The original field of the lattice NLS equation has the form

ψ(r, z) =

3∑
s=1

As(R, Z1)U
(s)
0 eiK·r−iμ0z +O(δ).

The Bloch mode decomposition (similar to Fourier decomposition) gives the evo-
lution of the field ψ(r, z). Combining the Bloch mode decomposition of the original
field and Fourier decomposition of the envelope yields that

εq+K = k,

δω(q) + μ0 +O(δ2) = μ(k).

We have associated the Fourier wave vector of the envelopes, q, with the Bloch wave
vector k in the neighborhood of K as well as the dispersion relations.

Note that the envelope equation is based on the balance δ = ε with q = k−K
ε .

The dispersion relation obtained from (5.1) is valid for |k−K| ∼ O(δ).
If q = 0, we get ω(0) = −1,−1, 2, which are exactly the order O(δ) corrections

to the lowest eigenvalues at k = K, i.e., μ
(1)
1 , μ

(3)
1 , μ

(3)
1 . If |q| = √

q21 + q22 ∼ O(1),
i.e., |k−K| ∼ O(δ), the branch that bifurcated from ω = 2 can affect the branch that
bifurcated from ω = −1. In other words, the dispersion branch μ(3)(k) can eventually
intersect with the other dispersion relations branches μ(1)(k), μ(2)(k) of HK at some
k which is not very close to K. We also note that the intersection would occur away
from the region depicted by Figure 3.1 with μ(3)(k) lying above μ(1)(k), μ(2)(k).

If |q| � 1, we can solve the above equation via perturbation theory. Since ω(0) =
2 is a simple root when q = 0, the root to the above polynomial when |q| � 1 is also
simple and the dispersion relation is analytic [15]. Suppose the dispersion relation
ω(q) has the expression ω(q) = 2 + f , where f � 1. Then we have

9f − 6(q21 + q22) +O((|q|)3) = 0,

and hence f = 2
3 (q

2
1 + q22) +O(|q|3).
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Since the root ω(0) = −1 is a double root when q = 0, the dispersion relation
usually is no longer analytic [15]. We can see this here when |q| � 1; we have
ω(q) = −1 + g, where g � 1. Then we have

−3g2 + 3(q21 + q22) +O(|q|3) = 0,

and so g2 = q21 + q22 +O(|q|3).
To summarize the above, we find that the dispersion relation μ(3)(k) is analytic

around k = K and has the expansion

μ(3)(k) = 1 + δ

(
2 +

2

3
|k−K|2 +O(|k −K|3)

)
+O(δ2),

where |k−K| � δ.
On the other hand the dispersion relations of μ(1)(k) and μ(2)(k) are not analytic

around k = K; they have the expansions

μ(1)(k) = 1 + δ(−1− |k−K|+O(|k −K|2)) +O(δ2)

and

μ(2)(k) = 1 + δ(−1 + |k−K|+O(|k −K|2)) +O(δ2),

where |k−K| � δ.
The above analysis agrees with the direct numerical calculation of the dispersion

surface which is shown in Figure 3.1. It is seen that μ(1)(k) and μ(2)(k) touch each
other at the Dirac point K, and the dispersion relation in the neighborhood of K
is conical while μ(3)(k) is analytic in the neighborhood of K and has a minimum at
k = K. It is noted that envelope equations are consistent with the first two terms of
Taylor expansion in k−K of μ(k) around K, and the expansion is accurate to order
O(δ2). However, the nonlinear terms are not obtained from the Taylor expansion of
the dispersion relation; they must be obtained separately, as we have done in section 4.

6. Conclusion. This paper investigates nonlinear waves in shallow (with scale δ)
honeycomb lattices. The linear spectrum and corresponding Bloch structures at Dirac
point K are studied. The dispersion relation has threefold degeneracy to leading order
and splits to simple and double eigenvalues at the following order. It is shown that the
degeneracy of the double eigenvalue holds at least to next order. Based on results in
strong potential limit and numerical calculations, it is conjectured that the degeneracy
persists for any order of perturbation—and indeed for any finite strength—δ of the
potential.

The nonlinear wave envelope dynamics is found to depend on different asymptotic
balances. In one case, when the scale of the envelope is order O(δ), a three-level
nonlinear Dirac-type equation is derived and triangular diffraction is found. When
the scale of the envelope, ε is on the order O(δ2), a two-level nonlinear Dirac equation
is derived, and conical diffraction is observed. The analysis agrees well with direct
numerical simulations.
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