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We are concerned with progressive waves propagating on a two-dimensional conducting fluid when
a uniform electric field is applied in the direction perpendicular to the undisturbed free surface. The
competing effects of gravity, surface tension, and electrically induced forces are investigated using both
analytical and numerical techniques for an inviscid and incompressible fluid flowing irrotationally.
We simplify the full Euler equations by expanding and truncating the Dirichlet-Neumann operators
in the Hamiltonian formulation of the problem. The numerical results show that when the electric
parameter is in a certain range, the bifurcation structure near the minimum of the phase speed is rich
with Stokes, solitary, generalized solitary, and dark solitary waves. In addition to symmetric solutions,
asymmetric solitary waves featuring a multi-packet structure are found to occur along a branch of
asymmetric generalized solitary waves that itself bifurcates from Stokes waves of finite amplitude.
The detailed bifurcation diagrams, together with typical wave profiles, are presented. Published by
AIP Publishing. [http://dx.doi.org/10.1063/1.4979064]

I. INTRODUCTION

Electrohydrodynamic surface waves, a subject which is
concerned with the interplay between an electric field and
fluid mechanics, was pioneered by Taylor and Melcher among
others in the 1960s.15,16,25,26 Modern studies of Electrohydro-
dynamics (EHD) are driven by its practical significance in
chemistry, biology, and industry, involving functional inter-
faces (adhesives, electrowetting, coatings, etc.), biological
membranes, and cooling systems (see Refs. 4, 12 and 13 and
the references therein). A comprehensive understanding of the
bifurcation mechanism, pattern formation, and dynamics of
EHD surface waves is crucial for the success of these new
applications.

An applied electric field can exert considerably large
forces at electrified interfaces in many situations of prac-
tical relevance,16 and its orientation with respect to the
undisturbed interface plays an important role in the system.
The normal electric field, which is imposed perpendicular
to the undisturbed interface, has effects to destabilize the
liquid-air interface or the interface of two fluids with dif-
ferent permittivities. A typical example is electrocapillary
waves under normal electric fields whose dispersion relation
reads ω2 = (σk3 − εpE2

0k2)/ρ, where ω is the frequency, k the
wavenumber, σ the surface tension, εp the permittivity of the
air, E0 the strength of the electric field, and ρ the density of
the liquid.14 It is readily apparent that the electric field can
provide energy to a certain range of wavenumbers to induce
instability. The tangential electric field, as opposed to the
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normal electric field, has a stabilizing effect on the interface
since it provides a dispersive contribution to the linear sys-
tem.5,22,27 It can delay the formation of the film rupture27 and
even suppress the Rayleigh-Taylor instability.5 In the present
work, we concentrate on the electrohydrodynamic behavior of
a liquid metal in the presence of a strong normal electric field.
On physical grounds, this setting is relevant to two particu-
lar problems: the so-called “Taylor cone” first described by
Taylor25 who was primarily interested in the disintegration
of water drops in a strong electric field such as thunder-
storm, and the instability of the extended horizontal surface
of a conducting liquid under the action of a vertical electric
field.26

In this paper, we study capillary-gravity waves propa-
gating on the surface of a perfect conducting fluid under the
influence of a normal electric field in the inviscid setting. The
nonelectrical gravity-capillary waves have received consider-
able attention in the past few decades due to their complexity
and applications in wind-ocean coupling. It is well-known
that gravity-capillary solitary waves in deep water bifurcate
from the minimum of the phase speed and feature oscilla-
tory decaying tails.28,29 The underlying mechanism is that the
group velocity and the phase velocity are equal at the phase
speed minimum, and furthermore at the same point, the asso-
ciated cubic nonlinear Schrödinger (NLS) equation, which is a
weakly nonlinear model governing the dynamics of the enve-
lope, is of focussing type, and hence admits sech-type bright
soliton solutions.1 For an air-water interface, these wavepacket
solitary waves bifurcate from infinitesimal periodic waves with
a wavelength of 1.7 cm and a speed of 23.1 cm/s. While for
an air-mercury interface, the carrier wavelength at the bifur-
cation point is of approximately 1.2 cm with the minimum
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phase speed of 19.3 cm/s. However when the vertical electric
field is imposed, the induced net forces on the free surface
can turn the associated NLS equation into a defocusing type
for a certain range of the electric parameter (see Section III for
details), hence disallow wavepacket solitary waves from bifur-
cating about the uniform state. In view of the above argument,
two questions arise naturally when the electric strength is this
particular range. The first question is the existence of steady
dark solitary waves in the primitive equations, as predicted
by the defocusing NLS equation. Dark solitons, which feature
biasymptotic uniform states in far fields with a phase jump
in between, have been observed and thoroughly investigated
in nonlinear optics, plasma physics, and Bose-Einstein con-
densates.8,24 There is a deep analogy between waves in these
fields and on the surface of water. In the case of water waves,
steady dark solitary wave was first discovered by Bridges and
Donaldson.2 They found that this type of wave arises through
the secondary criticality of Stokes waves in finite depth. Dark
solitons on the surface of water were recently observed in
a wave tank by Chabchoub et al.3 The second question is
the existence of bright solitary waves with finite amplitudes
in the primitive equations, which are not ruled out by the
NLS equation, since the weakly nonlinear theory is valid only
at small amplitudes. In the present paper, we give positive
answers to both questions based on numerical computations,
and the result has potential applications in water waves. Par-
ticularly, the existence of steady dark solitary waves indi-
cates that this type of nonlinear waves can be found not only
in large-scale gravity waves but also in small-scale gravity-
capillary waves using normal electric fields and conducting
liquids.

Analytical and numerical investigations on the effect of
normal electric fields on inviscid gravity-capillary waves prop-
agating on dielectric or conducting fluids were reported by sev-
eral groups, most of which were based on long-wave models.
Easwaran7 and Perel’man23 derived the Korteweg–de Vries
(KdV) equation and the modified KdV equation, respectively,
for a conducting liquid film in the presence of a vertical electric
field. Under the assumption that the electrode is placed later-
ally far away, Gleeson et al.9 derived a new long-wave model
with a term involving Hilbert transform, which is called the
Benjamin-Ono-KdV equation. In the same paper, when the
Bond number is close to 1/3 and the electric field is rather
weak, they also derived the fifth-order Benjamin-Ono-KdV
equation, which was further explored by Hammmerton and
Basso.10 Papageorgiou et al.21 studied the nonlinear stability
of a dielectric liquid film wetting an electrode based on a long-
wave system to identify the critical electric parameter for the
stability exchange.

This paper aims at providing theoretical prediction and
numerical evidence for the existence of various solitary waves
for conducting fluids under normal electric fields. If we denote
by h the thickness of the undisturbed fluid and assume a nor-
mal electric field acts with uniform value E0 far away, the
dispersion relation for the problem reads (see formula (5.155)
in Ref. 11)

c2
p =

ω2

k2
= tanh(kh) *

,

g
k
−
εpE2

0

ρ
+
σ

ρ
k+

-
, (1)

where cp is called the phase speed and g is the accelera-
tion of gravity. If the fluid is (impure) water or mercury
and it is deeper than a few centimetres, cp attains its mini-
mum cmin at a large k, which corresponds to a wavelength
of 1-2 cm. From the linear theory, we can expect wavepacket
solitary waves near cmin. At physical grounds, at cmin the group
speed and the phase speed coincide, therefore the wavepacket
can propagate without changing shape. While near cmin, the
speed of the carrier wave can be slightly modified by the
finite-amplitude effects to match the propagation speed of
the envelope. To investigate the bifurcation structure near
the phase speed minimum can contribute to designing the
lab experiments as well as understanding similar wave phe-
nomena in other physical systems. We will show in Section
V that for a strong electric field, the bifurcation structure
near cmin is rich with Stokes, solitary, generalized solitary,
and dark solitary waves. Due to the small wavelength of
carrier waves near cmin for water and mercury, the deep
fluid assumption is a reasonable approximation for gravity-
capillary waves under a normal electric field. From now until
the end of the paper, we assume that the fluid is of infinite
depth.

The organization of the paper is as follows. Following this
section, the problem setup and the governing equations are dis-
cussed in Section II. We perform the normal-form analysis at
cmin in Section III resulting in the cubic nonlinear Schrödinger
equation whose type (focusing or defocusing) depends on
the electric parameter. Rather than addressing the full Euler
and Maxwell equations, we derive a series of computational
models resulting from the Taylor expansions of the Dirichlet-
Neumann operators in the Hamiltonian formulation of the full
problem in Section IV. What follows in Section V is the numer-
ical results on various nonlinear traveling-wave solutions and
the bifurcation behavior near cmin. Finally concluding remarks
are given in Section VI.

II. GOVERNING EQUATIONS

We consider an inviscid, incompressible fluid of constant
density ρ and of infinite depth. We introduce horizontal coor-
dinates x directed along the undisturbed fluid surface and a
vertical coordinate y measured upward from the equilibrium
surface. The displacement of the free surface is denoted by
y = η(x, t), a function of space and time. Assume the flow is
irrotational, then we can describe the velocity field −→v inside
the fluid by a potential function φ as −→v = ∇φ, where ∇ is the
gradient operator. Incompressibility, ∇ · −→v = 0, implies that
the velocity potential φ satisfies Laplace’s equation ∇2φ = 0.

An electric field acts along the positive y-direction in space
with the uniform value E0 in the far field. We assume that the
fluid is perfectly conducting so that the electric strength is zero
within the fluid. The surrounding medium, which occupies the
region above the fluid, is assumed dielectric with permittiv-
ity εp. The electrostatic limit of Maxwell’s equation implies
that the induced magnetic fields are negligible, it then follows
that the electric field is also irrotational due to Faraday’s law.
Therefore, we can introduce the voltage potential V such that
−→
E = −∇V and ∇2V = 0, where

−→
E is the electric field above

the fluid.
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The boundary conditions at the free surface y = η(x, t)
are the kinematic condition, continuity of normal stresses, and
vanishing of the electric field. The time evolution of η(x, t) is
governed by the kinematic boundary condition

ηt = φy − ηxφx. (2)

Although the voltage potential vanishes at the free surface, the
normal component of the electric field at the interface gives
rise to a normal stress on the surface. Therefore, the modified
Bernoulli’s law at y = η(x, t) reads21

φt +
1
2
|∇φ|2 −

εp

2ρ
|∇V |2 + gη −

σ

ρ

ηxx

(1 + η2
x )3/2

= 0, (3)

where σ is the surface tension coefficient between the fluid
and the surrounding medium, and g is the acceleration due to
gravity. Under the deep fluid approximation, the potential φ
must satisfy the boundary condition

φy → 0, as y → −∞. (4)

In addition, we assume the electrode is placed laterally far
away, therefore the electric strength approaches a constant in
the far field,9

Vy → E0, as y → +∞. (5)

For the sake of convenience in the subsequent analyses, we
introduce a new voltage potential W , V/E0 − y, so that W is
a harmonic function with Wy → 0 as y → ∞. It follows that
W = −η at z = η, and the dynamic boundary condition can be
rewritten as

φt +
1
2
|∇φ|2 −

Ẽ
2

(
|∇W |2 + 2Wy

)
+ gη −

σ

ρ

ηxx

(1 + η2
x )3/2

= 0,

(6)

where Ẽ , εpE2
0/ρ. Since we retain gravity, surface tension,

and electric field effects, we can non-dimensionalize the
system by choosing

[
σ

ρg

]1/2

,

[
σ

ρg3

]1/4

,

[
σ3

ρ3g

]1/4

, and

[
σ

ρg

]1/2

(7)

as reference length, time, velocity potential, and modified volt-
age potential, respectively. Therefore the dynamic boundary
condition (6) can be recast as

φt +
1
2
|∇φ|2 −

Ep

2

(
|∇W |2 + 2Wy

)
+ η −

ηxx

(1 + η2
x )3/2

= 0,

(8)

where Ep , εpE2
0/
√
ρgσ is the only parameter in the prob-

lem, while the kinematic boundary condition (2) remains the
same.

III. NORMAL FORM ANALYSIS

The nonlinear Schrödinger (NLS) equation is a universal
model appearing in many contexts of science, including water
waves, nonlinear optics, Bose-Einstein condensates, etc. Usu-
ally it is used to describe the dynamics of the envelope of a
monochromatic wave train in the weakly nonlinear regime. In
this section, we show that the NLS equation also appears in the
context of electrohydrodynamics. Furthermore, we will show

in the subsequent analysis that the type of the NLS equation
depends on the electric parameter Ep, therefore we can deter-
mine the range of Ep where the NLS equation is defocusing
and dark solitary waves can be expected, so as to provide a the-
oretical prediction for numerical simulations of the primitive
Euler equations.

To derive the NLS equation, we first assume that φ, η,
W are all of order O(ε), and then rewrite the boundary condi-
tions on y = η as evaluations on y = 0, by developing Taylor
expansions of φ and W about y = 0,

φ(x, y, t) = φ(x, 0, t) + ηφy(x, 0, t) +
η2

2
φyy(x, 0, t) + O

(
ε4

)
,

(9)

W (x, y, t) = W (x, 0, t) + ηWy(x, 0, t) +
η2

2
Wyy(x, 0, t) + O

(
ε4

)
.

(10)
This allows us to rewrite the surface boundary conditions
W = −η, (2) and (8) at y = 0 as,

W + η = −ηWy −
η2

2
Wyy + O

(
ε4

)
, (11)

ηt − φy =
(
ηφyy − ηxφx

)
+

(
η2

2
φyyy − ηηxφxy

)
+ O

(
ε4

)
,

(12)

φt + η − ηxx − EpWy = − ηφty −
1
2

(
φ2

x + φ2
y

)
+

Ep

2

(
W2

x + W2
y + 2ηWyy

)
−

1
2
η2φtyy

−
(
ηφxφxy + ηφyφyy

)
−

3
2
η2

xηxx +
Ep

2
×

(
2ηWxWxy + 2ηWyWyy + η2Wyyy

)
+O

(
ε4

)
. (13)

Now consider the propagation of a quasi-monochromatic wave
oscillating fast in the propagation direction x. To proceed, we
define X = εx, T = εt, τ = ε2t, and choose ei(kx−ωt) as the carrier
wave, where k is the wavenumber and assumed to be positive,
and ω is the frequency. We then seek an asymptotic solution
of these equations in the form

W =
∞∑

n=1

εn *.
,

n∑
j=0

Wnj(X − cgT , y, τ)ejiΘ+/
-

+ c.c. , (14)

φ =

∞∑
n=1

εn *.
,

n∑
j=0

φnj(X − cgT , y, τ)ejiΘ+/
-

+ c.c. , (15)

η =

∞∑
n=1

εn *.
,

n∑
j=0

ηnj(X − cgT , τ)ejiΘ+/
-

+ c.c. , (16)

where Θ = kx −ωt, cg is called the group velocity which will
be defined later, and “c.c.” represents the complex conjugate.
Since the fluid is of infinite depth, the term accommodating
the mean drift of the wave vanishes. Therefore, the leading
order quantities that govern the evolution of the wavepacket
are W11eiΘ, φ11eiΘ, and η11eiΘ. Substituting the ansatz (14)
and (15) into Laplace’s equation yields, for leading-order
terms,

(φ11)yy − k2φ11 = 0 , (W11)yy − k2W11 = 0 . (17)
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In view of the far-field conditions, the solutions to (17) take
the form

φ11 = φ̃11(X − cgT , τ)eky , W11 = W̃11(X − cgT , τ)e−ky,

(18)

where φ̃11 and W̃11 are arbitrary functions. Substituting (18)
and (16) into the boundary conditions (11)–(13), upon collect-
ing the terms of O(ε), yields

W̃11 = −η11 , φ̃11 = −
iω
k
η11, (19)

ω2 = k
(
1 − Epk + k2

)
, c2

p =
ω2

k2
=

1
k
− Ep + k, (20)

where cp is called the phase speed. It is obvious that c2
p attains

its minimum 2�Ep when k = 1, and it immediately follows
that the problem is linearly well-posed for Ep 6 2. Solving
Laplace’s equations for the next order gives

φ20 = φ̃20 , φ21 = eky
[
φ̃21 − iy

(
φ̃11

)
X

]
, φ22 = e2ky φ̃22 ,

(21)

W20 = W̃20 , W21 = e−ky
[
W̃21 + iy

(
W̃11

)
X

]
, W22 = e−2kyW̃22,

(22)

where all the functions with tilde depend on X � cgT and τ.
Inserting these solutions into the conditions on the free surface
yields the following:

• Terms in ε2e0iΘ give η20 = 0 and W̃20 = −2k |η11 |
2.

• Terms in ε2eiΘ give the expression of the group velocity

cg =
1 − 2Epk + 3k2

2ω
= ω′, (23)

and the relations between η21, W̃21, and φ̃21 through the
following expressions

W̃21 =− η21 , φ̃21 =
1
k

[
−iωη21 + i

(
φ̃11

)
X
− cg(η11)X

]
.

(24)

• Terms in ε2e2iΘ result in a system of three linear equa-
tions with η22, W̃22, and φ̃22 as unknowns. Solving this
linear system yields

η22 =
−ω2 + Epk2

2k2 − 1
η2

11, W̃22 = −η22 − kη2
11,

φ̃22 = −
iω
k
η22 + iωη2

11.
(25)

At the third order, it suffices to consider the fundamen-
tal mode eiΘ. Using the method of multiple scales again in
Laplace’s equations, one obtains

W31 = e−ky
[
W̃31 + iy

(
W̃21

)
X

+
y2

2
(η11)XX

]
, (26)

φ31 = eky
[
φ̃31 − iy

(
φ̃21

)
X

+
iω
2k

y2(η11)XX

]
. (27)

A considerable amount of algebra on the boundary conditions
eventually results in solvability conditions for the fundamental
mode that yield the governing equation, the cubic nonlinear

Schrödinger equation, for the envelope η11. We state the result
without tedious calculations,

i(η11)τ + α(η11)XX + γ |η11 |
2η11 = 0, (28)

where α and γ take the form

α =
3k − Ep − c2

g

2ω
, γ =

k
2ω



2(Epk2 − ω2)2

2k2 − 1
− 2k2 −

1
2

k4


.

(29)

Evaluating these coefficients at the minimum of the phase
speed (k∗ = 1 and ω∗ =

√
2 − Ep) yields

α =
1

2
√

2 − Ep
, γ =

1√
2 − Ep

[
4(1 − Ep)2 −

5
4

]
. (30)

It is easy to check that the coefficient γ is positive for
Ep ∈

[
0, 1 −

√
5/4

)
∪

(
1 +
√

5/4, 2
)
, and γ is negative if

Ep ∈
(
1 −
√

5/4, 1 +
√

5/4
)
. For positive γ, the NLS equa-

tion (28) is of focusing type and hence has the bright soliton
solutions

η11(X, τ) =

√
2λ
γ

sech *
,
X

√
λ

α
+
-

eiλτ (31)

with a positive parameter λ. Combining (31) with the ansatz
(16) gives the leading-order approximation of the wave profile

η ≈ ε

√
8λ
γ

sech

ε(x − cmint)

√
λ

α


× cos

[ (
x − cmint + ε2λt2

)
+ x0

]
, (32)

where x0 is an arbitrary constant determining the initial phase
shift between the carrier wave and the envelope. Despite the
arbitrariness of the initial phase shift, only two branches of
solitary waves have been found to bifurcate from infinitesimal
periodic waves in the full Euler equations (Vanden-Broeck and
Dias29): the elevation branch (x0 = 0) and the depression branch
(x0 = π). The other case, with γ negative, is the defocusing
NLS which admits steady dark soliton solutions character-
ized by a constant amplitude at infinity and a local dip in the
center,

η11(X, τ) =

√
λ

γ
tanh *

,
X

√
−
λ

2α
+
-

eiλτ , (33)

where λ is an arbitrary negative parameter. Combining (16)
and (33) furnishes the approximation of the dark solitary-wave
solution in the full Euler equations

η ≈ 2ε

√
λ

γ
tanh


ε (x − cmint)

√
−
λ

2α


× cos

[ (
x − cmint + ε2λt

)
+ x0

]
. (34)

It is noted that choosing the initial phase x0 = π/2 and 3π/2
gives symmetric solutions.

IV. DIRICHLET-NEUMANN OPERATORS

In fiber optics, the NLS equation is usually used ad initio,
whereas in water waves, it only represents a reduced model
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whose accuracy and rationality should be verified against
solutions of the full Euler equations.

To design a numerical method for the Euler equations,
we first introduce the Hamiltonian formulation for the full
problem. The total energy of the system is given by the sum
of kinetic energy and potential energy,

H = 1
2

∫ ∞
−∞

∫ η

−∞

|∇φ|2 dydx −
Ep

2

∫ ∞
−∞

∫ ∞
η

|∇W |2 dydx

+
1
2

∫ ∞
−∞

η2 dx +
∫ ∞
−∞

(√
1 + η2

x − 1

)
dx, (35)

where the potential energy consists of three parts in this
context: electric potential energy, gravitational potential
energy, and surface energy. Following Craig and Sulem6 and
Zakharov,33 we define the value of the velocity potential at
the free surface as ξ(x, t) , φ(x, η(x, t), t), then the divergence
theorem yields

H= 1
2

∫ ∞
−∞

[
ξG−(η)ξ − EpηG+(η)η + η2 +2

(√
1+η2

x − 1

)]
dx.

(36)

This is the Hamiltonian formulation of the present problem,
and written in terms of the Dirichlet-Neumann operators G±(η)
which are defined as

G−(η)ξ , φy − ηxφx
���y=η = ∇φ · n

√
1 + η2

x , (37)

G+(η) (−η) , ηxWx −Wy
���y=η = ∇W · (−n)

√
1 + η2

x , (38)

where n is the unit normal vector pointing upwards. The
Dirichlet-Neumann operator returns the normal derivative at
the free surface by solving Laplace’s equation with the Dirich-
let boundary condition. Following (6), the Dirichlet-Neumann
operators can be formally written as Taylor series

G−(η) =
∞∑

n=0

Gn(η) , G+(η) =
∞∑

n=0

(−1)nGn(η) , (39)

where Gn(η) takes the following form: for n > 1,

Gn(η) = −Gn−1
0 ∂x

ηn

n!
∂x −

n∑
j=1

Gj
0

ηj

j!
Gn−j(η), (40)

and G0 = (−∂xx)1/2. Substituting (39) into (36) yields

H[η, ξ] = H̃m[η, ξ] + O
(
ξ2ηm+1, ηm+3

)
, (41)

where H̃m takes the form

H̃m =
1
2

∫ ∞
−∞


ξ

m∑
n=0

Gn(η)ξ − Epη

m∑
n=0

(−1)nGn(η)η + η2

+ 2

(√
1 + η2

x − 1

)
dx. (42)

Disregarding terms of order O
(
ξ2ηm+1, ηm+3

)
, the evolution

equations for ξ and η can be obtained by taking variational
derivatives of the approximated Hamiltonian H̃m as

ηt =
δH̃m

δξ
, ξt = −

δH̃m

δη
. (43)

We list below the models for m 6 4 with tedious calculations
omitted:

ηt − G0ξ =

m∑
n=1

Gn(η)ξ, (44)

ξt +
(
1−EpG0 − ∂xx

)
η =

m+1∑
n=2

Nn − ∂x



η3
x(

1 +
√

1 + η2
x

)√
1 + η2

x



,

(45)
where the nonlinear terms Nn are given as

N2 =
1
2

[
(G0ξ)2 − ξ2

x

]
+

Ep

2

[
(G0η)2 − η2

x − 2G1η
]

, (46)

N3 = (G0ξ) (G1ξ + ηxξx) −Ep

[
(G0η)

(
G1η + η2

x

)
−G2η

]
,

(47)

N4 =
1
2

[
(G1ξ + ηxξx)2 + 2 (G0ξ) (G2ξ) − η2

x (G0ξ)2
]

+
Ep

2

[(
G1η + η2

x

)2
+2 (G0η)(G2η) − η2

x (G0η)2 − 2G3η
]
,

(48)

N5 = (G0ξ) (G3ξ) +
(
G2ξ − η

2
xG0ξ

)
(G1ξ + ηxξx)

−Ep

[
(G0η)(G3η) +

(
G2η − η

2
xG0η

)(
G1η + η2

x

)
−G4η

]
.

(49)

Here, we suppress the dependence on η in Gj(η) for notational
simplicity. The efficiency and accuracy of these numerical
models for nonelectric surface water waves (i.e., Ep = 0)
were discussed by Wang and Milewski17 and Nicholls and
Reitich.20

V. NUMERICAL RESULTS

In order to study the pattern formation or progressive
waves in more details in free-surface water waves, we should
consider the problems in the primitive equations or quantita-
tive models, which may show a rich variety of bifurcations
for fluid phenomena. In this section, based on the quanti-
tative model with m = 4 in (44) and (45), we study the
local bifurcation near the minimum of the phase speed. The
rationale for a quintic truncation (i.e., m = 4) is to guaran-
tee the same local bifurcation behaviour between the model
and full potential flow. That is because for small |γ |, under
a new rescaling, the modulations of wavepackets should be
well described by a cubic-quintic NLS equation. In order to
derive a correct cubic-quintic NLS equation, the quintic trun-
cation is necessary (the reader is referred to Ref. 30 for more
details).

When Ep ∈
[
0, 1−

√
5/4

)
∪

(
1 +
√

5/4, 2
)
, the associated

NLS is focusing, therefore the local bifurcation mechanism
is analogous to that of the gravity-capillary waves in deep
water (i.e., Ep = 0): two branches of wavepacket solitary waves
(elevation and depression branches) bifurcate from infinites-
imal periodic waves at cmin. An immediate question arising
from the aforementioned discussion is what is the bifurcation
mechanism near cmin when the associated NLS equation is of
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defocusing type (i.e., Ep ∈ (1 −
√

5/4, 1 +
√

5/4)). To investi-
gate this problem, we confine ourselves to the defocusing case
and choose Ep = 0.6 in subsequent computations.

A. Dark solitary waves

First of all, we consider the steady dark solitary waves
in systems (44) and (45), whose existence has already been
predicted by the envelope equation: the defocusing NLS equa-
tion. We assume that waves propagate with velocity c, then it
follows that η and ξ depend on x � ct only, namely,

− cηθ − G0ξ =

m∑
n=1

Gn(η)ξ , (50)

−cξθ +
(
1 − EpG0 − ∂θθ

)
η =

m∑
n=1

Nn − ∂θ

×



η3
θ(

1 +
√

1 + η2
θ

) √
1 + η2

θ



, (51)

where θ = x − ct. Pseudo-spectral method is used in all
numerical experiments. We expand the unknowns η and ξ as

η =

N∑
n=−N

ane2πinθ/L, ξ =

N∑
n=−N

bne2πinθ/L, (52)

with an = a
�n real and bn = �b

�n pure imaginary for symmet-
ric waves, where L is the length of the computational domain
which is sufficiently long and carefully chosen for different
numerical experiments. We substitute (52) into (50) and (51),
evaluate at uniformly distributed grid points, project them onto
the same wavenumber, and use Newton’s method to solve for
unknowns an and bn.31 It is noted that the derivatives and
differential operator G0 are easy to calculate via Fourier mul-
tipliers. We choose (34) as the initial guess of the Newton
algorithm, where the small parameter ε can be obtained by

noticing

cmin − ε
2λ ≈ c =⇒ ε ≈

√
c − cmin

λ
. (53)

Near the bifurcation point cmin, dark solitary waves are charac-
terized by Stokes waves on the tails. Noticing that the dark soli-
ton solution (33) adds a phase shift of π to the carrier wave, we
choose a domain L = (2n+1)π for a considerably large n. This
numerical trick has been successfully used to search for sym-
metric dark solitary waves in other nonlinear waves problems
such as hydroelastic waves19 and interfacial gravity-capillary
waves.31

Two branches of dark solitary were found in systems (50)
and (51). They are, respectively, the depression branch with a
local minimum at the center and the elevation branch featuring
a local maximum at the center. The bifurcation diagram of the
depression branch, together with typical profiles, is presented
in Figure 1. It shows that dark solitary waves bifurcate from
infinitesimal periodic waves, and along the speed-amplitude
curve there is a turning point at c ≈ 1.1898, beyond which the
wave profiles feature two solitary pulses with non-decaying
tails. Further following the bifurcation curve, ripples in the far
field vanish as c becomes smaller than cmin, therefore multi-
hump solitary waves appear. The dashed curves in Figures 1(a)
and 1(b) are the predictions of the defocusing NLS equation
given by (33), which show good agreement at small ampli-
tudes. In Figure 1(b), the dotted curves were obtained for n
= 31, and it turns out that four Stokes waves were added in
the far field on both sides without any noticeable changes of
the profiles already obtained for n = 25 (solid curve). This
fact strongly indicates that as the domain size increases, more
and more periodic waves can be added, therefore we can
numerically obtain true dark solitary waves as the domain
approaches infinity. The elevation branch is shown in Fig-
ure 2, and its bifurcation mechanism is similar to the depression
branch.

FIG. 1. Dark solitary waves with positive curvature at the center. (a) Speed-amplitude bifurcation diagram near the minimum of the phase speed computed based
on the quintic model (solid curve), together with the NLS prediction (dashed curve). (b) From top to bottom: typical wave profiles corresponding to points 1a,
1b, 1c, 1d labeled in the left panel, respectively. As the amplitude increases, dark solitary waves becomes two-pulse generalised solitary waves, and finally turn
to bright solitary waves as the speed reaches the subcritical regime. For dark solitary waves (1a and 1b), solutions were generated in the computational domains
of 51π (solid curve) and 67π (dotted curve), respectively, and the NLS prediction (dashed curve) is also shown for reference.
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FIG. 2. Dark solitary waves with negative curvature at the center. (a) Speed-amplitude bifurcation diagram obtained by solving the quintic model (solid curve),
together with the NLS prediction (dashed curve). (b) From top to bottom: typical wave profiles corresponding to points 2a, 2b, 2c, 2d labeled in the left panel,
respectively. As the amplitude increases, dark solitary waves becomes two-pulse generalised solitary waves, and finally turn to bright solitary waves as the speed
reaches the subcritical regime. For dark solitary waves 2a and 2b, solutions were generated in the computational domains of 51π (solid curve) and 67π (dotted
curve), respectively, and the NLS prediction (dashed curve) is also shown for reference.

B. Bright and generalized solitary waves

Though the NLS approximation implies that there are no
small-amplitude bright solitons for Ep ∈

(
1 −
√

5/4, 1 +
√

5/4
)
,

the normal form analysis does not rule out the existence of
moderate-amplitude solitary waves in our Hamiltonian model.
The existence of multi-hump bright solitary waves shown in
the first experiment also inspires us to seek single-hump fully
localized solutions in the same system.

For Ep = 0, it is well documented29 that deep-water
gravity-capillary bright solitary waves bifurcate from infinites-
imal periodic waves since the associated NLS equation is of
focusing type (i.e., γ = 11

√
2/8 in (28)) at cmin. We started our

numerical experiment from searching for bright solitary waves
in systems (50) and (51) for Ep = 0 with initial guess given by
(32), then gradually increased the value of Ep as a parameter

in the numerical continuation scheme, and finally stopped at
Ep = 0.6. We found that bright solitary waves do exist in our
problem for relatively large Ep even though the associated NLS
equation is defocusing. However, the bifurcation mechanism
of these wavepacket solitary waves is novel, since they do not
bifurcate from infinitesimal periodic waves. If we follow the
bifurcation curve by increasing c, as the curve crosses the min-
imum of the phase speed, the corresponding waves grow up to
the length of the entire computational domain and become
generalized solitary waves due to the resonance with peri-
odic waves. Further along the curve, the branch of generalized
solitary waves joins the branch of Stokes waves. This bifurca-
tion mechanism was found in both depression branch (Figure
3(a)) and elevation branch (Figure 4(a)), and typical wave
profiles are presented in Figures 3(b) and 4(b), respectively.

FIG. 3. Bright and generalized solitary waves of depression. (a) Bright solitary waves (downward-pointing triangle) appear along the branch of generalized solitary
waves (circles) that itself bifurcates from periodic waves (solid curve) of finite amplitude. (b) Top: typical profile of depression solitary waves (corresponding
to the point 3a labeled in the left figure); bottom: typical profile of generalized solitary waves of depression (corresponding to the point 3b shown in the left
figure), which is generated in the computational domains of 62π (solid curve) and 50π (dotted curve).
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FIG. 4. Bright and generalized solitary waves of elevation. (a) Bright solitary waves (upward-pointing triangle) appear along the branch of two-pulse generalized
solitary waves (circles) that itself bifurcates from periodic waves (solid curve). (b) Top: typical profile of elevation solitary waves (corresponding to the point
4a labeled in the left figure); bottom: typical profile of generalized solitary waves of elevation (corresponding to the point 4b shown in the left figure), which is
generated in the computational domains of 70π (solid curve) and 62π (dotted curve).

The generalized solitary waves were computed in different
domains (50π and 62π for depression waves, and 62π and
70π for elevation waves), and it turns out that the profiles gen-
erated in a smaller domain are almost exactly on the top of the
profiles for the larger domain. This fact strongly suggests the
existence of true generalized solitary waves, though we car-
ried out the numerical experiments in periodic domains. We
should emphasize that the computations of generalized soli-
tary waves are very sensitive to the size of the domain, which
selects a particular periodicity, and we only chose L = 2nπ
therefore the branch originates from the fundamental branch
of Stokes waves. It is noted that similar solutions and bifurca-
tion diagram to those shown in Figure 3 have been found for
depression hydroelastic waves.18

C. Asymmetric solitary waves

Finally, we consider the existence of asymmetric travel-
ing waves for the problem. It was numerically found by Wang

et al.32 that asymmetric gravity-capillary solitary waves exist
below cmin in deep water in the full Euler equations. These
authors also showed that the solutions feature a multi-packet
structure and appear via spontaneous symmetry-breaking
bifurcations. Motivated by this work, we try to test the exis-
tence of asymmetric solitary wave under a normal electric field
and investigate how the electric force alters the bifurcation
structure.

Similar to the second experiment, we started from the
solution obtained for nonelectric gravity-capillary waves (i.e.,
Ep = 0), treated Ep as a continuation parameter, and finally
stopped the computation at Ep = 0.6. An asymmetric solitary
wave was then obtained, which was composed of a depres-
sion wave and an elevation one separated by small ripples (see
Figure 5(b)). Once one solution is found, the bifurcation branch
near cmin can be completed by fixing the value of Ep and vary-
ing the speed of the wave. It was found that in contrast to
the case without electric field, asymmetric solitary waves do

FIG. 5. Asymmetric bright and generalized solitary waves. (a) Asymmetric bright solitary waves (squares) appear along a branch of asymmetric generalized
solitary waves (circles) that itself bifurcates from symmetric periodic waves (solid curve) of finite amplitude. (b) shows the typical profiles for a bright solitary
wave (top, 5a) and a generalized solitary wave (bottom, 5b).
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not bifurcate from the branch of symmetric solitary waves.
Instead, as one increases the translating speed, asymmetric
solitary waves become asymmetric generalized solitary waves
for c > cmin. As the speed is further increased, it terminates
on the branch of finite-amplitude Stokes waves (see Figure 5).
To the best of our knowledge, it was the first time that asym-
metric generalized solitary waves were found in water-wave
problems.

VI. CONCLUSION

In the present paper, we have investigated two-
dimensional gravity-capillary solitary waves propagating on
a conducting fluid under a vertical electric field. We sim-
plified the full Euler equations by expanding and truncating
the Dirichlet-Neumann operator and developed a Hamiltonian
model which was used to study the local bifurcation mecha-
nism near the minimum of the phase speed. It has been shown
that for relatively large electric parameter where the associated
NLS equation is of defocusing type, dark solitary waves bifur-
cate from infinitesimal periodic waves and exist at supercritical
speeds. As the amplitude increases, the speed-amplitude bifur-
cation curve experiences a limiting point, beyond which the
waves turn to be generalized solitary waves with two solitary
pulses. As one further reduces the speed, bright solitary waves
featuring two depression waves placed side-by-side appear for
c < cmin. We have also shown that though the NLS equation
is defocusing, bright solitary waves (including single-hump
symmetric waves and multi-hump asymmetric waves) exist
at finite amplitudes, but the bifurcation mechanism is novel,
since they appear along the branches of generalized solitary
waves that themselves bifurcate from the branch of Stokes
waves.

Numerical evidence presented in the paper provides a pos-
sible way to find steady dark solitary waves in small-scale
gravity-capillary waves, while the associated NLS equation
gives some guidance on the magnitude of the electric fields
to be used in the lab experiments. On the numerical side,
the discovery of the rich bifurcation structure near the phase
speed minimum in the truncated Hamiltonian model leads
us to postulate the similar phenomenon in the full equa-
tions for water waves, which is of great interest for further
research. The existence of new steady solutions also inspires
us to study their stability and dynamic properties in the
future.
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