
ar
X

iv
:1

71
2.

01
37

1v
1 

 [
co

nd
-m

at
.s

ta
t-

m
ec

h]
  2

7 
O

ct
 2

01
7

The Markov Process Admits a Consistent Steady-State Thermodynamic Formalism

Liangrong Peng,1 Yi Zhu,1 and Liu Hong1, a)

Zhou Pei-Yuan Center for Applied Mathematics, Tsinghua University, Beijing,

China, 100084

(Dated: 4 August 2018)

The seek for a new universal formulation for describing various non-equilibrium pro-

cesses is a central task of modern non-equilibrium thermodynamics. In this paper, a

novel steady-state thermodynamic formalism was established for general Markov pro-

cesses described by the Chapman-Kolmogorov equation. Furthermore, corresponding

formalisms of steady-state thermodynamics for master equation and Fokker-Planck

equation could be rigorously derived in mathematics. To be concrete, we proved that:

1) in the limit of continuous time, the steady-state thermodynamic formalism for the

Chapman-Kolmogorov equation fully agrees with that for the master equation; 2) a

similar one-to-one correspondence could be established rigorously between the mas-

ter equation and Fokker-Planck equation in the limit of large system size; 3) when a

Markov process is restrained to one-step jump, the steady-state thermodynamic for-

malism for the Fokker-Planck equation with discrete state variables also goes to that

for master equations, as the discretization step gets smaller and smaller. Our analysis

indicated that, with respect to the steady state, general Markov processes admit a

unified and self-consistent non-equilibrium thermodynamic formulation, regardless of

underlying detailed models.
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1. INTRODUCTION

How to extend the concepts and methodology of equilibrium thermodynamics to general

non-equilibrium cases is a big question.1,2 After more than 80 years of hard working since

Onsager published his celebrated reciprocal relation in 1931,3,4 which is generally recognized

as the beginning of modern non-equilibrium thermodynamics, there is no widely accepted

unified theory for describing various non-equilibrium processes. An important forward step

was done by Oono and Paniconi in 1998.5 By introducing several new concepts as “excess

heat” and “housekeeping dissipation” for characterizing the energy exchange between a given

system and its surroundings, they proposed an phenomenological framework to extend the

equilibrium thermodynamics to the non-equilibrium steady state (NESS). The NESS is a

direct generalization of thermodynamic equilibrium state, both of which are time irrelevant.

However, the NESS allows mass and energy transfer within a system or between systems,

just provided the system is still in a dynamical balance. The NESS is usually correlated

with key words like open system, heat and mass exchange, circular flows, break down of

detailed balance, net entropy production rate etc.6

Employing the basic framework of Oono and Paniconi, Sasa and Tasaki7 subsequently

attempted to search for a universal thermodynamic formalism in non-equilibrium physics,

which is expected to apply to a large class of non-equilibrium steady states including a heat

conducting fluid, a sheared fluid, and an electrically conducting fluid. Later, the formalism

of steady-state thermodynamics has been developed into great details in several concrete

classical examples. As an example, for the Langevin dynamics, Sekimoto,8,9 Hatano and

Sasa10 found that the extended form of the second law holds for transitions between steady

states and the Shannon entropy difference is related to the excess heat produced in an

infinitely slow operation. As to the master equation and Fokker-Planck equation, Esposito

and Van den Broeck11,12 showed that with respect to the steady state, the entropy production

rate could be decomposed into a sum of two non-negative terms, namely the adiabatic and

non-adiabatic parts, which reflect the irreversibility of the system under equilibrium and

steady states respectively. Based on their formulation, the second law of thermodynamics

could be casted into three different strengthened versions. Alternative strengthened versions

of second law of thermodynamics have been reported by Hong et al. for the master equation

too,13 and then been proved valid for general irreversible processes as an inference of famous
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KL divergence.14 Recently, by using the large-deviation theory, Ge and Qian15 proved that a

nonlinear chemical reaction system has a consistent steady state thermodynamic formulism

in both macroscopic and mesoscopic scales, including the free energy, entropy production

rate and its decomposition.

Although it appears that many classical physical systems could be casted into a unified

framework of steady-state thermodynamics proposed by Oono and Paniconi,5 it is still ques-

tionable how closely are those formalisms related to each other. Especially given the deep

mathematical and physical correlations among several well-known models, e.g., according

to Itô calculus the Fokker-Planck equation governs the probability distribution evolution of

a corresponding Langevin dynamics in time, it would be natural to expect the constructed

steady-state thermodynamic formalisms on those models will preserve such a kind of cor-

respondence. Only in this way, we could expect the existence, uniqueness, universality and

operability of a unified steady-state thermodynamics for general non-equilibrium processes,

rather than studies case by case.

Motivated by recent developments in the steady-state thermodynamics, particularly

the works of Esposito and Van den Broeck on the master equation and Fokker-Planck

equation,11,12 we are trying to show there is indeed a universal framework of steady-state

thermodynamic descriptions, at least for various Markov processes in the discrete or contin-

uous space. To be concrete, the steady-state thermodynamic formalism here we mean not

only includes those classical thermodynamic elements like the internal energy, Helmholtz

free energy, Boltzmann entropy, entropy flow and entropy production rate, but also contains

the excess heat, decomposition of entropy production rate into adiabatic and non-adiabatic

parts as well as three different strengthened versions of the second law of thermodynamics

as defined in Eqs. (4)-(13) for the Chapman-Kolmogorov equation.

More importantly, with respect to these quantities and relations for steady-state ther-

modynamics, a one-to-one correspondence during the coarse graining procedure from the

Chapman-Kolmogorov equation to the master equation and then to the Fokker-Planck equa-

tion could be rigorously established in mathematics. We show that: 1) in the limit of continu-

ous time, the steady-state thermodynamic formalism for the Chapman-Kolmogorov equation

fully agrees with that for the master equation; 2) a similar one-to-one correspondence could

be established rigorously between the master equation and Fokker-Planck equation in the

limit of large system size; 3) when a Markov process is restrained to one-step jump, the
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steady-state thermodynamic formalism for the Fokker-Planck equation with discrete state

variables also goes to the formulation for master equations, as the discretization step gets

smaller and smaller. By studying these concrete models of Markov processes, the universality

of steady-state thermodynamics could thus be verified.

2. STEADY-STATE THERMODYNAMIC FORMALISM FOR C-K

EQUATIONS

As the most important stochastic process, the Markov process has been extensively ap-

plied to laser physics, chemical reactions, molecular biology and many other fields.16 The

Markov property indicates that, the future probabilities of a Markov process could be solely

determined by the present state, hence independent of its whole history. Mathematically, a

Markov process is characterized by the well-known Chapman-Kolmogorov equation (or C-K

equation for short),

P (x, t+∆t|x0, t0) =

∫

dyP (x, t+∆t|y, t)P (y, t|x0, t0), t0 < t < t+∆t, (1)

where P (x, t + ∆t|x0, t0) is the transition probability density at t + ∆t given the initial

position x0 at time t0. In what follows, the dependence of variables on initial conditions will

be dropped for notational simplicity, i.e., P (x, t) ≡ P (x, t|x0, t0). Note the integral above

can be directly replaced by a summation in the discrete case, without affecting all following

results.

After sufficiently long time, a Markov process would be expected to reach a steady state

characterized by a time-independent probability density function

P s(x, t) = P s(x, t′) = P s(x), ∀t, t′ > t0, ∀x.

Substituting it into Eq. (1), one has

∫

dyP (x, t+∆t|y, t)P s(y) = P s(x, t +∆t) = P s(x) =

∫

dyP (y, t+∆t|x, t)P s(x), (2)

for every x and every t,∆t > 0. In the last equality, the normalization property
∫

dyP (y, t+

∆t|x, t) = 1 is used. If there is a P e(x) > 0 further satisfies

P (x, t+∆t|y, t)P e(y) = P (y, t+∆t|x, t)P e(x), ∀ t,∆t > 0, ∀ x, y, (3)
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Eq. (1) will be called under the condition of detailed balance, which apparently is a special

case of the steady state condition.

To construct the steady-state thermodynamics for the C-K equation, we define the en-

tropy function SC(t) as

SC(t) = −

∫

dxP (x, t) lnP (x, t), (4)

where the Boltzmann constant kB is set to be 1. With the entropy function in hand, it is

straightforward to calculate the entropy difference between two successive times,

SC(t+∆t)− SC(t) = −

∫

dx[P (x, t+∆t) lnP (x, t+∆t)− P (x, t) lnP (x, t)]

≡ ∆SC(t) + ∆IC(t),

where ∆SC(t) = −
∫

dx[P (x, t+∆t)− P (x, t)] lnP (x, t) denotes the usual entropy change,

and ∆IC(t) = −
∫

dxP (x, t + ∆t) ln P (x,t+∆t)
P (x,t)

≤ 0 denotes the information gain per ∆t by

virtue of the prior probability P (x, t).

The following proposition gives an explicit expression of the entropy change for the

Markov process described by the C-K equation.

Proposition 2.1. For the C-K equation (1), the entropy change per ∆t is given by

∆SC(t) =
1

2

∫∫

dxdyJC(x, y, t,∆t) ln
P (y, t)

P (x, t)
, (5)

where JC(x, y, t,∆t) = P (x, t+∆t|y, t)P (y, t)−P (y, t+∆t|x, t)P (x, t) is the thermodynamic

flux of the C-K equation.

Proof. By substituting the C-K equation (1) into the entropy change ∆SC(t), one obtains

∆SC(t) = −

∫

dx[P (x, t+∆t)− P (x, t)] lnP (x, t)

= −

∫∫

dxdy[P (x, t+∆t|y, t)− δ(y − x)]P (y, t) lnP (x, t)

= −

∫∫

dxdy[P (x, t+∆t|y, t)− δ(y − x)]P (y, t) ln
P (x, t)

P (y, t)

=
1

2

∫∫

dxdy[P (x, t+∆t|y, t)P (y, t)− P (y, t+∆t|x, t)P (x, t)] ln
P (y, t)

P (x, t)
,

where the symmetry of the first term with respect to dummy variables x and y is used in

the last equality.

This gives the desired result.
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Based on the general framework for the steady-state thermodynamics proposed by Oono

and Paniconi,5 the entropy change ∆SC(t) could be separated into two parts: the entropy

production ∆SC
i (t) and entropy flow ∆SC

e (t). The entropy production is always non-negative

as a manifestation of the second law of thermodynamics. More interestingly, it can be further

decomposed into a sum of two non-negative parts: the adiabatic and non-adiabatic entropy

productions according to their different origins, which are stated through the following

proposition.

Proposition 2.2. The entropy production ∆SC
i (t) and entropy flow ∆SC

e (t) per ∆t for the

C-K equation are given as

∆SC
i (t) =

1

2

∫∫

dxdyJC(x, y, t,∆t) ln
P (x, t+∆t|y, t)P (y, t)

P (y, t+∆t|x, t)P (x, t)
≥ 0, (6)

∆SC
e (t) =

1

2

∫∫

dxdyJC(x, y, t,∆t) ln
P (y, t+∆t|x, t)

P (x, t+∆t|y, t)
. (7)

Furthermore, the entropy production ∆SC
i (t) can be decomposed into an adiabatic and a

non-adiabatic parts as

∆SC
ad(t) =

1

2

∫∫

dxdyJC(x, y, t,∆t) ln
P (x, t+∆t|y, t)P s(y)

P (y, t+∆t|x, t)P s(x)
≥ 0, (8)

∆SC
na(t) =

1

2

∫∫

dxdyJC(x, y, t,∆t) ln
P s(x)P (y, t)

P s(y)P (x, t)
≥ 0. (9)

Here P s(x) denotes the probability density in the steady state.

Proof. It is sufficient to prove the non-negativity of ∆SC
ad(t) for t,∆t > 0, and ∆SC

na(t) ≥ 0

could be obtained in a similar way. By rewriting the adiabatic entropy production in a

compact form and using the inequality − ln ξ ≥ 1− ξ for ξ > 0, we have

∆SC
ad(t) =

∫∫

dxdyP (x, t+∆t|y, t)P (y, t)[− ln
P (y, t+∆t|x, t)P s(x)

P (x, t+∆t|y, t)P s(y)
]

≥

∫∫

dxdyP (x, t+∆t|y, t)P (y, t)[1−
P (y, t+∆t|x, t)P s(x)

P (x, t+∆t|y, t)P s(y)
]

=

∫∫

dxdyP (x, t+∆t|y, t)P (y, t)−

∫

dy
P (y, t)

P s(y)

∫

dxP (y, t+∆t|x, t)P s(x)

=

∫∫

dxdyP (x, t+∆t|y, t)P (y, t)−

∫

dy
P (y, t)

P s(y)

∫

dxP (x, t+∆t|y, t)P s(y) = 0,

where the steady state condition (2) is used in the last equation.
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Remark 2.3. The non-negativity of the entropy production ∆SC
i (t) is guaranteed by the sec-

ond law of thermodynamics. It becomes zero if and only if the condition of detailed balance

Eq. (3) holds. ∆SC
e (t) represents the entropy exchange between the system and its surround-

ing environment and does not have a definite sign. The adiabatic entropy production, also

known as the housekeeping heat, becomes zero if and only if the condition of detailed balance

holds; while the non-adiabatic part vanishes as long as the steady state is attained.

Further introduce the excess entropy change as

∆SC
ex(t) =

1

2

∫∫

dxdyJC(x, y, t,∆t) ln
P s(y)

P s(x)
, (10)

then following results are derived as a direct corollary of above propositions.

Corollary 2.4. For any t,∆t > 0, the C-K equation has following relations,

∆SC(t)−∆SC
e (t) = ∆SC

i (t) ≥ 0, (11)

∆SC(t)−∆SC
ex(t) = ∆SC

na(t) ≥ 0, (12)

∆SC
ex(t)−∆SC

e (t) = ∆SC
ad(t) ≥ 0. (13)

The above corollary presents three different versions of the second law of thermodynamics

for general Markov processes. Especially, the later two go beyond the classical one, and

indicate that the second law of thermodynamics could be strengthened for certain systems.

Till now we have completed the construction of steady-state thermodynamic formalism for

the C-K equation. As we will show later, above results, especially the strengthened versions

of second law of thermodynamics, exactly correspond to those for the master equation11 and

the Fokker-Planck equation12 in the thermodynamic limit, which constitutes the major con-

clusion of our current paper. Therefore, the steady-state thermodynamics is a self-consistent

theory at least for various non-equilibrium systems governed by the Markov process and has

more fruitful results than classical equilibrium thermodynamics.

3. FROM C-K EQUATION TO MASTER EQUATION

The Chapman-Kolmogorov equation is an manifestation of total probability theorem in

discrete time space. If the time interval becomes smaller and smaller, the C-K equation will

go to the master equation in the limit of continuous time. To see this, we restrict ourselves
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to the stationary (or time-homogenous) Markov process, that is, the conditional probability

density P (x, t+∆t|y, t) is assumed to be independent of t. When ∆t → 0, using the Taylor

series expansion, one has

P (x, t+∆t|y, t) =











∆tW (x|y) +O((∆t)2) x 6= y

1−∆t
∫

x 6=y
dxW (x|y) +O((∆t)2) x = y

, (14)

where W (x|y) ≥ 0 denotes the transition probability per unit time from state y to state x.

Substituting formula (14) to the C-K equation (Eq. (1)), we arrive at

P (x, t+∆t)− P (x, t)

∆t
=

∫

dy[W (x|y)P (y, t)−W (y|x)P (x, t)] +
O((∆t)2)

∆t
, ∀t,∆t > 0.

Taking the limit ∆t → 0 leads to the master equation, which describes how the probability

of a system in state x at time t evolves with time, i.e.,

∂

∂t
P (x, t) =

∫

dy[W (x|y)P (y, t)−W (y|x)P (x, t)]. (15)

The master equation is an ordinary differential equation when the state space is discrete

and becomes an integral-differential equation in the case of continuous states. It has been

widely used in various stochastic processes, including random walks, birth-death processes,

general chemical reaction systems,17,18 thermal unimolecular reactions at low pressures,19

single-molecule enzyme kinetics in open biochemical systems20 etc.

By utilizing the formula (14), the steady state of the C-K equation in Eq. (2) for all

x 6= y becomes

lim
∆t→0

1

∆t

∫

dy
[

∆tW (x|y)P s(y)−∆tW (y|x)P s(x) +O((∆t)2)
]

= 0,

thus,
∫

dy[W (x|y)P s(y)−W (y|x)P s(x)] = 0, ∀x, (16)

since the above equation holds automatically when x = y. Clearly, Eq. (16) agrees with

the usual definition of steady-state solution P s(x) for the master equation. Similarly, the

condition of detailed balance of the C-K equation becomes

W (x|y)P e(y) = W (y|x)P e(x), ∀x, y, (17)

which is consistent with that for the master equation too.
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Now we want to explore whether the steady-state thermodynamic formalism defined for

the C-K equation (Eqs. (4)-(13)) is also valid for the master equation. As the entropy

function used for the master equation

SM(t) = −

∫

dxP (x, t) lnP (x, t) (18)

remains the same as that for the C-K equation, we can directly make a use of Eq. (14) and

obtain the following lemma.

Lemma 3.1. In the limit of continuous time, with respect to the transition rates defined in

(14), the information gain for the stationary Markov process described by the C-K equation

in (1) vanishes, and the entropy change rate approaches to the entropy difference per unit

time, i.e.,

lim
∆t→0

∆IC(t)

∆t
= 0, lim

∆t→0

∆SC(t)

∆t
= lim

∆t→0

SC(t+∆t)− SC(t)

∆t
.

Proof. Notice that

P (x, t+∆t)− P (x, t) = ∆t

∫

dy[W (x|y)P (y, t)−W (y|x)P (x, t)] +O((∆t)2),

then

lim
∆t→0

∆IC(t)

∆t
= lim

∆t→0

1

∆t

∫

dxP (x, t+∆t) ln

[

1−
P (x, t+∆t)− P (x, t)

P (x, t+∆t)

]

= − lim
∆t→0

1

∆t

∫

dx[P (x, t+∆t)− P (x, t)] = 0.

This shows that the entropy change rate equals to the entropy difference per unit time in

the limit of ∆t.

Based on Proposition 2.2 and Lemma 3.1, we have following results.

Theorem 3.2. In the limit of continuous time, with respect to the transition rates defined

in (14), the entropy production rate, entropy flow rate, adiabatic entropy production rate,

non-adiabatic entropy production rate and excess entropy change rate for the C-K equation
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(1) become

lim
∆t→0

∆SC
i

∆t
=

1

2

∫∫

dxdyJM(x, y, t) ln
W (x|y)P (y, t)

W (y|x)P (x, t)
≡

dSM
i

dt
≥ 0, (19)

lim
∆t→0

∆SC
e

∆t
=

1

2

∫∫

dxdyJM(x, y, t) ln
W (y|x)

W (x|y)
≡

dSM
e

dt
, (20)

lim
∆t→0

∆SC
ad

∆t
=

1

2

∫∫

dxdyJM(x, y, t) ln
W (x|y)P s(y)

W (y|x)P s(x)
≡

dSM
ad

dt
≥ 0, (21)

lim
∆t→0

∆SC
na

∆t
=

1

2

∫∫

dxdyJM(x, y, t) ln
P s(x)P (y, t)

P s(y)P (x, t)
≡

dSM
na

dt
≥ 0, (22)

lim
∆t→0

∆SC
ex

∆t
=

1

2

∫∫

dxdyJM(x, y, t) ln
P s(y)

P s(x)
≡

dSM
ex

dt
, (23)

which emerge as the entropy production rate, entropy flow rate, adiabatic entropy production

rate, non-adiabatic entropy production rate and excess entropy change rate for the mas-

ter equation (15), respectively. Here, the thermodynamic flux is defined as JM (x, y, t) =

W (x|y)P (y, t)−W (y|x)P (x, t).

Note that in the limit of continuous time, the steady-state thermodynamic formalism

defined for the C-K equation fully agrees with the formulation for the discrete master

equation.11,12 Thus the correspondence between the C-K equation and the master equation

on the steady-state thermodynamics is completely verified.

4. FROM MASTER EQUATION TO F-P EQUATION

The master equation involves transitions among all possible states, which are hard to

be modeled or computed. Practically, a coarser description of the system in replace of the

master equation is needed, which is now known as the Fokker-Planck equation (F-P equation

for short). The F-P equation has been applied to fields as diverse as quantum optics,21 micro-

macro coupling models of polymeric fluids,22 biochemical oscillations,23 electric circuits and

laser arrays, population dynamics and stock marketing24 etc..

It is well known that the F-P equation can be deduced from the master equation by ex-

panding the transition rates and neglecting high order terms of jump moments. In order to

make the derivation strictly in mathematics, we adopt the canonical form expansion intro-

duced by Van Kampen,25 in which a parameter Ω representing the system size is introduced.
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Then the master equation (15) can be rewritten as

∂

∂t
PΩ(x, t) =

∫

Vx

dy[WΩ(x|y)PΩ(y, t)−WΩ(y|x)PΩ(x, t)]. (24)

Without loss of generality, we set Vx = {y : ‖ y − x ‖≤ Ω} as a region with centre x

and radius Ω, the dependence of probability PΩ and transition rate WΩ on Ω is written out

explicitly. By defining a jump length r = x − y, one can rewrite WΩ(x|y) ≡ WΩ(y, r) =

WΩ(x− r, r).

With respect to the system size Ω, we introduce the re-scaled state variable, time and

jump distance respectively as

X = Ω−1x, T = Ω−1t, R = Ω−1r. (25)

Consequently, we have dx = ΩdX, ∂t = Ω−1∂T , dy = −ΩdR. Since WΩ(x− r, r) and PΩ(x, t)

can be expanded into power series of Ω−1, i.e.

WΩ(x− r, r) = WΩ(Ω(X −R),ΩR) = Φ0(X − R,R) + Ω−1Φ1(X − R,R) + Ω−2Φ2(X −R,R) + · · · ,

PΩ(x, t) = PΩ(ΩX,ΩT ) = p0(X, T ) + Ω−1p1(X, T ) + Ω−2p2(X, T ) + · · · , (26)

the master equation (24) is reformulated as

∂

∂T

[

p0(X, T ) + Ω−1p1(X, T ) + Ω−2p2(X, T ) + · · ·
]

= Ω2

∫

V0

dR
[

Φ0(X −R,R) + Ω−1Φ1(X − R,R) + Ω−2Φ2(X − R,R) + · · ·
]

×
[

p0(X −R, T ) + Ω−1p1(X − R, T ) + Ω−2p2(X − R, T ) + · · ·
]

− Ω2

∫

V0

dR
[

Φ0(X,−R) + Ω−1Φ1(X,−R) + Ω−2Φ2(X,−R) + · · ·
]

×
[

p0(X, T ) + Ω−1p1(X, T ) + Ω−2p2(X, T ) + · · ·
]

.

Here V0 = {R : ‖ R ‖≤ 1} denotes a region with centre 0 and radius 1. Taking Taylor

series expansion of Φi(X − R,R) and pi(X − R, T ) with respect to X , we have

∂

∂T

[

p0(X, T ) + Ω−1p1(X, T ) + Ω−2p2(X, T ) + · · ·
]

=
∞
∑

i,j=0

Ω2−i−j

∫

V0

dR
{

− R
∂

∂X
[Φi(X,R)pj(X, T )] +

R2

2

∂2

∂X2
[Φi(X,R)pj(X, T )] + · · ·

}

,

(27)

11



where terms
∫

V0
dR[Φi(X,R)−Φi(X,−R)] (i ≥ 0) are exactly cancelled due to the symmetry

of integral region V0.

To make a coarse graining of the system, following jump moments are introduced

αj,i(X) =

∫

V0

dR
ΩjRj

j!
Φi(X,R). (28)

Especially, here we are interested in master equations of the diffusion-type,25 which require

α1,0(X) = 0. By substituting the jump moments into Eq. (27) and taking the limit Ω → ∞,

the zeroth order equation in Ω yields the casual Fokker-Planck equation

∂

∂T
p0(X, T ) = −

∂

∂X
JF (X, T ), JF (X, T ) = α1,1(X)p0(X, T )−

∂

∂X
[α2,0(X)p0(X, T )],

(29)

where JF (X, T ) is the probability flux. α1,1(X) and α2,0(X) (α2,0(X) > 0) denote the drift

and diffusion coefficients respectively. Note that both coefficients α1,1(X) and α2,0(X) are

functions of position X .

Similarly, the steady state of the master equation (24) becomes

lim
Ω→∞

∞
∑

i,j=0

Ω2−i−j

∫

V0

dR
{

−R
∂

∂X
[Φi(X,R)psj(X)] +

R2

2

∂2

∂X2
[Φi(X,R)psj(X)] + · · ·

}

= 0,

which gives
∂

∂X

{

α1,1(X)ps0(X)−
∂

∂X
[α2,0(X)ps0(X)]

}

= 0, ∀X. (30)

This is exactly the definition of the steady state for the F-P equation. Thus we have justified

the consistency of the steady state between the master equation and the F-P equation. A

subclass of steady state is the detailed balance pe0(X), which satisfies

α1,1(X)pe0(X)−
∂

∂X
[α2,0(X)pe0(X)] = 0, ∀X. (31)

Starting from the entropy function for the master equation SM(t) = −
∫

dxPΩ(x, t) lnPΩ(x, t),

it is straightforward to verify that the volume density of entropy SM

lim
Ω→∞

Ω−1SM(t) = −

∫

dXp0(X, T ) ln p0(X, T ) ≡ SF (T ) (32)

emerges as the entropy function for the F-P equation in (29). This is not a coincidence.

Actually, we can further show the steady-state thermodynamic formalism defined on the

master equation converges automatically to that on the F-P equation in the limit of large

system size Ω → ∞. This interesting correspondence confirms that there indeed exists a
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universal thermodynamic framework valid for general non-equilibrium phenomena described

by Markov processes with respect to the steady state. Although a similar conclusion has

been reached in Esposito and Van den Broeck’s original paper,12 their results are limited to

a Markov chain process with only one-step jump and can not be generalized to cases with

multiple-step jump in principle. In contrast, our proof and conclusions do not suffer from

such a limitation and are more rigorous in mathematics.

Theorem 4.1. In the limit of large system size Ω → ∞, the volume density of entropy

production rate, entropy flow rate, adiabatic entropy production rate, non-adiabatic entropy

production rate and excess entropy change rate for the master equation (24) become

lim
Ω→∞

(

Ω−1dS
M
i

dT

)

=

∫

dXJF ·
JF

α2,0(X)p0
≡

dSF
i

dT
≥ 0, (33)

lim
Ω→∞

(

Ω−1dS
M
e

dT

)

=

∫

dXJF ·
∂Xα2,0(X)− α1,1(X)

α2,0(X)
≡

dSF
e

dT
, (34)

lim
Ω→∞

(

Ω−1dS
M
ad

dT

)

=

∫

dXJF ·
α1,1(X)ps0 − ∂X [α2,0(X)ps0]

α2,0(X)ps0
≡

dSF
ad

dT
≥ 0, (35)

lim
Ω→∞

(

Ω−1dS
M
na

dT

)

=

∫

dXJF · [∂X(ln p
s
0)− ∂X(ln p0)] ≡

dSF
na

dT
≥ 0, (36)

lim
Ω→∞

(

Ω−1dS
M
ex

dT

)

=

∫

dXJF · [−∂X(ln p
s
0)] ≡

dSF
ex

dT
, (37)

which emerge as the entropy production rate, entropy flow rate, adiabatic entropy production

rate, non-adiabatic entropy production rate and excess entropy change rate for the Fokker-

Planck equation (29), respectively.

Proof. Here we take the instantaneous entropy production rate as an example. Other re-

lations could be deduced in a similar way, please see Appendix for details. We rewrite the

instantaneous entropy production rate for the master equation (24) as

dSM
i

dt
=

1

2

∫∫

dxdyJM(x, y, t)AM
1 (x, y, t),

where JM(x, y, t) = WΩ(x|y)PΩ(y, t)−WΩ(y|x)PΩ(x, t) andAM
1 (x, y, t) = ln[WΩ(x|y)PΩ(y, t)]−

ln[WΩ(y|x)PΩ(x, t)] represent the thermodynamic flux and force for the master equation (24)

13



respectively. Expand JM into Taylor series with respect to X as

JM(x, y, t) =
[

Φ0(X −R,R) + Ω−1Φ1(X −R,R)
]

·
[

p0(X − R, T ) + Ω−1p1(X −R, T )
]

−
[

Φ0(X,−R) + Ω−1Φ1(X,−R)
]

·
[

p0(X, T ) + Ω−1p1(X, T )
]

+O(Ω−2)

= [Φ0(X,R)− Φ0(X,−R)]p0 − R∂X [Φ0(X,R)p0] + Ω−1[Φ1(X,R)− Φ1(X,−R)]p0

+ Ω−1[Φ0(X,R)− Φ0(X,−R)]p1 +O(Ω−2) ≡ I11(X,R) +O(Ω−2),

where pi is short for pi(X, T ). Similarly,

WΩ(y|x)PΩ(x, t) = Φ0(X,−R)p0+Ω−1Φ1(X,−R)p0+Ω−1Φ0(X,−R)p1+O(Ω−2) ≡ I12(X,R)+O(Ω−2).

With respect to above formulas, the thermodynamic force AM
1 can be expanded as

AM
1 (x, y, t) = ln

[

1 +
JM(x, y, t)

WΩ(y|x)PΩ(x, t)

]

=
I11(X,R)

I12(X,R)
+O(Ω−2).

Note that I11 ∼ O(Ω−1) and I12 ∼ O(1). Accordingly, the volume density of entropy

production rate for the master equation becomes

Ω−1dS
M
i

dT
=

1

2
Ω2

∫∫

dXdR
[

I11(X,R) +O(Ω−2)
]

·

[

I11(X,R)

I12X,R)
+O(Ω−2)

]

=
Ω2

2

∫∫

dXdR

[

I11(X,R)2

I12(X,R)
+O(Ω−3)

]

.

Since I12(X,R) ≥ 0, according to the Cauchy-Schwarz inequality,

Ω2

2

∫∫

dXdR
I11(X,R)2

I12(X,R)
=

1

2

∫∫

dXdR
[ΩI11(X,R)R]2

I12(X,R)R2
≥

1

2

∫

dX

{

Ω
∫

V0
dR[I11(X,R)R]

}2

∫

V0
dR[I12(X,R)R2]

,

(38)

with

Ω

∫

V0

dR [I11(X,R)R] = Ω

∫

V0

dR [Φ0(X,R)− Φ0(X,−R)]Rp0 − Ω

∫

V0

dR ∂X [Φ0(X,R)p0]R
2

+

∫

V0

dR [Φ1(X,R)− Φ1(X,−R)]Rp0 +

∫

V0

dR [Φ0(X,R)− Φ0(X,−R)]Rp1

= 2α1,0(X)p0 − 2Ω−1∂X [α2,0(X)p0] + 2Ω−1α1,1(X)p0 + 2Ω−1α1,0(X)p1

= 2Ω−1α1,1(X)p0 − 2Ω−1∂X [α2,0(X)p0],

and
∫

V0

dR [I12(X,R)R2] =

∫

V0

dR
[

Φ0(X,−R)R2p0 + Ω−1Φ1(X,−R)R2p0 + Ω−1Φ0(X,−R)R2p1
]

= 2Ω−2α2,0(X)p0 +O(Ω−3).
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As a result, the lower bound of the volume density of instantaneous entropy production rate

for the master equation is given by

Ω−1dS
M
i

dT
≥

1

2

∫

dX
[ JF (X, T )2

α2,0(X)p0(X, T )
+O(Ω−1)

]

.

The dominant term on the right-hand side is exactly the instantaneous entropy production

rate for the F-P equation. Actually, above inequality provides an interesting relation between

the entropy production rate for the master equation and that for the F-P equation. The

latter exists as a lower bound for the former, which agrees with the information loss during

the coarse graining procedure.

In the limit of large system size Ω → ∞, the transition rates Φi(X,R) approach to delta

functions with respect to the jump length R (since R = r/Ω → 0). Then the equality in

(38) holds, meaning

lim
Ω→∞

(

Ω−1dS
M
i

dT

)

=

∫

dX
JF (X, T )2

α2,0(X)p0(X, T )
≡

dSF
i

dT
≥ 0.

This completes our proof.

Remark 4.2. From Theorem 3.2 and 4.1, it is notable that the instantaneous entropy-

production rate, entropy flow rate, adiabatic entropy production rate, non-adiabatic entropy

production rate and excess entropy change rate for Markov processes could all be expressed

as a bilinear form of thermodynamic fluxes and forces, a reflection of the famous Onsager-

Casimir relation.3

5. FROM F-P EQUATION TO MASTER EQUATION

In the last section, we deduce the steady-state thermodynamic structure for the F-P

equation from that of the master equation. Astonishingly, an inverse procedure is also valid

in mathematics. To be concrete, we can derive the steady-state thermodynamic formalism

for a special type of master equations with a tridiagonal transition rate matrix from that

of the corresponding F-P equation. This is the best result one can expected, since only the

first two jump moments are kept in the F-P equation.

We start with the F-P equation in (29) and discretize its right-hand side with respect to
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space variable X = nǫ.

dp(n, T )

dT
= −

1

ǫ
[α1,1(n+ 1)p(n+ 1, T )− α1,1(n)p(n, T )]

+
1

ǫ2
[α2,0(n + 1)p(n+ 1, T )− 2α2,0(n)p(n, T ) + α2,0(n− 1)p(n− 1, T )],

for p(n, T ) ≡ p0(nǫ, T ), α1,1(n) ≡ α1,1(nǫ) and α2,0(n) ≡ α2,0(nǫ). Clearly, the small pa-

rameter ǫ corresponds to 1/Ω in the canonical form expansion. The above equation can be

rewritten into a master equation

dp(n, T )

dT
= [W (n|n−1)p(n−1, T )−W (n−1|n)p(n, T )]+[W (n|n+1)p(n+1, T )−W (n+1|n)p(n, T )],

(39)

with the forward and backward transition rates

W (n|n− 1) =
α2,0(n− 1)

ǫ2
, W (n− 1|n) =

α2,0(n)

ǫ2
−

α1,1(n)

ǫ
.

Then based on the steady-state thermodynamic formalism for the F-P equation, following

results can be verified.

Theorem 5.1. In the limit of ǫ → 0, the entropy production rate, entropy flow rate, adiabatic

entropy production rate, non-adiabatic entropy production rate and excess entropy change

rate for the Fokker-Planck equation (29) with discrete state variables become

lim
ǫ→0

dSF
i (ǫ)

dT
=

1

2

∑

m,n

JM(m,n, T ) ln
W (n|m)p(m, T )

W (m|n)p(n, T )
=

dSM
i

dT
≥ 0,

lim
ǫ→0

dSF
e (ǫ)

dT
=

1

2

∑

m,n

JM(m,n, T ) ln
W (m|n)

W (n|m)
=

dSM
e

dT
,

lim
ǫ→0

dSF
ad(ǫ)

dT
=

1

2

∑

m,n

JM(m,n, T ) ln
W (n|m)P s(m)

W (m|n)P s(n)
=

dSM
ad

dT
≥ 0,

lim
ǫ→0

dSF
na(ǫ)

dT
=

1

2

∑

m,n

JM(m,n, T ) ln
P s(n)P (m, t)

P s(m)P (n, t)
=

dSM
na

dT
≥ 0,

lim
ǫ→0

dSF
ex(ǫ)

dT
=

1

2

∑

m,n

JM(m,n, T ) ln
P s(m)

P s(n)
=

dSM
ex

dT
,

which lead to corresponding results for the master equation (39), respectively. Here JM(m,n, T ) =

W (n|m)p(m, T )−W (m|n)p(n, T ) and m = n± 1.

Proof. We take the entropy production rate dSF
i (ǫ)/dT as an example. According to Eq.

(33), the entropy production rate for the F-P equation is given by

dSF
i

dT
=

∫

dX

{

∂X [α2,0(X)p0(X, T )]− α1,1(X)p0(X, T )
}2

α2,0(X)p0(X, T )
.

16



Discretize above formula with respect to state variable X = nǫ and denote it as

dSF
i (ǫ)

dT
=

∑

n

{

[α2,0(n+ 1)p(n+ 1, T )− α2,0(n)p(n, T )]− ǫα1,1(n)p(n, T )
}2

ǫ2α2,0(n)p(n, T )
≡

∑

n

D1(n, T )D2(n, T ),

where

D1(n, T ) ≡
1

ǫ

{

[α2,0(n+ 1)p(n+ 1, T )− α2,0(n)p(n, T )]− ǫα1,1(n)p(n, T )
}

=
1

ǫ

{

[α2,0(n + 1)p(n+ 1, T )− α2,0(n)p(n, T )]− ǫα1,1(n+ 1)p(n+ 1, T ) +O(ǫ2)
}

= ǫ[W (n|n+ 1)p(n+ 1, T )−W (n+ 1|n)p(n, T )] +O(ǫ),

D2(n, T ) ≡
[α2,0(n+ 1)p(n+ 1, T )− α2,0(n)p(n, T )]− ǫα1,1(n)p(n, T )

ǫα2,0(n)p(n, T )

=
1

ǫ

[α2,0(n+ 1)p(n+ 1, T )− α2,0(n)p(n, T )]− ǫα1,1(n+ 1)p(n+ 1, T ) +O(ǫ2)

α2,0(n)p(n, T )

=
1

ǫ
ln

α2,0(n + 1)p(n+ 1, T )− ǫα1,1(n + 1)p(n+ 1, T )

α2,0(n)p(n, T )
+O(ǫ)

=
1

ǫ
ln

W (n|n+ 1)p(n+ 1, T )

W (n+ 1|n)p(n, T )
+O(ǫ).

Note that the leading terms of D1(n, T ) and D2(n, T ) are both O(1). As a result,

lim
ǫ→0

dSF
i (ǫ)

dT
= lim

ǫ→0

∑

n

[

ǫW (n|n+ 1)p(n+ 1, T )− ǫW (n+ 1|n)p(n, T ) +O(ǫ)
]

×
[1

ǫ
ln

W (n|n+ 1)p(n+ 1, T )

W (n+ 1|n)p(n, T )
+O(ǫ)

]

=
∑

n

[

W (n|n+ 1)p(n+ 1, T )−W (n+ 1|n)p(n, T )
]

ln
W (n|n+ 1)p(n+ 1, T )

W (n+ 1|n)p(n, T )

=
1

2

∑

n

[

W (n|n+ 1)p(n+ 1, T )−W (n+ 1|n)p(n, T )
]

ln
W (n|n+ 1)p(n+ 1, T )

W (n+ 1|n)p(n, T )

+
1

2

∑

n

[

W (n|n− 1)p(n− 1, T )−W (n− 1|n)p(n, T )
]

ln
W (n|n− 1)p(n− 1, T )

W (n− 1|n)p(n, T )
.

This completes the proof. Other relations could be verified in the same way and will not be

shown here.

Remark 5.2. Based on Theorem 4.1 and 5.1, we can conclude that, in the limit of large

system size, when a Markov process is restricted to one-step jump, the steady-state thermo-

dynamic formalisms for the master equation and for the F-P equation have a one-to-one

correspondence.
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6. INTERNAL ENERGY AND HELMHOLTZ FREE ENERGY

The entropy and its time evolution are discussed in above sections. It remains to explore

the internal energy and Helmholtz free energy. Firstly, based on the definition of steady

state (2), the internal energy UC(t) and free energy FC(t) for the C-K equation (1) are

introduced as

UC(t) =− T

∫

dxP (x, t) lnP s(x), (40)

FC(t) =UC(t)− TSC(t) = T

∫

dxP (x, t) ln
P (x, t)

P s(x)
, (41)

here T denotes the temperature and is assumed to be constant. Accordingly, we have

∆UC = −
T

2

∫∫

dxdyJC(x, y, t,∆t) ln
P s(x)

P s(y)
= T∆SC

ex,

∆FC = −
T

2

∫∫

dxdyJC(x, y, t,∆t) ln
P s(x)P (y, t)

P s(y)P (x, t)
= −T∆SC

na ≤ 0.

Therefore, the changes of internal energy and free energy are directly proportional to the

excess entropy change and non-adiabatic entropy production, except for a constant factor

T . Above relations also holds for the master equation and F-P equation, as long as the

corresponding internal energy and free energy function are defined in the same form as in

Eqs. (40) and (41). Consequently, following relations could be established.

Proposition 6.1. Following relations hold

lim
∆t→0

∆UC

∆t
=

dUM

dt
, lim

∆t→0

∆FC

∆t
=

dFM

dt
≤ 0, (42)

lim
Ω→∞

(

Ω−1dU
M

dT

)

=
dUF

dT
, lim

Ω→∞

(

Ω−1dF
M

dT

)

=
dF F

dT
≤ 0, (43)

where dUM

dt
, dFM

dt
, dUF

dT
and dFF

dT
represent the internal energy change rate and free energy

dissipation rate for the master equation and F-P equation respectively.

7. CONCLUSIONS AND DISCUSSIONS

In this paper, we have explored the steady-state thermodynamics for Markov processes

described by the Chapman-Kolmogorov equation, master equation and Fokker-Planck equa-

tion separately. By taking the limit of continuous time, the steady-state thermodynamic
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formalism specified in Eqs. (4)-(13) for the C-K equation fully agrees with that for the mas-

ter equation. A similar one-to-one correspondence could be established rigorously between

the master equation and F-P equation in the limit of large system size by the canonical form

expansion. Furthermore, when a Markov process is restrained to one-step jump, the steady-

state thermodynamic formalism for the F-P equation with discrete state variables also goes

to the formulation for a special type of master equations with a tridiagonal transition rate

matrix, as the discretization step gets smaller and smaller. These interesting connections

show that the steady-state thermodynamics thus constructed on a Markov process is quite

universal, no matter whether it is written in the form of C-K equation, master equation or

F-P equation.

There are two important generalizations of the current study. We note the F-P equation

is a special truncation of the master equation by just keeping the first two jump moments.

Systematical explorations on high orders of truncation have been done and known as the

Kramer equation in the literature.25 It remains to show a similar steady-state thermody-

namic formalism could be defined and keeps in accordance with that of the master equation.

The other non-trivial generalization is related to the quantum version of master equation,

such as the Nakajima-Zwanzig equation in the exact form, or Redfield equation and Lind-

bald equation in approximate forms.26 In contrast to classical master equations, which are

restricted to only diagonal elements, quantum master equations deal with the entire density

matrix, including off-diagonal elements, and thus have far more fruitful contents. Related

works are going on.
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APPENDIX

The limit of entropy production rate for the master equation is calculated in the main

text, here we are going to prove remaining relations in Theorem 4.1, including the limit of
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entropy flow rate, adiabatic entropy production rate, non-adiabatic entropy production rate

and excess entropy change rate.

Proof. Note that the entropy flow rate, adiabatic entropy production rate, non-adiabatic en-

tropy production rate and excess entropy change rate for the master equation have a similar

form, that is, the integrand is a product of the thermodynamic flux and a thermodynamic

force. Then we have

dSM
e

dt
=

1

2

∫∫

dxdyJM(x, y, t)AM
2 (x, y, t),

dSM
ad

dt
=

1

2

∫∫

dxdyJM(x, y, t)AM
3 (x, y, t),

dSM
na

dt
=

1

2

∫∫

dxdyJM(x, y, t)AM
4 (x, y, t),

dSM
ex

dt
=

1

2

∫∫

dxdyJM(x, y, t)AM
5 (x, y, t),

where JM(x, y, t) = WΩ(x|y)PΩ(y, t) − WΩ(y|x)PΩ(x, t) denotes the thermodynamic flux

and AM
2 (x, y, t) = ln WΩ(y|x)

WΩ(x|y)
, AM

3 (x, y, t) = ln
WΩ(x|y)P

s

Ω
(y)

WΩ(y|x)P
s

Ω
(x)

, AM
4 (x, y, t) = ln

P s

Ω
(x)PΩ(y,t)

P s

Ω
(y)PΩ(x,t)

,

AM
5 (x, y, t) = ln

P s

Ω
(y)

P s

Ω
(x)

denote thermodynamic forces.

Expand AM
i (x, y, t) (i = 2, 3, 4, 5) into Taylor series with respect to X as

AM
2 (x, y, t)

= ln
[

Φ0(X,−R) + Ω−1Φ1(X,−R) +O(Ω−2)
]

− ln
[

Φ0(X −R,R) + Ω−1Φ1(X − R,R) +O(Ω−2)
]

= ln
[

Φ0(X,−R) + Ω−1Φ1(X,−R) +O(Ω−2)
]

− ln
[

Φ0(X,R) + Ω−1Φ1(X,R)− R∂XΦ0(X,R) +O(Ω−2)
]

=
[Φ0(X,−R)− Φ0(X,R)] +R∂XΦ0(X,R) + Ω−1[Φ1(X,−R)− Φ1(X,R)]

Φ0(X,−R) + Ω−1Φ1(X,−R)
+O(Ω−2)

≡
I21(X,R)

I22(X,R)
+O(Ω−2),

AM
3 (x, y, t)

=
[Φ0(X,R)− Φ0(X,−R)](ps0 + Ω−1ps1)− R∂X [Φ0(X,R)ps0] + Ω−1[Φ1(X,R)− Φ1(X,−R)]ps0

Φ0(X,−R)ps0 + Ω−1Φ1(X,−R)ps0 + Ω−1Φ0(X,−R)ps1
+O(Ω−2)

≡
I31(X,R)

I32(X,R)
+O(Ω−2),

AM
4 (x, y, t)

= − ln
ps0(X − R) + Ω−1ps1(X − R) +O(Ω−2)

ps0(X) + Ω−1ps1(X) +O(Ω−2)
+ ln

p0(X − R) + Ω−1p1(X − R) +O(Ω−2)

p0(X) + Ω−1p1(X) +O(Ω−2)

= R∂X(ln p
s
0)− R∂X(ln p0) +O(Ω−2) ≡ I41(X,R) +O(Ω−2),

AM
5 (x, y, t)

= ln
ps0(X − R) + Ω−1ps1(X − R) +O(Ω−2)

ps0(X) + Ω−1ps1(X) +O(Ω−2)
= −R∂X(ln p

s
0) +O(Ω−2) ≡ I51(X,R) +O(Ω−2),
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while the thermodynamic flux JM(x, y, t) becomes

JM(x, y, t) = [Φ0(X,R)− Φ0(X,−R)]p0 − R∂X [Φ0(X,R)p0] + Ω−1[Φ1(X,R)− Φ1(X,−R)]p0

+ Ω−1[Φ0(X,R)− Φ0(X,−R)]p1 +O(Ω−2) ≡ I11(X,R) +O(Ω−2).

In the limit of Ω → ∞, the transition rates Φi(X,R) approach to delta functions with

respect to the jump length R (since R = r/Ω → 0). Then

lim
Ω→∞

(

Ω−1dS
M
e

dT

)

=
1

2

∫∫

dXdR
Ω2R2I11(X,R)I21(X,R)

I22(X,R)R2

=
1

2

∫

dX

[

Ω
∫

V0
dRI11(X,R)R

][

Ω
∫

V0
dRI21(X,R)R

]

∫

V0
dRI22(X,R)R2

,

lim
Ω→∞

(

Ω−1dS
M
ad

dT

)

=
1

2

∫∫

dXdR
Ω2R2I11(X,R)I31(X,R)

I32(X,R)R2

=
1

2

∫

dX

[

Ω
∫

V0
dRI11(X,R)R

][

Ω
∫

V0
dRI31(X,R)R

]

∫

V0
dRI32(X,R)R2

.

Since

Ω

∫

V0

dR[I11(X,R)R] = 2Ω−1α1,1(X)p0 − 2Ω−1∂X [α2,0(X)p0] = 2Ω−1JF (X, T ),

Ω

∫

V0

dR[I21(X,R)R]

= Ω

∫

V0

dR
{

[Φ0(X,−R)− Φ0(X,R)]R +R2∂XΦ0(X,R) + Ω−1[Φ1(X,−R)− Φ1(X,R)]R
}

= 2Ω−1∂X [α2,0(X)]− 2Ω−1α1,1(X),
∫

V0

dR[I22(X,R)R2] =

∫

V0

dR
[

Φ0(X,−R)R2 + Ω−1Φ1(X,−R)R2
]

= 2Ω−2α2,0(X) +O(Ω−3),

Ω

∫

V0

dR[I31(X,R)R] = 2Ω−1α1,1(X)ps0 − 2Ω−1∂X [α2,0(X)ps0],

∫

V0

dR[I32(X,R)R2] = 2Ω−2α2,0(X)ps0 +O(Ω−3),

the volume densities of the entropy flow rate and adiabatic entropy production rate for the

master equation become

lim
Ω→∞

(

Ω−1dS
M
e

dT

)

=

∫

dXJF ·
∂Xα2,0(X)− α1,1(X)

α2,0(X)
≡

dSF
e

dT
,

lim
Ω→∞

(

Ω−1dS
M
ad

dT

)

=

∫

dXJF ·
α1,1(X)ps0 − ∂X [α2,0(X)ps0]

α2,0(X)ps0
≡

dSF
ad

dT
,

which emerge as the entropy flow rate and adiabatic entropy production rate for the corre-

sponding F-P equation respectively. Further note that I41(X,R)/R = ∂X(ln p
s
0)− ∂X(ln p0)
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and I51(X,R)/R = −∂X(ln p
s
0) are independent of R, we have

lim
Ω→∞

(

Ω−1dS
M
na

dT

)

=
1

2

∫

dX
[

Ω
I41(X,R)

R

]

·
[

Ω

∫

V0

dRI11(X,R)R
]

=

∫

dXJF · [∂X(ln p
s
0)− ∂X(ln p0)] ≡

dSF
na

dT
,

lim
Ω→∞

(

Ω−1dS
M
ex

dT

)

=
1

2

∫

dX
[

Ω
I51(X,R)

R

]

·
[

Ω

∫

V0

dRI11(X,R)R
]

=

∫

dXJF · [−∂X(ln p
s
0)] ≡

dSF
ex

dT
.

This completes the proof.
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