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Abstract Nonlinear waves in deformed optical honeycomb lattices are
investigated. Discrete couple mode equations are used to find higher order con-
tinuous nonlinear Dirac systems which are employed to describe key underlying
phenomena. For weak deformation and nonlinearity the wave propagation is cir-
cular–ellliptical. At strong nonlinearity the diffraction pattern becomes triangular
in structure which is traced to appropriate nonequal energy propagation in
momentum space. At suitably large deformation the dispersion structure can have
nearby Dirac points or small gaps. The effective dynamics of the wave packets is
described by two maximally balanced nonlocal nonlinear Schrödinger type
equations.

1 Introduction

Wave propagation in honeycomb lattices has attracted considerable interest in
physics and applied mathematics. One of the main reasons to understand these
lattices and their behavior is due to the recent fabrication of the new material
graphene and its success in numerous applications [1]. Many of the important
properties associated with graphene come from the two-dimensional honeycomb
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arrangement of its atoms which has major effect on how the associated matter
waves propagate. More specifically, the spectrum of the Schrödinger operator with
a honeycomb lattice exhibits conical structure in the neighborhood where two
dispersion branches touch; these locations are referred as Dirac points. In the
vicinity of the Dirac points, the dispersion relation locally forms a double-cone,
referred as a Dirac cone. This special geometric structure gives rise to two inde-
pendent Bloch wave envelopes or packets. In other words the conical dispersion
relation admits the propagation of massless Fermions. Interestingly important and
novel phenomena are related to these unusual electronic excitations; e.g., anom-
alous integer quantum Hall effect, Klein tunneling, enhanced conductivity etc.
[1–3]. Other fields where honeycomb lattices play important roles include elec-
tromagnetic waves propagating in photonic crystals with a honeycomb background
[4] and ultra cold atoms trapped in optic induced honeycomb lattices [5, 6].

On the other hand even though electromagnetic waves which are classical
waves obey Maxwell equations, the propagation of light in a paraxial photonic
crystal can be described by a lattice nonlinear Schrödinger (NLS) Eq. (1), see for
example, [7]. In order to stablize the lattice, for instance, in optically induced
crystals, the lattice intensity is often much higher than the intensities of the
propagation waves [8–10]. This setup leads to the strong potential or so-called
tight-binding limit. In this context, coupled-mode theory provides an approximate
model for the wave packets which are represented as discrete evolution equations
[11]. In the case when the simple background lattice is square or rectangular the
governing Bloch envelope equation can often be reduced to a discrete nonlinear
Schrödinger equation; this generally corresponds to single band approximations
[12, 13]. But when the background lattice is not simple, such as a honeycomb-
hexagonal lattice, one finds that the fundamental governing Bloch envelope
equation satisfies a discrete nonlinear Dirac system which describes the wave
dynamics associated with the Dirac cone [14–16]. From a mathematical point of
view these problems have certain common features; in particular wave envelopes
associated with Bloch modes and the associated nonlinearity are centrally
important in the analytical description.

The study of the interplay between periodicity and nonlinearity leads to
important mathematical questions. Periodicity relates to the band structure of the
dispersion relation and Bloch waves which are similar in spirit to plane waves in
Fourier analysis. In many cases the nonlinearity induces pure self phase modu-
lation. But nonlinearity can also couple waves between different Fourier modes or
Bloch bands. In simple lattices Bloch envelopes can lead to interesting localized
structures which propagate in the gap regimes of the spectrum; they are sometimes
referred to as gap solitons. Associated with such gaps in the spectrum many
different types of propagating localized waves have been found; examples include
but are not limited to dipole solitons, vortex solitons and soliton trains [8–10,
17–23]. As in the simple lattice case honeycomb lattices can also admit gap
solitons [4, 12]. These solitons are often considered theoretically as bifurcations
from the Bloch-band edges into the band gaps [24–26]. Similarly solitons can
sometimes be found in near periodic and complex media cases [27–29].
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Wave propagation in honeycomb lattices when the potential is strong (the
tight-binding limit) was first considered by Wallace in 1947 [30]; this work paved
the way for researchers to begin to understand the theoretical underpinnings of the
linear wave propagation in honeycomb lattices. The first experimental fabrication
of the material graphene was carried out by Geim and Novoselov [1, 2]. Inspired
by the success of graphene, honeycomb structures have been studied in many
fields. In optics, gap solitons were studied in honeycomb lattices [4, 12] and
conical diffraction in honeycomb lattice was observed in [4, 31]. They experi-
mentally demonstrated conical diffraction and gap solitons in honeycomb lattices.
Theoretically speaking, wave dynamics associated with the Dirac points in hon-
eycomb lattices has recently been considered. Ablowitz and Zhu found a general
discrete envelope Dirac wave system in the tight-binding limit and studied the
associated nonlinear dynamics, including conical and triangular diffraction of the
optical wave field [14, 15, 32]. In the context of Bose-Einstein condensation,
Haddad and Carr studied nonlinear atomic waves propagating in honeycomb
optical lattices [16] in the tight binding limit. Haldane and Raghu studied linear
propagation of electromagnetic waves in the full Maxwell equations [33, 34];
Ablowitz and Zhu analyzed the wave propagation in the shallow potential and
weak nonlinear limits [35]. Wave dynamics in PT -symmetric honeycomb lattices
were studied in [36, 37] and symmetry breaking and wave dynamics in deformed
honeycomb lattices were studied in [31, 32, 38, 39]. Fefferman and Weinstein
rigorously proved the existence of Dirac points for a perfect honeycomb lattice in a
generic regime and obtained the first order approximation in the neighborhood of
Dirac cones [40].

As indicated above, one of the key features of honeycomb lattices is the
existence of the Dirac cones and the associated envelope wave dynamics. This
paper addresses the novel aspects of the nonlinear propagation of wave packets
near the Dirac cone in two-dimensional (2-D) honeycomb lattices. The outline of
this paper is as follows. In Sects. 2–3 the fundamentals of periodic optical and
honeycomb lattices are discussed. In Sect. 4 the discrete nonlinear Dirac system is
derived; we include a deformation parameter q: Depending on the size of q in
Sect. 5 we explain that one might or might not have Dirac points. The continuum
limit of the discrete system associated with the special points is studied in Sect. 6;
here we obtain the nonlinear Dirac equation and discuss the associated conical
dynamics. In Sect. 7 we show the symmetry breaking of the conical dynamics due
to the nonlinearity which also requires the higher order dispersive terms to
describe the dynamics. We then study deformed honeycomb lattices in Sect. 8.
The effect of nonlinearity on the wave propagation in the various deformation
regions is explored in the remaining parts of the paper. Novel nonlinear wave
equations are derived in the two different regimes: (i) where there are two
neighboring Dirac points (ii) no Dirac points. We find asymptotically valid
equations to be nonlocal NLS equations which we refer to as NLS Kadomtsev–
Petviashvili (KP) type equations—or NLSKP type equations; i.e., they are analogs
of nonlocal KP equations which arise in water waves [41].
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2 2-D Optical Periodic Lattices

As mentioned earlier, electromagnetic waves propagating in an inhomogeneous
Kerr nonlinear medium can often be described by a two-dimensional nonlinear
Schrödinger Eq. (7); this equation written in dimensionless form is given by

iwz þr2w � dVðrÞw þ rjwj2w ¼ 0: ð1Þ

Here r ¼ ðr1; r2Þ is the transverse coordinate; z is the propagation direction; the
potential, VðrÞ is a real periodic function which represents the transverse variation
of the refractive index, and d represents its order of magnitude; r is the nonlinear
coefficient which is positive for focusing nonlinearity and negative for defocusing
nonlinearity. In Bose–Einstein condensation this equation is usually called the
Gross–Pitaevskii (GP) equation. In this context it describes the wave propagation
associated with the ultra cold atoms trapped in a periodic lattice [5].

The geometric distribution of local minima of the potentials, also called sites,
determines the main features of the periodic potential. These sites are the positions
of the potential wells. In optics, they have increased refractive index the electro-
magnetic field is attracted to the sites. A 2-D periodic function has two periods
along two different directions which we call primitive lattice vectors. Let C ’ Z

2

denote a two-dimensional lattice generated through the basis v1; v2f g; i.e.,

C ¼ mv1 þ nv2 : m; n 2 Zf g:

The primitive unit cell X is defined as

X ¼ q1v1 þ q2v2 : qj 2 ½0; 1Þ
� �

:

The primitive cell X is the fundamental tile of a tessellation of the plane associated
with the lattice C; i.e., R2 ¼

S
v2CðX þ vÞ:

For simple 2-D lattices, there is only one site (local minimum) per cell. All sites
can be generated by a starting point with two discrete translational symmetries,
i.e., two periods v1 and v2: Interactions between two sites are the same as the
interactions between two cells. Typical examples are square lattices and triangular
lattices. In so-called non-simple lattices, there are multiple sites per cell. In
addition to periodicity, extra freedoms are needed to identify the distributions of
the sites. They are the inner freedoms which, for instance, describe the distances
between sites in the same cell or depths of the sites. All sites are identical under
translational symmetries in simple lattices while non-simple lattices contain at
least two different types of sites. A honeycomb lattice is such a structure. It has
two sites per cell. The inner parameters (distance between two sites and depths of
each site) play very important roles. The dual lattice C0 is spanned by the dual
basis vectors k1 and k2 where km � vn ¼ 2pdmn: Namely C0 ¼ mk1 þ nk2 : m;f
n 2 Zg.The primitive dual unit cell X0 is defined
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X0 ¼ q1k1 þ q2k2 : qj 2 ½� 1
2
;
1
2
Þ

� �
:

This is also called the Brillouin zone. It is noted that Brillouin zone has other
representations but all representations are the same due to the periodicity [42].

3 Honeycomb Lattices and Bloch Theory

A honeycomb lattice is a special 2-D lattice. Its unit cell is equivalent to a hexagon
under discrete translational symmetries and all sites (local minima of the contin-
uous periodic potential) are located at the vertices of this hexagon. Note that only
two of these six vertices are independent under discrete translational symmetries.
It also should be noted that a triangular lattice has a hexagonal structure as well but
it has only one independent starting site which is located at the center. A triangular
lattice only has one site per cell and all sites are identical.

By considering the site distribution, a honeycomb lattice is composed of two
triangular sublattices. Namely there are two initial points A 2 X and B 2 X; where
A 6¼ B; then the two sublattices are

CA ¼ A þ C; CB ¼ B þ C

A honeycomb lattice is the union of the two sublattices, i.e.,

CH ¼ CA [ CB:

A honeycomb lattice and corresponding indices used herein are displayed in
Fig. 1; we note that in the strong potential limit which we will consider there are
coefficients q and q0 that arise in the dispersion structure of the linear lattice; they are
usually termed nearest neighbor hopping energies. In this paper we take q0 ¼ 1: The
filled black dots are A lattice points and the circles are B lattice points. We see that an
A lattice point Ap 2 CA has three nearest neighbors that are all B lattice points:
Bp;Bp�v1 and Bp�v2 ; a B lattice point has three nearest neighbors that are all A lattice
points: Ap;Apþv1 and Apþv2 :

Here we choose the following characteristic vectors of the honeycomb lattice

v1 ¼ l

ffiffiffi
3

p

2
;
1
2

� �
; v2 ¼ l

ffiffiffi
3

p

2
;� 1

2

� �
;

k1 ¼ 4p

l
ffiffiffi
3

p 1
2
;

ffiffiffi
3

p

2

� �
; k2 ¼ 4p

l
ffiffiffi
3

p 1
2
;�

ffiffiffi
3

p

2

� �
;

where l is the lattice constant.
If the wave intensity jwðz; rÞj is infinitesimal, the nonlinear term can be omitted

and we get a linear Schrödinger equation with a periodic potential. Certain key
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solutions are obtained by considering wðz; rÞ ¼ uðrÞe�ilz; where l is constant.
Then we obtain a linear eigenvalue problem

�r2 þ dVðrÞ
	 


u ¼ lu: ð2Þ

According to Bloch’s theorem [43], the eigenfunction of the the eigenvalue
problem (2), called the Bloch mode or the Bloch wave, has the k-dependent form

uðr;kÞ ¼ eik�ruðr; kÞ ð3Þ

where uðr; kÞ has the same periodicity as the potential VðrÞ for any k, i.e.,
uðr þ v; kÞ ¼ uðr; kÞ for v 2 C: The eigenvalue l ¼ lðkÞ is referred to the dis-
persion relation.

Since the Bloch mode u is usually not periodic in r, it is more convenient to
study uðr; kÞ (instead of uðr; kÞ) where uðr; kÞ 2 L2

perðXÞ: The following eigen-
value problem arises

HkuðnÞðr; kÞ ¼ lðnÞðkÞuðnÞðr; kÞ; n� 1 ð4Þ

where the operator Hk is defined as

Hk ¼ �r2 � 2ik � r þ jkj2 þ dVðrÞ: ð5Þ

The spectrum of the operator Hk is discrete [43], i.e.,

rðHkÞ ¼
[

n� 1

lðnÞðkÞ;

and they can be ordered as

lð1ÞðkÞ� lð2ÞðkÞ� lð3ÞðkÞ� � � � :

lðnÞðkÞ is continuous as a function of k and due to the gauge invariance lðnÞðkÞ
is periodic. As k varies in the Brillouin zone X0; lðnÞðkÞ sweep out a closed interval

Fig. 1 A honeycomb lattice is composed of two triangular sublattices, CA (dots) and CB

(circles), generated by v1 and v2 from different starting points. q and q0 are coefficients
associated with the dispersion structure of the linear lattice; they are usually termed nearest
neighbor hopping energies; here we take q0 ¼ 1
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which is called the nth; n ¼ 1; 2; 3::: band of the dispersion relation. In the liter-
ature, a dispersion band is often referred as the entire continuous region which
supports bounded Bloch modes, i.e., the whole interval between two adjacent
regions where bounded Bloch modes are not allowed. In this context, a dispersion
band can have multiple branches. Generally, the lowest band in the tight-binding
limit is usually simple and well-separated from higher bands. However, due to the
underlying symmetries honeycomb lattices may have degenerate ground states.

If the eigenvalue problem (2) can be solved completely, i.e., the dispersion
relation lðkÞ and associated Bloch waves can be constructed, the general linear
problem can then be solved by a Bloch decomposition; this is due to the com-
pleteness of the Bloch waves in L2ðR2Þ; furthermore each Bloch mode propagates
independently. However, it is usually not possible to construct the dispersion
relation and associated Bloch waves analytically. Hence numerical and asymptotic
approximations are usually used. There are various numerical schemes that can be
used to solve this eigenvalue problem; e.g., finite differences and spectral methods
are often utilized [44]. On the other hand, asymptotic approximations require some
asymptotic limits. Two typical limits are d � 1 and d � 1 where the former case
is sometimes referred as the low contrast limit (or shallow potential) and the latter
case high contrast limit, or more often, tight-binding limit. If d � 1; direct per-
turbation theory of the eigenvalue problem can be carried out and uðr; kÞ can be
obtained. The dispersion relation is obtained via solvability conditions; see [13] for
example. If d � 1; an orbital approximation can be employed. In this case, the
Bloch waves are localized around the wells and can be approximated by appro-
priate superposition of the orbitals. From the orbital approximation one can find
the dispersion relation.

4 Nonlinear Discrete Dynamics

In the tight-binding limit (d � 1), the Bloch waves are localized around the sites
and their main properties are determined from the potential in the vicinities of the
wells. We introduce two single-well potentials WAðrÞ and WBðrÞ which approach
maxfVðrÞ : r 2 Xg rapidly as jrj ! 1 and coincide with VðrÞ in the vicinities of
A and B respectively.

The orbitals /A and /B are defined as the eigenfunctions of the one-well
potentials; namely,

�r2 þ dWjðrÞ
	 


/jðrÞ ¼ Ej/jðrÞ j ¼ A;B ð6Þ

where Ej are the orbital energies. For simplicity, we let WAðrÞ ¼ WBðr � dÞ where
d is the shift vector from A site to the B site in the same cell, then EA ¼ EB ¼ E: It
is noted that the eigenvalue problem can have multiple discrete eigenvalues. We
are only interested in the ground (or lowest) state which in turn gives the lowest
band of the dispersion relation and determines the associated dynamics of the
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honeycomb lattice. For these single-well potentials WAðrÞ; the ground state is
simple and the orbital energy E is well-separated from the excited energies on the

order of Oð
ffiffiffi
d

p
Þ (cf. [45] and references therein).

Then the Bloch waves associated with the lowest band can be approximated by

uðr; kÞ ¼
X

v

ðaðkÞ/Aðr � vÞ þ bðkÞ/Bðr � vÞÞeik�v; ð7Þ

where aðkÞ and bðkÞ are determined later by the original eigenvalue problem (2).
Substituting the above expression into eigenvalue problem (2) leads to a matrix

eigenvalue problem where ðaðkÞ; bðkÞÞ is the eigenvector. The orbital approxi-
mation converts the eigenvalue problem of a differential operator to an eigenvalue
problem of a 2 � 2 matrix. Since the discrete envelope equation, which will be
obtained later in this section, inherits the dispersion relation of the eigenvalue
problem (4) in the tight-binding limit, the direct derivation of the dispersion
relation is omitted here. We explain later how to get the discrete dispersion
relation in the following section where the full dispersion relation is given—see
Eqs. (17)–(18a, b). Additional details can be found in [15].

The aim of this section is to understand the key equations which govern the
dynamics of the wave packets associated with the lowest band. It turns out that the
dispersion relation are exactly related to the linear part of the governing equation
of the wave packets. The set ð/Aðr � vÞ;/Bðr � vÞÞf gv2C can approximate the
wave packets associated with the lowest band in the sense that

wðrÞ ¼
X

v

ðAv/Aðr � vÞ þ Bv/Bðr � vÞÞ: ð8Þ

In other words, fðAv;BvÞgv2C 2 l2ðCÞ is a natural representation of the
continuous L2ðR2Þ envelope associated with the lowest band and ð/Aðr � vÞ;f
/Bðr � vÞÞgv2C plays the role of a basis. This decomposition is sometimes referred
as coupled mode theory [11].

The above decomposition (8) is similar to a Wannier decomposition (see for
example [46]). But orbitals and Wannier functions are not the same. Wannier
functions are the Fourier coefficients of the Bloch modes uðr; kÞ which are peri-
odic functions in k. Hence they are only defined in periodic lattices. On the other
hand in the tight-binding limit orbitals are natural approximations to eigenfunc-
tions associated with complicated potentials and this is not necessarily limited to
periodic potentials. The definition of the orbital is straightforward and leads to
physical insight and intuition. In simple lattices, orbitals can be used as the
approximations to the Wannier functions; but in many cases Wannier functions
can be employed directly. However, in non-simple lattices, Wannier functions are
difficult to construct and their interactions are complicated.

Substituting the above wave packet approximation (8) into the lattice NLS
Eq. (1) implies
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X

v

i
dAv

dz
þ AvdðVðrÞ � WAðr � vÞÞ

� �
/Aðr � vÞ

þ
X

v

i
dBv

dZ
þ BvdðVðrÞ � WBðr � vÞ

� �
/Bðr � vÞ

þ r
X

v

Av/Aðr � vÞ þ Bv/Aðr � vÞð Þ
 !2

�
X

v

Av/Aðr � vÞ þ Bv/Bðr � vÞð Þ
 !	

¼ 0: ð9Þ

Multiplying both sides by /Aðr � pÞ and /Bðr � pÞ respectively and integrat-
ing lead to (only nearest neighbor interaction terms are kept)

i
dAp

dz
þ c0Ap þ ðsL�ÞBp þ rgjApj2Ap ¼ 0;

i
dBp

dz
þ c0Bp þ ðsLþÞAp þ rgjBpj2Bp ¼ 0;

where c0 ¼
R

/AðrÞdðVðrÞ � WAðrÞÞ/Adr; s ¼
R

/AðrÞdðVðrÞ � WAðr � vÞÞ
/AðrÞdr; g ¼

R
/4

Adr;

L�Bp ¼ Bp þ q1Bp�v1 þ q2Bp�v2 ; ð10Þ

LþAp ¼ Ap þ q1Apþv1 þ q2Apþv2 ; ð11Þ

and qj ¼ 1
s

R
/AðrÞdðVðrÞ � WAðrÞÞ/Aðr � vjÞdr; j ¼ 1; 2: Here c0 represents the

correction to the orbital energy due to the difference between the orbital potentials
and the lattice potentials, s is the magnitude of the nearest neighbor hopping
energy while q1 and q2 represent the inequality of the three nearest neighbor
hopping energies. This inequality measures the deformation of the honeycomb
lattice. If q1 ¼ q2 ¼ 1; the honeycomb lattice is undeformed. The deformation is
induced by the inequality of distances of any given site to its three nearest
neighbors. It can also be induced by other reasons, for example, local doping to
change the depth of wells and so on. For simplicity, we take q1 ¼ q2: More
detailed calculations of these parameters can be found in [15].

Rewriting the discrete system, we have the following rescaled couple-mode
equation

i
dAp

dz
þ L�Bp þ rjApj2Ap ¼ 0; ð12Þ

i
dBp

dz
þ LþAp þ rjBpj2Bp ¼ 0: ð13Þ
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It governs the evolution of Bloch waves associated with the lowest band. This
coupled mode equation is different from the 2-D discrete NLS equation associated
with simple lattices. A significant difference is that this couple mode equation
contains two equations which come from the non-equivalence of A and B sites.
This coupled mode equation governs the dynamics of the wave packets associated
with the whole lowest band.

If an envelope is associated with a specific wave number k; then it can be
conveniently represented by

wðrÞ 

X

p2C

ap/Aðr � pÞ þ bp/Bðr � pÞ
	 


eik�p:

A single-mode equation is then obtained. For completeness we also give the
equations of the discrete envelope in terms of the variables fðapðzÞ; bpðzÞÞgp2C

(see [15])

i
dap

dz
þ L�

k bp þ rjapj2ap ¼ 0; ð14aÞ

i
dbp

dz
þ Lþ

k ap þ rjbpj2bp ¼ 0; ð14bÞ

where

L�
k bp ¼ bp þ qbp�v1 e�ik�v1 þ qbp�v2 e�ik�v2 ;

Lþ
k ap ¼ ap þ qapþv1 eik�v1 þ qapþv2 eik�v2 :

It is noted that the single-mode Eq. (14a, b) can be obtained from Eq. (12) by
changing ðAp;BpÞ to ðapeik�p; bpeik�pÞ: This is due to the linear properties of the
coupled mode equation which will be discussed in the next section. It should also
be noted that the above discrete approach can be extended beyond the tight binding
limit. If the potential intensity d is not sufficiently large, the nearest neighbor
interaction approximation may not be adequate. In such cases additional sites
should be included in order to get more accurate approximations. A rigorous
discussion for the validity of the orbital approximation can be found in [45].

5 Linear Properties

Neglecting the nonlinear terms in (12), the linear equation can be solved by using a
discrete Fourier transform, i.e.,

Âðk; zÞ ¼
X

v2C

Ave�ik�v; Av ¼ 1

jX0j

Z

X0
ÂðkÞeik�vdk;

where jX0j is the area of X0:
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Similar to what is indicated above, substituting the Fourier mode ðÂðkÞ;
�

B̂ðkÞÞe�ixzþik�vgv2C into the linear discrete evolution problem associated with
Eq. (12) leads to

x cðkÞ
c	ðkÞ x

� �
ÂðkÞ
B̂ðkÞ

� �
¼ 0

0

� �
; ð15Þ

where cðkÞ ¼ 1 þ qe�ik�v1 þ qe�ik�v2 : Unlike the continuous Fourier transform, in
the discrete Fourier transform k only takes values in X0 as opposed to all of R2:
Existence of nontrivial solutions leads to the dispersion relation xðkÞ which is
only defined in the Brillouin zone X0; In other words, the dispersion relation xðkÞ
is continuous and periodic with two periods k1 and k2 in R

2: This dispersion
relation xðkÞ approximates the original dispersion relation lðkÞ apart from
scalings; namely,

lðkÞ ¼ E þ c0 þ sxðkÞ ð16Þ

where we recall that E is the orbital energy which is mainly determined by the
potential in the vicinity of a site; c0 is the correction to the orbital energy which is
from the difference between the lattice potential and the approximating orbital
potential; as indicated above s is the magnitude of the nearest neighbor hopping
energy which represents the strength of the interactions between sites; xðkÞ is the
effective dispersion relation. The corresponding Bloch modes can then be con-
structed from Eq. (7) where aðkÞ; bðkÞð Þ are the eigenvectors of (15). Hence the
coupled mode equation inherits the dispersion relation of the original lattice NLS
equation. In our case, existence of nontrivial solutions to (15) leads

x�ðkÞ ¼ � 1 þ qe�ik�v1 þ qe�ik�v2
�� ��: ð17Þ

We see that the dispersion relation has two branches: xþðkÞ ¼ �x�ðkÞ: The
two branches may or may not intersect with each other depending on the value of
q: Let K	 ¼ K	ðqÞ 2 X0 denote the special point(s) in the Brillouin zone such that
xþðK	Þ ¼ min

k2X0
xþðkÞ; and, x�ðK	Þ ¼ max

k2X0
x�ðkÞ: The values, ðK	;x�ðK	ÞÞ are

the closest values of the two branches if there is a gap between them. If the two
branches intersect, xþðK	Þ ¼ x�ðK	Þ ¼ 0 and ðK	;x�ðK	ÞÞ are the intersection
points.

Calling b ¼ 2q � 1; a direct calculation shows that

1. If b [ 0; the two branches touch each other at two different points which are
referred as the Dirac points. Namely, K	 has two values in entire the Brillouin

zone X0: K	 ¼ �K ¼ � 2
l 0; p � arccosð 1

2qÞ
� 

: Near the K point, the dispersion

relation has the leading expansion x�ðK þ qÞ� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2

1 þ ðb2 þ 2bÞq2
2

q
where

q ¼ ðq1; q2Þ and jqj � 1 which forms a local elliptic cone.
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2. If b ¼ 0; the two branches touch each other at one point. In this critical case,
the two Dirac points actually merge into one due to the underlying periodicity
of k 2 R

2: Namely, K ! 2
l 0; pð Þ ¼ 1

2 ðk1 � k2Þ as q ! 1
2 ; and both 1

2 ðk1 � k2Þ
and � 1

2 ðk1 � k2Þ are equivalent to 1
2 ð�k1 � k2Þ 2 X0 due to the periodicity.

Near the intersection point K	; the dispersion relation has the leading expansion
x�ðK	 þ qÞ� � jq1j where q ¼ ðq1; q2Þ and jqj � 1 which is the degenera-
tion of the above ellipse to local crossing of planes.

3. If b\0; the two branches separate from each other and there exists a gap
between the two branches. The only closest point is K	 ¼ 1

2 ð�k1 � k2Þ ¼
ð 4p

l
ffiffi
3

p ; 0Þ: Near K	 points, the dispersion relation has the leading expansion

x�ðK	 þ qÞ� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ ð1 þ bÞ2q2

1

q
where q ¼ ðq1; q2Þ and jqj � 1 which has

the structure of a hyperboloid. The gap width is 2jbj:

6 Conical Dirac Dynamics

In many applications, the dynamics of an envelope associated with a specific value
of k is of interest. Then the Eq. (14a, b) are more convenient to use. From these
equations we can derive a continuous system which is more convenient to study
instead of the differential-difference equation.

The discrete envelope can be considered as the continuous envelope evaluated
at the lattice points, i.e., apðzÞ ¼ aðr ¼ p; zÞ and bpðzÞ ¼ bðr ¼ p; zÞ; here the
continuous transverse variable associated with the lattice is r ¼ ðr1; r2Þ: In this
application the envelopes are assumed to depend only on the long-wave variables
and the amplitudes are assumed small. Accordingly, we define, ðaðr; zÞ; bðr; zÞÞ ¼
ffiffiffi
m

p
ð~aðx;~zÞ; ~bðx;~zÞÞ where the transverse variable is given by x ¼ ðx1; x2Þ ¼ r=L;

the propagation variable is ~z ¼ mz; m ¼
ffiffi
3

p
l

2L � 1; where the lattice size is l and the
envelope scale L is much greater than l; i.e., l

L � 1: For simplicity, we drop the
tildes on the top of a; b and z:

Here we are interested in the effective dynamics associated with the special
point(s) K	: It turns out that if the initial envelope is associated with a value k which
is far away from K	; then the continuous dynamics reduces to an effective nonlinear
Schrödinger equation in a moving frame [15]. One can find effective NLS equations
associated for simple bands; the lowest bands of most simple lattices also yield
effective NLS equations. At K	; as b changes from positive to negative values,
both the geometric structure of the dispersion relation and the associated effective
wave dynamics change dramatically. We investigate some of the important cases
next.

We first consider the case b [ 0: As indicated above, the two branches touch
each other at the Dirac points: K and �K: Here we only consider the effective
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dynamics associated with K; the analysis for �K is similar. At k ¼ K; x� ¼ 0
and by direct calculation we have

qe�iK�v1 þ qe�iK�v2 ¼ �1; qe�iK�v1 � qe�iK�v2 ¼ �i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4q2 � 1

p
:

Calling f ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4q2 � 1

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ 2b

p
and using Taylor expansion, and evalu-

ating at k ¼ K; we have

L�
Kbp � m3=2 ðox1 þ i

f
ffiffiffi
3

p ox2Þ �
m
2

o2
x1
þ 1

3
o2

x2
þ 2i

f
ffiffiffi
3

p ox1ox2

� ��

þ m2

6
o3

x1
þ 1

3
ffiffiffi
3

p o3
x2
þ ox1o

2
x2
þ

ffiffiffi
3

p
ifo2

x1
ox2

� ��
b þ � � �

and

Lþ
Kap � m3=2 ð�ox1 þ i

f
ffiffiffi
3

p ox2Þ �
m
2

o2
x1
þ 1

3
o2

x2
� 2i

f
ffiffiffi
3

p ox1ox2

� ��

� m2

6
o3

x1
þ 1

3
ffiffiffi
3

p o3
x2
þ ox1o

2
x2
�

ffiffiffi
3

p
ifo2

x1
ox2

� ��
a þ � � �

If b ¼ Oð1Þ; i.e., f ¼ Oð1Þ; then only taking the leading order term, we
immediately obtain the so-called nonlinear Dirac equation

ioza þ ox1 þ i
f
ffiffiffi
3

p ox2

� �
b þ rjaj2a ¼ 0; ð18aÞ

iozb þ �ox1 þ i
f
ffiffiffi
3

p ox2

� �
a þ rjbj2b ¼ 0: ð18bÞ

The above nonlinear Dirac equation describes the evolution of the wave packet in
the vicinity of the Dirac points. It is seen that the linear dispersion relation of
Eq. (18a, b) reveals the leading order expansion of the effective dispersion relation

which is a double cone. Namely, x�ðqÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2

1 þ f2

3 q2
2

q
: A typical phenomenon

associated with this equation is the conical diffraction. It says a localized input
evolves into expending rings and a cone forms in the direction of propagation in
the crystal. Typical conical diffraction is illustrated in Fig. 2. The top panel shows
the evolution of an initial Gaussian envelope at the Dirac point K and then at two
different propagating distances. If the lattice is not deformed, i.e., q ¼ 1; then

f ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4q2 � 1

p
¼

ffiffiffi
3

p
and circular ring structures are obtained. Figure 2 shows a

comparison between the circular conical diffraction in the NLS Eq. (1) and the
approximate nonliner Dirac equation (18a, b). The initial condition for the NLS
equation is a weak and wide Gaussion envelope multiplied by a Bloch wave
associated with the Dirac point K: The initial condition for the nonlinear Dirac

equation (18a, b) is aðz ¼ 0Þ ¼ e�x2
1�x2

2 and bðz ¼ 0Þ ¼ 0:
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7 Symmetry Breaking and Nonlinear Transitions

Conical diffraction is a consequence of the behavior associated with a dispersion
relation that has conical crossings. In principle it can be either linear and non-
linear; but as we will see with strong nonlinearity the conical behavior is modified.
Next we analyze higher order dispersive effects and nonlinear transitions. It is
found that the Dirac dynamics breaks down in the lattice NLS equation if the
nonlinearity is strong [38]. As nonlinearity increases, the circular rings deform and
become triangular. Figure 3 shows the evolution patterns for different nonlinear
coefficients. It is noted that changing the value of r is equivalent to changing the
magnitude of the input.

Defining the operators L0 ¼ 0 ox1 þ ifox2

�ox1 þ ifox2 0

� �
and L1 ¼

0 Dþ
D� 0

� �
; where D� ¼ o2

x1
þ 1

3 o
2
x2
� 2ffiffi

3
p ifox1ox2 ; we can write the higher

order nonlinear Dirac equation in the following vector form

iozU þ L0U � m
2
L1U þ NðUÞU ¼ 0 ð19Þ

where U ¼ ða; bÞT and the nonlinear operator is given by NðUÞ ¼
jaj2 0
0 jbj2

� �
:

Fig. 2 Wave intensities initially a localized pulse (Gaussian) and subsequently at two successive
propagating distances. Top panel: simulations of the lattice NLS equation (1). Bottom panel:
simulations of the nonlinear Dirac equation (18a, b)
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We first study the linear case. Define the Fourier transform FðFÞ ¼ F̂ ¼R
FðxÞe�iq�rdx and inverse Fourier transform F�1ðFÞ ¼ 1

4p2

R
FðqÞeiq�xdq: Note

that x ¼ ðx1; x2ÞT is the envelope coordinate, q ¼ ðq1; q2ÞT is the wave number
associated with the envelope, and from the above definitions the scales are dif-
ferent from r and k in the original lattice NLS Eq. (1).

Letting L ¼ L0 � m
2L1: Since L is a linear differential operator with constant

coefficients, FðLUÞ ¼ L̂Û where L̂ is a 2 � 2 k q-dependent matrix which has the
form

L̂¼ 0 iq1 �q2

�iq1 �q2 0

� �
�1

2
m

0 �q2
1 � 1

3q2
2 � 2ffiffi

3
p ifq1q2

�q2
1 � 1

3q2
2 þ 2ffiffi

3
p ifq1q2 0

 !

:

We see that L̂ is a Hermitian matrix. In q space, the linear initial value problem
becomes

iÛz þ L̂Û ¼ 0; Ûðz ¼ 0Þ ¼ Û0:

Then we have

ÛðzÞ ¼ eiL̂zÛ0:

L̂ has two eigenvalues x�ðqÞ ¼ �q þ OðmÞ which correspond to the two
branches of the dispersion relation. The two branches intersect each other at the
single point q ¼ 0: Note that at the degenerate point q ¼ 0; the multiplicity is two
and for any q there are two linearly independent eigenvectors U� which are
normalized to be Uy

mUn ¼ dmn where m; n ¼ þ;�: Hereafter, the superscript y
means the complex conjugate with a transpose.

Then L̂ ¼ ðUþ;U�ÞKðUþ;U�Þy where K ¼ diagðx1;x2Þ: Thus

ÛðzÞ ¼ ðUþ;U�ÞeiKzðUþ;U�ÞyÛ0

Fig. 3 Evolution patterns of the NLS equation (1) with nonlinear coefficient r being: a 0; b 1;
c 5; (d) -5. Here m ¼ 0:1 and the evolution distance is z ¼ 50 and d ¼ 100 which is in the tight-
binding regime
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or rewriting

ðUþ;U�ÞyÛðzÞ ¼ diagðeixþz; eix�zÞðUþ;U�ÞyÛ0: ð20Þ

If we call p̂�ðzÞ ¼ Uy
�ÛðzÞ; then p̂�ðzÞ represents the projection of Û onto the

� branch in q space. From (20), we immediately obtain that

p̂�ðzÞ ¼ eix�zp�ðz ¼ 0Þ: ð21Þ

In addition we denote �� ¼ 1
ð2pÞ2

R
jp̂�j2dk which represents the energy asso-

ciated with � branch. From (21), we know that ��ðzÞ ¼ ��ðz ¼ 0Þ: There is no
energy exchange between two branches in the linear evolution.

Since ðUþ;U�Þ is unitary, the total energy of the system is given by

�ðzÞ ¼
Z

jUðr; zÞj2dr ¼ 1

ð2pÞ2

Z
jÛðzÞj2dk ¼ 1

ð2pÞ2

Z
jðUþ;U�ÞyÛj2dk

¼ 1

ð2pÞ2

Z
jðp̂þ; p̂�Þyj2dk ¼ �þðzÞ þ ��ðzÞ

where we have used Parseval’s theorem.
The above analysis shows that: (i) the linear propagation can be decomposed

into upper and lower components and each component evolves independently;
(ii) the magnitudes of the projections of each branch remain the same under
propagation—see Eq. (21).

We first focus on the combination of the higher order effects and nonlinearity
without deformations. We take f ¼

ffiffiffi
3

p
in the remainder of this section. The linear

Dirac dynamics is essentially a 2-D wave equation after eliminating b and keeping
a only or vice verse and it is a weakly dispersive system. Letting q ¼ jqj and
h ¼ arctanðq2

q1
Þ; then the dispersion relation has the form

x�ðq; hÞ ¼ �q þ OðmÞ

and the group velocities for q 6¼ 0 are ox�
oq ¼ �1 þ OðmÞ; ox�

oh ¼ 0 þ OðmÞ: Two

eigenvectors have the form

Uþ ¼ 1
ffiffiffi
2

p e�ih2

ieih2

� �
þ OðmÞ; U� ¼ 1

ffiffiffi
2

p e�ih2

�ieih2

� �
þ OðmÞ:

Then to leading order, an initial localized input (e.g., a Gaussian spot) evolves
into radially spreading rings. Along any specific angle h; the field behaves like a
traveling wave with unit velocity since the group velocity along h direction is zero.
The conical diffraction then ensues. Further, due to the preservation of the mass
one expects that the intensity decays at the order of Oð1

zÞ: These conclusions can be
deduced from long-time asymptotic methods.

Next we turn to the nonlinear and higher order dispersive effects. When higher
order terms (OðmÞ terms) are included, the dispersion relation is approximated by
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x�ðq; hÞ ¼ �qð1 � m
6

q sinð3hÞÞ þ Oðm2Þ ð22Þ

we see that there is a three-fold symmetry. The dispersion xþðqÞ has three steepest
descent directions and x�ðqÞ has three orthogonal steepest descent directions.
Each admits the so-called ‘triangular warping’. If the initial condition is specified
completely in one branch, the linear wave remains in that branch since there is no
branch transition in the linear problem. In such a case a triangular pattern results. If
initial condition is evenly distributed into the two branches, the patten is the
superposition of two triangular patterns which evolves into a hexagonal shape.
Figure 4 triangular and hexagonal patterns due to different initial conditions where

aðz ¼ 0Þ ¼ e�x2
1�x2

2 is a unit Gaussian and the choice of bðz ¼ 0Þ for the left
triangular figure is such that p̂�ðz ¼ 0Þ ¼ 0 and for the right hexagonal figure is
bðz ¼ 0Þ ¼ 0 which ensures p̂�ðz ¼ 0Þ ¼ p̂þðz ¼ 0Þ; i.e we take equal strength in
both components. Here we choose m ¼ 0:2 which corresponds to the strength of the
higher order effects.

Nonlinearity brings two major effects. The first one is to couple the upper and
lower branches together and the second one is to broaden p̂�ðzÞ in q space under
propagation. Next we give some brief discussion on this matter. We first describe
some numerical results for the HONLD equation. In the numerical simulations

here, the initial input is always taken to be aðx; y; 0Þ ¼ e�x2�y2
; bðx; yÞ ¼ 0 which

ensures the two branches are initially evenly distributed. Figure 5 shows the
evolution of such an input in the HONLD Eq. (19) for different r: It is seen that a
conical diffraction pattern changes into a triangular-like pattern as nonlinearity
increases. This is consistent with Fig. 3. These results show that when the non-
linearity is significant the HONLD equation is needed in order to describe the
envelope dynamics.

HONLD Eq. (19) is the single-mode equation which asymptotically describes
the dynamics of the envelope associated with the Dirac point. Since the

Fig. 4 Triangular and hexagonal patterns in the linear evolution of the HONLD Eq. (19). Here
we take m ¼ 0:2 to show higher order linear propagations
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nonlinearity is found to couple the two branches we plot the energy ratios of the
two branches—see Fig. 6. It is seen that one branch is enhanced and the other is
weakened. It is also seen that modifications to the energy ratios occur rapidly at the
beginning and gradually saturates so that the percentages of the two branches tend
to constant values. We reiterate that this occurs when the initial branches are taken
to have the same energies.

Meanwhile, the projections p̂�ðzÞ also change under propagation. Figure 7
displays the changes of the projection p̂þ under propagation. It is seen that the
energy spreads in q space. Since triangular warping increases as jqj increases,
triangular diffraction become more noticeable. In order words, triangular warping
breaks the radial symmetry of the circularly conical dispersion relation. This
symmetry breaking is amplified when the nonlinearity is included.

Fig. 5 Evolution patterns in the HONLD equation (19) with r equal a 0; b 1; c 5, d -5. Here
m ¼ 0:1 and the evolution distance is z ¼ 5
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Fig. 6 The percentages of
the energy in the two
branches. The black curves
are for r ¼ 5 and red curves
for r ¼ 1; dashed lines for
the lower branch and solid
lines for the upper branch
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8 Effective Dynamics for Deformation Lattices

In applications, the honeycomb lattices are often not perfect. Deformations occur
for many reasons such as local doping and uniform strains to the lattice. In such
cases f 6¼

ffiffiffi
3

p
and b 6¼ 1: If the lattice is deformed slightly the diffraction is

modified so that the circular rings now become elliptical in structure. Figure 8
shows such a deformation with elliptical conical diffraction. It is also noted that the
energy is centralized to the x1 direction of the ellipse. This is traced to the fact that
ox
oh 6¼ 0 when f 6¼

ffiffiffi
3

p
: Two steepest descent directions are h ¼ 0; p: So the field is

attracted to the horizontal axis.
However, in some cases, the deformation can be large enough so that the

deformation parameter b becomes small enough to become comparable to the long
wave parameter m: Then the dynamics changes considerably. When jbj � 1; the
leading order equations is nearly a one-dimensional wave equation. In this case,
instead of splitting to expanding rings, the localized input separates into two
traveling waves.

Figure 9 displays such straight line diffraction patterns which are the simula-
tions of the continuous equations of the coupled mode Eq. (14a, b) in two cases.

The initial conditions are aðz ¼ 0Þ ¼ x1e�x2
1�x2

2 ; bðz ¼ 0Þ ¼ 0: This initial input
ensures the regularity of the nonlocal equations we will derive later [47]. We see
that the evolutions are degenerated into nearly straight line diffraction with some
additional parabolic structures.

This section is devoted to understanding the effective dynamics along the
moving frames. There are two small parameters noting: b and m: If they are
comparable, various interesting maximally balanced equations and associated
phenomena arise. We only illustrate a special balance jbj ¼ Oðm2Þ which has two
subcases: b [ 0 when the two branches still touch each other and b\0 when a gap
just opens.

Fig. 7 The magnitude of the projection p̂þðzÞ in the nonlinear evolution at z ¼ 0 (left) and z ¼ 5
(right). Here r ¼ 5
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8.1 Before Separation

For simplicity, we introduce the variables x ¼ x1; y ¼ x2ffiffi
3

p : We then convert con-

tinuous system to a second order system which are linearly decoupled. Keeping
terms up to Oðm2Þ leads to

o2
z a � o2

xa þ m2T x;ya þ r �iozðjaj2aÞ þ oxðjbj2bÞ
h i

¼ 0 ð23aÞ

o2
z b � o2

xb þ m2T x;yb þ r �iozðjbj2bÞ � oxðjaj2aÞ
h i

¼ 0 ð23bÞ

where

T x;y ¼ �a2
1o

2
y þ ia1ðo2

xoy � o3
yÞ �

1
12

o4
x þ 6o2

xo
2
y � 3o4

y þ 4oxo
3
y

� 

and a1 ¼ f
m which we assume is Oð1Þ: Note that we only consider the case with

weak nonlinearity, i.e., jða; bÞj ¼ OðmÞ; some higher order terms in the nonlinear
terms can be neglected in the above equation.

Accordingly, we introduce a slow time scale, Z ¼ m2z and we express a and b as

a ¼ mða0ðz; x; y; ZÞ þ m2a1ðz; x; y; ZÞ þ � � �Þ;
b ¼ mðb0ðz; x; y; ZÞ þ m2b1ðz; x; y; ZÞ � � �Þ

where a0 and b0 satisfy the leading order equations and the dependence on z can be
understood via the leading order equations while the dependence on Z will be
given by the effective dynamics. Note that the only small parameter is m2:

Define two moving frames, i.e., n ¼ x � z and g ¼ x þ z; hence a0 and b0 have
the form

a0 ¼ Fðn; y; ZÞ þ Gðg; y; ZÞ
b0 ¼ ~Fðn; y; ZÞ þ ~Gðg; y; ZÞ:

Furthermore, from the leading order equation we can easily get

Fig. 8 Elliptical diffractions of the nonlinear Dirac equation (18a, b). Left: f ¼ 4
ffiffi
3

p

5 : Right: f ¼
ffiffi
3

p

2
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onð�iF þ ~FÞ ¼ 0; ogðiG þ ~GÞ ¼ 0:

Hence for decaying functions: ~F ¼ iF and ~G ¼ �iG:

At order Oðm2Þ; we have the equation

2onoga1 ¼T n;yF þ T g;yG þ �2onoZF þ 2ogoZG
	 


þ r 2ionðjFj2F þ 2jGj2F þ G2F	Þ � 2iogðjGj2G þ 2jFj2G þ F2G	Þ
h i

;

When we integrate a1; secular terms arise from the pieces that are functions of n
or g alone, not both. Removal of secular terms at order Oðm2Þ leads to the fol-
lowing maximally balanced nonlocal nonlinear equation for the right moving
component

onoZF � 1
2
T n;yF � rionðjFj2FÞ ¼ 0; ð24Þ

and similarly the left moving component equation is

ogoZG þ 1
2
T g;yG � riogðjGj2GÞ ¼ 0:

We see that the above equations have a special nonlocal structure. The is
reminiscent of the non-locality of the 2-D KP equation [41]. These equations are a
two-dimensional NLS analog of the KP equation. We refer to them as NLSKP type
equations. They describe the additional evolution structures along the moving
frames. The simulation given in Fig. 10 shows the evolution given the initial data

Fðn; y; Z ¼ 0Þ ¼ ne�n2�y2
; r ¼ þ1: The additional structure obtained from the

NLSKP Eq. (24) is consistent with Fig. 9; i.e. it is consistent with a blowup of the
local structure depicted in Fig. 9.

8.2 After Separation

When b\0; there is a gap between two dispersion branches. The edges to this gap
for both branches are reached at K	 ¼ � 1

2 k1 � 1
2 k2: The width of the band gap is

Fig. 9 Diffraction patterns for large deformations. Top: b ¼ 0:005 Bottom: b ¼ �0:01: Here
m ¼ 0:1
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2jbj: We then study the effective dynamics close to the edge; more specifically we

study the case that jbj ¼ Oðm2Þ with a2 ¼ jbj
m2 ¼ Oð1Þ:

It is noted that the continuous expansion changes when the gap is open. It is
similar to the above case, so we omit the details. Taking the continuous limit from
the discrete system (14a, b), making use of the relation: qe�iK	�v1 ¼ qe�iK	�v2 ¼ �q;
keeping terms up to m2 and rescaling the variables x ¼ x1; y ¼ x2=

ffiffiffi
3

p
; we obtain the

continuous equations

ioza þ ð1 � a2m
2ÞF 1b þ a2mb þ rjaj2a ¼ 0; ð25aÞ

iozb þ ð1 � a2m
2ÞF 2a þ a2ma þ rjbj2b ¼ 0; ð25bÞ

where

F 1 ¼ ox �
m
2
ðo2

x þ o2
yÞ þ

m2

6
o3

x þ o3
y þ 3oxo

2
y

� 

F 2 ¼ �ox �
m
2
ðo2

x þ o2
yÞ �

m2

6
o3

x þ o3
y þ 3oxo

2
y

� 
:

As before we convert the above equations to a second order system which is of
the form

o2
z a � o2

xa þ m2F x;ya þ r �iotðjaj2aÞ þ oxðjbj2bÞ
h i

¼ 0

o2
z b � o2

xbm2F x;yb þ r �iotðjbj2bÞ þ oxðjaj2aÞ
h i

¼ 0;

where the operator

F x;y ¼ a2
2 � a2ðo2

x þ o2
yÞ �

1
12

o4
x þ 6o2

xo
2
y � 3o4

y þ 4oxo
3
y

� 

and we recall a2 ¼ jbj
m2 is Oð1Þ:

Then we express a and b as

a ¼ mða0ðn; g; y; ZÞ þ m2a1ðn; g; y; ZÞ þ � � �Þ;
b ¼ mðb0ðn; g; y; ZÞ þ m2b1ðn; g; y; ZÞ þ � � �Þ;

Fig. 10 Numerical simulations of NLSKP equations. Left: Eq. (24). Right: Eq. (26). Here
r ¼ þ1 and a1 ¼ a2 ¼ 1
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where a0 and b0 satisfy the leading order equations.
As above, a similar calculation shows that

a0 ¼ Fðn; y; ZÞ þ Gðg; y; ZÞ; b0 ¼ iFðn; y; ZÞ � iGðg; y; ZÞ:

At order Oðm2Þ; we have

2onoga1 ¼F n;yF þ F g;yG þ �2onoZF þ 2ogoZG
	 


þ r 2ionðjFj2F þ 2jGj2F þ G2F	Þ � 2iogðjGj2G þ 2jFj2G þ F2G	Þ
h i

;

F n;y and F g;y are obtained from F x;y by changing x to n and g respectively.
Removal of secular terms at order m2 leads to two maximally balanced equa-

tions which govern the leading order dynamics of the right and left moving
components; the equation for F is

onoZF � 1
2
F n;yF � rionðjFj2FÞ ¼ 0; ð26Þ

and the equation for G is

ogoZG þ 1
2
F g;yG � riogðjGj2GÞ ¼ 0:

These nonlocal equations are also NLSKP-type, though slightly different from
those found the preceding subsection. In Fig. 10 we show a typical numerical
result. We see similarity to the preceding case –see Eq. (24)—but with more of a
focusing effect which is ascribed to our now being in the gap region.

9 Conclusion

Wave propagation in honeycomb lattices has attracted keen interest in many
disciplines. This paper discusses nonlinear waves in honeycomb lattices and in
particular nonlinear optical wave propagation are studied in deformed honeycomb
lattices. Discrete coupled mode equations were obtained via an orbital approxi-
mation. These equations describe the lowest band of the linear dispersion relation
of the original lattice NLS equation. Depending on the deformation, the dispersion
relation may or may not admit conical crossings. In undeformed lattices, there are
two Dirac cones. The associated envelope dynamics is obtained by taking the
continuum limit of the couple mode equations near the Dirac points. This results in
a higher order nonlinear Dirac equation. Utilizing this equation, both linear and
nonlinear propagation of the envelope wave packets near Dirac points are ana-
lyzed. The leading order effect is a circular conical diffraction while the next order
correction modifies the circular structure into hexagonal structure in the linear
problem and triangular diffraction when nonlinearity is included. In general higher
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order linear effects become noticeable even when m is very small. We see that
nonlinearity expands the energy distribution in momentum space. In addition,
nonlinearity also induces the coupling of two branches. Depending on the sign of
the nonlinearity, one branch is enhanced while the other is weakened. Triangular
diffraction is obtained even when initial condition is evenly distributed between
the two branches.

When the deformation is small, the evolution pattern is changed moderately:
circular conical diffraction becomes elliptical. However, when the deformation is
large, the two branches may separate from each other and conical crossings in the
dispersion relation disappear. In this regime a localized input splits into two
moving nearly straight line components propagating in ‘left and right’ going
directions. The effective dynamics of the wave packets associated with the Dirac
point (before separation) or edge point (after separation) is described by into two
maximally balanced nonlocal NLS equations termed here as: NLSKP type
equations.
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