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Abstract. The spectrum of a Schrödinger operator with a perfect honeycomb lattice poten-
tial has special points, called Dirac points, where the lowest two branches of the spectrum touch.
Deformations can result in the merging and disappearance of the Dirac points, and the originally
intersecting dispersion relation branches separate. Corresponding to these deformations, nonlinear
envelope equations are derived and their dynamics are studied. In the region where Dirac points exist,
a maximally balanced equation is derived which has limits to a nonlinear Schrödinger–Kadomtsev–
Petviashvili (NLSKP)-type equation and its dispersionless reduction. When the Dirac points dis-
appear and a gap opens, a different maximally balanced equation is derived which has the NLSKP
equation and a one-dimensional nonlocal evolution equation as limits. When the gap is sufficiently
wide, a nonlinear Dirac equation with nonzero mass and a nonlinear Schrödinger focusing-defocusing
system are found. The latter two equations admit nonlinear localized modes. Typical dynamical
behaviors of the effective envelope equations are presented.
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1. Introduction. Wave dynamics with a background two-dimensional honey-
comb lattice is an area of research which has generated considerable interest; this is
partly due to the fact that it arises in many applications. For example, the underlying
atomic structure of graphene has a hexagonal honeycomb periodic structure [25, 24].
Other interesting applications where honeycomb lattices play an important role in-
clude Bose–Einstein condensation (BEC) associated with the dynamics of condensates
in honeycomb optical lattices [35, 16], nonlinear optical beam propagation in photonic
honeycomb crystals [26, 9], broken time-reversal symmetry [17], and propagation of
nonlinear optical waves with a shallow honeycomb lattice background [6].

A special feature of honeycomb lattices is that the lowest band of the dispersion
relation associated with the Schrödinger operator has two intersecting branches with
isolated intersection points which are called Dirac points. In the vicinity of these Dirac
points, the dispersion relation is conical. Many interesting physical phenomena are
related to the existence of Dirac points such as conical diffraction, anomalous quan-
tum Hall effects, Klein tunneling, and enhanced conductivity [25, 24, 35, 26]. These
phenomena are related to the linear Dirac dynamics. Recently, a detailed mathe-
matical study detailing the existence of Dirac points associated with the Schrödinger
operator with a periodic potential has been developed [13, 14].

∗Received by the editors August 9, 2012; accepted for publication (in revised form) July 31, 2013;
published electronically November 7, 2013. This research was partially supported by the NFSC under
grant 11204155, by the U.S. Air Force Office of Scientific Research under grant FA9550-12-1-0207, by
the NSF under grants DMS-0905779 and CHE 1125935, and by the Tsinghua University Initiative
Scientific Research Program.

http://www.siam.org/journals/siap/73-6/88761.html
†Department of Applied Mathematics, University of Colorado, 526 UCB, Boulder, CO 80309-0526

(mark.ablowitz@colorado.edu).
‡Corresponding author. Zhou Pei-Yuan Center for Applied Mathematics, Tsinghua University,

Beijing 100084, China (yizhu@tsinghua.edu.cn).

1959

D
ow

nl
oa

de
d 

04
/2

0/
22

 to
 1

83
.1

73
.1

68
.1

5 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1960 MARK J. ABLOWITZ AND YI ZHU

Due to the important physical applications in optics and BEC literatures, non-
linear wave packets near the Dirac points have recently been considered [26, 9], and
reduced equations have been derived which describe conical and triangular diffrac-
tion [10, 4]. Away from Dirac points the wave dynamics changes considerably, and
nonlinear Schrödinger (NLS)-type equations govern the dynamics [4]. To study non-
linear wave packets in problems with background periodic structure one frequently
constructs associated Bloch waves and then studies their nonlinear interactions. Di-
rect calculations are usually complicated and require detailed numerical calculations.
Alternatively, discrete approximations can sometimes be employed in the strong po-
tential or tight-binding regime where this approximation is asymptotically accurate
and the Bloch modes as well as their nonlinear interactions can be constructed ana-
lytically.

In some problems, the honeycomb lattice is deformed [8]. This results in the so-
called “nearest neighbor hopping energies” not being equal; i.e., ρ �= ρ0 = 1 (see Figure
1). If the honeycomb lattice is made up of perfect hexagons, all nearest neighbor
hopping energies are equal; i.e., ρ = ρ0 = 1. Deformed lattices correspond to ρ �= 1;
ρ, or more conveniently β = 2ρ − 1, plays the role of the deformation parameter.
As a consequence of the deformation the Dirac points may disappear and a gap may
develop between the two lowest bands. Physically, band touching and band separation
give rise to different physical properties and different associated dynamics. Here we
employ long wave approximation which corresponds to the regime where the envelope
scale is much larger than the lattice scale. From a mathematical point of view, the
dynamics in this limit corresponds to the slowly varying wave approximation. This is
a particularly interesting topic in both physics and applied mathematics. To date, the
envelope dynamics associated with nondegenerate points on the dispersion surfaces
has been investigated in detail; cf. [15, 7, 31]. Similarly, wave envelopes associated with
gap solitons and their properties have also been widely investigated; cf. [21, 12, 30, 18].
However, there are few results known related to the dynamics associated with singular
points such as Dirac points in the dispersion surfaces. This conical crossing results
in the nonsmoothness of the dispersion relation and mathematical difficulties when
using a direct multiscale expansion or WKB method.

This work focuses on finding the leading order reduced asymptotic equations cor-
responding to the deformation of the lattice as the locations of the Dirac points are
modified, merge, and a gap appears. We trace the equations and dynamics from coni-
cal to elliptical to “straight-line” diffraction, all the way through to the development of
the localization of modes. Interestingly we find certain novel maximal balanced lead-
ing order equations governing this situation. Two of the reduced effective equations we
term NLSKP and NLSKZ, as they are NLS analogues of the Kadomstsev–Petviashvili
(KP) equation [19, 1] and its dispersionless reduction [22, 34].

The organization of this work is as follows. In sections 2 and 3, we discuss and
outline some basic information about honeycomb lattices, suitable orbital approxima-
tions, and the corresponding linear spectrum. In section 4, the long wave approxima-
tion of the discrete equation is formulated; this will be used to find the continuous
envelope equations associated with the special points in the Brillouin zone. In sec-
tions 5 and 6, we derive the associated reduced asymptotic equations, via multiple
scale perturbation analysis, in different regimes. In particular in section 5 we investi-
gate the situation when Dirac points exist. When there is little deformation, then a
standard nonlinear Dirac system applies, and conical/elliptical/triangular diffraction
results. When we are close to merging (0 < 2ρ−1 = β � 1), we find a key maximally
balanced (nonlocal) equation, (5.4), which in turn has limiting forms to what we refer
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WAVE PACKETS IN HONEYCOMB LATTICES 1961

as NLSKZ and NLSKP equations. In section 6 we investigate the case when a gap in
the spectrum is present (β < 0). When there is a sufficiently small gap, then again
there is a central maximally balanced (nonlocal) equation, (6.2), which has limiting
forms to an NLSKP equation and a 1+1 (one “space” variable and one evolution
variable)-dimensional nonlocal equation, (6.4). As the gap becomes larger, but still
small, we find a nonlinear Dirac equation with nonzero mass, (6.5). Finally, when the
gap width is no longer asymptotically small, we find a coupled focusing-defocusing
NLS system, (6.6). The latter two equations have localized (soliton) solutions. In sec-
tion 7, we give a brief summary of the limiting envelope dynamics and some remarks
on the corresponding numerical simulations. In section 8, we conclude and discuss
the main results.

2. Honeycomb lattices and discrete coupled mode equations. Consider
the following normalized two-dimensional lattice NLS equation:

(2.1) i∂zψ +Δψ − V (r)ψ + σ|ψ|2ψ = 0,

where Δ is the two-dimensional Laplacian, V (r) is a honeycomb lattice; i.e., V (r+v) =
V (r) ∀v ∈ Γ, and its local minima are located at ΓH, where Γ and ΓH are defined
later. Lattice NLS equations are frequently used to describe light propagation in
photonic crystals [32, 33] and the dynamics of Bose–Einstein condensates trapped in
optic lattices [23]. In the latter field, this equation is usually referred to as the Gross–
Pitaevskii equation [27]. Due to its special features and many applications, the lattice
NLS equation in the presence of honeycomb lattices is an interesting system to study;
to date, most research has focused on either the strong or the weak potential limits,
because the dispersion relation, Bloch waves, and their nonlinear interactions can be
analytically constructed under these two limits. Recently Fefferman and Weinstein
developed a rigorous theory of Dirac points [13] and associated linear dynamics [14]
beyond these two limiting cases. Their results pave the way for obtaining additional
rigorous mathematical results in the generic regime near Dirac points. Unfortunately,
developing higher order dispersion structure and nonlinear interactions of Bloch waves
is still not straightforward. Furthermore the limiting cases provide considerable phys-
ical insight. In the literature, the discrete approximation in the tight-binding limit is
often used. In this paper, we begin our analysis from a discrete coupled mode system,
(2.4), which is derived from the tight-binding approximation to the above lattice NLS
equation (2.1); cf. [4].

Let Γ � Z2 denote a two-dimensional lattice generated through the basis {v1,v2},
i.e.,

Γ = {mv1 + nv2 : m,n ∈ Z} .

The primitive unit cell Ω is defined as

Ω = {q1v1 + q2v2 : qj ∈ [0, 1)} .

The primitive cell Ω is the fundamental tile of a tessellation of the plane associated
with the lattice Γ, i.e., R2 =

⋃
v∈Γ(Ω + v).

Consider a special two-dimensional triangular lattice, whose basis vectors satisfy
v2 = Rv1, where the rotation matrix R rotates a vector in R2 clockwise by π/3. R is
given by

R =

(
1
2

√
3
2

−
√
3
2

1
2

)
.
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1962 MARK J. ABLOWITZ AND YI ZHU

Fig. 1. A honeycomb lattice is composed of two triangular sublattices, ΓA (dots) and ΓB

(circles), generated by v1 and v2 from different beginning points. Here ρ and ρ0 are nearest neighbor
hopping energies in the tight-binding limit. In this work, ρ0 = 1.

A honeycomb lattice is composed of two triangular sublattices. Namely, there are two
initial points A ∈ Ω and B ∈ Ω, where A �= B; then the two sublattices are

ΓA = A+ Γ, ΓB = B+ Γ.

A honeycomb lattice is the union of the two sublattices, i.e.,

ΓH = ΓA ∪ ΓB.

It is noted that a honeycomb lattice and the corresponding triangle lattice have the
same unit cell Ω which is equivalent to a hexagon due to the periodicity. However, a
honeycomb potential has two minima in a cell, while the triangle potential has only
one. These minima of a potential are usually referred to as the locations where atoms,
nuclei, or the maximal refractive index are located. The corresponding Bloch waves
are very different between these two lattices.

A honeycomb lattice and corresponding indices used herein are displayed in Figure
1. All dots are A lattice points, and all circles are B lattice points. We see that an
A lattice point Ap ∈ ΓA has three nearest neighbors that are all B lattice points:
Bp, Bp−v1 , and Bp−v2; a B lattice point has three nearest neighbors that are all A
lattice points: Ap, Ap+v1 , and Ap+v2 .

The dual lattice Γ′ is spanned by the dual basis vectors k1 and k2, where km ·vn =
2πδmn; i.e., Γ

′ = {mk1 + nk2 : m,n ∈ Z}. The primitive dual unit cell Ω′ is defined
as

Ω′ =
{
q1k1 + q2k2 : qj ∈

[
− 1

2
,
1

2

)}
.

This is also called the Brillouin zone.
The nonlinear evolution depends on the properties of the associated linear eigen-

value problem, namely,

(2.2) (−Δ+ V (r))ϕn = μnϕn,

where ϕ is called a Bloch mode and n = 1, 2, . . . denotes the band index. From
the Bloch–Floquet theorem, ϕn = eikrUn(r;k), where Un(r + v; ·) = Un(r; ·) ∀v ∈
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WAVE PACKETS IN HONEYCOMB LATTICES 1963

Γ. The dispersion relation μn(k) is defined in the Brillouin zone Ω′. Alternatively,
μn(k+k′) = μn(k)∀k′ ∈ Γ′. Similar to the Fourier decomposition, {ϕn(r;k)}n∈N,k∈Ω′

is a complete set in L2(R2) [29].
The analytical structure of the dispersion relation μn(k) and associated Bloch

modes in two dimensions are, in general, quite complex. In the tight-binding limit
(|V | � 1), the Bloch modes are highly localized near the lattice minima. The main
features of the Bloch modes are determined by the potential in the vicinity of the
minima. Due to the underlying periodicity, one needs only to construct a one-well
potential in the full plane, which coincides with the lattice potential in the vicinity of
a typical minima. The associated eigenfunctions are often referred as the “orbitals.”
Then the Bloch modes are approximated by the linear combinations of the orbitals
at different minima. A rigorous study on this approximation can be found in [2].

Suppose that φA(r) and φB(r) are the orbitals associated with the A and B lat-
tices, respectively (see [4, 2] for details). {(φA(r− v), φB(r− v))}v∈Γ provide useful
approximations of the lowest two bands in the sense that

(2.3) ϕ(r;k) ≈
∑
v∈Γ

(
Â(k)φA(r− v) + B̂(k)φB(r− v)

)
eik·v.

Note that we omit the band index n because we are interested only in the lowest
two bands. With this analytical construction of the Bloch modes, one can compute
the dispersion relation. Furthermore, it turns out that the dispersion relation can be
constructed from the coupled mode equation which describes the envelope dynamics.

In general, we note that a wave packet in L2(R2) associated with the lowest two
bands can then be represented by

ψ(r) ≈
∑
p∈Γ

(ApφA(r− p) +BpφB(r− p)) .

{(Ap, Bp)}p∈Γ ∈ l2(Γ) is a natural representation of the continuous L2(R2) envelope
associated with the lowest two bands. On the other hand, suppose that we are inter-
ested in the envelope dynamics; then {(Ap(z), Bp(z))}p∈Γ satisfy the discrete coupled
mode equation (2.4):

i
dAp

dz
+ L−Bp + σ|Ap|2Ap = 0,(2.4a)

i
dBp

dz
+ L+Ap + σ|Bp|2Bp = 0,(2.4b)

where z ∈ R is the propagation distance, p ∈ Γ, σ = ±1, and

L−Bp = Bp + ρBp−v1 + ρBp−v2 ,

L+Ap = Ap + ρAp+v1 + ρAp+v2 ,

where ρ > 0 denote the ratio among the nearest neighbor hopping energies which can
be different due to the deformation. For simplicity, we herein have assumed that two
nearest neighbor hopping energies are the same and differ from the third one. The
above system describes the dynamics of Bloch waves associated with the lowest two
bands in a honeycomb lattice.

The discrete equation (2.4) has been shown to be a natural reduction of the above
lattice NLS equation (2.1) in the strong potential limit: |V | � 1 [4, 2]. The discrete
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1964 MARK J. ABLOWITZ AND YI ZHU

system is easier to compute numerically and in turn leads to interesting continuous
equations in the long wave limit. Detailed derivations and justifications can be found
in [4, 2]. Many interesting physical problems can be directly described by this mode
equation. Examples include the evolution of waves in Bose–Einstein condensates [16],
conical and triangular diffraction in photonic crystals [4, 5], and exceptional point
dynamics in PT symmetric lattices [28]. As indicated above, the discrete system
(2.4) has been shown to replicate the phenomena of conical and triangular diffraction.
Further, since the system is derived on an asymptotically slower timescale than the
lattice NLS equation (2.1), computing with it is considerably faster.

Note that if a wave packet is associated with a specific wave number k, then it
can be conveniently represented by

ψ(r) ≈
∑
p∈Γ

(apφA(r− p) + bpφB(r− p)) eik·p.

For completeness we also give the equations of the discrete envelope in terms of
the variables {(ap(z), bp(z))}p∈Γ (see [4]):

i
dap
dz

+ L−
k bp + σ|ap|2ap = 0,(2.5a)

i
dbp
dz

+ L+
k ap + σ|bp|2bp = 0,(2.5b)

where

L−
k bp = bp + ρbp−v1e

−ik·v1 + ρbp−v2e
−ik·v2 ,

L+
k ap = ap + ρap+v1e

ik·v1 + ρap+v2e
ik·v2 .

3. Linear dispersion relation of the discrete mode equation. The lin-
ear evolution equation (with constant coefficients) can be solved by using a discrete
Fourier transform, i.e.,

Â(k; z) =
∑
v∈Γ

Ave
−ik·v

and

Av =
1

|Ω′|

∫
Ω′
Â(k)eik·vdk,

where |Ω′| is the area of Ω′.
Substituting the Fourier mode

{
(Â(k), B̂(k))e−iμz+ik·v}

v∈Γ
into the linear dis-

crete evolution problem associated with (2.4) leads to(
μ γ(k)

γ∗(k) μ

)(
Â(k)

B̂(k)

)
=

(
0
0

)
,(3.1)

where γ(k) = 1 + ρe−ik·v1 + ρe−ik·v2 and the asterisk is used to denote the complex
conjugate; i.e., γ∗(k) is the complex conjugate of γ(k). Note that, unlike the continu-
ous Fourier transform, k takes only values in Ω′ as opposed to all of R2. μ(k) is called
the dispersion relation, which is defined only in the Brillouin zone Ω′; alternatively,
μ(k) is continuous and periodic with two periods k1 and k2 in R2.
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WAVE PACKETS IN HONEYCOMB LATTICES 1965

Here we choose the following characteristic vectors of the honeycomb lattice:

v1 = l

(√
3

2
,
1

2

)
, v2 = l

(√
3

2
,−1

2

)
,

k1 =
4π

l
√
3

(
1

2
,

√
3

2

)
, k2 =

4π

l
√
3

(
1

2
,−

√
3

2

)
,

where l is the lattice constant.
Existence of nontrivial solutions of (3.1) requires that the determinant of the

coefficient matrix be zero, which leads to the two branches of the dispersion relation

(3.2) μ±(k) = ±
∣∣1 + ρe−ik·v1 + ρe−ik·v2

∣∣ .
We see that the dispersion relation has two branches: μ+(k) = −μ−(k). The

two branches may or may not intersect with each other, depending on the value of ρ
which measures the deformation. Let K∗ = K∗(ρ) ∈ Ω′ denote the special point(s) in
the Brillouin zone such that μ+(K∗) = mink∈Ω′μ+(k) and μ−(K∗) = maxk∈Ω′μ−(k).
The values (K∗, μ±(K∗)) are band edges of the two branches. If the two branches
intersect, μ+(K∗) = μ−(K∗) and (K∗, μ±(K∗)) are the intersection points.

Using β = 2ρ− 1, a direct calculation shows the following:
1. If β > 0, then K∗ has two values in the Brillouin zone Ω′: K∗ = ±K =

± 2
l

(
0, π − arccos( 1

2ρ)
)
and μ±(K∗) = 0. The two branches touch each other

at these two points. The two points are called the Dirac points in the deformed
honeycomb lattice. Near the K point, the dispersion relation has the leading
expansion μ±(K+q) = ±

√
q21 + (β2 + 2β)q22 + o(|q|), where q = (q1, q2) and

|q| � 1.
2. If β = 0, then K∗ has only one value in the whole Brillouin zone Ω′, K∗ =

1
2 (−k1 − k2) = ( 4π

l
√
3
, 0). In this critical case, the two Dirac points actually

merge into one due to the underlying periodicity of k ∈ R2. Namely, K →
2
l (0, π) =

1
2 (k1 − k2) as ρ → 1

2 , and both 1
2 (k1 − k2) and − 1

2 (k1 − k2) are
equivalent to 1

2 (−k1−k2) ∈ Ω′ due to the periodicity. Near the K∗ point, the
dispersion relation has the leading expansion μ±(K∗ + q) = ±|q1| + o(|q|),
where q = (q1, q2) and |q| � 1.

3. If β < 0, then K∗ has only one value in the whole Brillouin zone Ω′, K∗ =
1
2 (−k1−k2) = ( 4π

l
√
3
, 0). Note that μ+(K∗) > 0 and μ−(K∗) < 0, which means

that the two dispersion branches separate from each other. In other words,
there exists a gap between the two branches. Near K∗ points, the dispersion
relation has the leading expansion μ±(K∗+q) = ±

√
β2 + (1 + β)2q21+o(|q|),

where q = (q1, q2) and |q| � 1. It is seen that the width of the gap is 2|β|.
Here we discuss only the regime where 0 < ρ ≤ 1, i.e., −1 < β ≤ 1. Typical

dispersion relations near K∗ for different ρ values are illustrated in Figure 2.

4. Continuum limit and long wave approximation. In applications, the
dynamics of the wide envelope associated with a specific value of k is of interest. For
some situations, it is useful to derive a continuous system and analyze the continu-
ous equation instead of the differential-difference equation; in this regard we derive
continuous equations for our study of deformed lattices.

Suppose that the initial data of the discrete system is associated with a specific
k ∈ Ω′ value, i.e.,

{(Ap, Bp) |z=0 }p∈Γ = {(ap, bp)eik·p}p∈Γ.
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Fig. 2. Typical dispersion relations. (a)–(c) ρ = 1 or β = 1; (d)–(f) ρ = 0.5025 or β = 0.005;
(g)–(i) ρ = 0.45 or β = −0.1. The left figures are surface plots of the two branches near K∗; the
middle figures are the dispersion relations with fixed ky = K∗,y; the right figures are the dispersion
relations with fixed kx = K∗,x.

In addition, let us assume that the envelopes {(av, bv)}p∈Γ change slowly in p ∈ Γ.
Namely, suppose that the envelope scale is much greater than the lattice scale. Then
a long wave approximation can be employed; i.e., the characteristic length of the
envelope δ is much greater than the lattice scale l.

The discrete envelope can be considered as the continuous envelope evaluated
at the lattice points, i.e., ap(z) = a(r = p, z) and bp(z) = b(r = p, z); here the
continuous transverse variable associated with the lattice is r = (r1, r2). In the
long wave approximation, the continuous envelopes are assumed to depend only on
the long wave envelope variables, and the amplitudes are small. Accordingly, we
define (a(r, z), b(r, z)) =

√
ν(ã(x, z̃), b̃(x, z̃)), where the transverse variable is given by

x = (x1, x2) = r/δ and the propagation variable by z̃ = νz, where ν =
√
3 l
2δ � 1,

recalling that the lattice size is l.
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WAVE PACKETS IN HONEYCOMB LATTICES 1967

Then the continuum limit and long wave approximation give that

dap(z)

dz
=

√
νν∂z̃ ã(x, z̃)

and

ap+v(z) =
√
ν

(
1 +

1

δ

2∑
m=1

vm∂m +
1

2δ2

2∑
m,n=1

vmvn∂xm,xn + · · ·
)
ã(x, z̃)

∣∣∣∣
x=p/δ

,

where v = (v1, v2), which is on the order of l. For convenience, we drop the tildes on
top of a(x, z̃) and b(x, z̃) and replace z̃ by z in the following analysis.

Here we are interested only in the effective dynamics associated with the special
point(s) K∗. It turns out that if the initial envelope is associated with a value k
which is far away from K∗, then the continuous dynamics reduces to an effective NLS
equation in a moving frame [4]. This is the case for most simple lattices. At K =
K∗, as β changes from a positive number to a negative number, both the geometric
structure of the dispersion relation and the associated effective wave dynamics change
dramatically. We investigate different important cases next.

5. Effective envelope equations when two dispersion relation branches
touch. In this regime, β ≥ 0 and two branches touch each other at the Dirac point(s):
K and −K. Here we consider only the effective dynamics associated with K; the
analysis for −K is similar.

At k = K, μ± = 0 and by direct calculation we have

ρe−iK·v1 + ρe−iK·v2 = −1, ρe−iK·v1 − ρe−iK·v2 = −i
√
4ρ2 − 1.

Let us define ζ =
√
4ρ2 − 1 =

√
β2 + 2β. Using Taylor expansion and evaluating at

k = K, we have

L−
Kbp ∼ ν3/2

[(
∂x1 + i

ζ√
3
∂x2

)
− ν

2

(
∂2x1

+
1

3
∂2x2

+ 2i
ζ√
3
∂x1∂x2

)

+
ν2

6

(
∂3x1

+
1

3
√
3
∂3x2

+ ∂x1∂
2
x2

+
√
3iζ∂2x1

∂x2

)]
b+ · · ·

and

L+
Kap ∼ ν3/2

[(
− ∂x1 + i

ζ√
3
∂x2

)
− ν

2

(
∂2x1

+
1

3
∂2x2

− 2i
ζ√
3
∂x1∂x2

)

− ν2

6

(
∂3x1

+
1

3
√
3
∂3x2

+ ∂x1∂
2
x2

−
√
3iζ∂2x1

∂x2

)]
a+ · · · .

Introducing the variables x = x1, y = x2√
3
and keeping the Taylor expansion up

to order ν3, we have the following continuous equation:

i∂za+ (∂x + T1)b+ σ|a|2a = 0,(5.1a)

i∂zb+ (−∂x + T2)a+ σ|b|2b = 0,(5.1b)

where

T1 = iζ∂y −
ν

2

(
∂2x + ∂2y + 2iζ∂x∂y

)
+
ν2

6

(
∂3x + ∂3y + 3∂x∂

2
y + 3iζ∂2x∂y

)
,

T2 = iζ∂y −
ν

2

(
∂2x + ∂2y − 2iζ∂x∂y

)
− ν2

6

(
∂3x + ∂3y + 3∂x∂

2
y − 3iζ∂2x∂y

)
.
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Fig. 3. Conical and elliptical diffraction associated with the NLD equation (5.2) for ζ = 1 (left)
and ζ = 0.5 (right) at z = 12.

Note that T2 is the adjoint operator of T1 in H2(R2).
If β = O(1), then ζ = O(1) and we have a maximally balanced leading order

equation which is a nonlinear Dirac (NLD) equation:

i∂za0 + [∂x + iζ∂y] b0 + σ|a0|2a0 = 0,(5.2a)

i∂zb0 + [−∂x + iζ∂y] a0 + σ|b0|2b0 = 0,(5.2b)

where a = a0+a1, b = b0+b1, and a1, b1 are on the order of ν. This is the leading order
nontrivial envelope dynamics. The leading linear part is actually a two-dimensional
wave equation which is a weakly dispersive system. Higher order effects can be studied
by adding higher order dispersive terms to the above system. This system exhibits
the so-called conical/elliptical diffraction phenomenon. Figure 3 shows that initial
Gaussians evolve to expanding rings or ellipses with different values of ζ.

Next we consider 0 ≤ β � 1, which we will use as one of the two small param-
eters, noting that ζ =

√
β2 + 2β = O(

√
β) (the other small parameter is ν). The

leading order equation is a one-dimensional wave equation. The effective envelope
dynamics is studied on an appropriate slower timescale. Accordingly, we introduce a
slow timescale, Z = εz, where ε� 1 will depend on ν and ζ to be defined later.

It is convenient to convert the coupled system (5.1) to a second order system.
Namely,

∂2
za− ∂2

xa+ (∂x(T2 − T1) + T1T2)a+ σ
[
−i∂z(|a|2a) + (∂x + T1)(|b|2b)

]
= 0,(5.3a)

∂2
zb− ∂2

xb+ (∂x(T2 − T1) + T2T1)b+ σ
[
−i∂z(|b|2b) + (−∂x + T2)(|a|2a)

]
= 0,(5.3b)

where we note that T2T1 = T1T2 in H2(R2).
We express a and b as

a =
√
ε(a0(z, x, y, Z) + a1(z, x, y, Z)), b =

√
ε(b0(z, x, y, Z) + b1(z, x, y, Z)),

where a0 and b0 satisfy the leading order equations, and the dependence on z can be
understood via the leading order equations while the dependence on Z will be given
by the effective dynamics; a1 and b1 are remainders which are on the order of O(ε).
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WAVE PACKETS IN HONEYCOMB LATTICES 1969

Define two moving frames, i.e., θ = x − z and η = x + z; hence a0 and b0 have
the form

a0 = F (θ, y, Z) +G(η, y, Z),

b0 = F̃ (θ, y, Z) + G̃(η, y, Z).

Furthermore, from the above equations we have

∂θ(−iF + F̃ ) + ∂η(iG+ G̃) = 0

and

∂θ(−iF̃ − F ) + ∂η(iG̃−G) = 0.

Thus,

∂θ(−iF + F̃ ) = 0

and

∂η(iG+ G̃) = 0.

Hence to the leading order for decaying functions, F̃ = iF and G̃ = −iG. We remark
that the equation for the remainder a1 is

4∂θ∂ηa1 = h1(a0, b0, a1, b1) + Tθ,yF + Tη,yG+ ε (−2∂θ∂ZF + 2∂η∂ZG)

+ εσ
[
2i∂θ(|F |2F + 2|G|2F +G2F ∗)− 2i∂η(|G|2G+ 2|F |2G+ F 2G∗)

]
,

and the equation for the remainder b1 is

4∂θ∂ηb1 = h2(a0, b0, a1, b1) + Tθ,yF + Tη,yG+ ε (−2∂θ∂ZF + 2∂η∂ZG)

+ εσ
[
2i∂θ(|F |2F + 2|G|2F +G2F ∗)− 2i∂η(|G|2G+ 2|F |2G+ F 2G∗)

]
,

where the operator Tθ,y is of the form

Tθ,y = −ζ2∂2y + iζν(∂2θ∂y − ∂3y)−
ν2

12

(
∂4θ + 6∂2θ∂

2
y − 3∂4y + 4∂θ∂

3
y

)
and Tη,y is exactly the same as Tθ,y by changing θ to η. In order to ensure that
the estimates of the remainder a1 = O(ε), b1 = O(ε) hold for large z, secular terms
need to be removed. When we integrate a1, secular terms arise from the pieces that
are functions of θ or η alone, since the terms containing both θ and η are relatively
higher order terms; all other higher order terms are in hj(a0, b0, a1, b1) = o(ε + ν2 +
νζ + ζ2), j = 1, 2. Removal of secular terms in the equation for b1 leads to the same
equations.

5.1. Effective envelope dynamics: Maximal balance I. In the regime β =
O(ν2) (i.e., ν2 = O(νζ) = O(ζ2) = O(β)) with ε = ν2 = O(β), removal of secular
terms at order O(ε) leads to the following maximally balanced nonlinear equation for
the right-moving component,

∂θ∂ZF +
1

2
M1F − σi∂θ(|F |2F ) = 0,(5.4)
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Fig. 4. Left: Numerical simulation of the maximal balanced equation (5.4). Right: Numerical
simulation of the NLSKP equation (5.6). In both simulations, the initial condition F (θ, y, Z = 0) =

θe−θ2−y2
, σ = +1, and α1 = 1; snapshot at Z = 1.2. The horizontal-vertical coordinate is (θ, y).

and the left-moving component equation is

∂η∂ZG− 1

2
M1G− σi∂η(|G|2G) = 0,

where the operator M1 is defined as

M1 = α2
1∂

2
y − iα1(∂

2
θ∂y − ∂3y) +

1

12

(
∂4θ + 6∂2θ∂

2
y − 3∂4y + 4∂θ∂

3
y

)
and α1 = ζ

ν = O(1). These two equations, (5.4) and (5.1), are nonlocal along the θ
or η direction.

In this paper, we will not study the wave dynamics deeply in the reduced equa-
tions except in a few numerical simulations. The simulation given in Figure 4 shows
the evolution given the initial data F (θ, y, Z = 0) = θe−θ2−y2

, σ = +1. The orig-

inal conical/elliptical diffraction when ρ = 1, ρ =
√
2
2 has now degenerated into

nearly straight-line diffraction with some additional parabolic structure. The numer-
ical schemes and related discussion on the initial conditions are discussed in section
7.

5.2. Effective envelope dynamics: Limit to the NLSKZ equation. In the
regime β � ν2 (i.e., ν2 � νζ � ζ2) with ε = ζ2, the removal of the secular terms
at order O(ε) leads to the two decoupled equations; the right-moving component is
governed by

∂θ
(
∂ZF − σi|F |2F

)
+

1

2
∂2yF = 0,(5.5)

and the left-moving component is governed by

∂η
(
∂ZG− σi|G|2G

)
− 1

2
∂2yG = 0.

In fact, (5.5) results from the above maximal equation, (5.4), by taking α1 � 1 with
the above choice of nonlinear scaling. In analogy with the results associated with the
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WAVE PACKETS IN HONEYCOMB LATTICES 1971
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Fig. 5. Numerical comparison between (5.1) and the NLSKZ equation, (5.5). Top: Intensity plot

of the a(x, z = 120) with initial condition a(x, 0) = b(x, 0) =
√
εxe−x2−y2

with σ = +1 and ζ = 0.1;
hence ε = ζ2 in (5.1). Bottom left: Zoomed-in plot of the intensity of the right-moving component of
the top figure, evaluated in the “fast” z coordinate at z = 120. Bottom right: Intensity plot of reduced

equation F as evaluated at the “slow” time Z = 1.2 with initial data F (θ, y, Z = 0) = θe−θ2−y2
,

where we recall that Z = ζ2z = 10−2z , or Z = 1.2 when z = 120. The horizontal-vertical coordinate
for the top figure and bottom left figure is (x, y); the horizontal-vertical coordinate for the bottom
right figure is (θ, y).

dispersionless KP equation, originally derived by Lin, Reissner, and Tsien [22], also
known as the KZ equation [34], we call this the NLSKZ equation.

In Figure 5 the same initial condition as above is used: F (θ, y, Z = 0) = θe−θ2−y2

,
σ = +1. We see a more distinctive parabolic shape than in Figure 4, obtained from
the maximal balanced equation (5.4); both exhibit the straight-line diffraction pattern
since the one-dimensional wave equation is the leading order equation. In this case
we compare the results of (5.1) and (5.5). The intensity for F is scaled by a factor√
ε = 0.1.

5.3. Effective envelope dynamics: Near critical limit to the NLSKP
equation. In the “near critical” regime when β � ν2 (i.e., ζ2 � ν2) we choose
ε = ν2 � β. Removal of secular terms leads to the decoupled equations; the right-
moving component is governed by

∂θ

(
∂ZF +

1

24

(
∂3θ + 6∂θ∂

2
y + 4∂3y

)
F − σi|F |2F

)
− 1

8
∂4yF = 0,(5.6)

and the left-moving component is governed by

∂η

(
∂ZG− 1

24

(
∂3η + 6∂η∂

2
y + 4∂3y

)
G− σi|G|2G

)
+

1

8
∂4yG = 0.

In analogy with the results of the two-dimensional KP equation [19], we term the
above equation an NLSKP-type equation, which can be obtained from the maximally
balanced equation (5.4) by taking α1 � 1 with the above choice of nonlinear scaling.

In Figure 4 we use the same initial conditions above, F (θ, y, Z = 0) = θe−θ2−y2

.
We see that the pattern has properties similar to those above, but now we observe a
tendency towards localization of the high intensity portion of the beam.

We recognize that (5.6) is not in complete analogy with how the KP equation
modifies its one-dimensional counterpart Korteweg–de Vries equation [1]. A direct
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1972 MARK J. ABLOWITZ AND YI ZHU

NLS analogy would lead to the following form:

∂θ
(
∂ZF + i∂2θF − σi|F |2F

)
± ∂2yF = 0.(5.7)

Actually, (5.7) arises in a different deformation limit. We will study this in the future.

6. Two dispersion branches separate from each other: Spectral gap.
When −1 < β < 0, minkμ+(k) � maxkμ−(k); i.e., there is a gap between two
dispersion branches. The band edges to this gap for both branches are reached at
K∗ = − 1

2k1 − 1
2k2 . The width of the band gap is 2|β|. It is convenient to introduce

a new variable κ = |β|
ν so that the width of the gap is 2κν.

Taking the continuous limit from the discrete system (2.5), making use of the
relation ρe−iK∗·v1 = ρe−iK∗·v2 = −ρ, keeping terms up to ν2, and rescaling the
variables x = x1, y = x2/

√
3, we obtain the continuous equations

i∂za+ (1− κν)F1b+ κb+ σ|a|2a = 0,(6.1a)

i∂zb+ (1− κν)F2a+ κa+ σ|b|2b = 0,(6.1b)

where

F1 = ∂x − ν

2
(∂2x + ∂2y) +

ν2

6

(
∂3x + ∂3y + 3∂x∂

2
y

)
,

F2 = −∂x − ν

2
(∂2x + ∂2y)−

ν2

6

(
∂3x + ∂3y + 3∂x∂

2
y

)
.

The operator F2 is the adjoint operator of F1 in H2(R2).
As before, we convert the above equations to a second order system which is of

the form

∂2za+ κ2a+ κ(1− κν)(F1 + F2)a+ (1− κν)2F1F2a

+ σ
[
−i∂z(|a|2a) + (κ+ (1− κν)F1)(|b|2b)

]
= 0,

∂2zb+ κ2b+ κ(1− κν)(F1 + F2)b+ (1 − κν)2F2F1b

+ σ
[
−i∂z(|b|2b) + (κ+ (1 − κν)F2)(|a|2a)

]
= 0,

where the operator F1F2 reads

F1F2 = −∂2x − ν2

12

(
∂4x + 6∂2x∂

2
y − 3∂4y + 4∂x∂

3
y

)
+O(ν3).

We have two (generally small) parameters: ν and κ. Due to the different balances
between these small parameters, we have different leading order equations.

In the regime where |β| � ν, i.e., κ � 1, the dominant linear terms give rise to
a wave equation. Similar to the above section, we introduce the moving coordinates
θ = x− z, η = x+ z and the slow scale Z = εz. Express a and b as

a =
√
ε(a0(θ, η, y, Z) + a1(θ, η, y, Z)), b =

√
ε(b0(θ, η, y, Z) + b1(θ, η, y, Z)),

where a0 and b0 satisfy the leading order equations; a1 and b1 are remainders which
are small and of order O(ε).

As above, a similar calculation shows that

a0 = F (θ, y, Z) +G(η, y, Z), b0 = iF (θ, y, Z)− iG(η, y, Z).
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WAVE PACKETS IN HONEYCOMB LATTICES 1973

We note that the equation for the remainder a1 is

4∂θ∂ηa1 = g1(a0, b0, a1, b1) + Fθ,yF + Fη,yG+ ε [−2∂θ∂ZF + 2∂η∂ZG)

+ εσ
[
2i∂θ(|F |2F + 2|G|2F +G2F ∗)− 2i∂η(|G|2G+ 2|F |2G+ F 2G∗)

]
,

and the equation for the remainder b1 is

4∂θ∂ηb1 = g2(a0, b0, a1, b1) + Fθ,yF + Fη,yG+ ε (−2∂θ∂ZF + 2∂η∂ZG)

+ εσ
[
2i∂θ(|F |2F + 2|G|2F +G2F ∗)− 2i∂η(|G|2G+ 2|F |2G+ F 2G∗)

]
,

where the operator Fθ,y is of the form

Fθ,y = −ν
2

12

(
∂4θ + 6∂2θ∂

2
y − 3∂4y + 4∂θ∂

3
y

)
− κν(∂2θ + ∂2y) + κ2

and Fη,y is obtained by changing θ to η; gj(a0, a1, b0, b1) = o(ε+κ2+ν2+νκ), j = 1, 2,
contain higher order terms.

6.1. Effective envelope dynamics: Maximal balance II. If |β| = O(ν2),
i.e., κ = O(ν), we choose ε = ν2. All terms in Fθ,y and Fη,y have the same order
as ε. Removal of secular terms at order ε leads to two maximally balanced equations
which govern the leading order dynamics of the right- and left-moving components;
the equation for F is

∂θ∂ZF +
1

2
M2F − σi∂θ(|F |2F ) = 0,(6.2)

and the equation for G is

∂η∂ZG− 1

2
M2G+ σi∂η(|G|2G) = 0,

where the operator M2 is defined as

M2 = −α2
2 + α2(∂

2
θ + ∂2y) +

1

12

(
∂4θ + 6∂2θ∂

2
y − 3∂4y + 4∂θ∂

3
y

)
and α2 = |β|

ν2 .
The evolution pattern of this equation, (6.2), is exhibited in Figure 6. It is

similar to the NLSKP case (see Figure 4), but this pattern has additional transverse
dispersion.

6.2. Effective envelope dynamics: Near critical limit from the gap
regime to NLSKP. If α2 � 1 or |β| � ν2 (i.e., κ � ν), then a limiting form
of the maximal balanced equation (6.2) with ε = ν2 leads to two decoupled NLSKP
equations; the right-moving component is governed by

∂θ

(
∂ZF +

1

24

(
∂3θ + 6∂θ∂

2
y + 4∂3y

)
F − σi|F |2F

)
− 1

8
∂4yF = 0,(6.3)

and the equation for the left moving component is of the form

∂η

(
∂ZG− 1

24

(
∂3η + 6∂η∂

2
y + 4∂3y

)
− σi|G|2G

)
+

1

8
∂4yG = 0.

This is essentially the same as what we have derived in subsection 5.3. Since this
equation was numerically considered earlier, there is no reason to carry out further
numerical calculations here.
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Fig. 6. Numerical simulation of the maximally balanced equation (6.2) with F (θ, y, Z = 0) =

θe−θ2−y2
and α2 = 1. Note the similarity to the near critical case of NLSKP (see Figure 4), but

this case has additional transverse dispersion. The horizontal-vertical coordinate is (θ, y).

6.3. Effective envelope dynamics: Limit to a nonlocal 1+1-dimensional
evolution equation. When α2 � 1 with ν2 � |β| � ν (i.e, ν � κ � 1), the limit
of (6.2) with ε = κ2 leads to two decoupled 1+1-dimensional nonlinear evolution
equations; the right-moving component is

∂θ
(
∂ZF − σi|F |2F

)
− 1

2
F = 0,(6.4)

and the left-moving component is

∂η
(
∂ZG− σi|G|2G

)
+

1

2
G = 0.

This is a nonlocal cubic self-phase equation (NCSP). Notice that there are no trans-
verse dispersive terms in the above decoupled equations; they are nonlocal 1+1-
dimensional modifications of the NLS equation. Thus in analogy with the region
near ρ = 1/2 with Dirac points, in the gap region near ρ = 1/2 we see that there is
a maximally balanced equation, (6.2), from which the other two equations, (6.3) and
(6.4), result as limiting cases.

In Figure 7 for the same initial conditions as chosen earlier, we compare the high
order continuous equation, (6.1), and the reduced 1+1-dimensional equation, (6.4).
We see that they agree well and that there is a stronger tendency towards localization
of the beam, whereas in Figure 6 there was significant transverse variation.

6.4. Effective envelope dynamics: NLD equation with nonzero mass.
Next we turn to the gap region where the gap width is larger than in the previous
cases; in particular we next consider |β| = O(ν). In this regime, the leading order
equation is no longer the 1+1-dimensional nondispersive wave equation. Neglecting
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Fig. 7. Numerical comparison between equations (6.1) and (6.4). Top: Intensity plot of the

a(x, z = 120) with initial condition a(x, 0) = b(x, 0) =
√
εxe−x2−y2

with σ = +1 and β = −0.001,
ν = 0.01 in (5.1). Bottom left: Zoomed-in plot of the intensity of the right-moving component.
Bottom right: Intensity plot of F (θ, y, Z = 1.2); note that ν � κ � 1. Also recall that Z = εz,
where κ = 0.1, ε = κ2 = 10−2. The horizontal-vertical coordinate for the top figure and bottom left
figure is x− y; the horizontal-vertical coordinate for the bottom right figure is θ − y.

higher order terms in the coupled system (6.1), we have a leading order equation of
the form

i∂za0 + ∂xb0 + κb0 + σ|a0|2a0 = 0,(6.5a)

i∂zb0 − ∂xa0 + κa0 + σ|b0|2b0 = 0.(6.5b)

Note that κ = |β|
ν = O(1) in this regime. This is a one-dimensional nonlinear Dirac

equation with nonzero mass (NLDM). Interestingly it admits localized soliton solu-
tions and kink solutions [11]. This is consistent with the expectation that in regions
where there is a gap in the spectrum, localized solutions can occur.

6.5. Effective envelope dynamics: NLS equation. In the regime ν � |β| �
1 (i.e., ν � κ−1 � 1), which has an asymptotically larger spectral gap width than
the prior regime, the leading order equation yields a phase modulation, i.e.,

∂2za0 + κ2a0 = 0, ∂2zb0 + κ2b0 = 0.

It is useful to introduce the variables z̄ = κz and Z = εz̄ and express a and b as

a =
√
εκ(a0(z̄, Z, x, y) + a1(z̄, Z, x, y)), b =

√
εκ(b0(z̄, Z, x, y) + b1(z̄, Z, x, y)),

where a0 and b0 satisfy the leading order equations; a1 and b1 are remainders which
are small.

We have the following solutions for a0 and b0:

a0 = P (Z, x, y)eiz̄ +Q(Z, x, y)e−iz̄ ,

b0 = P (Z, x, y)eiz̄ −Q(Z, x, y)e−iz̄ .

Substituting the expansion into the equation for a, we obtain the equation for a1
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as

−(∂2z̄a1 + a1) = f1(a0, b0, a1, b1) + 4εσQ2P̄ e−3iz̄ − 2εP 2Q̄e3iz̄

+ eiz̄
(
ε2i∂ZP − κ−1ν(∂2x + ∂2y)P − κ−2∂2xP + 2εσ(|P |2 + 2|Q|2)P

)
+ e−iz̄

(
−ε2i∂ZQ− κ−1ν(∂2x + ∂2y)Q− κ−2∂2xP − 2εσ(|Q|2 + 2|P |2)Q

)
,

and the equation for b1 is

−(∂2z̄b1 + b1) = f2(a0, b0, a1, b1) + 4εσQ2P̄ e−3iz̃ − 2εP 2Q̄e3iz̃

+ eiz̄
(
ε2i∂ZP − κ−1ν(∂2x + ∂2y)P − κ−2∂2xP + 2εσ(|P |2 + 2|Q|2)P

)
+ e−iz̄

(
−ε2i∂ZQ− κ−1ν(∂2x + ∂2y)Q − κ−2∂2xP − 2εσ(|Q|2 + 2|P |2)Q

)
,

where fi(a0, b0, a1, b1) = o(ε, κ−2, νκ−1) contain all higher order terms.

Removal of secular terms leads at order ε (note that ε = κ−2 = ν2

β2 ) to the
following one-dimensional focusing-defocusing NLS equations:

i∂ZP − 1

2
∂2xP + σ(|P |2 + 2|Q|2)P = 0,(6.6a)

i∂ZQ +
1

2
∂2xQ+ σ(|Q|2 + 2|P |2)Q = 0,(6.6b)

where the dispersion along the y direction contained in the terms (∂2x + ∂2y)P and
(∂2x + ∂2y)Q is of smaller order and hence omitted in the leading order dominant
equation. It should be noted that when |β| becomes larger, the dispersive terms
along the y direction become stronger. We also note that if, say, P = 0 initially, it
remains zero, and then standard NLS equations result for Q; this equation admits
localized soliton solutions if σ = +1. We also see that NLS gap solitons can exist
only when the gap is wide enough compared to the envelope, i.e., |β| � ν. A similar
discussion can be used to establish that if |β| = O(1), the governing equation would
be a two-dimensional NLS equation. Interested readers can refer to [4].

7. Summary: Asymptotic equations due to deformations. Here we refer
to Figure 8, which conveniently illustrates the regimes where the reduced equations
are located in a (ν, β) diagram.

We see that in the regime where β and ν are small there are two parabolic regions
|β| = ±ν2 in which maximal balanced equations arise. These and other limiting
equations as well as their regions of validity are given in the figure.

In this paper we have used numerical simulations to exhibit the dynamics cor-
responding to the different regimes and to elucidate our analysis. The numerical
scheme that we used is the spectral method equipped with an ETDRK4 method [20].
We simulated all the nonlocal-type equations and chose typical examples to compare
the dynamics between the original multiscale long wave envelope equations and corre-
sponding reduced effective envelope equations. The results are shown in the respective
sections in which the equations are derived.

Based on the behavior of the KP equation [1], the initial condition is required to
satisfy the constraint

(7.1)

∫
R

F (θ, y, Z)dθ = 0.

In [3], this constraint is discussed in more detail, as well as its effect on the decay
and regularity of solutions. The decay and regularity of solutions associated with
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Fig. 8. This schematic figure shows the various regimes where the reduced asymptotic equations
are located in the (ν, β) plane. Two maximal balanced equations, (5.4) and (6.2), arise in the two
parabolic regions |β| = O(ν2). When |β| � ν2, the NLSKP equations, (5.6), are dominant. When
ν2 � β � 1, two dispersionless equation, NLSKZ (5.5) and NCSP (6.4), arise. When ν2 � |β| � ν,
the massless NLD (5.2) and the NLDM (6.5) are obtained. When ν � |β| � 1, a 2 + 1 NLD (5.2)
and NLS-type equations are obtained.

the equations derived here remain for future investigation. We choose the initial
conditions F (θ, y, Z = 0) = θe−θ2−y2

for the reduced equations. This initial data
satisfies the constraint (7.1). Accordingly, in (5.1) and (6.1) we choose a(x, z = 0) =

b(x, z = 0) =
√
εxe−x2−y2

, where the values of ε are chosen to be consistent with the
parameter regimes governing the reduced equations.

8. Conclusion and discussion. This work studies the effective or reduced
asymptotic dynamics of Bloch waves in deformed honeycomb lattices. In honey-
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comb lattices the lowest two bands of the dispersion relation of the lattice can touch
each other at isolated points, termed Dirac points. The corresponding Bloch wave
dynamics associated are governed by nonlinear discrete Dirac equations—see (2.4) or
(2.5). However, as discussed here, the location of the Dirac points may change and
even disappear when the lattices are deformed. This work gives a comprehensive de-
scription of the essential dynamics associated with the deformation process. The goal
of this study is to derive the effective long wave (ν � 1) envelope equations in the
interesting parameter deformation regimes, −1 < β < 1, 0 < ρ < 1, and β = 2ρ− 1,
and develop some basic understanding of the phenomena these equations describe.
The well-posedness of the reduced equations and rigorous asymptotic estimates are
interesting questions but are outside the scope of this work.

In the regions sufficiently close to the merging of Dirac points and appearance of
a small gap in the spectrum (|β| = O(ν2)) there are two main equations, depending
on whether there are Dirac points (β > 0) or there is a gap (β < 0) in the spectrum
between the two dispersion branches. When there are Dirac points, the main equation
is (5.4); on the other hand, when there is a sufficiently small gap, the main equation
is (6.2).

The main equation (5.4) has two limits: an NLSKZ equation (5.5) when β � ν2,
and an NLSKP-type equation (5.6) when we are extremely close to the merging point,
β � ν2. The equations (5.4)–(5.6) also show how conical and elliptical diffraction
modify into straight-line diffraction.

When we are close to β = 0 but the Dirac points disappear and there is a gap in
the spectrum, the main equation (6.2) limits to cases when the gap is very narrow,
in which case the governing equation is still an NLSKP-type equation—see (5.6). At
larger values of the gap width, the main equation (6.2) limits to a modified nonlocal
1+1-dimensional modification of the NLS equation; see (6.4).

When the gap width is comparable to the envelope scale, the governing equation
becomes a Dirac equation with nonzero mass, (6.5). When the gap width is even
larger, the governing equation is then a coupled focusing-defocusing NLS equation,
(6.6). Both the NLDM and NLS equations indicate the existence of gap solitons.

Finally, it is remarkable that there are many asymptotically interesting equations
that result from the discrete systems (2.4) or equivalently (2.5). This is a reflection of
the fact that these discrete equations are derived from an underlying physically very
important equation: the lattice NLS equation (2.1) with a honeycomb potential.

Acknowledgments. The authors are grateful to Professor William L. Kath and
to the referees for useful comments and suggestions.
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