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A rigorous derivation of multicomponent diffusion laws

Zaibao Yang∗, Wen-An Yong†, Yi Zhu‡

Abstract

This article is concerned with the dynamics of a mixture of gases. Under the assumption that

all the gases are isothermal and inviscid, we show that the governing equations have an elegant

conservation-dissipation structure. With the help of this structure, a multicomponent diffusion law

is derived mathematically rigorously. This clarifies a long-standing non-uniqueness issue in the field

for the first time. The multicomponent diffusion law derived here takes the spatial gradient of

an entropic variable as the thermodynamic forces and satisfies a nonlinear version of the Onsager

reciprocal relations.

Keywords. Multicomponent diffusion laws, conservation-dissipation structure, Maxwell itera-

tion, Onsager reciprocal relations

1 Introduction

Multicomponent diffusion plays a dominant role in many industrial and natural processes and has

been extensively studied in a large number of chemical engineering books and articles since 1948. See

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15] and the references cited therein. A fundamental task of

these studies is to determine the relations between the thermodynamic fluxes and forces, which is called

multicomponent diffusion laws or constitutive relations. In the literature, various different constitutive

relations can be found and they are not always consistent with each other. For example, in [9] pub-

lished in 2006 one can find the statement “The fact that Dij (diffusion coefficients) is fundamentally

nonunique is clearly documented in the literature.1−4,14−18”. Therefore, there has been a urgent need for

a mathematical clarification of the situation.

In this paper, we present a mathematically rigorous derivation of a multicomponent diffusion law

for a mixture of gases and thereby clarify the uniqueness for the first time. For the sake of simplicity, we

assume that all the gases are isothermal and inviscid. Our derivation follows the Furry-Williams approach

[1, 3, 9, 10] starting from the macroscopic balance equations of all the gases and uses the Chapman-Enskog

expansion or Maxwell iteration recently justified in [16] for a class of hyperbolic relaxation systems.

The justification is crucially based on a conservation-dissipation structural property of the system of the

macroscopic equations. The conservation-dissipation structure was firstly proposed and was shown in [17]
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to be satisfied by many classical models from mathematical physics. Recently, it has been successfully

used in [18] to develop a general theory of mathematical modeling of irreversible processes.

The multicomponent diffusion law derived here takes the spatial gradient of an entropic variable as

the thermodynamic forces and satisfies a nonlinear version of the Onsager reciprocal relations. Namely,

the corresponding diffusion coefficient matrix is symmetric and positive-definite. The use of the entropic

variable as thermodynamic forces is a key of the original Onsager relation [19] and provides us a nice

formulation of the multicomponent diffusion laws. This formulation is mathematically and numerically

important in treating the multicomponent diffusion systems.

As mentioned earlier, there are various multicomponent diffusion laws in the literature and it is

almost impossible to comment on all of them. For most of the existing multicomponent diffusion laws,

the diffusion coefficient matrix is generally non-symmetric [10, 11] and sometimes even not completely

determined [9]. A further comparison of ours with that in [9] is given in Section 4. On the other hand,

the Maxwell iteration was also used in [12, 13] to derive the multicomponent diffusion laws. We also

notice [14, 15] where the multicomponent diffusion laws were derived in two different frameworks of

non-equilibrium thermodynamics. Unfortunately, all these derivations are formal, lack a mathematically

rigorous justification, and therefore the uniqueness issue has been not resolved before.

The paper is organized as follows. In Section 2, we introduce the classical mass and momentum equa-

tions for multicomponent diffusion systems. Section 3 focuses on the conservation-dissipation structure

of the systems. The multicomponent diffusion law is derived in Section 4.

2 Governing equations

Consider a mixture of N gases. Assume that all the gases are inviscid and isothermal. Then the

motion of the gases obeys the classical mass and momentum equations [9, 10]. Let ρi and Vi denote the

density and mass averaged velocity of species i, respectively. The species-specific mass equations read as

∂ρi
∂t

+∇ · (ρiVi) = Ẇi, i = 1, · · · , N, (2.1)

where Ẇi represents the net mass production rate (per unit volume) of species i due to chemical reactions.

Since mass can either be created or destroyed by chemical reactions, the Ẇi’s always satisfy

N
∑

i=1

Ẇi = 0.

On the other hand, the momentum equation for species i is

∂(ρiVi)

∂t
+∇ · (ρiViVi + piId) = ρifi + ẆiVi +Gcoll

i , i = 1, · · · , N. (2.2)

Here pi ≡ pi(ρi) is the pressure of species i, Id is the unit matrix of order d (d = 1, 2, 3), ρifi is the body

force acting on species i, and Gcoll
i stands for the net impacts of all interspecies collisional momentum

exchanges on species i. Since interspecies collisions conserve the total momentum, the sum of Gcoll
i over
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all species must be identically zero:
N
∑

i=1

Gcoll
i = 0. (2.3)

By its definition, Gcoll
i is a function of X = (V1 −Vi, · · · ,VN −Vi) and vanishes whenever X = 0.

The latter means that there is no collisional momentum exchange with species i when other species all

have the same velocity. Based on this observation, we may write

Gcoll
i =

∫ 1

0

∂Gcoll
i

∂X
(θX)dθ ·X ≡

∑

j 6=i

Kij(Vi −Vj)

with Kij = [Kαβ
ij ]d×d being d× d-matrixes. Kαβ

ij is called a collisional coefficient, possibly depending on

any quantities like densities under consideration.

For the Stefan-Maxwell model [1, 3, 9], each Kij is a scalar matrix, that is,

Kαβ
ij = −σijδαβ , σij = m̄ijνij .

Here δαβ is the Kronecker delta, m̄ij = mimj/(mi+mj) is the “reduced mass”, mi is the molecular mass

of species i, and νij is the averaged frequency (per unit volume) of collisions between molecules i and j,

and satisfies

σij = σji > 0

for each i 6= j and i, j = 1, · · · , N .

For future references, we rewrite Gcoll
i as

Gcoll
i = −

N
∑

j=1

KijVj

with

Kij = δij

N
∑

k=1

σik − σij

for each i, j = 1, · · · , N . Obviously, Kij ≡ Kij(ρ1, ρ1V1, · · · , ρN , ρNVN ) satisfies

N
∑

l=1

Kil ≡ 0 and Kij = Kji < 0, i 6= j, (2.4)

for i, j = 1, · · · , N . This is consistent with (2.3).

In a mixture of gases, collisions usually happen much faster than the macroscopic fluid motions.

Denote by ε the ratio of characteristic collision time to characteristic fluid mechanics time. Then ε is

small and the collision coefficient Kij may be scaled as

Kij =
1

ε
K̃ij (2.5)

with K̃ij = O(1). For the notational convenience, we will use Kij for K̃ij in the rest of this paper.
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3 Conservation-dissipation structure

In this section, we show that the system of equations (2.1) and (2.2) with fast collisions (2.5) possesses

the conservation-dissipation structure proposed in [17]. To do this, we rewrite (2.1) and (2.2) as

∂Ui

∂t
+

d
∑

j=1

∂F̂j(Ui)

∂xj

=
1

ε
Qi(U), i = 1, 2, · · · , N

or

∂U

∂t
+

d
∑

j=1

∂Fj(U)

∂xj

=
1

ε
Q(U)

(3.1)

with the external forces ρifi and chemical reaction terms Ẇ being ignored to simplify the exposition. In

(3.1), d is the space dimension,

Ui =





ρi

ρiVi



 , F̂j(Ui) =





ρiVi,j

ρiViVi,j + piej



 , Qi(U) =







0

−
N
∑

k=1

KikVk






,

U = (U1,U2, · · · ,UN )T , Fj(U) = (F̂j(U1), · · · , F̂j(UN ))T , Q(U) = (Q1(U), · · · , QN(U))T , Vi,j

denotes the j-th component of velocity Vi, and ej stands for the j-th column of the unit matrix Id.

Following [20], we define a mathematical entropy ηi for species i:

ηi(ρi, ρiVi) = ρi

∫ ρi

ρ̄i

pi(z)

z2
dz +

1

2ρi
|ρiVi|

2

with ρ̄i a possible positive value. Consequently, a mathematical entropy η(U) for the mixture can be

introduced as

η(U) =

N
∑

i=1

ρi

∫ ρi

ρ̄i

pi(z)

z2
dz +

N
∑

i=1

1

2ρi
|ρiVi|

2. (3.2)

The conservation-dissipation structure for system (3.1) can be stated as follows.

Theorem 3.1 Assume that (2.4) holds true and pi = pi(ρi) is strictly increasing for ρi > 0 and for each

i = 1, · · · , N . Then the mathematical entropy η(U) defined in (3.2) for system (3.1) is strictly convex in

OU = {U ∈ RdN | ρi > 0, i = 1, · · · , N}. Moreover, the following three statements are true:

•
∂2η(U)

∂U2

∂Fj(U)

∂U
is symmetric for each U ∈ OU and for each j;

• There exists a symmetric and semi-positive matrix L(U) such that

Q(U) = −L(U)
∂η(U)

∂U
;

• The null-space of L(U) is independent of U ∈ OU .

Remark 3.1 The first statement is the well-known entropy condition for hyperbolic conservation laws

and corresponds to the classical principles of thermodynamics. The second one can be understand as a
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nonlinearization of the celebrated Onsager reciprocal relation in modern thermodynamics [21] and implies

the second law of thermodynamics. It displays a direct relation of irreversible processes to the entropy

change. The last one expresses the fact that physical laws of conservation hold true, no matter what state

the underlying thermodynamical system is in (equilibrium, non-equilibrium, and so on).

Here is our proof of the above theorem. Compute

∂η(U)

∂Ui

=









∂ηi
∂ρi

Vi









,
∂2η(U)

∂Ui∂Uj

=
1

ρi









p′i(ρi) + |Vi|
2 −VT

i

−Vi Id









δij .

Because p′i(ρi) > 0 for ρi > 0, one can directly verify that the Hessian
∂2η(U)

∂U2
is positive definite for

each U ∈ OU . Therefore, η = η(U) is strictly convex in OU .

Next we compute from the definition of F̂j(Ui) that, for i 6= k,

∂2η(U)

∂Ui∂Uk

= 0,
∂F̂j(Ui)

∂Uk

= 0,

and

∂2η(U)

∂U2
i

∂F̂j(Ui)

∂Ui

=
1

ρi









Vi,j |Vi|
2 − p′i(ρi)V

T
i ej p′i(ρi)e

T
j − Vi,jV

T
i

p′i(ρi)ej − Vi,jVi Vi,jId









.

Therefore,
∂2η(U)

∂U2

∂Fj(U)

∂U
is symmetric.

Now we recall the structure of Q(U) and define a (d+1)N × (d+1)N matrix L(U) ≡ [Lik(U)]N×N

with

Lik(U) =





0 0

0 KikId



 .

Then Q(U) can be written as

Q(U) = −L(U)
∂η(U)

∂U
.

From (2.4) it is not difficult to see that L(U) is symmetric and nonnegative-definite matrix.

It remains to show that the null-space of L(U) is independent ofU. To do this, we writew ∈ R(d+1)N

as w =











w1

...

wN











with wk =





wI
k

wII
k



 and wII
k ∈ Rd. If L(U) ·w = 0, then

N
∑

k=1

Likwk =

N
∑

k=1





0 0

0 KikId









wI
k

wII
k



 =







0
N
∑

k=1

Kikw
II
k






= 0

for each i. Since the null-space of the N × N -matrix K = [Kij ] is spanned by {(1, · · · , 1)T }, it follows

that

wII
1 = wII

2 = · · · = wII
N .
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Therefore, the null-space of L(U) is

{

w ∈ R(d+1)N : (wI
1,w

I
2 , · · · ,w

I
N ) ∈ RN and wII

1 = wII
2 = · · · = wII

N ∈ Rd
}

,

which is independent of U . This completes the proof.

4 Multicomponent diffusion laws

In this section, we derive a multicomponent diffusion law by using the Maxwell iteration [12, 13]

or Chapman-Enskog expansion justified in our recent paper [16]. The conservation-dissipation structure

provided a highly efficient framework for the justification.

To begin with, we introduce the mass diffusion flux (also called thermodynamic flux)

Ji ≡ ρi(Vi −V),

where the mass-averaged velocity V is defined as

V ≡
1

ρ

N
∑

i=1

ρiVi, ρ ≡
N
∑

i=1

ρi.

From these definitions, it follows immediately that

N
∑

i=1

Ji = 0.

This is called zero-net-flux condition in some literature [9]. Due to this condition, we only need to consider

the first (N − 1) fluxes Ji (i = 1, · · · , N − 1).

Referring to [16], we rewrite the multicomponent diffusion system (3.1) in term of the new variable

W ≡ (ρ, ρV, ρ1, · · · , ρN−1,J1, · · · ,JN−1)
T ←− U ≡ (ρ1, ρ1V1, · · · , ρN , ρNVN )T .

Firstly, the N mass equations are equivalent to

∂ρ

∂t
+∇ · (ρV) = 0,

∂ρi
∂t

+∇ · (ρiV + Ji) = 0, i = 1, · · · , N − 1,

(4.1)

which is derived by summing up the mass equations (2.1) over i and using the definition Ji = ρi(Vi−V).

Recall that the external forces and reaction sources have been neglected. In order to obtain the equations

for the total momentum ρV and the first (N−1) fluxes Ji, we recast the left-hand side of the momentum

6



equation (2.2) as

∂(ρiVi)

∂t
+∇ · (ρiVi ⊗Vi) +∇pi

=
∂Ji

∂t
+

∂(ρiV)

∂t
+∇ · (ρiV ⊗V) +∇pi +∇ · (Ji ⊗V +V ⊗ Ji +

Ji ⊗ Ji

ρi
).

Summing up these momentum equations over i, we use (2.3) and the zero-net-flux condition to obtain

∂(ρV)

∂t
+∇ · (ρV ⊗V) +∇

N
∑

j=1

pj +

N
∑

j=1

∇ · (
Jj ⊗ Jj

ρj
) = 0. (4.2)

Moreover, we use
N
∑

j=1

Kij = 0 in (2.4) and rewrite the collision term

Gcoll
i = −

1

ε

N
∑

j=1

Kij(Vj −V)

= −
1

ε

(

N−1
∑

j=1

Kij

Jj

ρj
+KiN

JN

ρN

)

= −
1

ε

N−1
∑

j=1

Kij(
Jj

ρj
−

JN

ρN
)

= −
1

ε

N−1
∑

j=1

Kij(
Jj

ρj
+

1

ρN

N−1
∑

l=1

Jl)

= −
1

ε

N−1
∑

j,l=1

Kij

( 1

ρl
δjl +

1

ρN

)

Jl.

Thus, the equation for Ji reads as

∂Ji

∂t
+

∂(ρiV)

∂t
+∇ · (ρiV ⊗V) +∇pi +∇ ·

(

V ⊗ Ji + Ji ⊗V +
Ji ⊗ Ji

ρi

)

= −
1

ε

N−1
∑

j,l=1

Kij

( 1

ρl
δjl +

1

ρN

)

Jl.

(4.3)

Consequently, system (3.1) has been rewritten as (4.1)–(4.3).

On the other hand, we recall (2.4) that Kij = Kji < 0 with i 6= j and
N
∑

j=1

Kij = 0. Then

[Kij ](N−1)×(N−1) is a strictly diagonally dominant and symmetric matrix. Therefore, it has an inverse,

say K, and the inverse is symmetric and positive definite. Moreover, we set [13]

Φij =
1

ρj
δij +

1

ρN
and Cij = ρjδij −

ρiρj
ρ

7



for i, j = 1, · · · , N − 1. Note that

(CΦ)ij =
N−1
∑

l=1

CilΦlj =
N−1
∑

l=1

(ρlδil −
ρiρl
ρ

)(
1

ρj
δlj +

1

ρN
)

= δij +
ρi
ρN
−

ρi
ρ
−

ρi
ρρN

N−1
∑

l=1

ρl

= δij +
ρi
ρN
−

ρi
ρ
−

ρi
ρρN

(ρ− ρN )

= δij .

and

∂(ρiV)

∂t
+∇ · (ρiV ⊗V) =ρi(Vt +V · ∇V) + +(ρit +∇ · (ρiV))V

=ρi(Vt +V · ∇V) − (∇ · Ji)V

due to the second line in (4.1). The flux equation (4.3) can be rewritten as

Ji = −ε

N−1
∑

k,l=1

CikKkl

(

ρl(Vt +V · ∇V) +∇pl − (∇ · Jl)V + (Jl)t +∇ ·
(

V ⊗ Jl + Jl ⊗V +
Jl ⊗ Jl

ρl

)

)

= −ε

N−1
∑

k,l=1

CikKkl

(

−
ρl
ρ
∇

N
∑

j=1

pj +∇pl +O(ε)
)

.

(4.4)

The second step is due to (4.2) and the Maxwell iteration, using that Ji = O(ε) indicated by the first

step.

Furthermore, we deduce from (4.4) that

Ji = −ε

N−1
∑

k,l=1

CikKkl

(

−

N−1
∑

j=1

ρjρl
ρ

∇pj
ρj
−

ρNρl
ρ

∇pN
ρN

+ ρl
∇pl
ρl

)

+O(ε2)

= −ε

N−1
∑

k,l=1

CikKkl

(

N−1
∑

j=1

(ρjδlj −
ρjρl
ρ

)
∇pj
ρj
−

ρl
ρ
(ρ−

N−1
∑

j=1

ρj)
∇pN
ρN

)

+O(ε2)

= −ε

N−1
∑

k,l=1

CikKkl

(

N−1
∑

j=1

(ρjδlj −
ρjρl
ρ

)
∇pj
ρj
−

N−1
∑

j=1

(ρjδlj −
ρjρl
ρ

)
∇pN
ρN

)

+O(ε2)

= −ε
N−1
∑

k,l,j=1

CikKkl(ρjδlj −
ρjρl
ρ

)(
∇pj
ρj
−
∇pN
ρN

) +O(ε2)

= −ε

N−1
∑

k,l,j=1

CikK̄klClj

(∇pj
ρj
−
∇pN
ρN

)

+O(ε2)

for i = 1, · · · , N − 1. In the last step we have approximated K = K(ρ, ρV, ρ1, · · · , ρN−1,J1, · · · ,JN−1)

with K̄ = K(ρ, ρV, ρ1, · · · , ρN−1, 0, · · · , 0), that is, the latter is evaluated at the equilibrium. Truncating
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the expansion above, we arrive at the multicomponent diffusion law

Ji = −ε
N−1
∑

j=1

Dij(u)
(∇pj
ρj
−
∇pN
ρN

)

(4.5)

with Dij(u) ≡
N−1
∑

k,l=1

CikK̄klClj the multicomponent diffusion coefficients, which depend only on the con-

served variable u ≡ (ρ, ρV, ρ1, · · · , ρN−1)
T .

As to the relation (4.5), we have the following remarks.

Remark 4.1 • The diffusion matrix

D(u) ≡ [Dij(u)](N−1)×(N−1) = [Cij ](N−1)×(N−1)K̄[Cij ](N−1)×(N−1)

is symmetric and positive definite, since [Cij ](N−1)×(N−1) is invertible, K̄ is positive definite and

they are both symmetric.

• According to the general theory (see, e.g., [16]), the term
(∇pj
ρj
−
∇pN
ρN

)

can be expressed as the

spatial gradient of the equilibrium-entropic force. To see this, we recall (3.2) that

η(U) =
N
∑

i=1

(

ρi

∫ ρi

1

pi(z)

z2
dz +

1

2ρi
|ρiVi|

2
)

=

N
∑

i=1

(

ρi

∫ ρi

1

pi(z)

z2
dz +

1

2ρi
|ρiV + Ji|

2
)

.

Thus, we have

ηeq(u) ≡ η(U)|Ji=0 =

N
∑

i=1

ρi

∫ ρi

1

pi(z)

z2
dz +

ρ

2
|V|2.

For fixed ρ and V, we compute

∇
∂ηeq(u)

∂ρi
=
∇pi
ρi
−
∇pN
ρN

, i = 1, 2, · · · , N − 1.

Consequently, the multicomponent diffusion law (4.5) can be rewritten as

Ji = −ε

N−1
∑

j=1

Dij(u)∇
∂ηeq(u)

∂ρj
.

Namely, the thermodynamic fluxes Ji are expressed in term of the equilibrium-entropic (thermody-

namic) forces ∇
∂ηeq(u)

∂ρj
, with the coefficient matrix D(u) symmetric. This looks like the Onsager

reciprocal relation [19], while the definition of the thermodynamic forces is consistent to those in

the literature [12, 13].

With the diffusion law (4.5), the system (4.1)–(4.3) can be approximated formally by the following
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second-order partial differential equations

∂ρ

∂t
+∇ · (ρV) = 0,

∂(ρV)

∂t
+∇ · (ρV ⊗V) +∇

N
∑

j=1

pj = 0,

∂ρi
∂t

+∇ · (ρiV) = ε∇ ·

N−1
∑

j=1

Dij(u)(
∇pj
ρj
−
∇pN
ρN

)

for i = 1, · · · , N − 1. Thanks to the remark above, the last equations can be written as

ut +∇ ·G(u) = ε







0
d
∑

k=1

(

D(u)(∂η
eq(u)
∂ν

)xk

)

xk






(4.6)

with G(u) = (ρV, ρV ⊗V +
N
∑

j=1

pjId, ρ1V, · · · , ρN−1V)T and ν = (ρ1, · · · , ρN−1)
T . This is the second-

order partial differential equations (2.5) in [16] with

Bjk(u) = δjkdiag(0d+1, D(u))ηequu(u),

where 0d+1 is the zero-matrix of order (d + 1). It is known from [16] that ηeq(u) is strictly convex and

therefore its Hessian ηequu(u) is positive definite. Moreover, it was showed in [16] that the system (4.6)

has a nice entropy structure, which is extremely important mathematically and numerically.

With the above expression of Bjk(u), we can simply show the following proposition.

Proposition 4.1 The system (3.1) satisfies the isotropy condition (*) of Theorem 2.1 in [16].

Proof. By Lemma 3.2 in [16], it suffices to show that the null-space of the symbol matrix

B(u, ξ) ≡
d

∑

j,k=1

Bjk(u)
(

ηequu(u)
)−1

ξjξk =
d

∑

j,k=1

δjkdiag(0d+1, D(u))ξjξk = diag(0d+1, D(u))|ξ|2

is independent of u and ξ ∈ Rd\{0}. This is clear thanks to the positive definiteness of D(u).

Thanks to this proposition and the conservation-dissipative structure, we use Theorem 2.1 in [16]

and get the following conclusion.

Theorem 4.1 Under the conditions of Theorem 3.1, let s > d/2+1 be an integer. Assume that Ũ(ε) as

initial data for PDEs (3.1) and ū(ε) for (4.6) are in Hs(Rd) for ε > 0, satisfy

‖ũ(·, ε)− ū(·, ε)‖s = O(ε2)

with ũ(x, ε) the conserved mode of Ũ(x, ε), and all the components corresponding to densities have pos-

itive lower bounds. Then there exist ε-independent positive constants T∗ > 0 and K(T∗) such that the
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solutions to PDEs (3.1) and (4.6) with the above initial data, denoted by Uε(x, t) and uε(x, t), are in

C([0, T∗], H
s(Rd)) and

sup
t∈[0,T∗]

‖uε(·, t)− uε(·, t)‖s ≤ K(T∗)ε
2,

where uε(x, t) ≡ (ρε, ρεVε, ρε1, · · · , ρ
ε
N−1) is the conserved mode of Uε(x, t).

The notation used in Theorem 4.1 is standard: For a nonnegative integer s, Hs(Rd) is the space

of functions whose distribution derivatives of order ≤ s are all in L2 and we use ‖U‖s to denote the

standard norm of U ∈ Hs. C([0, T ], X) represents the space of continuous functions on [0, T ] with values

in a Banach space X .

Finally, we give a detailed comparison with the multicomponent diffusion law derived in [9].

Remark 4.2 In [9], Lam introduced N numbers ωi satisfying
N
∑

i=1

ωi 6= 0 and replaced the collision co-

efficients Kij with K̂ij ≡ Kij + ωiρj based on the zero-net-flux condition. By using the invertibility of

the rank-one modification [K̂ij ] of the singular matrix [Kij ], he derived the following multicomponent

diffusion law

Ji = −ε

N
∑

j=1

ρiD̄ijd̄j , i = 1, 2, · · · , N,

where [D̄ij ] = p[K̂ij ]
−1 and d̄j = ∇

pj
p

+ (
pj
p
−

ρj
ρ
)∇(ln p) with p =

N
∑

l=1

pi. It is not difficult to verify the

following relation

p(
d̄j

ρj
−

d̄N

ρN
) =
∇pj
ρj
−
∇pN
ρN

between our thermodynamic forces and Lam’s. Obviously, Lam’s multicomponent diffusion law is not

completely determined in general, for the diffusion matrix [D̄ij ] depends on the arbitrary parameters ωi.

Moreover, it is not clear whether [D̄ij ] is symmetric or positive-definite, while so is ours [Dij(u)].
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[13] T. Ruggeri and S. Simić, Average temperature and Maxwellian iteration in multitemperature mixtures

of fluids, Phys. Rev. E 80(2009), 026317.
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