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Abstract

In this paper we describe the rigid tensor triangulated subcategory of Voevodsky’s triangu-
lated category of motives generated by the motive of an elliptic curve as a derived category of
dg modules over a commutative differential graded algebra in the category of representations
over some reductive group.

1 Introduction

During 1980s, Beilinson and Deligne independently describe a conjectural abelian tensor category
of mixed motives MM(k,Q) over a given base field k. The existence of an abelian category of
mixed motives would have important consequences for our understanding of smooth varieties. The
category MM(k,Q) has yet to be constructed. Alternatively, Voevodsky, Levine and Hanamura
have independently constructed a triangulated category of mixed motives over a field, modeled on
the derived category of the conjectural abelian category of mixed motives. Notably, Voevodsky’s
triangulated category of mixed motives satisfies most properties predicted by Beilinson. Then
one may ask whether there is a reasonable t-structure on Voevodsky’s triangulated category of
motives with rational coefficient DMgm(k,Q), which gives the desired abelian category of mixed
motives. The only known example is mixed Tate motives [18] (short for MTMs), i.e. the category of
motives generated by Tate objects. In fact, if the base field k satisfies the Beilinson-Soulé vanishing
conjecture, Levine [18] shows that the triangulated category of MTMs has a t-structure.

Later Bloch and Kriz [5] provide a different way of constructing an abelian category of MTMs.
Roughly speaking, the conjectured abelian category of mixed Tate motives MTM is a Tannakian
category, whose Tannakian fundamental group π1(MTM) is an extension of a prounipotent alge-
braic group U by the multiplicative group Gm. Bloch and Kriz’s work gives a description about one
candidate of the prounipotent group U . This group has an explicit description in term of ”cycle
algebras”, therefore Bloch and Kriz’s MTMs is defined as the category of graded representations
over U . Then a natural question is:

Does Bloch and Kriz’s construction coincide with Levine’s construction if the base field sat-
isfies the Beilinson-Soulé vanishing conjecture? Or what’s the relation between Bloch and Kriz’s
construction and Voevodsky’s construction?

Combining Bloch and Kriz’s construction with Kriz and May’s general theory of Adams cdgas
[15], Spitzweck [25] defines an equivalence between the dervied category of Adams dg-modules
over BK’s cycle algebra and the rigid subcategory of DMgm(k,Q) generated by Tate objects. As
a corollary, if the Beilinson-Soulé vanishing conjecture is true for the base fields, all mentioned
constructions of the abelian category of MTMs are the same.

In this paper, we continue with the viewpoint of cycle algebras to understand the motives
generated by an elliptic curve E defined over a base field k with characteristic zero. We handle
the case that the elliptic curve is without complex multiplication and with complex multiplication
separately. Like Tannakian fundamental group of mixed Tate motives, the conjectured Tannakian
fundamental group for motives generated by a non-CM (resp. CM 1) elliptic curve is an extension

1For the CM case, we only consider the complex multiplication is defined over k.
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of a pro-unipotent algebraic group by GL2 (resp. the Weil restriction ResK/QGm, where K =
End(E) ⊗ Q). The elliptic cycle algebra should lie in the category of representations over GL2

(resp. ResK/QGm). However, ResK/QGm is not absolutely irreducible, which causes a lot of
difficulties. Our strategy for the CM case is extending the cycles algebra and representations over
K rather than Q and using the isomorphism ResK/QGm ⊗K ∼= Gm,K ×Gm,K. Studying the cdga
object in the category of GL2-representations is one of the main motivation for us to develop a
theory of cdgas over some reductive group in [7], which generalize Kriz and May’s theory of Adams
cdgas. Compared with mixed Tate motives, the left things are constructing a reasonable elliptic
type cdga and further connecting with DMgm(k,Q) (resp. DMgm(k,K)), which are the main
contents of our paper.

Let us explain the rough idea of the construction of the elliptic cycle algebra for non-CM case.
The CM case is similar. For the desired elliptic cycle algebra E∗ell, as a GL2-representation, it
will decompose as a direct sum of irreducible representations. Therefore we need to figure out
coefficients for every irreducible GL2-representation. Recall every irreducible GL2 representation
has the form SymaF⊗ det⊗b for a ∈ Z≥0 and b ∈ Z, where F is the standard GL2 representation.
For SymaF ⊗ det⊗b, the cohomology of the coefficient complex should reflect the extension of
the motives SymaM1(E) ⊗ Q(b) by Q (See Lemma 5.8). Our computations in Section 5 implies
the cohomology groups of our construction of E∗ell have these properties. As for the coefficient
complexes, we choose the Friendlander-Suslin construction (reviewed in Section 3), which is a
functorial improvement of Bloch’s cycle complexes.

After constructing the elliptic cycle algebra E∗ell, we use the sheaf version E∗ell (Definition 7.1)
of E∗ell and symmetric motivic T tr-spectra to define the functor from the derived category of dg-E∗ell
modules to Voevodsky’s big category of motives. Restricting to compact objects, we get the desired
equivalence, which is our main results – Theorem 8.13 and Theorem 8.15.

There are other related constructions or understanding of motives for an elliptic curve.

• Patashnick [23] constructs a different cycle algebra for an elliptic curve E without CM and
defines one candidate for the abelian category of motives for E. Compared to his work, the
advantage of our construction is its identification with a full subcategory of DMgm(k,Q).
Another difference between Patashnick’s construction and ours is the use of Friedlander-
Suslin complexes in our paper rather than Bloch’s cycle complexes.

• We also mention that, besides the approach of cycle algebras along the lines of work of Bloch,
Kriz, May et al., Kimura and Terasoma in [13] develop a theory of relative DGAs and used
their theory to define another candidate for an abelian category of mixed elliptic motives.

• Iwanari [11] uses derived Tannaka duality to describe the stable ∞-category of motives gen-
erated by a Kimura finite Chow motives as a symmetric monoidal stable ∞-category of
quasi-coherent complexes on a derived quotient stack. In particular, motives for an elliptic
curve are Kimura finite. Based on Tannakian formalism, he [12] further describes the derived
motivic Galois group of∞-category of motives generated by an abelian variety over a number
field with some condition.

In outline, the content of the paper is as follow: In Section 2, 3, we briefly recall some basic facts
about the motives of an elliptic curve and Friedlander-Suslin complexes as preparations. We give
the detailed construction of the elliptic cycle algebra E∗ell in Section 4 and show their properties in
Section 5, 6. In order to connect with DMgm(k,Q), we formulate the sheaf version of the elliptic
cycle algebras in Section 7. Then we can construct a functor from the derived category of dg
E∗ell-modules to Voevodsky’s big category of motives DM(k,Q), whose restriction on the compact
objects leads to a functor to DMgm(k,Q). In Section 8, we provide such construction and show
that this functor induces an equivalence between the compact objects in the derived category of
dg E∗ell-modules and the idempotent complete rigid tensor triangulated subcategory generated by
the motives of E. As a corollary of Theorem 8.3 in [7], if E∗ell is cohomological connected, i.e.,
Conjecture 2.6 and Conjecture 8.16 hold for E, then there exists an abelian category of mixed
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motives for E. In the last section, we show that the embedding of the triangulated category of
mixed Tate motives into motives for E can be understood as a map between the derived categories
of dg modules, which is induced by the inclusion of a sub-algebra N̂ of E∗ell to E∗ell itself.
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Notations and Conventions:
Let k be a base field with characteristic zero.
Schk: the category of separated schemes (of finite type) over k.
Smk: the category of smooth varieties over k.
ShtrNis(k): the category of Nisnevich sheaves with transfers over k.
Ab: the category of Abelian groups.
For any additive category M , we let C(M) denote the category of unbounded chain complexes
over M .
Next we use some notations defined in [7, 18].

1. Given an Adams cdga N , we denote the category of cell modules (resp. finite cell modules)

over N defined in section 1.4 of [18] by CMN (resp. CMf
N ). Denote the derived category of

Adams graded dg N -modules by DN , which is defined in section 1.4 of [18]. Denote the full

subcategory with objects isomorphic in DN to a finite cell module by DfN .

2. Given a cdga E over GL2 (resp. TK), defined in Definition 2.4 in [7], we we denote the
category of cell modules over E defined in Definition 2.9 of [7] by CMGL2

E (resp. CMTK
E ).

Denote the derived category of dg E-modules by DGL2

E (resp. DTK
E ), which is defined in

Definition 3.2 of [7].

2 Motives for an elliptic curve

In DMgm(k,Q), the motive of E will decompose into:

M(E) = Q⊕M1(E)[1]⊕Q(1)[2].

Recall that DMeff
gm (k,Q) is a Q-linear tensor category. Using the results in Section 1.4 of [9] we

have the following decomposition of M1(E)⊗n (also in the category of Chow motives):

M1(E)⊗n ∼=
⊕
|λ|=n

Vλ ⊗ Sλ(M1(E)), (2.1)
dec of elliptic motive Idec of elliptic motive I

where Sλ is the Schur functors2 associated to λ, a partition of n. The index set runs through all
partitions of n and Vλ is the multiplicity space.

Lemma 2.1. Let E be an elliptic curve over k. Then we have Sλ(M1(E)) = 0 if λ = (n1, n2, · · · , nr)
with r ≥ 3 and ∧2M1(E) = Q(1). In other words, equality (2.1) can be written as:

M1(E)⊗n ∼=
⊕

λ=(a+b,b),a+2b=n

Vλ ⊗ Syma(M1(E))(b). (2.2)

2For the definition of Schur functor and notations of partitions, we refer to Section 1.3 and 1.4 of [9].

3



Proof. By Proposition 20.1 in [21], we know that the category of effective Chow motives embeds
contravariantly into DMeff

gm (k,Q). Let us denote this functor by Φ. In the category of Chow
motives, we have the following decomposition of the Chow motive of E:

h(E) = h0(E)⊕ h1(E)⊕ h2(E).

Note that the image of h1(E) under Φ is M1(E)[1]. Using Theorem 4.2 in [14], we get:

Symih1(E) = 0 if i ≥ 3.

and
Sym2h1(E) = L.

Here L is the Lefschetz motive in the category of Chow motives. Recall that the image of L under
Φ is Q(1)[2](Remark 20.2 in [21]). Because Φ is a tensor functor, using commutative constraint in
DMeff

gm (k,Q), we have:

Φ(Symih1(E)) = Symi(M1(E)[1]) = (∧iM1(E))[i]

This implies that:
∧iM1(E) = 0 if i ≥ 3,

and
∧2M1(E) = Q(1).

Given λ = (n1, n2, · · · , nr) , by the definition of Young symmetrizer, we know that: Sλ(M1(E)) is
a direct summand of ∧m1M1(E)⊗ · · ·⊗∧msM1(E), where (m1, · · · ,ms) = λt3. When r ≥ 3, then
we have m1 ≥ 3. By the above computation, we obtain that Sλ(M1(E)) = 0.

Definition 2.2. Given an elliptic curve E, the full idempotent complete rigid tensor triangulated
subcategory of DMgm(k,Q) generated by M(E) is denoted by DMEM(k,Q)E .

Remark 2.3. We remark that DMEM(k,Q)E contains the category of mixed Tate motives
because of the decomposition of the motive of E in the beginning of this section.

Remark 2.4. If E is an elliptic curve with CM, we let K = End(E)⊗Q, which is an imaginary
quadratic field. Then we will consider DMEM(k,K)E . We recall that M1(E)K is decomposed
as a direct sum of two motives M and M̄ in DMgm(k,K). See Proposition 7.2 in [1]. This
decomposition is induced by the action of K. For a given two-dimensional rational vector space F,
viewed as a ResK/QGm-representation, then we have a decomposition as before:

(FK)⊗n ∼=
⊕

a+2b=n,a,b∈Z≥0

Vλ ⊗ Syma(FK)(b).

Furthermore, the piece

cn(FK)⊗n = V(n,0) ⊗ Symn(FK) ∼=
⊕

i+j=n,i,j∈Z
(V(n,0) ⊗ V ⊗i ⊗ V̄ ⊗j)⊗ Vi,j , 4

where V(n,0)⊗V ⊗i⊗ V̄ ⊗j are pairwise non-isomorphic irreducible representations over a K-algebra
EndResK/QGm⊗K((FK)⊗n) and Vi,j are pairwise non-isomorphic irreducible representation over

ResK/QGm ⊗ K = TK. For simplicity, we delete Vi,j and one may think that both V and V̄
are endowed with the Gm-action. In fact, EndResK/QGm⊗K((FK)⊗n) is a special case defined in the
Section 3.9 of [1], which is called Bn,K. Ancona’s main result – Theorem 4.1 in [1] implies that the
decomposition like Lemma 2.1 is holding for the CM elliptic motives:

cn(M1(E)K)⊗n ∼=
⊕

i+j=n,i,j∈Z
V(n,0) ⊗M⊗i ⊗ M̄⊗j .

3Here λt is the transpose (or conjugate) of λ, which is defined by interchanging rows and columns in the Young
diagram associated to λ.

4We view cn as an idempotent in End((FK)⊗n), which lies in EndResK/QGm⊗K((FK)⊗n).
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Definition 2.5. 1) We say the 0-th vanishing property holds for E if :

(Non−CM case) HomDMgm(k,Q)(Sym
2iM1(E),Q(i)[j]) ∼= 0,

for any j ∈ Z≤0, any i ∈ Z>0;

(CM case) HomDMgm(k,K)(M
⊗2i,K(i)[j]) ∼= HomDMgm(k,K)(M̄

⊗2i,K(i)[j]) ∼= 0

for any j ∈ Z≤0 and any i ∈ Z>0

2) Let r be a positive integer. We say the r-th vanishing property holds for E if

(Non−CM case) HomDMgm(k,Q)(Sym
2i+rM1(E),Q(i)[j]) ∼= 0,

for any j ∈ Z such that r + j ≤ 0 and any i ∈ Z≥0;

(CM case) HomDMgm(k,K)(M
⊗2i+r,Q(i)[j]) ∼= HomDMgm(k,K)(M̄

⊗2i+r,Q(i)[j]) ∼= 0,

for any j ∈ Z such that r + j ≤ 0 and any i ∈ Z≥0.

Conjecture 2.6. If E be an elliptic curve over a field k of characteristic zero, then E has the r-th
vanishing property for any non-negative integer r.

Example 2.7. Assume that E is an elliptic curve without CM, then we have:

HomDMgm(k,Q)(Sym
2M1(E),Q(1)[∗]) ∼= 0.

Proof. Notice that:

HomDMgm(k,Q)(Sym
2M1(E),Q(1)[i]) ∼= HomDMgm(k,Q)(Sym

2M1(E)[2],Q(1)[i+ 2])

is a direct summand of HomDMgm(k,Q)((M1(E)[1])⊗2,Q(1)[i+ 2]), therefore a direct summand of

HomDMgm(k,Q)(M(E × E),Q(1)[i+ 2]).

It’s well known that, (for example, chapter 3 in [21]):

• When i = 0, HomDMgm(k,Q)(M(E × E),Q(1)[2]) ∼= Pic(E × E);

• When i = −1, HomDMgm(k,Q)(M(E × E),Q(1)[1]) ∼= k∗;

• Otherwise, HomDMgm(k,Q)(M(E × E),Q(1)[2 + i]) ∼= 0.

Notice that HomDMgm(k,Q)(Q,Q(1)[1]) ∼= k∗ is a direct summand of
HomDMgm(k,Q)(M(E × E),Q(1)[1]), which implies that:

HomDMgm(k,Q)((M1(E)[1])⊗2,Q(1)[i]) ∼= 0 if i 6= 0.

Then

HomDMgm(k,Q)(M1(E2),Q(1))

∼=HomDMgm(k,Q)(Sym
2M1(E),Q(1))⊕HomDMgm(k,Q)(Q(1),Q(1))

∼=HomDMgm(k,Q)(Sym
2M1(E),Q(1))⊕Q

(2.3)
11

On the other hand, we have:

HomDMgm(k,Q)(M1(E2),Q(1)) ∼= HomDMgm(k,Q)(M1(E),M1(E)) ∼= HomAbQ(E,E), (2.4)
22
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where AbQ is in the category of abelian varieties up to isogeny. For the first isomorphism, we
use the facts that the dual motive of M1(E) is M1(E)(−1) and the properties of internal hom
in DMgm(k,Q). For the second one, we use the fact that the category of abelian varieties up to

isogeny fully embeds into DMeff (k,Q), for example, Proposition 2.2.1 in [2].
Putting together (2.3) and (2.4), we get:

HomDMgm(k,Q)(Sym
2M1(E),Q(1))⊕Q ∼= HomAbQ(E,E).

If E is an elliptic curve without CM, then we have: HomAbQ(E,E) ∼= Q, which implies that:

HomDMgm(k,Q)(Sym
2M1(E),Q(1)) ∼= 0.

Example 2.8. We let E be an elliptic curve over k with CM. After extending the rational coeffi-
cients for motives to K-coefficients, the similar analysis as above tells us

HomDMgm(k,K)(Sym
2M1(E)K,K(1)[∗]) ∼= K.

Then the identification Sym2M1(E)K ∼= Sym2(M ⊕ M̄) ∼= M ⊗M ⊕M ⊗ M̄ ⊕ M̄ ⊗ M̄ implies
that:

i). HomDMgm(k,K)(M ⊗M,K(1)[∗]) ∼= 0,

ii). HomDMgm(k,K)(M̄ ⊗ M̄,K(1)[∗]) ∼= 0,

iii) HomDMgm(k,K)(M ⊗ M̄,K(1)[∗]) ∼= K.

In fact, we have M ⊗ M̄ ∼= K(1) in DMgm(k,K).

3 Friedlander-Suslin complexes and their alternating ver-
sions

Definition 3.1. Take Y in Smk and X in Schk. Let zq.fin(X)(Y ) be the free abelian group
generated by integral closed subschemes W ⊂ Y ×k X such that p1 : W −→ Y is quasi-finite and
dominant over an irreducible component of Y .

Remark 3.2. We recall that forany i ∈ Z, the Friedlander-Suslin complexes ZSF (i) is defined by:

ZSF (i) = C∗zq.fin(Ai)[−2i].

In order to define the alternating versions of Friedlander-Suslin complexes, we define Ccb∗ (F)
and CAlt∗ (F) for every F a presheaf over Smk.

Definition 3.3. Let X ∈ Smk and F as above. Let Ccbn (F) be the presheaf

Ccbn (F)(X) = F(X ×�n)/

n∑
j=1

π∗j (F(X ×�n−1)).

and the differential is given by:

dn =

n∑
j=1

(−1)j−1F(ιj,1)−
n∑
j=1

(−1)j−1F(ιj,0).
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If F is a Nisnevich presheaf (sheaf, with transfers), then Ccb∗ (F) is a complex of Nisnevich
prsheaves (sheaves, with transfers). One can extend the construction to complexes of sheaves (with
transfers) by taking the total complex. We can define CAlt∗ (F) as a subcomplex of Ccb∗ (F)⊗Q by
taking the alternating elements in Ccb∗ (F)(Y ) for every Y ∈ Smk.

Remark 3.4. There is another definition of the alternating complex without taking the quotient
by the degenerate cycles. See Remark 4.1.2 in [18].

The following theorem is concerning some comparison results about the above constructions.
The proof can be found in Section 2.5 in [17].

Theorem 3.5. Let F be a complex of presheaves on Smk.

• There is a natural isomorphism C∗(F) ∼= Ccb∗ (F) in the derived category of pre-sheaves on
Smk. If F is a complex of presheaves with transfer, there is also an isomorphism C∗(F) ∼=
Ccb∗ (F) in the derived category of presheaves with transfers D(PST).

• The inclusion CAlt∗ (F)(Y ) ⊂ Ccb∗ (F)Q(Y ) is a quasi-isomorphism for all Y ∈ Smk.

As a corollary, we take F to be zq.fin(Ai) and get the alternating versions of Friedlander-Suslin
complexes, which are quasi-isomorphic to the original ones.

4 The cycle algebra for an elliptic curve

Let E be an elliptic curve defined over a base field k of characteristic zero. Given a positive integer
a, we denote the a-th power of E by Ea.

Definition 4.1. The sign character sgn : Z/2Z→ {±1} extends to the map

ρ : (Z/2Z)a → {±1}a

by
ρ(η1, · · · , ηa) = {sgn(η1), · · · , sgn(ηa)}

for (η1, · · · , ηa) ∈ (Z/2Z)a.

The group Γn = (Z/2Z)a o Σa acts on Ea in the following way: Σa permutes the components
of Ea and the i-th generator (0, · · · , 1, · · · , 0) in (Z/2Z)a acts on the i-th component E of Ea by

the inversion, i.e., x
σi−→ −x. In the following, for a given g ∈ Γn, we denote the action of g on an

algebraic cycle Z by g(Z). For i ∈ Z, we define a subgroup of CAlti (zq.fin(Ab))(Ea):

CAlt,−i (zq.fin(Ab))(Ea) = {Z ∈ CAlti (zq.fin(Ab))(Ea)|g(Z) = ρ(g)Z ∀g ∈ (Z/2Z)a}.

We denote the corresponding cycle complex by CAlt,−∗ (zq.fin(Ab))(Ea). Given σ ∈ Q[Σa], define

Z • σ = sgn(σ)σ−1(Z)

for Z ∈ CAlt,−i (zq.fin(Ab))(Ea). This makes CAlt,−i (zq.fin(Ab))(Ea) into a right Q[Σa]-module.

We also have the action of the symmetric group Σb on CAlt,−i (zq.fin(Ab))(Ea), by permuting the
coordinates of Ab. Taking the symmetric sections with respect to the action of Σb, we get a
sub-complex C̃Alt,−i (zq.fin(Ab))(Ea) of CAlt,−i (zq.fin(Ab))(Ea).

Assume that E is an elliptic curve with complex multiplication and recall that K = Endk(E)⊗
Q. In this case, we consider the above cycle complexes with K-coefficients rather than Q-coefficients.
By a slight of abuse of notations, we still use the same symbol for cycle complexes and represen-
tations.

Notation: For i < 0, V ⊗i = (V ∨)⊗−i, where V ∨ is the dual representation of V . We also use
this notation for motives.
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Definition 4.2. Let a, b be integers such that a ≥ b, a ≥ 0.

• For i ∈ Z and E an elliptic curve without CM, we define:

E ia,b = C̃Alt,−a−2b−i(zq.fin(Aa−b))(Ea)⊗Q[Σa] F⊗a(b− a).

Here F is the fundamental representation of GL2 and F⊗a(b− a) = F⊗a ⊗ det⊗b−a.

• For i ∈ Z and E an elliptic curve with CM, we define:

E ia,b = C̃Alt,−a−2b−i(zq.fin(Aa−b))(Ea)⊗Bn,K cn(F⊗a)(b− a).

Here F is the fundamental representation of GL2 ⊗ K, F⊗a(b − a) = F⊗a ⊗ det⊗b−a. We
recall that Bn,K and cn are defined in Remark 2.4.

Remark 4.3. We first collect some facts.

1. Using the external product of cycles, we define a map:

C̃Alt,−a−2b−i1(zq.fin(Aa−b))(Ea)⊗Q C̃
Alt,−
c−2d−i2(zq.fin(Ac−d))(Ec)

�−→ C̃Alt,−a−2b+c−2d−i1−i2(zq.fin(Aa−b+c−d))(Ea+c),

which sends Z1 ⊗ Z2 to (−1)c(a−2b−i1)m(Z1 × Z2). Here m is the map

Ea × Aa−b ×�a−2b−i1 × Ec × Ac−d ×�c−2d−i2 → Ea+c × Aa−b+c−d ×�a−2b+c−2d−i1−i2 ,

changing the positions of the factors.

2. We have the map of GL2 representations: Fa ⊗ Fc → Fa+c.

In the following, we want to define a product map E∗a,b ⊗ E∗c,d → E∗a+c,b+d. For simplicity, we

denote C̃Alt,−a−2b−i(zq.fin(Aa−b))(Ea) by Cia,b. Let us only explain the non-CM case. We have:

(Cia,b⊗Q[Σa] F
a(b−a))⊗Q (Cjc,d⊗Q[Σc] F

c(d−c)) = (Cia,b⊗QC
j
c,d)⊗Q[Σa×Σc] (F

a(b−a)⊗QFc(d−c)).

Using the external product of cycles and GL2-representations (see Remark 4.3), we have a map:

(Cia,b ⊗Q C
j
c,d)⊗Q[Σa×Σc] (Fa(b− a)⊗Q Fc(d− c))→ Ci+ja+c,b+d ⊗Q[Σa×Σc] Fa+c(b− a+ d− c).

The injection of groups Σa × Σc → Σa+c induces a map Q[Σa × Σc] → Q[Σa+c]. Note that both
Ci+ja+c,b+d and Fa+c(b− a+ d− c) are Q[Σa+c] modules, and their Q[Σa+c] modules structures are
compatible with their Q[Σa ×Σc] module structure coming from the respective external products.
This tells us that there is a map:

Ci+ja+c,b+d ⊗Q[Σa×Σc] Fa+c(b− a+ d− c)→ Ci+ja+c,b+d ⊗Q[Σa+c] Fa+c(b− a+ d− c).

Putting these maps together, we get a map:

(Cia,b ⊗Q[Σa] Fa(b− a))⊗Q (Cjc,d ⊗Q[Σc] Fc(d− c))
µa,b
c,d−−→ Ci+ja+c,b+d ⊗Q[Σa+c] Fa+c(b− a+ d− c).

(4.1)
mul-strmul-str

Remark 4.4. Similarly, the above construction of multiplicative maps can be also applied to the
case of an elliptic curve with CM.
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Remark 4.5. We will use the following identification in the next lemma.
Let G be a finite group and V (resp. W ) be a right (resp. left) Q[G] module, then:

V ⊗Q[G] W = (V ⊗Q W )G,

The right hand means the following: The right Q[G] module V can be considered as a left module,
g • v .

= v • g−1. V ⊗Q W is considered as a left module. Then take the G co-invariant part. This
is even true for any algebra.

Lemma 4.6. The product structure defined in (4.1) is associative and graded commutative. More

precisely, (−1)ijµc,da,b ◦ τ = µa,bc,d, where τ is the map E ia,b ⊗ E
j
c,d

τ−→ Ejc,d ⊗ E ia,b changing two factors.

Proof. For the associativity part, it’s the direct result of the associativity of external products of
cycles and representations and compatibility of actions of symmetric groups.

For the commutativity part, we need to check that (−1)ijµc,da,b ◦ τ = µa,bc,d. Take Z1⊗W1, where

Z1 ∈ Cia,b, W1 ∈ V a(b − a). Similarly take Z2 ⊗W2, where Z2 ∈ Cjc,d, W2 ∈ V c(d − c). Let σ be
the element in Q[Σa+c] which permutes the first a elements with the last c elements. Let δ act
on Aa−b ×�a−2b−i × Ac−d ×�c−2d−j by permuting Aa−b and Ac−d, and permuting �a−2b−i and
�c−2d−j .

Also use � to denote the external product of modules.
Then, in Ci+ja+c,b+d ⊗Q Fa+c(b− a+ d− c), we have:

δσ((Z1 � Z2)⊗Q (W1 �W2))

= δ(σ(Z1 � Z2))⊗Q (σ(W1 �W2))

= (−1)c(a−i)+a(c−j)+(a−i)(c−j)(Z2 � Z1)⊗Q (W2 �W1)

= (−1)c(a−i)+a(c−j)+(a−i)(c−j)(Z2 � Z1)⊗Q (W2 �W1)

= (−1)ac+ij(Z2 � Z1)⊗Q (W2 �W1).

Here we use δ(Z) = sgn(δ)Z. This implies that the image of

µa,bc,d((Z1 ⊗W1)⊗Q (Z2 ⊗W2))− (−1)ij(µc,da,b ◦ τ)((Z1 ⊗W1)⊗Q (Z2 ⊗W2))

in E i+ja+c,b+d is the same as

µa,bc,d((Z1 ⊗W1)⊗Q (Z2 ⊗W2))− (−1)acσ(µc,da,b((Z1 ⊗W1)⊗Q (Z2 ⊗W2))),

i.e.,
µa,bc,d((Z1 ⊗W1)⊗Q (Z2 ⊗W2))− σ • (µc,da,b((Z1 ⊗W1)⊗Q (Z2 ⊗W2))),

which is zero in E i+ja+c,b+d. This implies the graded commutativity.

For simplicity, we denote the multiplication µa,bc,d by •.

Lemma 4.7. Given Z1 ⊗W1 ∈ Cia,b ⊗Q[Σa] Fa(b − a), Z2 ⊗W2 ∈ Cjc,d ⊗Q[Σb] Fc(d − c), then we
have:

di+ja+c,b+d((Z1 ⊗W1) • (Z2 ⊗W2))

= (dia,b(Z1 ⊗W1)) • (Z2 ⊗W2) + (−1)i(Z1 ⊗W1) • (djc,d(Z2 ⊗W2)),

where dia,b is the map Cia,b ⊗Q[Σa] Fa(b− a)
d⊗id−−−→ Ci+1

a,b ⊗Q[Σa] Fa(b− a).

Proof. One may check by definition.
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Assume that E is an elliptic curve without CM. By Lemma 4.6 and Lemma 4.7, our products

E∗a,b ⊗ E∗c,d → E∗a+c,b+d

give ⊕a≥b≥0E∗a,b the structure of a bi-graded commutative differential graded algebra in GL2-
representations.

Remark 4.8. If E is an elliptic curve with CM, then the representations in each E∗a,b are viewed as
representations over Gm,K×Gm,K = TK. The determinant representation of TK means the pullback
of the determinant representation of GL2 along the embedding of TK → GL2. Under the action of
the Galois group Gal(K/Q), we have the decomposition F = V ⊕ V̄ . In this case, the analogue of
Lemma 4.6 and Lemma 4.7 hold, i.e., the products

E∗a,b ⊗ E∗c,d → E∗a+c,b+d

give ⊕a≥b≥0E∗a,b the structure of a bi-graded cdga in TK-representations.

Example 4.9. Assume that E is an elliptic curve without CM in this example. Let us use Example
2.7 to compute E∗2,1. According to our definition, we have:

E∗2,1 = C̃Alt,−−∗ (zq.fin(A1))(E2)⊗Q[Σ2] F⊗2(−1).

Notice that as a GL2 representation, V ⊗2(−1) decomposes as the direct sum of Sym2F(−1) and
Q, both factors with multiplicity one. Computing the corresponding cycle complexes, we get:

E∗2,1 = (C̃Alt,−−∗ (zq.fin(A1))(E2))sym ⊗Q Sym
2F(−1)⊕ (C̃Alt,−−∗ (zq.fin(A1))(E2))alt ⊗Q Q.

Using Example 2.7, we obtain that the first term of right hand side is quasi-isomorphic to zero.
Similarly the second term is quasi-isomorphic to the trivial GL2 representation, generated by a
cycle of codimension one in E2. If we denote the diagonal (resp. anti-diagonal) of E × E by ∆+

(resp. ∆−), then we can take this generator to be the cycle 1
2 (∆+ −∆−).

Example 4.10. Assume that E is an elliptic curve with CM now. Then by the above discussion,
we have:

E∗2,1 = (C̃Alt,−−∗ (zq.fin(A1))(E2))sym ⊗K (V ⊗ V̄ (−1)).

Notice that this complex is quasi-isomorphic to the trivial representation K, generated by the cycle
1
2 (Γι − Γι◦(−1)), where Γι denotes the graph of the complex multiplication ι.

(Non-CM case) Let E be an elliptic curve without multiplication. We define a map:

E∗a,b
η−→ E∗a+2,b+1 (4.2)

colimit processcolimit process

by mapping Z⊗QW ∈ Cia,b⊗Σa Fa(b−a) to (Z× 1
2 (∆+−∆−))⊗Qφ(W ), where φ is the composition

of maps between GL2 representations Fa(b−a)→ Fa(b−a)⊗QF2(−1)
∼=−→ Fa+2(b−a−1). The first

map is defined in the following way. Because F2(−1) ∼= Sym2F(−1)⊕Q as GL2 representations,
we have a natural injective map:

Fa(b− a) = Fa(b− a)⊗Q→ Fa(b− a)⊗ F2(−1),

sending 1 ∈ Q to 1 ∈ Q ⊂ F2(−1).

Remark 4.11. Using the computation in Example 4.9 and Example 4.10, the above definition is
just the composition of maps:

E∗a,b → E∗a,b ⊗Q ((C̃Alt,−−∗ (zq.fin(A1))(E2))alt ⊗Q Q)→ E∗a,b ⊗ E∗2,1
•−→ E∗a+2,b+1.
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(CM case) Assume that E is with CM. Notice that Sym2F is not irreducible as an TK-
representation. In fact, Sym2F is decomposed as a direct sum of V ⊗2, V̄ ⊗2 and V ⊗ V̄ . As
non-CM case, using Example 4.10 again together with

E∗a,b → E∗a,b ⊗ ((C̃Alt,−−∗ (zq.fin(A1))(E2))sym ⊗K (V ⊗ V̄ (−1))→ E∗a,b ⊗ E∗2,1
•−→ E∗a+2,b+1,

we get a map:
τ : E∗a,b → E∗a+2,b+1.

Definition 4.12. Given a ∈ Z,

• for an elliptic curve without CM, we define:

E∗a = lim−→i≥−a E∗−a+2i,−a+i

where the colimits are taken over the map η.

• for an elliptic curve with CM, we define:

E∗a = lim−→i≥−a E∗−a+2i,−a+i,

where the colimits are taken over the map τ .

Remark 4.13. As GL2 representations, every term of the complex E∗a has pure Adams weight a.
The reason for the process of taking colimit is to kill the infinite repeated information. Notice each
irreducible GL2 representation appear infinite times for the representation part of {E∗a,b}, which
take the same cycle complexes. For example, in E∗a,b and E∗a+2,b+1, the SymaF(b − a)-isotypical
pieces appear in these both complexes. We will see these facts later in Corollary 5.7. The same
thing also holds for the CM case.

Definition 4.14. Define:
E∗ = Q⊕

⊕
a≥1

E∗a .

and
E∗ell =

⊕
a∈Z
E∗a .

Remark 4.15. The products on E∗a,b descend to products on E∗ and E∗ell. We take the case of an
elliptic curve without CM as an example. By the construction of the multiplication map, we have:

E∗a+2i, i ⊗ E∗b+2j, j → E∗a+b+2i+2j, i+j ,

and the commutative diagram

E∗a+2i, i ⊗ E∗b+2j, j E∗a+b+2i+2j, i+j

E∗a+2i+2, i+1 ⊗ E∗b+2j, j E∗a+b+2i+2j+2, i+j+1.

//

η⊗id

��
//

η

��

Fix integers b, j. Using these diagrams for i varying, we get a map:

E∗a ⊗ E∗b+2j, j → E∗a+b.

We also have the following commutative diagrams:
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E∗a ⊗ E∗b+2j, j E∗b

E∗a ⊗ E∗b+2j+2, j+1

//

id⊗η

��

77

and

E∗a+2i, i ⊗ E∗2b+j, b E∗a+b+2i+2j, i+j

E∗a+2i, i ⊗ E∗2b+j+2, b+1 E∗a+b+2i+2j+2, i+j+1.

//

id⊗η

��
//

η

��

Then for i, j ∈ Z, we get a map E∗i ⊗ E∗j → E∗i+j , which induces product structures on E and E∗ell.
By Lemma 4.6 and Lemma 4.7, these give E and E∗ell the structures of commutative differential
graded algebra objects in the category of GL2 representations.

5 Computations for the non-CM case

Lemma 5.1. There are isomorphisms:

Hi(C̃Alt,−a−2b−∗(zq.fin(Aa−b))(Ea)) ∼= HomDMgm(k,Q)((M1(E))⊗a,Q(a− b)[i]),

for i ∈ Z.

Proof. For the proof, we need use bivariant cycle cohomology developed in Chapter 4 in [10] and
we also use the notations in op.cit. For these definitions, we refer to [10]. Via Proposition 5.8,
Theorem 8.3 (the homotopy invariance) in [10] and Theorem 3.5, we have:

Hi(C̃Alta−2b−∗(zq.fin(Aa−b))(Ea)) ∼= Hi(Ca−2b−∗(zequi(E
a,Aa−b, 0))(Spec(k)))

∼=Hi(Ca−2b−∗(zequi(E
a × Aa−b, a))(Spec(k))) ∼= Hi(Ca−2b−∗(zequi(E

a, b))(Spec(k)))

∼=Ab,2a−2b−i(E
a) = HBM

2a−i(E
a,Q(b)) ∼= Ha+i(Ea,Q(a− b))

=HomDMgm(k,Q)((M(E))⊗a,Q(a− b)[a+ i])

(5.1)

In the third of the above isomoprhisms, we use the comparison between the Borel-Moore mo-
tivic homology (defined there by bivariant cycle cohomology) and motivic cohomology. See this
statement before Remark 9.5 in op. cit.

Notice that the action of (Z/2)a on these groups induced by the action on Ea are compatible
under the above isomorphisms. Therefore we have:

Hi(C̃Alt,−a−2b−∗(zq.fin(Aa−b))(Ea)) ∼= HomDMgm(k,Q)((M1(E))⊗a,Q(a− b)[i]).

Lemma 5.2. The external product, which is defined on the cohomology groups of the cycle complex
C̃Alt,−a−2b−∗(zq.fin(Aa−b))(Ea), is compatible with the external product on Hom groups

HomDMgm(k,Q)((M1(E))⊗a,Q(a− b)[i]),
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defined in the following way:

HomDMgm(k,Q)((M1(E))⊗a,Q(a− b)[i])⊗HomDMgm(k,Q)((M1(E))⊗c,Q(c− d)[j])

→HomDMgm(k,Q)((M1(E))⊗a ⊗ (M1(E))⊗c,Q(a+ c− b− d)[i+ j])

→HomDMgm(k,Q)((M1(E))⊗a+c,Q(a+ c− b− d)[i+ j]),

(5.2)

where the first map is taking the external product in DMgm(k,Q).

Proof. By Lemma 5.1, HomDMgm(k,Q)((M1(E))⊗a,Q(a− b)[i]) can be identified as the cohomol-

ogy group of a subcomplex C̃Alt,−a−2b−∗(zq.fin(Aa−b))(Ea) of Ca−2b−∗(zq.fin(Aa−b))(Ea). The external
product of

HomDMgm(k,Q)((M1(E))⊗a,Q(a− b)[i])

defined as above is just induced by the product defined in Remark 4.3 on cohomology groups of

Ca−2b−∗(zq.fin(Aa−b))(Ea).

On the other hand, notice that the product defined in Remark 4.3 on the cohomology groups of
the cycle complex

C̃Alt,−a−2b−∗(zq.fin(Aa−b))(Ea)

is given by the external product on the cohomology groups of

Ca−2b−∗(zq.fin(Aa−b))(Ea).

From now on, we assume that E is an elliptic curve without CM. The CM case will be discussed
in the next section.

Lemma 5.3. The cohomologies of E∗a,b are canonically isomorphic to the cohomologies of the
following complex of GL2 representations⊕

c+2d=a,c,d≥0

HomDMgm(k,Q)(Sym
cM1(E)(d),Q(a− b)[∗])⊗ SymcF(d+ b− a),

where we view its differential maps as zero.

Proof. By Lemma 5.1, we have the following isomorphism between GL2 representations:

Hi(E∗a,b) ∼= HomDMgm(k,Q)((M1(E))⊗a,Q(a− b)[i])⊗Q[Σa] Fa(b− a).

Then by Lemma 2.1, we know that:

HomDMgm(k,Q)((M1(E))⊗a,Q(a− b)[i])⊗Q[Σa] Fa(b− a)

∼=HomDMgm(k,Q)(⊕c+2d=a,c,d≥0V(c+d,d) ⊗ Symc(M1(E))(d),Q(a− b)[i])
⊗Q[Σa] (⊕e+2f=a,e,f≥0V(e+f,f) ⊗ SymeF(f + b− a))

∼=⊕c+2d=e+2f=a,c,d,e,f≥0 HomDMgm(k,Q)(Sym
c(M1(E))(d),Q(a− b)[i])

⊗ (V ∨(c+d,d) ⊗Q[Σa] V(e+f,f))⊗ SymeF(f + b− a)

∼=⊕c+2d=a,c,d≥0 HomDMgm(k,Q)(Sym
cM1(E)(d),Q(a− b)[i])

⊗ SymcF(d+ b− a).

Notice that given two irreducible representations V,W of a finite group G over Q, then V ⊗Q[G]W =
Q if V ∼= W . Otherwise, it’s zero.
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Corollary 5.4. If the 0-vanishing property, defined in Definition 2.5, holds for the elliptic curve
E, then for any a > 0, the cohomolgies of E∗2a,a are all isomorphic to the trivial GL2-representation
Q concentrated in degree zero.

Proof. By Lemma 5.3, we have:

H∗(E∗2a,a) ∼=
⊕

c+2d=2a,c,d≥0

HomDMgm(k,Q)(Sym
cM1(E),Q(a− d)[∗])⊗ SymcF(d− a). (5.3)

From Definition 2.5, we know that:

HomDMgm(k,Q)(Sym
cM1(E),Q(a− d)[∗]) ∼= 0 if c ≥ 1.

Therefore, we have:

Hn(E∗2a,a) ∼=

{
0 if n 6= 0;

Q if n = 0,

where Q is the trivial GL2 representation.

Recall in the previous section, we have defined η in equality (4.2). In the next lemma, we want
to give a description of η under the identification in Lemma 5.3.

Lemma 5.5. Via the identification of Lemma 5.3, the map:

η : E∗a,b → E∗a+2,b+1,

induced the following map on cohomology groups:

(HomDMgm(k,Q)(Sym
cM1(E)(d),Q(a− b)[∗])⊗ SymcF(d+ b− a))

⊗ (HomDMgm(k,Q)(Q(1),Q(1))⊗Q)

→(HomDMgm(k,Q)(Sym
cM1(E)(d+ 1),Q(a− b+ 1)[∗])

⊗ SymcF(d+ b− a).

Moreover, the map on cohomology groups induces by η is a monomorphism in the category of GL2

representations.

Proof. By Example 2.7, we have a simple description of E∗2,1:

H∗(E∗2,1) ∼= HomDMgm(k,Q)(Q(1),Q(1))⊗Q.

Using Lemma 5.2 and Lemma 5.3, we can identify η as sending the piece

HomDMgm(k,Q)(Sym
cM1(E)(d),Q(a− b)[∗])⊗ SymcF(d+ b− a)

to

HomDMgm(k,Q)(Sym
cM1(E)(d+ 1),Q(a− b+ 1)[∗])⊗ SymcF(d+ b− a)

By Voevodsky’s cancellation theorem in [26], on each piece of E∗a,b, η is an isomorphism, which
implies that η is an injection.

Corollary 5.6. If an elliptic curve E satisfies the r-th vanishing property, defined in Definition
2.5, for all positive integer r, then all the H∗(E∗−r) are zero. Furthermore, if the elliptic curve E
satisfies the r-th vanishing property for all non-negative integer r, then we have H∗(E∗) = H∗(E∗ell).
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Proof. By Lemma 5.3, we have a quasi-isomorphism:

H∗(E∗r+2i,r+i)
∼=

⊕
c+2d=r+2i,c,d≥0

HomDMgm(k,Q)(Sym
cM1(E)(d),Q(i)[∗])⊗ SymcF(d− i).

If E satisfies the r-th vanishing property for r ∈ Z>0, we have:

HomDMgm(k,Q)(Sym
cM1(E),Q(i− d)[∗])

∼=HomDMgm(k,Q)(Sym
r+2(i−d)M1(E),Q(i− d)[∗]) ∼= 0.

Therefore, H∗(E∗r+2i,r+i)
∼= 0 for any r ∈ Z>0 and any i ∈ Z≥0, which implies that H∗(E∗−r) = 0.

Furthermore, if E also satisfies the 0-th vanishing property, then by Corollary 5.4, we know that
H∗(E2a,a) ∼= Q. Also, from Lemma 5.5, we know the connecting map η is the identity. Therefore
we obtain that H∗(E∗) = H∗(E∗ell).

Corollary 5.7. Let a be any integer. In the derived category of GL2 representations, we have the
following isomorphisms:

H∗(E∗a) ∼=
⊕

i≥0,a≡i(2)

HomDMgm(k,Q)(Sym
iM1(E),Q(

a+ i

2
)[∗])⊗ SymiF(−a+ i

2
).

Proof. Using Lemma 5.3, we have:

H∗(E∗a,b) ∼=
⊕

c+2d=a,c,d≥0

HomDMgm(k,Q)(Sym
cM1(E)(d),Q(a− b)[∗])⊗ SymcF(d+ b− a).

By Lemma 5.5, the connecting map

η : E∗a,b → E∗a+2,b+1

sends the summand

HomDMgm(k,Q)(Sym
cM1(E)(d),Q(a− b)[∗])⊗ SymcF(d+ b− a),

of H∗(E∗a,b) to the same direct summand in H∗(E∗a+2,b+1) by the identity map. Therefore taking
the direct limit, we will get the direct sum of all the pieces of the form

HomDMgm(k,Q)(Sym
cM1(E)(d),Q(a− b)[∗])⊗ SymcF(d+ b− a).

Rewriting the index set, one obtains the desired presentations.

Next we want to compute the hom-groups between some special dg Eell-modules.
We let T GL2

Eell be the full triangulated subcategory of the derived category of dg Eell-module
generated by the dg Eell-module of the form {Eell⊗F−a(b)[n]}a,b,n∈Z. Simply denote these elements
by Eell〈a, b〉[n].

For convenience, we use the index Eell to denote the hom group in T GL2

Eell and use GL2 to stand
for the derived category of GL2 representations in next lemma.

HomEell(Eell〈a, b〉[n], Eell〈c, d〉[m])

=HomEell(Eell ⊗ F⊗−a(b)[n], Eell ⊗ F⊗−c(d)[m])

=HomGL2
(F⊗−a(b), Eell ⊗ F⊗−c(d)[m− n])

=Hm−n(HomGL2
(Q, Eell ⊗ F⊗−c ⊗ F⊗a(−b+ d))).

(5.4)

Lemma 5.8. For a, b, c, d, i ∈ Z, we have:

Hi(HomGL2(Q, Eell ⊗ F⊗−c ⊗ F⊗a(−b+ d)))

∼=HomDMgm(k,Q)((M1(E))⊗−a(b), (M1(E))⊗−c(d)[i]).
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Convention: For simplicity, we denote the multiplicity of SymaF ⊗ detb in F⊗n by Ca,b and
denote the multiplicity of Syma+b−2iF⊗ deti in SymaF⊗ SymbF by Di

a,b.

Proof. The isomorphism F∨ ∼= F(−1) gives us the isomorphism F−a ∼= Fa(−a) in the category
of GL2-representations. Similarly using M1(E)∨ ∼= M1(E)(−1) gives us an isomorphism between
geometric motives M1(E)−a ∼= M⊗a1 (E)(−a). Without loss of generality, we can assume a, c ≥ 0.
By Voevodsky’s Cancellation theorem, we can also assume that b = 0. For simplicity, we only
prove the case d = 0.

F⊗−c⊗F⊗a is the direct sum of Syma−2nF(n)⊗Sym−c−2mF(m), where 0 ≤ 2n ≤ a, c+2m ≤
0, c+m ≥ 0, with multiplicities Ca−2n,n × C−c−2m,c+m.

Furthermore, we can decompose F⊗−c ⊗F⊗a as the direct sum of irreducible GL2 representa-
tions of the form Syma−2n−c−2m−2lF(m+n+l), where the index set µ satisfies 0 ≤ 2n ≤ a, c+2m ≤
0, c+m ≥ 0, 0 ≤ 2l ≤ a− c− 2(m+ n), with multiplicity Ca−2n,n × C−c−2m,c+m ×Dl

a−2n,−c−2m.
From this decomposition, we get m+c+n+ l ≥ 0, which implies that a−2m−c−2n−2l ≤ a+c.

For each irreducible representation Syma−2n−c−2m−2lF(m+ n+ l), we have:

Hi(HomGL2(Q, E∗ell ⊗ Syma−2n−c−2m−2lF(m+ n+ l)))

∼=Hi(HomGL2(Q, E∗c−a ⊗ Syma−2n−c−2m−2lF(m+ n+ l)))

∼=Hi(HomGL2((Syma−2n−c−2m−2lF(m+ n+ l))∗, E∗c−a))

∼=Hi(HomGL2(Syma−2n−c−2m−2lF(m+ n+ l − a+ c), E∗c−a))

∼=HomDMgm(k,Q)(Sym
a−2n−c−2m−2lM1(E),Q(a− c−m− n− l)[i]),

(5.5)
computation of fullcomputation of full

For the last isomorphism, we use Corollary 5.7.
On the other hand, let us compute the hom-groups between motives.

HomDMgm(k,Q)((M1(E))⊗−a, (M1(E))⊗−c[i])

∼=HomDMgm(k,Q)(M1(E)⊗a ⊗M1(E)⊗c,Q(a)[i])

∼=⊕0≤2s≤a,0≤2t≤c (Ca−2s,s × Cc−2t,t)

·HomDMgm(k,Q)(Sym
a−2sM1(E)(s)⊗ Symc−2tM1(E)(t),Q(a)[i])

∼=⊕0≤2s≤a,0≤2t≤c,0≤2r≤a+c−2s−2t (Ca−2s,s × Cc−2t,t ×Dr
a−2s,c−2t)

·HomDMgm(k,Q)(Sym
a+c−2s−2t−2rM1(E)(r),Q(a− s− t)[i])

(5.6)

Rewrite the index set, and let s = n, t = c+m, r = l. Then this index set is the same as µ. Notice
that the multiplicities of the term

HomDMgm(k,Q)(Sym
a−2n−c−2m−2lM1(E),Q(a− c−m− n− l)[i])

in
Hi(HomGL2

(Q, E∗ell ⊗ Syma−2n−c−2m−2lF(m+ n+ l)))

and
HomDMgm(k,Q)((M1(E))⊗−a, (M1(E))⊗−c[i])

are the same. Both are Ca−2n,n × C−c−2m,c+m ×Dl
a−2n,−c−2m.

6 Computations for the CM case

We let E be an elliptic curve with CM. The computation results are parallel to the previous section.
Recall that in this case every representation and cycles complexes E∗a,b are considered over K and

we have a decomposition of the standard representation of GL2 : F = V ⊕ V̄ . Because the proof
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of the results in this section are similar as before and short the length of this paper, we omit the
proof and only state the results. Notice that M1(E) = M ⊕ M̄ in DMgm(k,K). For simplicity,
the exponent e on M , M̄ , M , M̄ means the e-th tensor power of these objects.

Lemma 6.1. (Compare with Lemma 5.3) The cohomologies of E∗a,b are canonically isomorphic to
the cohomologies of the following complex of TK-representations⊕

e+f+2d=a,d,e,f≥0

HomDMgm(k,K)(M
e ⊗ M̄f ,K(a− b− d)[∗])⊗ (V e ⊗ V̄ f )(d+ b− a),

where we view its differential maps as zero.

Corollary 6.2. If the 0-vanishing property holds for an elliptic curve E, then for any a > 0,
the cohomolgies of E∗2a,a are all isomorphic to the direct sum of a+ 1 trivial TK-representations K
concentrated in degree zero. Therefore, for any a > 0, the cohomolgies of A∗2a,a are all isomorphic
to the trivial TK-representations K concentrated in degree zero.

Lemma 6.3. The cohomologies of A∗a,b are canonically isomorphic to the cohomologies of the
following complex of TK-representations⊕

e+f=a,e,f≥0

HomDMgm(k,K)(M
e ⊗ M̄f ,K(a− b)[∗])⊗ (V e ⊗ V̄ f )(b− a),

where we view its differential maps as zero.

Lemma 6.4. Via the identification of Lemma 6.3, the map:

η̄ : A∗a,b → A∗a+2,b+1,

induces the following map on cohomology groups:

(⊕e+f=a,e,f≥0HomDMgm(k,K)(M
e ⊗ M̄f ,K(a− b)[∗])⊗ (V e ⊗ V̄ f )(b− a))

⊗ (HomDMgm(k,K)(M ⊗ M̄,K(1))⊗ (V ⊗ V̄ ⊗ det−1))

→(⊕e+f=a+2,e,f≥0HomDMgm(k,K)(M
e ⊗ M̄f ,K(a− b+ 1)[∗])⊗ (V e ⊗ V̄ f )(b− a− 1)).

Moreover, the map on cohomology groups induces by η is a monomorphism in the category of TK
representations.

Corollary 6.5. (Compare with Corollary 5.6) If an elliptic curve E satisfies the r-th vanishing
property for all positive integer r, then all the H∗(E∗−r) are zero. Furthermore, if the elliptic curve E
satisfies the r-th vanishing property for all non-negative integer r, then we have H∗(E∗) = H∗(E∗ell).

Corollary 6.6. (Compare with Corollary 5.7) Let a be any integer. In the derived category of TK
representations, we have the following isomorphisms:

H∗(E∗a) ∼=
⊕

i≥0,a≡i(2)

HomDMgm(k,K)(M
i,K(

a+ i

2
)[∗])⊗ V i(−a+ i

2
)

⊕
⊕

j>0,a≡j(2)

HomDMgm(k,K)(M̄
j ,K(

a+ j

2
)[∗])⊗ V̄ i(−a+ j

2
).

Lemma 6.7. (Compare with Lemma 5.8) For a, b, c, d, i ∈ Z, we have:

Hi(HomTK(K, Eell ⊗ F⊗−c ⊗ F⊗a(−b+ d)))

∼=HomDMgm(k,K)((M1(E))⊗−a(b), (M1(E))⊗−c(d)[i]).
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7 The motivic version of cycle cdgas in DM(k)

Definition 7.1. Let a, b be integers such that a ≥ b, a ≥ 0.

• For i ∈ Z and T ∈ Smk and E an elliptic curve without CM, we define:

Eia,b(T ) = C̃Alt,−a−2b−i(zq.fin(Aa−b))(Ea × T )⊗Q[Σa] F⊗a(b− a).

• For i ∈ Z and T ∈ Smk and E an elliptic curve with CM, we define:

Eia,b(T ) = C̃Alt,−a−2b−i(zq.fin(Aa−b))(Ea × T )⊗Bn,K F⊗a(b− a).

Then Eia,b
5 is a RepGL2

(resp RepTK
)-valued Nisnevich sheaf with transfers.

Remark 7.2. From the definition, we have E∗a,b(k) = E∗a,b. In fact, by computations similar in
Section 5, one can get the following isomorphism in DMgm(k,Q):

E∗a,b
∼= RHom(M1(E)⊗a,Q(a− b))⊗Q[Σa] F⊗a(b− a).

Here RHom is defined in Remark 14.12 in [21]. In CM case, we have the isomorphism in
DMgm(k,K): E∗a,b

∼= RHom(M1(E)⊗a,K(a− b))⊗Bn,K F⊗a(b− a).

Remark 7.3. In the non-CM case, {E∗a,b} is a cdga over GL2 object in C(ShtrNis(k))Q. More
precisely, for S, T ∈ Smk, the external product of correspondences gives the following product
map:

Ca−2b−i(zq.fin(Aa−b))(Ea × S)⊗ Cc−2d−i(zq.fin(Ac−d))(Ec × S)

−→Ca+c−2b−2d−i(zq.fin(Aa+c−b−d))(Ea × S × Ec × T )
(7.1)

Taking the alternating projection with respect to the component �, − part with respect to the
component E and symmetric projection with respect to the component A yields:

C̃Alt,−a−2b−i(zq.fin(Aa−b))(Ea × S)⊗ C̃Alt,−c−2d−i(zq.fin(Ac−d))(Ec × S)

−→C̃Alt,−a+c−2b−2d−i(zq.fin(Aa+c−b−d))(Ea × S × Ec × T )
(7.2)

Then we get the map as in (4.1):

· : E∗a,b ⊗ E∗c,d → E∗a+c,b+d. (7.3)

As before, one may check this map is associative and graded commutative. In the CM case,
similarly we can show that {E∗a,b} is a cdga over TK object in C(ShtrNis(k))K.

Remark 7.4. When E is an elliptic curve without CM, one important observation is:

H∗(E∗2,1) ∼= RHom(M1(E)⊗2,Q(1))⊗Q[Σ2] F⊗2(−1)

∼=RHom(Sym2(M1(E)),Q(1))⊗ Sym2F(−1)⊕Q ∼= Q ∈ DMeff (k,Q).

This computation relies on Proposition 13.7 in [21] and the fact that: for any field k
′
,

RHom(Sym2(M1(E)),Q(1))(k
′
) ∼= 0,

whose proof is the same in Example 2.7. If E is an elliptic curve with CM, then

H∗(E∗2,1) ∼= K⊗ (V ⊗ V̄ (−1)) ∼= K.
5This could be thought as the “motivic version” of the cycle algebra Ei

a,b.
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Similarly using the multiplicative structure, we have:

η : E∗a,b → E∗a+2,b+1.

Furthermore, if E is with CM, we have a map as explained in Remark 4.11:

τ : E∗a,b → E∗a+2,b+1.

We now define E∗ as in Definition 4.12.

Definition 7.5. Given a ∈ Z,

• for an elliptic curve without CM, we define:

E∗a = lim−→i≥−a E∗−a+2i,−a+i,

where the colimits are taken over the map η.

• for an elliptic curve with CM, we define:

E∗a = lim−→i≥−a E∗−a+2i,−a+i,

where the colimits are taken over the map τ .

Then we denote:
E∗ = Q⊕

⊕
a≥1

E∗a.

and
E∗ell =

⊕
a∈Z

E∗a.

Proposition 7.6. • If E is an elliptic curve without CM, then E∗ and E∗ell are commutative
monoids in the category of complexes of RepGL2-valued Nisnevich sheaves with transfers.

• If E is an elliptic curve with CM, then E∗ and E∗ell are commutative monoids in the category
of complexes of TK(= Gm,K ×Gm,K)-valued Nisnevich sheaves with transfers.

Proof. The proof can be found in Section 4.3 of [18].

Remark 7.7. Following the same proofs as Lemma 5.3, Lemma 5.5 and Corollary 5.7, we obtain
the following properties of E∗a,b for E an elliptic curve without CM.

(a). The cohomologies of E∗a,b are canonically isomorphic to the cohomologies of the following
complex of GL2 representations⊕

c+2d=a,c,d≥0

RHom(SymcM1(E)(d),Q(a− b)[∗])⊗ SymcF(d+ b− a),

where we view the differentials as zero.

(b). Via the identification of property(a), the map:

η : E∗a,b → E∗a+2,b+1,

is compatible with the following map:

(RHom(SymcM1(E)(d),Q(a− b)[∗])⊗ SymcF(d+ b− a))⊗ (RHom(Q(1),Q(1))⊗Q)

→(RHom(SymcM1(E)(d+ 1),Q(a− b+ 1)[∗])⊗ SymcF(d+ b− a).

Moreover, the maps on cohomologies induced by η are injective in the category of GL2

representations.
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(c). Let a be any non negative integer. In the derived category of GL2-representations, we have
the following isomorphisms:

H∗(E∗a) ∼=
⊕

i≥0,a≡i(2)

RHom(SymiM1(E),Q(
a+ i

2
)[∗])⊗ SymiF(−a+ i

2
).

For E an elliptic curve with CM, the results in Section 6 hold. In particular, we let a be any
non negative integer. In the derived category of TK-representations, we have the following isomor-
phisms:

H∗(E∗a) ∼=
⊕

i≥0,a≡i(2)

RHom(M i,K(
a+ i

2
)[∗])⊗ V i(−a+ i

2
)

⊕
⊕

j>0,a≡j(2)

RHom(M̄ j ,K(
a+ j

2
)[∗])⊗ V̄ i(−a+ j

2
).

8 DG modules and motives for an elliptic curve

In this section, we want to connect the dg E∗ell-module with Voevodsky’s geometric motives. Let
us first explain the case of elliptic curves without CM in details.

Fix r ∈ Z≥0. Given M ∈ CMGL2

E∗ell
, we define its Adams graded r summand as:

M(r) = HomGL2(det⊗−r,E∗ell ⊗E∗ell M [2r]).

Here [2r] means the shift of the complex. HomGL2
(·, ·) is the usual hom complex in C(RepGL2

).
In fact, this defines a dg functor:

M(r)dg : CMGL2

E∗ell
→ C(ShtrNis(k))

and also an exact functor :
M(r) : KCMGL2

E∗ell
→ D(ShtrNis(k)).

Definition 8.1. Let T tr be the presheaf with transfers:

T tr = coker(Qtr(Spec(k))
i∞∗−−→ Qtr(P1)),

where i∞ is the inclusion of ∞ into P1.

In fact, T tr is a Nisnevich sheaf with transfers.

Lemma 8.2. We have a natural injectve map in C(ShtrNis(k)):

T tr → H0(GL2,E
∗
ell ⊗ det[2]).

Proof. By the definition of E∗, its det−1 isotypical part is given by

lim
i≥0

E∗2i,i−1.

Notice that
E∗0,−1

∼= C̃Alt,−2−∗ (zq.fin(A1)) ∼= T tr[−2].

So there is a natural injective map:

T tr → H0(GL2,E
∗
ell ⊗ det[2]).
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For M ∈ CMGL2

E∗ell
, from the above lemma, we have the following composition of maps:

T tr ⊗trM(r)dg(M) = T tr ⊗tr HomGL2
(det⊗−r,Eell ⊗Eell M [2r])

−→HomGL2(det−1,Eell[2])⊗tr HomGL2(det⊗−r,Eell ⊗Eell M [2r])

−→HomGL2
(det⊗−r−1,Eell ⊗ Eell ⊗Eell M [2r + 2])

−→HomGL2
(det⊗−r−1,Eell ⊗Eell M [2r + 2]) =M(r + 1)dg(M).

(8.1)

For the last arrow, we use the multiplicative structure of Eell. Denote the composition of these
maps by ε∗r(M).

In order to construct a functor from the homotopy category of cell modules to the category
of motives, we need to use Voevodsky’s big category of motives DM(k,Q), which is defined by
the symmetric spectra. Roughly speaking, one needs to define a model category SptΣ

T tr (k,Q) of
symmetric T tr spectra in C(ShtrNis(k)) with “a suitable model structure”, and then DM(k,Q) is
defined to be the homotopy category of SptΣ

T tr (k,Q). For this approach, we refer to section 3.2,
3.3 and 3.4 in [18].

Then sending M ∈ CMGL2

E∗ell
to the sequence:

Mdg
∗ (M) = (Mdg(0)(M),Mdg(1)(M), · · · )

with the bonding map ε∗r(M) defines a dg functor:

Mdg
∗ : CMGL2

E∗ell
→ SptΣ

T tr (k,Q),

and also an exact functor on their homotopy categories

M∗ : KCMGL2

E∗ell
→ DM(k,Q).

Here the n-th term in the spectrum is equipped with a trivial Σn-action.

Lemma 8.3. We have the following isomorphisms in DM(k,Q):

1. M(r)(Eell) ∼= Q(r)[2r].

2. Given a, b ∈ Z, for any r ∈ Z such that b+ r ≥ 0, we have:

M(r)(Eell ⊗ F⊗a(b)) ∼= M1(E)⊗a(b+ r)[2r].

Proof. BecauseM(r)(Eell) = HomGL2(det⊗−r,Eell[2r]), the only non-trivial part is coming from
weight −2r(or Adams degree 2r) part in Eell. Using Remark 7.7, we have the following quasi-
isomorphism:

E∗2r
∼=

⊕
i≥0

RHom(SymiM1(E),Q(
2r + i

2
))⊗ SymiF(−2r + i

2
).

Then by definition of M(r)(Eell), we have:

M(r)(Eell) = HomGL2
(det⊗−r,Eell[2r])

∼=HomGL2
(det⊗−r,

⊕
i≥0

RHom(SymiM1(E),Q(
2r + i

2
))

⊗ SymiF(−2r + i

2
)[2r])

∼=HomGL2
(det⊗−r, RHom(Q,Q(r))⊗ det⊗−r[2r])

∼=HomDMgm(k,Q)(Q,Q(r))[2r] ∼= Q(r)[2r].
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For the second isomorphism, we need to compute weight −2r − 1 part in Eell. We have:

E∗2r+1
∼=

⊕
i≥0

RHom(SymiM1(E),Q(
2r + 1 + i

2
))⊗ SymiF(−2r + 1 + i

2
).

Therefore:

M(r)(Eell ⊗ F⊗a(b)) = HomGL2
(det⊗−r,Eell ⊗ F⊗a(b)[2r])

∼=HomGL2
(F⊗−a ⊗ det⊗−b−r,Eell[2r])

∼=HomGL2
(F⊗−a ⊗ det⊗−b−r,E2b+2r+a[2r])

∼=HomGL2
(F⊗−a ⊗ det⊗−b−r,

⊕
i≥0

RHom(SymiM1(E),Q(
2b+ 2r + a+ i

2
))

⊗ SymiF(−2b+ 2r + a+ i

2
)[2r])

∼=HomGL2
(
⊕

0≤j≤a

Cj ⊗ SymjF(−2b+ 2r + a+ j

2
),
⊕
i≥0

RHom(SymiM1(E),

Q(
2b+ 2r + a+ i

2
))⊗ SymiF(−2b+ 2r + a+ i

2
)[2r])

∼=HomDMgm(k,Q)(
⊕

0≤j≤a

Cj ⊗ SymjM1(E),Q(
2b+ 2r + a+ j

2
))[2r]

∼=M1(E)⊗a(b+ r)[2r].

Here Cj is the multiplicity of SymjF(− 2b+2r+a+j
2 ) in F⊗−a ⊗ det⊗−b−r.

Lemma 8.4. {Eell ⊗ Fa(b)|a, b ∈ Z} generate DGL2

Eell .

Proof. Let M ∈ DGL2

Eell be a dg module satisfying

HomDGL2
Eell

(Eell ⊗ Fa(b),M [i]) ∼= 0

for any Fa(b) ∈ RepGL2
and a, b, i ∈ Z. Without loss of generality, we assume that M is a cell

module. Using Remark 6.5 in [7], we obtain that:

HomDGL2
Eell

(Eell ⊗ Fa(b),M [i]) ∼= Hi(HomGL2
(Fa(b),M)) ∼= 0,

which implies that M is quasi-isomorphic to 0 as a complex of GL2 representations.

Corollary 8.5. {Eell ⊗ Fa(b)|a, b ∈ Z} classically generates (DGL2

Eell )c.

Proof. First we want to show that Eell ⊗Fa(b) is a compact object in DGL2

Eell for any a, b ∈ Z. Let
{Mi}i∈I be a family of cell A-modules. By Remark 6.5 in [7], we have:

HomDGL2
Eell

(Eell ⊗ Fa(b),
⊕
i∈I

Mi) = HomKCMGL2
Eell

(Eell ⊗ Fa(b),
⊕
i∈I

Mi)

∼=HomKCMGL2
Q

(Fa(b),
⊕
i∈I

Mi) ∼=
⊕
i∈I

HomKCMGL2
Q

(Fa(b),Mi)

∼=
⊕
i∈I

HomKCMGL2
Eell

(Eell ⊗ Fa(b),Mi),

which implies that Eell ⊗Fa(b) is compact. Here we use that Fa(b) is a compact object in DGL2

Q .

Together with Lemma 8.4, we know that DGL2

Eell , as a compactly generated triangulated category,
is generated by {Eell ⊗ Fa(b)|a, b ∈ Z}. Then using a result of Neeman in [22], we know that
{Eell ⊗ Fa(b)|a, b ∈ Z} classically generate (DGL2

Eell )c.
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Remark 8.6. Recall in Remark 5.9 in [7], we have:

(KCMGL2,f
Eell )\ ⊂ KFCMGL2

Eell ⊂ (DGL2

Eell )c.

Using Corollary 8.5, we know that (KCMGL2,f
Eell )\ ∼= (DGL2

Eell )c. Therefore, we have:

(KCMGL2,f
Eell )\ ∼= KFCMGL2

A
∼= (DGL2

Eell )c.

Lemma 8.7. The restriction of M to KCMGL2

Eell is a lax tensor functor.

Proof. Given M,N ∈ KCMGL2

Eell , we have the following maps:

(Eell ⊗Eell M)⊗tr (Eell ⊗Eell N) −→ (Eell ⊗tr Eell)⊗Eell (M ⊗Eell N)

−→ Eell ⊗Eell (M ⊗Eell N),

where the last map is obtained by using the multiplicative structure of Eell as a cdga over GL2 in
DM(k,Q) (Proposition 7.6). On the corresponding Adams graded summand, this induces:

(Eell ⊗Eell M)(r)⊗tr (Eell ⊗Eell N)(s) −→ (Eell ⊗Eell (M ⊗Eell N))(r + s).

And these maps are compatible with bonding maps, giving us the natural transformation:

ρM,N :Mdg(M)⊗Mdg(N)→Mdg(M ⊗N)

in SptΣ
T tr (k,Q). Passing to homotopy categories, we obtain that M is a lax tensor functor.

Lemma 8.8. The restriction of M to (KCMGL2,f
E )\ is a tensor functor.

Proof. By lemma 8.7, we only need to show that ρM,N is an isomorphism in the homotopy
category. Using induction on the length of the weight filtration, it’s enough to show that this
is an isomorphism when we take M and N two generalized sphere Eell modules. Notice that
any generalized sphere module can be realized as some idempotent of the dg module of the form
Eell ⊗ Fa(b) for some a, b ∈ Z. We assume that M = p(Eell ⊗ Fa(b)) and N = q(Eell ⊗ Fc(d)),
where p, q are idempotents in the respective endo-groups. Applying Lemma 5.8, we obtain that
the idempotents of Eell⊗Fa(b) is one-to-one corresponding to the idempotents of M1(E)⊗a(b), i.e.,

M(M) =M(p(Eell ⊗ Fa(b))) =M(p)(M1(E)⊗a(b)),

where M(p) is the image of p under M in the idempotent endomorphism of M1(E)⊗a(b). Then
ρM,N can be identify as the morphism:

M(p)(M1(E)⊗a(b))⊗trM(q)(M1(E)⊗c(d))→M(p⊗ q)(M1(E)⊗a+c(b+ d)),

which is an isomorphism in DMgm(k,Q).

Before proving next lemma, we recall definitions about different kinds of generators of a trian-
gulated category. See [6] or [24] for example. Every subcategory U of a triangulated category T
we consider is strict, which means that, each object of T , which is isomorphic to an object of U ,
is an object of U .

Definition 8.9. Given S a set of objects in a triangulated category T , then we denote 〈S〉 to
be the smallest strict full subcategory containing S and closed under finite direct sums, direct
summands and shifts.

Definition 8.10. Give A,B two subcategories of a triangulated category T . We define:
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• A ? B is the full subcategory of T consisting of objects X which can be fit into a triangle

A→ X → B → A[1],

where A ∈ A and B ∈ B.

• A � B = 〈A ? B〉.

• 〈A〉0 = 0 and 〈A〉n = 〈A〉n−1 � 〈A〉 inductively.

• Set 〈A〉∞ =
⋃
n≥0〈A〉n.

Definition 8.11. Let S be a set of objects in a triangulated category T . Then

• S classically generates T if the smallest thick (i.e. closed under isomorphisms and direct
summands) subcategory of T containing S is T itself. Equivalently, T = 〈S〉∞.

• S generates T if, given an object A ∈ T such that

HomT (S,A[n]) = 0

for all S ∈ S and any n ∈ Z, implies that A = 0.

Lemma 8.12. Give T1, T2 two triangulated categories and φ : T1 → T2 a triangulated functor. Let
S be a set of objects in T1, which classically generates T1 and is closed under shifts. Assume:

1. The set of the images of S under φ classically generates T2;

2. φ restricted to S, which is viewed as a full subcategory of T1, is fully faithful.

Then φ induces an equivalence between T1 and T2.

Proof. We denote the image of S by φ(S). It’s enough to show that:
φ induces an equivalence between 〈S〉n and 〈φ(S)〉n for any n ∈ Z≥0.
The case n = 0 is obvious.
Assume n = 1. Every object in 〈φ(S)〉 is finite direct sums, direct summands and shifts of

some objects in φ(S). Since φ is a triangulated functor, it commutes with shifts and direct sums.
Because φ is fully faithful restricting on S, the direct summands of an object φ(A) in φ(S) is
one-to-one corresponding to the direct summands of A ∈ S. This implies that:

φ : 〈S〉1 → 〈φ(S)〉1

is essential surjective. Furthermore φ is clearly fully faithful, which implies that φ is an equivalence.
Assume φ induces an equivalence between 〈S〉n and 〈φ(S)〉n. Let us prove the case n+ 1.
Take an element Bn+1 in 〈φ(S)〉n ? 〈φ(S)〉1, which implies that there exists a distinguished

triangle:
Bn → Bn+1 → B1 → Bn[1],

where Bi ∈ 〈φ(S)〉n. By induction, we know that: there exist A1 ∈ 〈S〉1 and An ∈ 〈S〉n such
that: Bn = φ(An), B1 = φ(A1).

Therefore, we have An+1 ∈ 〈S〉n+1, such that:

An → An+1 → A1 → An[1]

is a distinguished triangle in T1. Applying φ to this triangle, we get an isomorphism φ(An+1) ∼=
Bn+1. After a suitable choice of the isomorphism class of An+1, we can find a preimage of Bn+1.

In other words, we have shown that:

φ : 〈S〉n ? 〈S〉1 → 〈φ(S)〉n ? 〈φ(S)〉1

24



is essentially surjective.
Next, let us check that the above functor is fully faithful. Given A, Ã ∈ 〈S〉n ? 〈S〉1, then we

can assume that there exist two distinguished triangles:

An → A→ A1 → An[1] (8.2)
tri1tri1

and
Ãn → Ã→ Ã1 → Ãn[1]. (8.3)

tri2tri2

Then applying Hom(An, ·) to the triangle (8.3), we get a long exact sequence:

Hom(An, Ãn)→ Hom(An, Ã)→ Hom(An, Ã1)→ Hom(An, Ãn[1])→ · · ·

After compared to the image of the above long exact sequence under φ, and by induction on n and
the five lemma, we get that:

Hom(An, Ã[∗]) ∼= Hom(φ(An), φ(Ã)[∗]).

Similarly, we have Hom(A1, Ã[∗]) ∼= Hom(φ(A1), φ(Ã)[∗]).
Next applying Hom(·, Ã) to the triangle (8.3), we get another long exact sequence:

Hom(An[1], Ã)→ Hom(A1, Ã)→ Hom(A, Ã)→ Hom(An, Ã)→ · · · .

Compared to its image under φ and isomorphisms above, we get:

Hom(A, Ã[∗]) ∼= Hom(φ(A), φ(Ã)[∗]).

Now, we have shown that:

φ : 〈S〉n ? 〈S〉1 → 〈φ(S)〉n ? 〈φ(S)〉1

is an equivalence.
Recall that φ commutes with shifts and finite direct sums, and maps the idempotent in End(A)

to the idempotent in End(φ(A)) for any A ∈ 〈S〉n ? 〈S〉1. This implies that:

φ : 〈S〉n � 〈S〉1 → 〈φ(S)〉n � 〈φ(S)〉1

is an equivalence.

Theorem 8.13. Given E an elliptic curve without CM, then there is an exact functor

M : DGL2

Eell → DM(k,Q),

which is a lax tensor functor. Furthermore, the restriction of M to

Mc : (DGL2

Eell )c → DM(k,Q)

defines an equivalence of (DGL2

Eell )c with DMEM(k,Q)E as triangulated tensor categories, where

(DGL2

Eell )c is the full subcategory of DGL2

Eell consisting of compact objects.

Proof. By Lemma 8.8 and Lemma 8.3, we know that the restriction of M to (DGL2

Eell )c is a tensor
functor with M(Eell ⊗ Fa(b)) ∼= M1(E)⊗a(b).

From Lemma 5.8, we have:

HomKCMGL2
Eell

(Eell ⊗ F⊗a(b), Eell ⊗ F⊗c(d)[i]) ∼= HomDMgm(k,Q)(M1(E)⊗a(b),M1(E)⊗c(d)[i]).

One can check this isomorphim is induced by the functor M. Using Lemma 8.12 and Corollary
8.5, we obtain that Mc gives an equivalence between (DGL2

Eell )c and DMEM(k,Q)E .
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Remark 8.14. Assume that E is an elliptic curve with CM. For r ∈ Z≥0 and M ∈ CMTK
E∗ell

, we

define its Adams graded r summand is defined as:

M(r) = HomTK(det⊗−r,E∗ell ⊗E∗ell M [2r]).

Then we can repeat all the above constructions and get the same results. In particular, we have
the following theorem.

Theorem 8.15. Given E an elliptic curve with CM, then there is an exact functor

M : DTK
Eell → DM(k,K),

which is a lax tensor functor. Furthermore, the restriction of M to

Mc : (DTK
Eell)

c → DM(k,K)

defines an equivalence of (DTK
Eell)

c with DMEM(k,K)E as triangulated tensor categories, where

(DTK
Eell)

c is the full subcategory of DTK
Eell consisting of compact objects.

Conjecture 8.16. (The generalized Beilison-Soulé vanishing conjecture for an elliptic
curve)

1. An elliptic curve E over a field k without CM satisfies the conditions:

HomDMgm(k,Q)(M1(E)⊗a,Q(a− b)[m]) = 0

in the following two cases:

A. a = 0, b < 0,m ≤ 0;

B. a > 0, a ≥ 2b,m ≤ 0.

2. An elliptic curve E over a field k with CM, whose 1-motive M1(E) = M ⊕ M̄ , satisfies the
conditions:

HomDMgm(k,K)(M
⊗a,K(a− b)[m]) = 0

and
HomDMgm(k,K)(M̄

⊗a,K(a− b)[m]) = 0

in the following two cases:

A. a = 0, b < 0,m ≤ 0;

B. a > 0, a ≥ 2b,m ≤ 0.

Remark 8.17. In fact, Part (A) of Conjecture 8.16 is the classical Beilison-Soulé vanishing con-
jecture. See [16] for example. In fact, all of these generalized conjectures can be expressed as
follows. The strong Beilison-Soulé vanishing conjecture for X:

(BS∗X) For any smooth k-scheme X, Hn(X,Q(i)) = 0 provided n ≤ 0 and i > 0.
When X is a field, the conjectures BS∗X is called the strong Beilison-Soulé vanishing conjecture in
[18]. Conjecture 8.16 is the same as BS∗En for n ∈ Z≥0.

Corollary 8.18. Assume that E is an elliptic curve without CM, satisfies the r-th vanishing
properties for r ≥ 0 and the generalized Beilison-Soulé vanishing conjecture, then:

1. DMEM(k,Q)E has a t-structure which is induced from

Mf : DGL2,f
E → DMEM(k,Q)E ,

where Mf is the restriction of the functor M (Theorem 8.13) to DGL2,f
E . Denote its heart

by MEM(k,Q)E.
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2. Mf induces an equivalence of Tannakian categories:

H0(Mf ) : HGL2,f
E →MEM(k,Q)E .

Proof. First, it follows from our assumptions and Theorem 8.13 that Eell ∼= E is a cohomologically
connected cdga over GL2. Then by Theorem 8.4 in [7], we have a t-structure on DGL2,f

E . Therefore
the equivalence of Theorem 8.13 gives us an induced t-structure on DMEM(k,Q)E , which satisfies
the desired properties.

Corollary 8.19. Assume that E is an elliptic curve with CM, satisfies the r-th vanishing properties
for r ≥ 0 and the generalized Beilison-Soulé vanishing conjecture, then:

1. DMEM(k,K)E has a t-structure which is induced from

Mf : DTK,f
E → DMEM(k,K)E ,

where Mf is the restriction of the functor M (Theorem 8.13) to DTK,f
E . Denote its heart by

MEM(k,K)E.

2. Mf induces an equivalence of Tannakian categories:

H0(Mf ) : HTK,f
E →MEM(k,K)E .

9 Relation with mixed Tate motives

In this section, we put the constructions of the Adams cycle algebra for mixed Tate motives into
our setting. As before, we only work out the case of elliptic curves without CM in detail. In the
CM case, the construction is similar. Firstly we recall the definitions in Chapter 4 of [18] .

Definition 9.1. We let Ztr((P1/∞)q)) be defined by the cokernel of the map:

⊕rj=1Ztr((P1)q−1))

∑
j ij,∞∗−−−−−−→ Ztr((P1)q))

where ij,∞ : (P1)q−1 → (P1)q inserts ∞ in the j-th place.

Definition 9.2. The Adams cycle algebra for mixed Tate motives is defined by:

N = Q⊕
⊕
q≥1

N (q),

where N (q) ⊂ CAlt∗ (Ztr((P1/∞)q)) be the subsheaf of symmetric sections with respect to the action
of symmetric group Σq by permuting the coordinates in (P1)q.

Remark 9.3. One can show that the homotopy category of finite cell N -modules can be identi-
fied as the triangulated category of mixed Tate motives DMT(k,Q), which is a full rigid tensor
subcategory of DMgm(k,Q) generated by Tate objects. The proof can be found in Section 5.3 in
[18]. In fact, one of the main results in [18] is to show this equivalence can be generalized to mixed
Tate motives over a base scheme that is separated, smooth and essentially of finite type over a
field. Along with the strategy in [18], we also want to generalize our results into mixed elliptic
motives over a general base scheme in the future.

Definition 9.4. We define the modified Adams cycle algebra for mixed Tate motives by:

N̂ = Q⊕
⊕

t≥1,t∈Z
N̂2t,

where N̂2t = N (t)⊗ det⊗−t.
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Remark 9.5. By Definition 4.2, we know that: E∗0,b = N (−b)⊗det⊗b for any b ∈ Z≤0. This implies

that N̂2t ⊂ E2t. Using the algebra structure of N (Section 4.2 in [18]) and the tensor structure of

determinant representations (viewed as GL2 representations), we know that N̂ is sub-algebra of
Eell as a cdga over GL2.

Remark 9.6. Notice that our Adams grading is different from Adams grading defined in [18].
More precisely, Adams degree r in the sense of [18] is Adams degree 2r in our sense.

We define CMGm

A to be the category of cell modules of Tate-type for a cdga A over GL2, i.e.
cell modules consisting only by the generalized sphere modules of the form A[−n]⊗ det⊗r, which
is a full subcategory of CMGL2

A .

Remark 9.7. There is a natural functor:

Ψ1 : CMN → CMGm

N̂
,

which sends the cell module N〈n〉, defined in Example 1.4.5 of [18], to the cell module N̂ ⊗ det⊗n.
Ψ1 induces a functor between their associated homotopy categories, even homotopy categories of
finite cell modules. For simplicity, we denote both of these functors by Ψ1. In particular, we have:

Ψ1 : DfN → D
Gm,f

N̂
.

Notice that the inclusion: CMGm

N̂
→ CMGL2

N̂
induces a functor

Ψ2 : DGm

N̂
→ DGL2

N̂
.

Similarly, on the level of homotopy category of finite cell modules, we have:

Ψ2 : DGm,f

N̂
→ DGL2,f

N̂
.

Remark 9.8. Because N̂ is Adams connected, we have:

DGL2,f

N̂
∼= (DGL2

N̂
)c.

Using Remark 9.5, we have a map between cdgas over GL2: N̂
i−→ Eell. This induces a functor:

Ψ3 : CMGL2

N̂
→ CMGL2

Eell ,

which sends M to M ⊗N̂ Eell. Furthermore, we have:

Ψ3 : DGL2

N̂
→ DGL2

Eell

and
Ψ3 : (DGL2

N̂
)c → (DGL2

Eell )c.

From our constructions of Ψi, i = 1, 2, 3, we have the following statement.

Proposition 9.9. We have the following commutative diagram:

DfN DGm,f

N̂
DGL2,f

N̂
(DGL2

N̂
)c (DGL2

Eell )c

DMT(k,Q) DMEM(k,Q)E

Ψ1 // Ψ2 // ∼= // Ψ3 //

M

��

Mc

��
//

where the left vertical map M is defined in Section 5.3 of [18] and the right vertical map Mc is
defined in Section 8. In particular, the composition of top arrows is fully faithful.
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