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ABSTRACT. We show that the Friedlander-Mazur conjecture holds for a complex
smooth projective variety X of dimension three implies the standard conjectures
hold for X. This together with a result of Friedlander yields the equivalence of
the two conjectures in dimension three. From this we provide some new examples
whose standard conjectures hold.

1. THE MAIN RESULT

Let X be a complex projective variety of dimension n. The Lawson homology
L,H(X) of p-cycles for a projective variety is defined by

L Hy(X) = m_9p(Z,(X)) for k>2p>0,
where Z,(X) is the space of algebraic p-cycles on X provided with a natural topology

(see [3], [5])-
In [5], Friedlander and Mazur define a cycle class map

for all £ > 2p > 0. Suslin conjectures that ¢, : L,Hp(X) — Hg(X,Z) is an
injection for £k = n + p — 1 and an isomorphism for k& > n + p.

From now on, all the (co)homology have the rational coefficients. Let X be a
complex projective variety of dimension 3. In this case, the second author showed

in [0] that the Friedlander-Mazur conjecture [5, §7] can be reduced to (equivalent
to):

Conjecture 1.2. ®, 4 is surjective.

We want to study the relations of this conjecture to Grothendieck standard conjec-
tures that are fundamental conjectures in the theory of algebraic cycles. We refer to
[7] for the statements of standard conjectures. Recall that the standard conjectures
reduce to the standard conjecture of the Lefschetz type.

We borrow notations from [I, Section 2.3]:

e L(W): the Lefschetz type standard conjecture for W;

o [(W): for every i > 0, one can find a finite correspondence on W that yields
an isomorphism H4mWHi(1)) o pdimW=i(py7),

e S(W): For any j > 0, one can find a finite correspondence f; : W — Y;
with Y projective smooth of dimension j such that f7 : HI(Y;) — H/(W)
is surjective.
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e Let L(n) be the assertion that L(WV) is true for all W of dimension < n;
same for [(n), S(n).
Note that for any smooth projective variety Y with dimY < 2, L(Y') is known. See
[9] for example. Therefore L(2) holds.
In [I, Section 2.3], Beilinson has proved that S(n) implies L(W) for any smooth
projective variety W of dimension n via two steps:
e S(n) and L(n — 1) implies I(n);
e [(W) implies L(WV).
However the same proof of the first step can be used to prove that S(X), where X is
a smooth projective threefold, implies [(X) since L(2) holds. Combining this with
his proof of the second step I[(X) = L(X), we conclude that S(X) = L(X) for a
smooth projective threefold X.
On the other hand, the Friedlander-Mazur conjecture (1.2) holding for X implies
that S(X) via the proof of (i) = (iii) in [!, Proposition 2.2].
In summary, we have the following result.

Theorem 1.1. The Friedlander-Mazur conjecture for a smooth projective threefold
X implies that the Grothendieck standard conjecture holds for X.

It is already known that Grothendieck standard conjecture holds for a projective
threefold X implies that the Friedlander-Mazur conjecture for X (see [1, §4]). Hence
the two conjectures are equivalent in dimension three.

We remark that the Friedlander-Mazur conjecture for all smooth projective va-
rieties is equivalent to that the Grothendieck standard conjecture of the Lefschetz
type holds. We emphasis here whether the Friedlander-Mazur conjecture for a given
smooth projective variety X is equivalent to the Grothendieck standard conjecture
of the Lefschetz type is still open in dimension four or higher.

2. EXAMPLES

In most earlier literatures, one verified the Grothendieck standard conjecture first,
then use it to check the Friedlander-Mazur conjecture. For some threefolds, it is
easier to check the Friedlander-Mazur conjecture than to check the standard con-
jectures. This is one of the main purpose in this note.

In [6], it has been proved that the Friedlander-Mazur conjecture holds for a smooth
projective threefold X with h?°(X) = 0. Hence the standard conjectures also hold
for such an X. For example, a smooth projective threefold with representable Chow
group Chy(X) of zero cycles satisfying h*?(X) = 0. Fano threefolds are examples in
this case. A Calabi-Yau threefold X also satisfies h*°(X) = 0. The last two examples
are of threefolds with the Kodaira dimension less than three, the Grothendieck
standard conjectures have been proved by Tankeev [10] in a different method.

Surely there exist lots of threefolds X of general type satisfying h?%(X) = 0
but not a complete intersection or a product of a projective curve and surface.
Concrete examples of this type can be found in [2] and references therein. They are
new examples of threefolds for which the Grothendieck standard conjectures of the
Lefschetz type hold.
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