On deformations of Fano manifolds

Huai-Dong Cao ${ }^{1}$ (D) Xiaofeng Sun ${ }^{1} \cdot$ Shing-Tung Yau ${ }^{2} \cdot$ Yingying Zhang ${ }^{3}$

Received: 3 February 2021 / Revised: 4 June 2021 / Accepted: 17 June 2021
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021

Abstract

In this paper, we provide new necessary and sufficient conditions for the existence of Kähler-Einstein metrics on small deformations of a Fano Kähler-Einstein manifold. We also show that the Weil-Petersson metric can be approximated by the Ricci curvatures of the canonical L^{2} metrics on the direct image bundles. In addition, we describe the plurisubharmonicity of the energy functional of harmonic maps on the Kuranishi space of the deformation of compact Kähler-Einstein manifolds of general type.

1 Introduction

The existence of canonical metrics on compact complex manifolds is an important component in understanding the structure of the moduli spaces and metrics on them. Well-known examples include the Weil-Petersson metric on the moduli spaces of hyperbolic Riemann surfaces, and polarized Calabi-Yau manifolds. The classical approach to the Weil-Petersson metric is via the Kodaira-Spencer-Kuranishi theory. In this case, the Weil-Petersson metric is the natural L^{2} metric induced by the Kähler-

Communicated by Ngaiming Mok.
Research of H.-D. Cao and X. Sun was supported in part by Simons Foundation Grants. Research of Y. Zhang was supported by Tsinghua University Initiative Scientific Research Program.

[^0]Einstein metrics and the harmonic representatives of Kodaira-Spencer classes. The advantage of this classical approach is that we can define the Weil-Petersson metric pointwisely on the Kuranishi space. This is indeed the case when we study the moduli spaces of Kähler-Einstein manifolds of general type. Although the moduli spaces are singular in general, the complex manifold corresponding to a point in the moduli space does admit a unique Kähler-Einstein metric, following the work of Yau [36].

On the other hand, when we study the deformation of a Fano manifold X_{0}, although the deformation of the complex structure on X_{0} is unobstructed, there may not be any Kähler-Einstein metric on such a manifold. By the recent work of Chen-DonaldsonSun [6-8] on the solution of the Yau's conjecture [38], we know that the existence of Kähler-Einstein metrics on such manifolds is equivalent to the K-stability.

For a Fano Kähler-Einstein manifold (X_{0}, ω_{0}) with discrete holomorphic automorphism group Aut (X_{0}), Koiso [15] showed in 1983 that each small deformation of X_{0} admits a Kähler-Einstein metric by using the implicit function theorem. It is more subtle when Aut (X_{0}) is non-discrete. In the latter case, the existence of canonical metrics such as $\csc \mathrm{K}$ or extremal metrics were studied by Székelyhidi [30], Brönnle [2], and Rollin-Simanca-Tipler [25] in terms of the Futaki invariant or the linear stability of the action of Aut $_{0}\left(X_{0}\right)$ on the Kuranishi space of X_{0}.

In this paper, we study small deformations of Fano Kähler-Einstein manifolds and investigate the Weil-Petersson metric on their moduli spaces. Our first main result is the following new necessary and sufficient conditions for the existence of KählerEinstein metrics on small deformations of a Fano Kähler-Einstein manifold.

Theorem 1.1 Let $\left(X_{0}, \omega_{0}\right)$ be a Fano Kähler-Einstein manifold and let (\mathfrak{X}, B, π), with $X_{t}=\pi^{-1}(t)$, be the Kuranishi family of X_{0} with respect to ω_{0}. Then the following statements are equivalent:
(1) X_{t} admits a Kähler-Einstein metric for each $t \in B$.
(2) The dimension $h^{0}\left(X_{t}, T^{1,0} X_{t}\right)$ of the space of holomorphic vector fields on X_{t} is independent of t for all $t \in B$.
(3) The automorphism group Aut $H_{0}\left(X_{t}\right)$ is isomorphic to Aut $\left(X_{0}\right)$ for each $t \in B$.

Remark 1 Since $h^{0}\left(X_{t}, T^{1,0} X_{t}\right)$ is upper semi-continuous in t according to [14], Theorem 1.1 includes Koiso's result in [15] as a special case.

Remark 2 In [24], Phong and Sturm introduced a stability condition preventing possible jump of the dimension of the spaces of holomorphic vector fields in the limit metric to study the convergence of the Kähler-Ricci flow on Fano manifolds. This stability condition, namely Condition (B), was further explored in Phong-Song-Sturm-Weinkove [22]; see also [23].

Remark 3 It is well known that semisimple Lie algebras are rigid. Thus the third statement of Theorem 1.1 would follow from the second one directly if the Lie algebra $H^{0}\left(X_{0}, T^{1,0} X_{0}\right) \cong$ Lie (Aut $\left.\left(X_{0}\right)\right)$ is semisimple. However, $H^{0}\left(X_{0}, T^{1,0} X_{0}\right)$ is only reductive in general.

Returning to the study of the Weil-Petersson metric, in [10] Fujiki and Schumacher defined generalized Weil-Petersson metrics on the deformation space of a family of
extremal manifolds by pushing down the curvature of relative line bundles over the total space. In particular, they showed that the generalized Weil-Petersson metric for a family of Kähler-Einstein manifolds coincides with the classical one. Essentially, assuming the family of Kähler-Einstein metrics is smooth, they showed that the curvature form of the Deligne pairing of the relative canonical bundle (or relative anticanonical bundle) is precisely the Weil-Petersson curvature form; see also Schumacher [27]. In our case, when $\left(X_{0}, \omega_{0}\right)$ is a Fano Kähler-Einstein manifold with non-discrete automorphism group, the existence of such smooth family of Kähler-Einstein metrics is guaranteed by Theorem 1.1 above, provided each fiber X_{t} admits a Kähler-Einstein metric. In this case, the Weil-Petersson metric is well-defined. Namely, it is independent of the choices of fiberwise Kähler-Einstein metrics. On the other hand, the L^{2} metrics on $R^{0} \pi_{*} K_{\mathfrak{X} / B}^{-k}$ and their curvatures do depend on such choices in general. Again, Theorem 1.1 assures that the L^{2} metrics are well-defined.

In this paper, we show that the Weil-Petersson metric $\omega_{W P}$ can be approximated by the (normalized) Ricci curvatures of the L^{2} metrics on the direct image bundles $R^{0} \pi_{*} K_{\mathfrak{X} / B}^{-k}$. More precisely, we have

Theorem 1.2 Let $\left(X_{0}, \omega_{0}\right)$ be a Fano Kähler-Einstein manifold and let (\mathfrak{X}, B, π) be the Kuranishi family of X_{0}. We assume that each fiber X_{t} admits a Kähler-Einstein metric. Let $\Omega=\left\{\omega_{t}\right\}$ be any smooth family of Kähler-Einstein metrics. For each positive integer k, let $\operatorname{Ric}_{k}=\operatorname{Ric}\left(E_{k}, H_{k}\right)$ be the Ricci form of the L^{2} metric $H_{k}(\Omega)$ on $E_{k}=R^{0} \pi_{*} K_{\mathfrak{X} / B}^{-k}$. Then

$$
\lim _{k \rightarrow \infty} \frac{\pi^{n}}{k^{n+1}} \operatorname{Ric}_{k}=-\omega_{W P}
$$

Remark 4 We note that the above approximation is natural due to the work of FujikiSchumacher on the curvature of the Deligne pairing, and the Knudsen-Mumford expansion of the determinant bundle of the direct image sheaf $R^{0} \pi_{*} K_{\mathfrak{X} / B}^{-k}$ (see Knudsen-Mumford [11], Zhang [40], and Phong-Ross-Sturm [21]). In this paper, see Sect. 4, we take a more direct approach by establishing canonical local holomorphic sections of the direct image sheaves and the deformation of Kähler-Einstein metrics. This leads to a systematic way to derive integral formulas for the full curvature tensors of L^{2} metrics. While the Kähler-Einstein metric on each X_{t} is analytical in nature, the advantage of our approach is that we can approximate the Weil-Petersson metric by using algebraic metrics on each fiber.

The paper is organized as follows. In Sect. 2, in order to give a simple criterion to check the existence of Kähler-Einstein metrics on small deformations of a Fano Kähler-Einstein manifold, we first show that, given a Fano Kähler-Einstein manifold $\left(X_{0}, \omega_{0}\right)$ and its Kuranishi family ($\left.\mathfrak{X}, B, \pi\right)$ with respect to ω_{0}, the complex structure on $X_{t}=\pi^{-1}(t) \subset \mathfrak{X}$ is compatible with the symplectic form ω_{0}. In this case, the construction of the Kuranishi family is compatible with Donaldson's infinite dimensional GIT picture. One technical key ingredient is the equivalence of the Kuranishi gauge and the divergence gauge; see Theorem 2.2. Section 3 is devoted to the proof of Theorem 1.1. In Sect. 4, we investigate the Weil-Petersson metric and prove Theorem 1.2.

An integral formula of the full curvature tensor of the L^{2} metric $H_{k}(\Omega)$ on E_{k} is also derived. In addition, we obtain the deformation formulas for the Kähler form ω_{t} and the volume form V_{t} on X_{t}, respectively, for each $t \in B$.

Finally, in the last section, we describe the plurisubharmonicity of the energy functionals of harmonic maps on the Kuranishi spaces of Kähler-Einstein manifolds of general type. It is known that this energy functional plays a crucial role in understanding the Weil-Petersson geometry of such manifolds. When \mathcal{T}_{g} is the Teichmüller space of Riemann surfaces of genus $g \geq 2$ and (N, h) a Riemannian manifold with Hermitian nonpositive curvature, it was shown by Toledo [34] that the energy function is plurisubharmonic. Here, we consider the higher dimensional analogue. Assume (\mathfrak{X}, B, π) is the Kuranishi family of a compact Kähler-Einstein manifold of general type, and let (N, h) be a Riemannian manifold with Hermitian nonpositive curvature. Let $E(t)$ be the energy of a harmonic map from X_{t} to N in a given homotopy class. By using the deformation theory established in [28] and the Siu-Sampson vanishing theorem in [26], we derive the first and second variation formulas of E and prove its plurisubharmonicity (Theorem 5.2).

2 The Kuranishi Gauge

In this section we derive some special properties of the Kuranishi gauge on a family of compact complex manifolds when the central fiber is a Fano Kähler-Einstein manifold. This leads to an explicit description of the action of the automorphism group of the central fiber on the Kuranishi space via differential geometric data.

For any Kähler metric g on a complex manifold M with local holomorphic coordinates z_{1}, \ldots, z_{n}, the corresponding Kähler form is

$$
\omega_{g}=\frac{\sqrt{-1}}{2} g_{i \bar{j}} d z_{i} \wedge d \bar{z}_{j}
$$

where $g_{i \bar{j}}=g\left(\frac{\partial}{\partial z_{i}}, \frac{\partial}{\partial z_{j}}\right)$, and the Ricci form is

$$
\operatorname{Ric}\left(\omega_{g}\right)=-\frac{\sqrt{-1}}{2} \partial \bar{\partial} \log \operatorname{det}\left(g_{i \bar{j}}\right)
$$

We will often use g and ω_{g} interchangeably. Throughout this section we assume that $\left(X, \omega_{0}, J_{0}\right)$ is a Fano manifold with complex dimension $\operatorname{dim}_{\mathbb{C}} X=n \geq 2$. Here X is a fixed smooth manifold and we denote by $X_{0}=\left(X, J_{0}\right)$ the corresponding complex manifold. Since the canonical line bundle $K_{X_{0}}$ is negative, by the Serre duality and the Kodaira vanishing theorem, we have

$$
\begin{equation*}
H^{0, k}\left(X_{0}, T^{1,0} X_{0}\right)=0 \tag{2.1}
\end{equation*}
$$

for all $2 \leq k \leq n$. In particular, deformations of X_{0} are unobstructed.

By the work of Kodaira-Spencer, we know that any almost complex structure J on X close to J_{0} can be described by a unique Beltrami differential $\varphi \in A^{0,1}\left(X_{0}, T^{1,0} X_{0}\right)$, and J is integrable if and only if

$$
\begin{equation*}
\bar{\partial}_{0} \varphi=\frac{1}{2}[\varphi, \varphi] \tag{2.2}
\end{equation*}
$$

where $\bar{\partial}_{0}$ is the $\bar{\partial}$-operator on X with respect to the complex structure J_{0}. In order to construct a complete family of small deformations of X_{0}, Kuranishi introduced another equation. Let $\Delta_{\varepsilon}^{m} \subset \mathbb{C}^{m}$ be the open ball with center 0 and radius ε. For any Beltrami differential $\varphi_{1} \in A^{0,1}\left(X_{0}, T^{1,0} X_{0}\right)$ with $\bar{\partial}_{0} \varphi_{1}=0$, there exists $\varepsilon>0$ such that the equation

$$
\begin{equation*}
\varphi(t)=t \varphi_{1}+\frac{1}{2} \bar{\partial}_{0}^{*} G_{0}[\varphi(t), \varphi(t)] \tag{2.3}
\end{equation*}
$$

has a unique power series solution $\varphi(t)=\sum_{i \geq 1} t^{i} \varphi_{i} \in A^{0,1}\left(X_{0}, T^{1,0} X_{0}\right)$ which converges (in some appropriate Hölder norm) for all $t \in \Delta_{\varepsilon}^{1}$. Here, the Green's function G_{0} and $\bar{\partial}_{0}^{*}$ are operators on X_{0} with respect to the Kähler metric ω_{0}. It follows from the standard elliptic estimate and (2.1) that each $\varphi(t)$ satisfies the integrability equation (2.2) and defines a complex structure on X. We also note that

$$
\bar{\partial}_{0}^{*}\left(\varphi(t)-t \varphi_{1}\right)=0
$$

By using this construction and the Kodaira-Spencer theory, one can construct a Kuranishi family in the following way. We pick a basis $\varphi_{1}, \ldots, \varphi_{m} \in$ $\mathbb{H}^{0,1}\left(X_{0}, T^{1,0} X_{0}\right)$, where we use \mathbb{H} to denote the harmonic space or harmonic projection with respect to the metric ω_{0}. Let $B=\Delta_{\varepsilon}^{m} \subset \mathbb{C}^{m}$ be a ball with coordinates $t=\left(t_{1}, \ldots, t_{m}\right)$ and denote by

$$
\begin{equation*}
\varphi(t)=\sum_{i=1}^{m} t_{i} \varphi_{i}+\sum_{|I| \geq 2} t^{I} \varphi_{I} \tag{2.4}
\end{equation*}
$$

the unique solution of

$$
\left\{\begin{array}{l}
\bar{\partial}_{0} \varphi(t)=\frac{1}{2}[\varphi(t), \varphi(t)], \tag{2.5}\\
\bar{\partial}_{0}^{*} \varphi(t)=0, \\
\mathbb{H}_{0}(\varphi(t))=\sum_{i=1}^{m} t_{i} \varphi_{i}
\end{array}\right.
$$

where \mathbb{H}_{0} is the harmonic projection with respect to the metric ω_{0}.
We note that the second equation of (2.5) is the Kuranishi gauge condition, and the third equation characterizes the flat coordinate system around $0 \in B$ up to affine transformations.

Now we consider the smooth manifold

$$
\begin{equation*}
\mathfrak{X}=X \times B \tag{2.6}
\end{equation*}
$$

and define an almost complex structure \mathfrak{J} on \mathfrak{X} in the following way: for each point $(p, t) \in \mathfrak{X}$, where $p \in X$ and $t \in B$, we let

$$
\begin{equation*}
\Omega_{(p, t)}^{1,0} \mathfrak{X}=(I+\varphi(t))\left(\Omega_{p}^{1,0} X_{0}\right) \oplus \pi^{*} \Omega_{t}^{1,0} B, \tag{2.7}
\end{equation*}
$$

where $\varphi(t)$ is given by (2.5). Kodaira and Spencer showed that this almost complex structure \mathfrak{J} on \mathfrak{X} is integrable and $\pi: \mathfrak{X} \rightarrow B$ is a Kuranishi family of X_{0}. For each $t \in B$, we let $X_{t}=\pi^{-1}(t)$ and denote the corresponding complex structure by J_{t}.

Thanks to the works of Kuranishi [16,17] and Wavrik [35], we have the following properties of the family $\pi: \mathfrak{X} \rightarrow B$; see also [5].

Theorem 2.1 Let $\pi: \mathfrak{X} \rightarrow B$ be the Kuranishi family of X_{0} constructed above. Then
(1) The Kuranishi family of X_{0} parameterizes all small deformations of X_{0} and is unique up to isomorphisms;
(2) $\pi: \mathfrak{X} \rightarrow B$ is semiuniversal at $0 \in B$;
(3) $\pi: \mathfrak{X} \rightarrow B$ is complete at each point $t \in B$;
(4) If $h^{0}\left(X_{t}, T^{1,0} X_{t}\right)$ is constant in $t \in B$, then the Kuranishi family is universal at each $t \in B$.

In general, the complex structure J_{t} is not compatible with ω_{0}, which is viewed as a symplectic form on X. The compatibility property requires $\varphi(t)\lrcorner \omega_{0}=0$. Since $\bar{\partial}_{0}^{*} \varphi(t)=0$, a direct computation shows that $\left.\varphi(t)\right\lrcorner \omega_{0}=0$ if and only if $\operatorname{div}_{0} \varphi(t)=0$. This divergence gauge was introduced in [28,29], where it was shown that the Kuranishi gauge $\bar{\partial}_{0}^{*} \varphi(t)=0$ is equivalent to the divergence gauge $\operatorname{div}_{0} \varphi(t)=0$ when the fibers X_{t} are Kähler-Einstein manifolds with negative or zero scalar curvature. In this section, we generalize this equivalence to the Fano case.

Theorem 2.2 Let $\left(X_{0}, \omega_{0}\right)$ be a Fano Kähler-Einstein manifold.
(1) If $\varphi(t)$ is the unique solution of equations (2.5), then $\operatorname{div} v_{0} \varphi(t)=0$ and $\left.\varphi(t)\right\lrcorner \omega_{0}=$ 0.
(2) If $\varphi \in A^{0,1}\left(X_{0}, T^{1,0} X_{0}\right)$ is a Beltrami differential with $\bar{\partial}_{0} \varphi=\frac{1}{2}[\varphi, \varphi]$ and $\operatorname{div} 0_{0} \varphi=0$, then $\bar{\partial}_{0}^{*} \varphi=0$ and $\left.\varphi(t)\right\lrcorner \omega_{0}=0$.

To prove this theorem, we need the following technical results.
Lemma 2.1 Let $\left(X, \omega_{g}\right)$ be a Kähler manifold.
(a) If $\varphi \in A^{0,1}\left(X, T^{1,0} X\right)$ with $\left.\bar{\partial}(\varphi\lrcorner \omega_{g}\right)=0$ and $\bar{\partial}^{*} \varphi=0$, then

$$
\left.\left.\Delta_{\bar{\partial}}(\varphi\lrcorner \omega_{g}\right)=\frac{\sqrt{-1}}{2} \operatorname{div}(\bar{\partial} \varphi)+\varphi\right\lrcorner \operatorname{Ric}\left(\omega_{g}\right) .
$$

(b) If $\left(X, \omega_{g}\right)$ is Fano Kähler-Einstein, and $\eta \in A^{0,2}(X)$ such that $\bar{\partial} \eta=0$ and $\Delta_{\bar{\partial}} \eta=\eta$, then $\eta=0$.

Proof The first claim (a) follows from direct computations; we refer the reader to [28, 29] for details. To prove the second claim, by the assumptions, we have the following Bochner formula,

$$
\Delta|\eta|^{2}=|\partial \eta|^{2}+|\bar{\nabla} \eta|^{2}
$$

This implies $\partial \eta=0$. Since $\partial^{*} \eta=0$, we conclude that $\Delta_{\partial} \eta=0$. Thus

$$
\eta=\Delta_{\bar{\partial}} \eta=\Delta_{\partial} \eta=0 .
$$

Now we can prove Theorem 2.2.

Proof The proof of claim (2) is similar to that in [28]. Indeed, since $\operatorname{div}_{0} \varphi=0$, we have

$$
\begin{aligned}
0=\bar{\partial}_{0}\left(\operatorname{div}_{0} \varphi\right) & \left.=\operatorname{div}_{0}\left(\bar{\partial}_{0} \varphi\right)-2 \sqrt{-1} \varphi\right\lrcorner \operatorname{Ric}\left(\omega_{0}\right) \\
& \left.=\frac{1}{2} \operatorname{div}_{0}[\varphi, \varphi]-2 \sqrt{-1} \varphi\right\lrcorner \omega_{0} \\
& \left.=\varphi\lrcorner \partial_{0}\left(\operatorname{div}_{0} \varphi\right)-2 \sqrt{-1} \varphi\right\lrcorner \omega_{0} \\
& =-2 \sqrt{-1} \varphi\lrcorner \omega_{0} .
\end{aligned}
$$

Together with $\operatorname{div}_{0} \varphi=0$, a direct computation shows that $\bar{\partial}_{0}^{*} \varphi=0$.
Now we prove claim (1). Consider the power series (2.4) which satisfies equations (2.5). We will use induction on $|I|$ to show that $\operatorname{div}_{0} \varphi_{I}=0$. If $|I|=1$, then $\varphi_{I}=\varphi_{i}$ for some $1 \leq i \leq m$ which is harmonic. Thus

$$
\begin{equation*}
\left.\bar{\partial}_{0}\left(\varphi_{i}\right\lrcorner \omega_{0}\right)=0 \quad \text { and } \quad \bar{\partial}_{0}^{*} \varphi_{i}=0 . \tag{2.8}
\end{equation*}
$$

Then Lemma 2.1 implies that

$$
\begin{equation*}
\left.\left.\Delta_{\bar{\partial}_{0}}\left(\varphi_{i}\right\lrcorner \omega_{0}\right)=\frac{\sqrt{-1}}{2} \operatorname{div}_{0}\left(\bar{\partial}_{0} \varphi_{i}\right)+\varphi_{i}\right\lrcorner \operatorname{Ric}\left(\omega_{0}\right) . \tag{2.9}
\end{equation*}
$$

Since $\bar{\partial}_{0} \varphi_{i}=0$ and Ric $\left(\omega_{0}\right)=\omega_{0}$, we have

$$
\begin{equation*}
\left.\left.\Delta_{\bar{\partial}_{0}}\left(\varphi_{i}\right\lrcorner \omega_{0}\right)=\varphi_{i}\right\lrcorner \omega_{0} . \tag{2.10}
\end{equation*}
$$

Again by Lemma 2.1, we know that $\left.\varphi_{i}\right\lrcorner \omega_{0}=0$. Combining with $\bar{\partial}_{0}^{*} \varphi_{i}=0$ we get $\operatorname{div}_{0} \varphi_{i}=0$.

Now we assume $\operatorname{div}_{0} \varphi_{I}=0$ for all $|I| \leq k-1$. For any multi-index I with $|I|=k$, we have

$$
\begin{aligned}
\left.\bar{\partial}_{0}\left(\varphi_{I}\right\lrcorner \omega_{0}\right) & \left.=\bar{\partial}_{0} \varphi_{I}\right\lrcorner \omega_{0} \\
& \left.=\frac{1}{2} \sum_{J+K=I}\left[\varphi_{J}, \varphi_{K}\right]\right\lrcorner \omega_{0} \\
& \left.\left.\left.\left.=\frac{1}{2} \sum_{J+K=I}\left(\varphi_{J}\right\lrcorner \partial_{0}\left(\varphi_{K}\right\lrcorner \omega_{0}\right)+\varphi_{K}\right\lrcorner \partial_{0}\left(\varphi_{J}\right\lrcorner \omega_{0}\right)\right)=0 .
\end{aligned}
$$

Since $\bar{\partial}_{0}^{*} \varphi_{I}=0$, we conclude from Lemma 2.1 that

$$
\begin{aligned}
\left.\Delta_{\bar{\partial}}\left(\varphi_{I}\right\lrcorner \omega_{0}\right) & \left.=\frac{\sqrt{-1}}{2} \operatorname{div}_{0}\left(\bar{\partial}_{0} \varphi_{I}\right)+\varphi_{I}\right\lrcorner \operatorname{Ric}\left(\omega_{0}\right) \\
& \left.=\frac{\sqrt{-1}}{4}\left(\sum_{J+K=I}\left[\varphi_{J}, \varphi_{K}\right]\right)+\varphi_{I}\right\lrcorner \omega_{0} \\
& \left.\left.\left.=\frac{\sqrt{-1}}{4}\left(\sum_{J+K=I} \varphi_{J}\right\lrcorner \partial_{0}\left(\operatorname{div}_{0} \varphi_{K}\right)+\varphi_{K}\right\lrcorner \partial_{0}\left(\operatorname{div}_{0} \varphi_{J}\right)\right)+\varphi_{I}\right\lrcorner \omega_{0} \\
& \left.=\varphi_{I}\right\lrcorner \omega_{0},
\end{aligned}
$$

where we have used the fact that $\operatorname{div}_{0} \varphi_{J}=\operatorname{div}_{0} \varphi_{K}=0$ for all $|J|,|K|<|I|$. It then follows from Lemma 2.1 that $\left.\varphi_{I}\right\lrcorner \omega_{0}=0$. Together with the assumption $\bar{\partial}_{0}^{*} \varphi_{I}=0$, we conclude that $\operatorname{div}_{0} \varphi_{I}=0$.

Remark 5 Let $\left(X_{0}, \omega_{0}\right)$ be a Fano manifold with $\left[\omega_{0}\right]=\pi c_{1}\left(X_{0}\right)$ and let $\pi: \mathfrak{X} \rightarrow B$ be a Kuranishi family of X_{0} defined by (2.6) and (2.7) where $\varphi(t)$ is the unique solution of equations (2.5).
(1) For any Beltrami differentials $\varphi, \psi \in A^{0,1}\left(X_{0}, T^{1,0} X_{0}\right)$ with $\left.\varphi\right\lrcorner \omega_{0}=0$ or $\psi\lrcorner \omega_{0}=0$, the pointwise Hermitian inner product is given by

$$
\begin{equation*}
\varphi \cdot \bar{\psi}=\langle\varphi, \psi\rangle_{g}=\varphi_{\bar{j}}^{i} \bar{\psi} \overline{\bar{k}} g_{i \bar{l}} g^{k \bar{j}}=\varphi_{\bar{j}}^{i} \bar{\psi} \overline{\psi_{\bar{i}}^{j}}, \tag{2.11}
\end{equation*}
$$

where g is the corresponding Kähler metric.
(2) If ω_{0} is a Kähler-Einstein metric, then each J_{t} is compatible with ω_{0}. This implies that, in the Kähler-Einstein case, the Kuranishi gauge is compatible with Donaldson's infinite dimensional GIT picture. In fact, let $\omega=\omega_{0}$ be the symplectic form on X and let $\mathcal{J}^{\text {int }}$ be the space of integrable almost complex structures on X which are compatible with ω. Theorem 2.2 shows that B can be viewed naturally as a slice in $\mathcal{J}^{\text {int }}$ containing J_{0} via Kuranishi's construction described above.
(3) Theorem 2.2 holds in more general situation if we allow appropriate twist. Let f be the normalized Ricci potential satisfying

$$
\left\{\begin{array}{l}
\operatorname{Ric}\left(\omega_{0}\right)=\omega_{0}+\frac{\sqrt{-1}}{2} \partial_{0} \bar{\partial}_{0} f \\
\int_{X_{0}} f \omega_{0}^{n}=0
\end{array}\right.
$$

If we define the twisted operators $\bar{\partial}_{f}^{*}$ and div_{f} with respect to the weighted volume form $e^{f} \frac{\omega_{0}^{n}}{n!}$, then the twisted Kuranishi gauge $\bar{\partial}_{f}^{*} \varphi(t)=0$ is equivalent to the twisted divergence gauge $\operatorname{div}_{f} \varphi(t)=0$. In particular, we still have $\left.\varphi(t)\right\lrcorner \omega_{0}=0$. The proof is essentially the same as that of Theorem 2.2.

An immediate corollary of Theorem 2.2 is the explicit expression of a Ricci potential of the Kähler manifold $\left(X_{t}, \omega_{0}\right)$. This turns out to play an important role in the proof of Theorem 1.1 (Theorem 3.1). As above, let $\left(X_{0}, \omega_{0}\right)$ be a Fano Kähler-Einstein manifold, let $\varphi(t)$ be the solution of equation (2.5) and let (\mathfrak{X}, B, π) be the Kuranishi family of $\left(X_{0}, \omega_{0}\right)$ constructed above. Then Theorem 2.2 implies that the symplectic form ω_{0} is indeed a Kähler form on X_{t}.

Corollary 2.1 A Ricci potential of the Kähler manifold $\left(X_{t}, \omega_{0}\right)$ is given by

$$
\begin{equation*}
h_{t}=\log \operatorname{det}(I-\varphi(t) \overline{\varphi(t)}) . \tag{2.12}
\end{equation*}
$$

Namely,

$$
\begin{equation*}
\operatorname{Ric}\left(X_{t}, \omega_{0}\right)=\omega_{0}+\frac{\sqrt{-1}}{2} \partial_{t} \bar{\partial}_{t} \log \operatorname{det}(I-\varphi(t) \overline{\varphi(t)}) \tag{2.13}
\end{equation*}
$$

where $\bar{\partial}_{t}$ is the $\bar{\partial}$-operator on X_{t}.
Proof We want to show that $-\partial_{t} \bar{\partial}_{t} \log \left(e^{h_{t}} \frac{\omega_{0}^{n}}{n!}\right)=\omega_{0}$. Fixing a point $t \in B$ and we let $\varphi=\varphi(t), z=\left(z_{1}, \ldots, z_{n}\right)$ be local holomorphic coordinates on $X_{0}, w=$ $\left(w_{1}, \ldots, w_{n}\right)$ be local holomorphic coordinates on $X_{t}, \omega_{0}=\frac{\sqrt{-1}}{2} g_{i \bar{j}} d z_{i} \wedge d \bar{z}_{j}, g=$ $\operatorname{det}\left[g_{i \bar{j}}\right], A=\left[a_{\alpha i}\right]=\left[\frac{\partial w_{\alpha}}{\partial z_{i}}\right]$ and $B=\left[b^{i \alpha}\right]=A^{-1}$. Then

$$
e^{h_{t}} \frac{\omega_{0}^{n}}{n!}=c_{n}|\operatorname{det} A|^{-2} g d w_{1} \wedge \cdots \wedge d w_{n} \wedge d \bar{w}_{1} \wedge \cdots \wedge d \bar{w}_{n}
$$

where $c_{n}=(-1)^{\frac{n(n-1)}{2}}\left(\frac{\sqrt{-1}}{2}\right)^{n}$. On the other hand, we have

$$
\begin{equation*}
\frac{\partial w_{\alpha}}{\partial \bar{z}_{j}}=\varphi_{\bar{j}}^{i} a_{\alpha i}, \quad \frac{\partial z_{i}}{\partial w_{\alpha}}=(I-\varphi \bar{\varphi})^{i k} b^{k \alpha}, \quad \frac{\partial z_{i}}{\partial \bar{w}_{\beta}}=-\varphi_{\bar{j}}^{i} \overline{(I-\varphi \bar{\varphi})^{j l}} \overline{b^{\prime \beta}} \tag{2.14}
\end{equation*}
$$

where $(I-\varphi \bar{\varphi})^{i k}$ is the (i, k)-entry of the matrix $(I-\varphi \bar{\varphi})^{-1}$. By a direct computation, we have

$$
\begin{align*}
-\frac{\partial^{2}}{\partial w_{\alpha} \partial \bar{w}_{\beta}} \log \left(c_{n}|\operatorname{det} A|^{-2} g\right)= & \frac{\partial \bar{z}_{l}}{\partial \bar{w}_{\beta}} b^{k \alpha}\left[\frac{\partial}{\partial z_{k}} \varphi_{\bar{l}}^{p} \mu^{p}+R_{k \bar{l}}+\frac{\partial}{\partial z_{k}}\left(\left(\operatorname{div}_{0} \varphi\right)_{\bar{l}}\right)\right] \\
& -\frac{\partial \bar{z}_{l}}{\partial \bar{w}_{\beta}} b^{k \alpha}\left(\frac{\partial}{\partial \bar{z}_{l}}-\varphi_{\bar{l}}^{i} \frac{\partial}{\partial z_{i}}\right)\left(\mu^{k}\right) \tag{2.15}
\end{align*}
$$

where

$$
\mu^{k}=(I-\varphi \bar{\varphi})^{i k}\left[\overline{\varphi_{\bar{i}}^{j}}\left(\operatorname{div}_{0} \varphi\right)_{\bar{j}}-\left(\overline{\operatorname{div}_{0} \varphi}\right)_{i}\right],
$$

and $\frac{\sqrt{-1}}{2} R_{i \bar{j}} d z_{i} \wedge d \bar{z}_{j}$ is the Ricci form of $\left(X_{0}, \omega_{0}\right)$. Since ω_{0} is a Kähler-Einstein metric on X_{0}, we have $R_{i \bar{j}}=g_{i \bar{j}}$. By Theorem 2.2, we know $\operatorname{div}_{0} \varphi=0$ which implies $\mu^{k}=0$. Hence the above formula reduces to

$$
\begin{equation*}
-\frac{\partial^{2}}{\partial w_{\alpha} \partial \bar{w}_{\beta}} \log \left(c_{n}|\operatorname{det} A|^{-2} g\right)=\frac{\partial \bar{z}_{l}}{\partial \bar{w}_{\beta}} b^{k \alpha} g_{k \bar{l}} . \tag{2.16}
\end{equation*}
$$

It remains to show that

$$
\frac{\sqrt{-1}}{2} \frac{\partial \bar{z}_{l}}{\partial \bar{w}_{\beta}} b^{k \alpha} g_{k \bar{l}} d w_{\alpha} \wedge d \bar{w}_{\beta}=\omega_{0}
$$

Again, by Theorem 2.2, we know $\varphi_{\bar{j}}^{i} g_{i \bar{l}}=\varphi_{\bar{l}}^{i} g_{i \bar{j}}$ and the above identity follows immediately from formula (2.14).

Now we look at the action of the automorphism group of X_{0} on the Kuranishi space B. For the rest of this section, we assume ω_{0} is a Kähler-Einstein metric on X_{0}.

Let $G=\operatorname{Isom}_{0}\left(X_{0}, \omega_{0}\right)$ be the isometry group with Lie algebra \mathfrak{g}. By the work of Matsushima [20] and Calabi [3], we know that the complexification $G^{\mathbb{C}}$ of G is isomorphic to the holomorphic automorphism group $\operatorname{Aut}_{0}\left(X_{0}\right)$ and we have $\mathfrak{g}^{\mathbb{C}} \cong$ $H^{0}\left(X_{0}, T^{1,0} X_{0}\right)$. Furthermore, if we let

$$
\Lambda_{1}^{\mathbb{R}}=\left\{f \in C^{\infty}\left(X_{0}, \mathbb{R}\right) \mid\left(\Delta_{0}+1\right) f=0\right\}
$$

be the first eigenspace of the Laplacian on X_{0} and let $\Lambda_{1}^{\mathbb{C}}=\Lambda_{1}^{\mathbb{R}} \otimes_{\mathbb{R}} \mathbb{C}$, then we have

$$
\begin{equation*}
\mathfrak{g} \cong\left\{\operatorname{Im}\left(\nabla_{0}^{1,0} f\right) \mid f \in \Lambda_{1}^{\mathbb{R}}\right\} \tag{2.17}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathfrak{g}^{\mathbb{C}} \cong\left\{\nabla_{0}^{1,0} f \mid f \in \Lambda_{1}^{\mathbb{C}}\right\} . \tag{2.18}
\end{equation*}
$$

The diffeomorphism group of X acts on the space of complex structures on X via pullback and thus acts locally on the set of Beltrami differentials on X_{0} which satisfy the obstruction equation (2.2). Let $D \subset \operatorname{Diff}_{0}(X)$ be a neighborhood of the identity map and let $Y=(X, J)$ be a complex manifold obtained by deforming the complex structure J_{0} via $\varphi \in A^{0,1}\left(X_{0}, T^{1,0} X_{0}\right)$. We assume $\|\varphi\|$ is small and $\sigma \in D$. In [17] Kuranishi showed that the Beltrami differential $\psi=\varphi \circ \sigma$ corresponding to the complex structure $\sigma^{*} J$ is characterized by

$$
\begin{equation*}
\frac{\partial \sigma_{k}}{\partial \bar{z}_{j}}+\varphi_{\bar{l}}^{k}(\sigma(z)) \frac{\partial \bar{\sigma}_{l}}{\partial \bar{z}_{j}}=\psi \frac{i}{j}\left(\frac{\partial \sigma_{k}}{\partial z_{i}}+\varphi_{\bar{l}}^{k}(\sigma(z)) \frac{\partial \bar{\sigma}_{l}}{\partial z_{i}}\right), \tag{2.19}
\end{equation*}
$$

where z_{1}, \ldots, z_{n} are local holomorphic coordinates on X_{0}. It follows that
Corollary 2.2 If $\sigma \in \operatorname{Aut}_{0}\left(X_{0}\right)$ is a biholomorphism of X_{0} then $\varphi \circ \sigma=\sigma^{*} \varphi$. If $\sigma \in$ Aut $_{0}(Y)$ is a biholomorphism of Y then $\varphi \circ \sigma=\varphi$.

Now we assume that $\sigma \in G \cap D$ is an isometry of $\left(X_{0}, \omega_{0}\right)$ and $\varphi(t)$ is a solution of equation (2.5). Then $\varphi(t) \circ \sigma=\sigma^{*} \varphi(t)$ satisfies the first two equations of (2.5) since σ preserves ω_{0} and J_{0}. Thus, for each t with $|t|$ small, $\sigma^{*} \varphi(t)=\varphi\left(t^{\prime}\right)$ where t^{\prime} is characterized by $\sum_{i} t_{i}^{\prime} \varphi_{i}=\mathbb{H}\left(\sigma^{*} \varphi(t)\right)$. Let $V=T_{0}^{1,0} B \cong H^{0,1}\left(X_{0}, T^{1,0} X_{0}\right)$. If we linearize the above action with respect to φ, then we see that the linear action of G on $T_{0}^{1,0} B$, denoted by $\rho: G \rightarrow G L(V)$, is given by

$$
\begin{equation*}
\rho(\sigma)([\varphi])=\left[\sigma^{*} \varphi\right] . \tag{2.20}
\end{equation*}
$$

This is also true at the form level: $\sigma^{*} \varphi$ is harmonic when σ is an isometry and φ is harmonic. The representation ρ naturally extends to the representation $\rho^{\mathbb{C}}: G^{\mathbb{C}} \rightarrow$ $G L(V)$ which is also given by (2.20). Now we linearize the representation ρ and we have the representation of Lie algebra $\rho_{*}: \mathfrak{g} \rightarrow \operatorname{End}(V)$ given by

$$
\begin{equation*}
\rho_{*}(v)([\varphi])=\left[L_{v} \varphi\right] . \tag{2.21}
\end{equation*}
$$

Again, this holds at the form level: $L_{v} \varphi$ is harmonic when $v \in \mathfrak{g}$ is a Killing field and φ is harmonic. This representation also extends to a representation $\rho_{*}^{\mathbb{C}}: \mathfrak{g}^{\mathbb{C}} \rightarrow \operatorname{End}(V)$.

Remark 6 We note that, by the construction of Kuranishi family (2.6) and (2.7), both G and $G^{\mathbb{C}}$ act on \mathfrak{X} holomorphically.

Note that if $v \in H^{0}\left(X_{0}, T^{1,0} X_{0}\right)$ is a holomorphic vector field and $\varphi, \psi \in$ $\mathbb{H}^{0,1}\left(X_{0}, T^{1,0} X_{0}\right)$ are harmonic Beltrami differentials, then by direct computations we have

$$
\begin{align*}
& L_{v} \varphi=[v, \varphi] \\
& \left.L_{\bar{v}} \varphi=\bar{\partial}(\bar{v}\lrcorner \varphi\right) \\
& [v, \varphi] \cdot \bar{\psi}=v(\varphi \cdot \bar{\psi})-\operatorname{div}((v\lrcorner \bar{\psi})\lrcorner \varphi)+(v\lrcorner \bar{\psi})\lrcorner(\operatorname{div} \varphi) . \tag{2.22}
\end{align*}
$$

Now we look at the representation $\rho_{*}: \mathfrak{g} \rightarrow \operatorname{End}(V)$. Let $\xi \in \mathfrak{g}$ be a Killing field. By the identification (2.18), there exists a unique eigenfunction $f \in \Lambda_{1}^{\mathbb{R}}$ such that $\xi=\operatorname{Im}(v)$, where

$$
v=\nabla^{1,0} f \in H^{0}\left(X_{0}, T^{1,0} X_{0}\right)
$$

For any harmonic Beltrami differentials $\varphi, \psi \in \mathbb{H}^{0,1}\left(X_{0}, T^{1,0} X_{0}\right)$, we have

$$
\left\langle L_{\xi} \varphi, \psi\right\rangle_{L^{2}}=\frac{1}{2 \sqrt{-1}}\left(\left\langle L_{v} \varphi, \psi\right\rangle_{L^{2}}-\left\langle L_{\bar{v}} \varphi, \psi\right\rangle_{L^{2}}\right) .
$$

By (2.22), we know that

$$
\left.\left\langle L_{\bar{v}} \varphi, \psi\right\rangle_{L^{2}}=\int_{X_{0}}(\bar{\partial}(\bar{v}\lrcorner \varphi)\right) \cdot \bar{\psi} d V_{g}=0
$$

since ψ is harmonic. By integration by parts and Theorem 2.2, we have

$$
\begin{aligned}
\left\langle L_{v} \varphi, \psi\right\rangle_{L^{2}} & \left.\left.\left.\left.=\int_{X_{0}}(v(\varphi \cdot \bar{\psi})-\operatorname{div}((v\lrcorner \bar{\psi})\lrcorner \varphi\right)+(v\lrcorner \bar{\psi}\right)\right\lrcorner(\operatorname{div} \varphi)\right) d V_{g} \\
& =\int_{X_{0}} v(\varphi \cdot \bar{\psi}) d V_{g}=\int_{X_{0}}(\operatorname{div} v)(\varphi \cdot \bar{\psi}) d V_{g} \\
& =-\int_{X_{0}} f(\varphi \cdot \bar{\psi}) d V_{g} .
\end{aligned}
$$

This implies

$$
\left\langle L_{\xi} \varphi, \psi\right\rangle_{L^{2}}=\frac{\sqrt{-1}}{2} \int_{X_{0}} f(\varphi \cdot \bar{\psi}) d V_{g} .
$$

Let

$$
\begin{equation*}
Q=\left\{\varphi \cdot \bar{\psi} \mid \varphi, \psi \in \mathbb{H}^{0,1}\left(X_{0}, T^{1,0} X_{0}\right)\right\} \subset C^{\infty}\left(X_{0}\right) . \tag{2.23}
\end{equation*}
$$

Since $L_{\xi} \varphi$ is harmonic, we know that $L_{\xi} \varphi=0$ if and only if $f \perp_{L^{2}} Q$.
In conclusion, we have proved the following
Corollary 2.3 The representation ρ_{*} is trivial (and thus $\rho_{*}^{\mathbb{C}}, \rho$ and $\rho^{\mathbb{C}}$ are trivial) if and only if $\Lambda_{1}^{\mathbb{R}} \perp_{L^{2}} Q$ (and thus $\Lambda_{1}^{\mathbb{C}} \perp_{L^{2}} Q$).

3 Small deformation of Fano Kähler-Einstein manifolds

Throughout this section, we assume $\left(X_{0}, \omega_{0}\right)$ is a Fano Kähler-Einstein manifold and denote by (\mathfrak{X}, B, π) the Kuranishi family with respect to ω_{0} as constructed in

Sect. 2. An important question concerning the geometry of the moduli space of X_{0} is the existence of Kähler-Einstein metrics on small deformations of (X_{0}, ω_{0}). By using the implicit function theorem, Koiso [15] showed that any small deformation of X_{0} admits a Kähler-Einstein metric, provided the automorphism group of X_{0} is discrete. The case that X_{0} has non-trivial holomorphic vector fields is much more delicate. In [30] Szekelyhidi showed that a small deformation of a cscK manifold admits a cscK metric if and only if it is K-polystable. A similar result was established by Brönnle [2] in terms of the polystability of the action of the automorphism group on the Kuranishi space. Later, it was proved by Chen et al. [6-8] that the existence of a Kähler-Einstein metric on a Fano manifold X is equivalent to the K-stability of X. However, it is highly nontrivial to check the K-stability of a Fano manifold in general.

In this section, we provide new and simple necessary and sufficient conditions on the existence of Kähler-Einstein metrics on small deformations of X_{0} as stated in Theorem 1.1.

Theorem 3.1 Let $\left(X_{0}, \omega_{0}\right)$ be a Fano Kähler-Einstein manifold and let (\mathfrak{X}, B, π) be the Kuranishi family with respect to ω_{0}. By shrinking B if necessary, the following statements are equivalent:
(1) X_{t} admits a Kähler-Einstein metric for each $t \in B$;
(2) The dimension $h^{0}\left(X_{t}, T^{1,0} X_{t}\right)$ of the space of holomorphic vector fields on X_{t} is independent of t for all $t \in B$;
(3) The automorphism group Aut ${ }_{0}\left(X_{t}\right)$ is isomorphic to Aut $t_{0}\left(X_{0}\right)$ for all $t \in B$.

Proof Firstly, we assume that X_{t} admits Kähler-Einstein metrics for each $t \in B$. By Remark 5, we know that ω_{0} defines a Kähler metric on X_{t}. We shall show that

$$
\begin{equation*}
\operatorname{Isom}_{0}\left(X_{0}, \omega_{0}\right)=\operatorname{Isom}_{0}\left(X_{t}, \omega_{0}\right) \tag{3.1}
\end{equation*}
$$

for each $t \in B$. Once we have this, then statements (2) and (3) follow from the upper semi-continuity of $h^{0}\left(X_{t}, T^{1,0} X_{t}\right)$ as a function of t [14]. Indeed, after shrinking B we can assume that $h^{0}\left(X_{t}, T^{1,0} X_{t}\right) \leq h^{0}\left(X_{0}, T^{1,0} X_{0}\right)$ for all $t \in B$. We know that $\left(\operatorname{Isom}_{0}\left(X_{t}, \omega_{0}\right)\right)^{\mathbb{C}}$ is a subgroup of $\operatorname{Aut}_{0}\left(X_{t}\right)$ for each t and $\left(\operatorname{Isom}_{0}\left(X_{0}, \omega_{0}\right)\right)^{\mathbb{C}} \cong$ $\operatorname{Aut}_{0}\left(X_{0}\right)$. Since

$$
\begin{aligned}
\operatorname{dim}_{\mathbb{R}} \operatorname{Isom}_{0}\left(X_{t}, \omega_{0}\right) & \leq \operatorname{dim}_{\mathbb{C}} \operatorname{Aut}_{0}\left(X_{t}\right)=h^{0}\left(X_{t}, T^{1,0} X_{t}\right) \\
& \leq h^{0}\left(X_{0}, T^{1,0} X_{0}\right)=\operatorname{dim}_{\mathbb{C}} \operatorname{Aut}_{0}\left(X_{0}\right) \\
& =\operatorname{dim}_{\mathbb{R}} \operatorname{Isom}_{0}\left(X_{0}, \omega_{0}\right),
\end{aligned}
$$

identity (3.1) would imply that $h^{0}\left(X_{t}, T^{1,0} X_{t}\right)=h^{0}\left(X_{0}, T^{1,0} X_{0}\right)$ and (Isom $_{0}$ $\left.\left(X_{t}, \omega_{0}\right)\right)^{\mathbb{C}} \cong \operatorname{Aut}_{0}\left(X_{t}\right)$ for all $t \in B$. It then follows that $\operatorname{Aut}_{0}\left(X_{t}\right) \cong \operatorname{Aut}_{0}\left(X_{0}\right)$ for all $t \in B$ since they are complexifications of the same compact Lie group.

To prove (3.1), it suffices to show that each isometry $\sigma \in G=\operatorname{Isom}_{0}\left(X_{0}, \omega_{0}\right)$, viewed as a diffeomorphism of X, is also an isometry of (X_{t}, ω_{0}). This will give us a natural embedding

$$
\begin{equation*}
G \hookrightarrow \operatorname{Isom}_{0}\left(X_{t}, \omega_{0}\right) \tag{3.2}
\end{equation*}
$$

and (3.1) follows from the dimensional reason as above.
By the discussion in Sect. 2, since each isometry $\sigma \in G$ preserves both the KählerEinstein metric ω_{0} and the complex structure J_{0}, it preserves all operators which are canonically associated to ω_{0} and J_{0}. Hence, such σ maps each solution of equation (2.5) to another solution since these solutions are given by the Kuranishi equation (2.3). On the other hand, since a solution $\varphi(t)$ of equation (2.3) is determined by its harmonic part $\mathbb{H}(\varphi(t))=\sum_{i=1}^{m} t_{i} \varphi_{i}$, it is enough to show that the action of G (or $G^{\mathbb{C}}$) on B, as described in Sect. 2, is trivial. Indeed, this would imply that, for each $t \in B$ and $\sigma \in G$, we have $\sigma^{*}\left(\sum_{i=1}^{m} t_{i} \varphi_{i}\right)=\sum_{i=1}^{m} t_{i} \varphi_{i}$ and thus, by the uniqueness of solution of the Kuranishi equation (2.3), we have $\sigma^{*} \varphi(t)=\varphi(t)$ which implies σ preserves the complex structure J_{t}. Since σ preserves ω_{0}, we conclude that $\sigma \in \operatorname{Isom}_{0}\left(X_{t}, \omega_{0}\right)$.

It remains to show that the action of $G^{\mathbb{C}}$ on B is trivial. Let us denote by

$$
V=T_{0}^{1,0} B \cong H^{0,1}\left(X_{0}, T^{1,0} X_{0}\right)
$$

as before. If the action of $G^{\mathbb{C}}$ on B is nontrivial, then there exists a subgroup $\lambda: \mathbb{C}^{*} \rightarrow$ $G^{\mathbb{C}}$ whose action on V is nontrivial. We can then pick a basis e_{1}, \ldots, e_{m} of V such that

$$
\lambda(s)\left(e_{i}\right)=s^{\kappa_{i}} e_{i}, \quad s \in \mathbb{C}^{*}
$$

with $\kappa_{i} \in \mathbb{Z}$ for each i. It follows that at least one of the κ_{i} 's is nonzero. Replacing λ by λ^{-1} if necessary, we can assume $\kappa_{i}>0$ for some i. Let

$$
\Delta_{\varepsilon}=\left\{\left(0, \ldots, 0, t_{i}, 0, \ldots, 0\right)| | t_{i} \mid<\varepsilon\right\} \subset B
$$

be the one-dimensional disk, in the i-th coordinate line of the Kuranishi space, with center 0 and radius ε. We pick some $t^{\prime} \in \Delta_{\varepsilon}^{*}=\Delta_{\varepsilon} \backslash\{0\}$.

Let $\mathfrak{X}^{\prime}=\left.\mathfrak{X}\right|_{\Delta_{\varepsilon}}$ and consider the subfamily $\left(\mathfrak{X}^{\prime}, \Delta_{\varepsilon}, \pi\right)$ with an action of $H=$ $\left\{s \in C^{*}| | s \mid<1\right\}$ on Δ_{ε} given by $\lambda(s)(t)=s^{\kappa_{i}} t$. We note that X_{t} is biholomorphic to $X_{t^{\prime}}$ if $t \neq 0$ because of the action of H. Furthermore, X_{0} is not biholomorphic to $X_{t^{\prime}}$. To see this, we note that, by Theorem 2.1, the Kodaira-Spencer map $K S_{t}: T_{t}^{1,0} B \rightarrow$ $H^{0,1}\left(X_{t}, T^{1,0} X_{t}\right)$ is an isomorphism if $t=0$, and is surjective if $t \neq 0$. The above argument shows that the deformation of $X_{t^{\prime}}$ is trivial along at least one direction due to the action of \mathbb{C}^{*}. Thus

$$
h^{0,1}\left(X_{t^{\prime}}, T^{1,0} X_{t^{\prime}}\right)<h^{0,1}\left(X_{0}, T^{1,0} X_{0}\right)
$$

This shows that X_{0} is not biholomorphic to $X_{t^{\prime}}$. By Remark 6, we also get the action of H on \mathfrak{X}^{\prime}. The family $\left(\mathfrak{X}^{\prime}, \Delta_{\varepsilon}, \pi\right)$ naturally extends to a family $\left(\mathfrak{X}^{\prime \prime}, \mathbb{C}, \pi\right)$ with a \mathbb{C}^{*} action on the base \mathbb{C} with weight κ_{i} and the corresponding action on $\mathfrak{X}^{\prime \prime}$. By the standard argument of base change, we can assume $\kappa_{i}=1$ and we get a nontrivial test configuration of $\left(X_{t^{\prime}}, K_{X_{t^{\prime}}}^{-k}\right)$, where the \mathbb{C}^{*} action on the line bundle $K_{\mathfrak{X} \prime \prime}^{-k}$ C is the
induced one. Since $X_{t^{\prime}}$ admits a Kähler-Einstein metric, it is K-polystable [1,32]. Now the central fiber of the nontrivial test configuration $\left(\mathfrak{X}^{\prime \prime}, \mathbb{C}, \pi\right)$ is X_{0}, which also admits a Kähler-Einstein metric and thus the Futaki invariant is 0 . This is a contradiction, thus statements (2) and (3) hold.

Conversely, it is obvious that statement (3) implies (2), so it remains to show that (2) implies (1), namely if the dimension $h^{0}\left(X_{t}, T^{1,0} X_{t}\right)$ of the space of holomorphic vector fields on X_{t} is independent of t :

$$
h^{0}\left(X_{t}, T^{1,0} X_{t}\right)=h^{0}\left(X_{0}, T^{1,0} X_{0}\right)=l \text { for all } t \in B
$$

then each X_{t} admits a Kähler-Einstein metric. Pick a basis $\left\{v_{1}, \ldots, v_{l}\right\}$ of $H^{0}\left(X_{0}, T^{1,0} X_{0}\right)$. By the above assumption and the work of Kodaira [13], we can extend each v_{i} to $v_{i}(t) \in A^{0}\left(X_{0}, T^{\mathbb{C}} X_{0}\right)$ such that $v_{i}(t) \in H^{0}\left(X_{t}, T^{1,0} X_{t}\right)$ and $v_{i}(t)$ depends on t holomorphically. By continuity, and by shrinking B if necessary, we know that $\left\{v_{1}(t), \ldots, v_{l}(t)\right\}$ span $H^{0}\left(X_{t}, T^{1,0} X_{t}\right)$ for each $t \in B$.

Now we define a map

$$
\tau_{t}: A^{0}\left(X_{0}, T^{1,0} X_{0}\right) \rightarrow A^{0}\left(X_{t}, T^{1,0} X_{t}\right)
$$

by

$$
\tau_{t}(v)=(I-\varphi(t) \overline{\varphi(t)})^{-1}(v)-\overline{\varphi(t)}\left((I-\varphi(t) \overline{\varphi(t)})^{-1}(v)\right)
$$

Then τ_{t} is a linear isomorphism for each $t \in B$. Let $\widetilde{v}_{i}(t)=\tau_{t}^{-1}\left(v_{i}(t)\right)$. Since $\bar{\partial}_{t} v_{i}(t)=0$, a direct computation shows that

$$
\begin{equation*}
\bar{\partial}_{0} \widetilde{v}_{i}(t)=-\left[\widetilde{v}_{i}(t), \varphi(t)\right] . \tag{3.3}
\end{equation*}
$$

Since $\varphi(0)=0$, we have

$$
\bar{\partial}_{0}\left(\left.\frac{\partial}{\partial t_{k}}\right|_{t=0} \widetilde{v}_{i}(t)\right)=\left.\frac{\partial}{\partial t_{k}}\right|_{t=0} \bar{\partial}_{0} \widetilde{v}_{i}(t)=-\left.\frac{\partial}{\partial t_{k}}\right|_{t=0}\left[\widetilde{v}_{i}(t), \varphi(t)\right]=-\left[v_{i}, \varphi_{k}\right] .
$$

This implies that the cohomology class $\left[\left[v_{i}, \varphi_{k}\right]\right]=0$ for all $1 \leq i \leq l$ and $1 \leq$ $k \leq m$. Thus, by (2.22), the action of the Lie algebra \mathfrak{g} on $H^{0,1}\left(X_{0}, T^{1,0} X_{0}\right)$ given by (2.21) is trivial which implies that the G-action (2.20) on $T_{0}^{1,0} B \cong H^{0,1}\left(X_{0}, T^{1,0} X_{0}\right)$ is trivial. By the previous arguments, we have the identification $\operatorname{Isom}_{0}\left(X_{0}, \omega_{0}\right)=$ $\operatorname{Isom}_{0}\left(X_{t}, \omega_{0}\right)$ for each $t \in B$.

We can now restrict our attention to G-invariant Kähler potentials and apply the implicit function theorem as in $[2,18,25,30]$ (which can be further traced back, e.g., to the work of Donaldson-Kronheimer [9]). More specifically, by the work in [18] (see also Corollary 1 in [25]), the above identification $\operatorname{Isom}_{0}\left(X_{0}, \omega_{0}\right)=\operatorname{Isom}_{0}\left(X_{t}, \omega_{0}\right)$ leads to the existence of an extremal metric on each X_{t}. On the other hand, by Corollary 2.1, we know that $h_{t}=\log \operatorname{det}(I-\varphi(t) \overline{\varphi(t)})$ is a Ricci potential of $\left(X_{t}, \omega_{0}\right)$.

It follows from Corollary 2.2 that each $\sigma \in \operatorname{Aut}_{0}\left(X_{t}\right)$ preserves $\varphi(t)$, hence the Ricci potential h_{t} is a σ-invariant function. Thus, for each $\xi \in H^{0}\left(X_{t}, T^{1,0} X_{t}\right)$, we have $\xi\left(h_{t}\right)=0$ and the vanishing Futaki invariant [12]:

$$
f_{X_{t}}\left(\omega_{0}, \xi\right)=\int_{X_{t}} \xi\left(h_{t}\right) \frac{\omega_{0}^{n}}{n!}=0
$$

Therefore, the extremal metric on X_{t} must be a Kähler-Einstein metric. This proves statement (1) and concludes the proof of Theorem 3.1.

Remark 7 As discussed in [4], under any of the equivalent conditions in Theorem 3.1, any Kähler-Einstein metric ω_{0} on X_{0} can be extended to a smooth family $\left\{\omega_{t}\right\}_{t \in B}$ such that ω_{t} is a Kähler-Einstein metric on X_{t} for each $t \in B$.

Remark 8 Szekelyhidi [30] showed that if X^{\prime} is a sufficiently small deformation of a Fano Kähler-Einstein manifold X, then either X^{\prime} admits a Kähler-Einstein metric or there is a test configuration for X^{\prime} with smooth central fibre $X^{\prime \prime}$. Moreover, $X^{\prime \prime}$ admits a Kähler-Einstein metric and it is itself a small deformation of X. Combining this result of Szekelyhidi and the assumption that $h^{0}\left(X_{t}, T^{1,0} X_{t}\right)$ is independent of t, one can give an alternative proof of " $(2) \Longrightarrow(1)^{\prime \prime}$ in Theorem 3.1.

Theorems 3.1 and 2.1 immediately imply the following universal property of the Kuranishi family.

Corollary 3.1 Let $\left(X_{0}, \omega_{0}\right)$ be a Fano Kähler-Einstein manifold and let (\mathfrak{X}, B, π) be the Kuranishi family with respect to ω_{0}. If X_{t} admits a Kähler-Einstein metric for each $t \in B$, then the family (\mathfrak{X}, B, π) is universal at each t.

4 Curvature of the $L^{\mathbf{2}}$ metrics on direct image sheaves

The Weil-Petersson metric is a L^{2} metric on the parameter space of a family of complex manifolds which admit certain canonical metrics. It was first introduced by Weil to study the moduli spaces of hyperbolic Riemann surfaces based on the Petersson pairing. See, e.g., [4] for a brief survey on certain aspects of the Weil-Petersson metric.

In general, we consider a complex analytic family (\mathcal{Y}, D, p) of compact complex manifolds, where $D \subset \mathbb{C}^{m}$ is the parameter space, and we let $Y_{s}=p^{-1}(s)$ for each point $s \in D$. If we assume that each fiber Y_{s} admits a Kähler-Einstein metric ω_{s}, then we can define the Weil-Petersson metric in the following way. For any $s \in D$ and $u, v \in T_{s}^{1,0} D$, we let $\varphi, \psi \in \mathbb{H}^{0,1}\left(Y_{s}, T^{1,0} Y_{s}\right)$ be the harmonic representatives of the Kodaira-Spencer classes $K S_{S}(u)$ and $K S_{S}(v)$ respectively, where we use the chosen Kähler-Einstein metric ω_{s} on Y_{s} to determine φ and ψ. Then the Weil-Petersson metric $\omega_{W P}$ is given by

$$
\begin{equation*}
h_{s}(u, v)=\int_{Y_{s}}\langle\varphi, \psi\rangle_{\omega_{s}} \frac{\omega_{s}^{n}}{n!} . \tag{4.1}
\end{equation*}
$$

When Y_{S} is a Kähler-Einstein manifold of general type or a polarized Calabi-Yau manifold, there is a unique Kähler-Einstein metric on Y_{s}. Therefore, in this case, φ and ψ are uniquely determined and the Weil-Petersson metric is well-defined. Furthermore, for any submanifold $D^{\prime} \subset D$, when we consider the restricted family $\left(\left.\mathcal{Y}\right|_{D^{\prime}}, D^{\prime}, p\right)$, the Weil-Petersson metric on D^{\prime} defined by (4.1) is just the restriction of the Weil-Petersson metric on D to D^{\prime}. In fact, one can define the canonical L^{2} metric on $H^{0,1}\left(Y_{s}, T^{1,0} Y_{s}\right)$ in this case by using the unique Kähler-Einstein metric on Y_{s}, even when there are obstructions on deforming the complex structure on Y_{s}. This generalization of the classical Weil-Petersson metric plays an important role in studying the moduli space of Y_{s}.

Let (X_{0}, ω_{0}) be a Fano Kähler-Einstein manifold and let (\mathfrak{X}, B, π) be the Kuranishi family constructed in Sect. 2. We assume that each X_{t} admits a Kähler-Einstein metric. Then, by Theorem 3.1 and Remark 7, we know that each Kähler-Einstein metric on X_{0} can be extended to a smooth family of Kähler-Einstein metrics. In this case it is not hard to show that the Weil-Petersson metric is well-defined, namely it is independent of the choice of Kähler-Einstein metrics on each X_{t}. In fact, following the classical approach, if $\{\omega(s)\}$ is any family of Kähler-Einstein metrics on X_{0} and let φ_{s} and ψ_{s} be harmonic representatives of any two given Kodaira-Spencer classes with respect to $\omega(s)$. Then a simple computation shows that

$$
\left.\frac{d}{d s}\right|_{s=0}\left\langle\varphi_{s}, \psi_{s}\right\rangle_{L^{2}(\omega(s))}=0
$$

for all choices of $\{\omega(s)\}$ if and only if $\left\{\varphi_{i} \bar{\varphi}_{j}\right\} \perp_{L^{2}(\omega(0))} \Lambda_{1}^{\mathbb{R}}(\omega(0))$ and the latter condition is guaranteed by Theorem 3.1 and Corollary 2.3.

Now we turn our attention to the approximation of the Weil-Petersson metric. Given a smooth family (\mathfrak{X}, B, π) of Kähler-Einstein manifolds of general type, it was shown in [28] that the Ricci curvatures of the L^{2} metrics, induced by the fiberwise Kähler-Einstein metrics on the direct image bundle $R^{0} \pi_{*} K_{\mathfrak{X} / B}^{k}$, converge to the WeilPetersson metric after an appropriate normalization. There are two steps involved in establishing the curvature formula of the L^{2} metrics. The first step is to extend sections in $H^{0}\left(X_{0}, K_{X_{0}}^{k}\right)$ to $H^{0}\left(X_{t}, K_{X_{t}}^{k}\right)$ in a canonical way in order to obtain local holomorphic sections of $R^{0} \pi_{*} K_{\mathfrak{X} / B}^{k}$. We note that the background smooth pair of $\left(X_{t}, K_{X_{t}}\right)$ is independent of t. In [28], a slight different notion inspired by the work of Todorov [33] was used. This technique can be directly applied to more general situations, e.g., a family (\mathcal{Y}, D, p) of compact complex manifolds and a relative ample holomorphic line bundle \mathcal{L} over \mathcal{Y}. In [29], this idea was used to construct local holomorphic sections of the bundle over D whose fiber at $s \in D$ is $H^{0}\left(Y_{s},\left(\left.\mathcal{L}^{k}\right|_{Y_{s}}\right)\right)$. The second step is to find deformation of the Kähler-Einstein metrics with respect to the Kuranishi-divergence gauge.

It turns out that similar results hold in our situation if we replace the relative canonical bundle used in [28] by the relative anti-canonical bundle. Let (X_{0}, ω_{0}) be a Fano Kähler-Einstein manifold and let (\mathfrak{X}, B, π) be the Kuranishi family with respect to ω_{0}. Note that for any positive integer k, by the Serre duality and Kodaira vanishing theorems, we have

$$
\begin{equation*}
h^{i}\left(X_{t}, K_{X_{t}}^{-k}\right)=h^{n-i}\left(X_{t}, K_{X_{t}}^{k+1}\right)=0 \tag{4.2}
\end{equation*}
$$

for all $1 \leq i \leq n$ since $K_{X_{t}}^{k+1}$ is negative. Thus, by the Riemann-Roch theorem, we know that $h^{0}\left(X_{t}, K_{X_{t}}^{-k}\right)$ remain constant for all $t \in B$. This implies that the direct image sheaf $R^{0} \pi_{*} K_{\mathfrak{X} / B}^{-k}$ is a holomorphic vector bundle over B. We denote this bundle by E_{k} and its rank by N_{k}.

Similar to the work in [33], we define the linear map $\sigma_{t}: A^{0}\left(X_{0}, K_{X_{0}}^{-k}\right) \rightarrow$ $A^{0}\left(X_{t}, K_{X_{t}}^{-k}\right)$ by

$$
\begin{equation*}
\left.\sigma_{t}(s)=(\operatorname{det}(I-\varphi(t) \overline{\varphi(t)}))^{-k}\left(s^{\frac{1}{k}}\right\lrcorner e^{-\overline{\varphi(t)}}\right)^{k} . \tag{4.3}
\end{equation*}
$$

It is easy to see that σ_{t} is well-defined and is an isomorphism if $|t|$ is small. Furthermore, a direct computation shows that $\sigma_{t}(s)$ is a holomorphic section of $K_{X_{t}}^{-k}$ if and only if

$$
\begin{equation*}
\left.\bar{\partial}_{0} s=\varphi(t)\right\lrcorner \nabla_{0} s \tag{4.4}
\end{equation*}
$$

where ∇_{0} is the metric connection on $K_{X_{0}}^{-k}$ induced by the Kähler-Einstein metric on X_{0}. By using (4.2), equation (4.4) can be solved inductively. Indeed, given any holomorphic section $s \in H^{0}\left(X_{0}, K_{X_{0}}^{-k}\right)$, we look for a power series solution

$$
\begin{equation*}
s(t)=s+\sum_{|I| \geq 1} s_{I} t^{I} \in A^{0}\left(X_{0}, K_{X_{0}}^{-k}\right) \tag{4.5}
\end{equation*}
$$

to equation (4.4) with normalization $\mathbb{H}_{0}(s(t))=s$. By induction, it is not hard to see that

$$
\begin{equation*}
\left.s_{I}=\bar{\partial}_{0}^{*} G_{0}\left(\sum_{J+K=I} \varphi_{J}\right\lrcorner \nabla_{0} s_{K}\right) . \tag{4.6}
\end{equation*}
$$

Furthermore, standard elliptic estimates imply that the power series (4.5) converges in any $C^{p, \alpha}$ norm when t is sufficiently small. Similar to the work in [28], we have
Theorem 4.1 For any holomorphic section $s \in H^{0}\left(X_{0}, K_{X_{0}}^{-k}\right)$, the power series solution (4.5) satisfies $\mathbb{H}_{0}(s(t))=s$ and $\sigma_{t}(s(t)) \in H^{0}\left(X_{t}, K_{X_{t}}^{-k}\right)$ for each $t \in B$. Furthermore, by shrinking B if necessary, if $\left\{s_{i}\right\}_{1 \leq i \leq N_{k}} \subset H^{0}\left(X_{0}, K_{X_{0}}^{-k}\right)$ is a basis then $\left\{\sigma_{t}\left(s_{i}(t)\right)\right\}_{1 \leq i \leq N_{k}} \subset H^{0}\left(X_{t}, K_{X_{t}}^{-k}\right)$ is also a basis for all $t \in B$.
Remark 9 A direct computation shows that

$$
\begin{aligned}
\left.\varphi_{J}\right\lrcorner \nabla_{0} s_{K} & =\operatorname{div}_{0}\left(\varphi_{J} \otimes s_{K}\right)-\left(\operatorname{div}_{0} \varphi_{J}\right) \otimes s_{K} \\
& =\operatorname{div}_{0}\left(\varphi_{J} \otimes s_{K}\right),
\end{aligned}
$$

where the last equality follows from Theorem 2.2. Thus formula (4.6) is equivalent to

$$
\begin{equation*}
s_{I}=\bar{\partial}_{0}^{*} G_{0}\left(\sum_{J+K=I} \operatorname{div}_{0}\left(\varphi_{J} \otimes s_{K}\right)\right) \tag{4.7}
\end{equation*}
$$

If we assume each X_{t} admits a Kähler-Einstein metric g_{t} with volume form V_{t}, then the L^{2} metric $H_{k}(V)$ on $E_{k}=R^{0} \pi_{*} K_{\mathfrak{X} / B}^{-k}$ is given by

$$
\begin{equation*}
\left\langle s_{1}, s_{2}\right\rangle_{H_{k}(V)}=\int_{X_{t}}\left\langle s_{1}, s_{2}\right\rangle_{g_{t}^{k}} d V_{t} \tag{4.8}
\end{equation*}
$$

for each $t \in B$ and $s_{1}, s_{2} \in H^{0}\left(X_{t}, K_{X_{t}}^{-k}\right)$, where $V=\left\{V_{t}\right\}_{t \in B}$ and g_{t}^{k} is the metric on $K_{X_{t}}^{-k}$ induced by the Kähler-Einstein metric g_{t} on X_{t}. It is clear that the L^{2} metric $H_{k}(V)$ on E_{k} depends on the choice of the smooth family of fiberwise Kähler-Einstein metrics.

In order to compute the curvature of the L^{2} metric, we need the deformation formulas of V_{t}. By using the Kuranishi-divergence gauge, we view each X_{t} as the background smooth manifold X equipped with the complex structure J_{t} obtained by deforming the complex structure on X_{0} via $\varphi(t)$. Thus we can view $\left\{V_{t}\right\}_{t \in B}$ as families of differential forms on X. Similar to the work in [28], by deforming the corresponding Monge-Ampére equation, we have

Theorem 4.2 Let $\left(X_{0}, \omega_{0}\right)$ be a Fano Kähler-Einstein manifold with Kuranishi family (\mathfrak{X}, B, π). We assume that each X_{t} admits a Kähler-Einstein metric. Let $V=\left\{V_{t}\right\}$ be a smooth family of Kähler-Einstein volume forms and we write $V_{t}=e^{\rho} \operatorname{det}(I-\varphi(t) \overline{\varphi(t)}) V_{0}$ for some $\rho \in C^{\infty}\left(X_{0}, \mathbb{R}\right)$. Then ρ has an expansion of the form

$$
\begin{equation*}
\rho=\sum_{i} t_{i} \rho_{i}+\sum_{j} \bar{t}_{j} \bar{\rho}_{j}+\sum_{i, j} t_{i} \bar{t}_{j} \rho_{i \bar{j}}+O\left(t_{i} t_{k}\right)+O\left(\bar{t}_{j} \bar{t}_{l}\right)+O\left(|t|^{3}\right), \tag{4.9}
\end{equation*}
$$

where
(1) $\left(\Delta_{0}+1\right) \rho_{i}=0$;
(2) $\left(\Delta_{0}+1\right) \rho_{i \bar{j}}=\varphi_{i} \cdot \bar{\varphi}_{j}-g_{0}^{\alpha \bar{\beta}} g_{0}^{\gamma \bar{\delta}} \partial_{\alpha} \partial_{\bar{\delta}} \rho_{i} \partial_{\gamma} \partial_{\bar{\beta}} \bar{\rho}_{j}$.

Remark 10 Since the Kähler forms $\left\{\omega_{t}\right\}$ of the Kähler-Einstein metrics $\left\{g_{t}\right\}$ are given by $\omega_{t}=-\frac{\sqrt{-1}}{2} \partial_{t} \bar{\partial}_{t} \log V_{t}$, formula (4.9) also leads to the expansion of the KählerEinstein Kähler forms $\left\{\omega_{t}\right\}$. Furthermore, we can also eliminate both the $t_{i} t_{k}$ and $\bar{t}_{j} \bar{t}_{l}$ terms in the expansion (4.9) by modifying V via a biholomorphism of \mathfrak{X}. However, we do not need these facts in the following discussion.

To effectively compute the curvature of the L^{2} metric $\langle\cdot, \cdot\rangle_{H_{k}(V)}$ for any chosen family of Kähler-Einstein volume forms V, we need to adjust the total space \mathfrak{X} without altering the Kuranishi gauge. We shall consider a certain special biholomorphism
$F: \mathfrak{X} \rightarrow \mathfrak{X}$ which covers the identity map of B and we let $F_{t}=\left.F\right|_{X_{t}} \in \operatorname{Aut}\left(X_{t}\right)$. By Corollary 2.2, we know that F_{t} preserves $\varphi(t)$. Such a map F would induce a biholomorphic bundle map $\widetilde{F}: E_{k} \rightarrow E_{k}$, which is indeed a Hermitian isometry $\widetilde{F}:\left(E_{k},\langle\cdot, \cdot\rangle_{H_{k}(V)}\right) \rightarrow\left(E_{k},\langle\cdot, \cdot\rangle_{H_{k}\left(\left(F^{-1}\right)^{*} V\right)}\right)$.

For any smooth family V of Kähler-Einstein volume forms, we let $\rho=\rho^{V}$ be the function as in Theorem 4.2. The family V is said to be normalized if $\rho_{i}^{V}=0$ for each i. We now construct the special biholomorphism F of \mathfrak{X}, covering the identity map of B, such that $F^{*} V$ is normalized. For a given family V, by Theorem 4.2 we know that $\rho_{i}^{V} \in \Lambda_{1}^{\mathbb{C}}$ is an eigenfunction of $\Delta_{0}+1$, hence $\mu_{i}=\nabla_{0}^{1,0} \rho_{i}^{V} \in H^{0}\left(X_{0}, T^{1,0} X_{0}\right)$ is a holomorphic vector field on X_{0}. Since we have assumed that each X_{t} admits a KählerEinstein metric, by Theorem 3.1 we know that $h^{0}\left(X_{0}, T^{1,0} X_{0}\right)=h^{0}\left(X_{t}, T^{1,0} X_{t}\right)$ for each $t \in B$. It follows from Kodaira's stability theorem that each μ_{i} can be extended to a family $\mu_{i}(t)$ of vector fields such that
(i) $\mu_{i}(t) \in H^{0}\left(X_{t}, T^{1,0} X_{t}\right)$ for each $t \in B$, and
(ii) $\mu_{i}(t)$ depends on t holomorphically.

We let $\mu(t)=\sum_{i} t_{i} \mu_{i}(t) \in H^{0}\left(\mathfrak{X}, T_{\mathfrak{X} / B}^{1,0}\right)$ and let F be the time-one flow of $\mu(t)$. Since $\left.\frac{\partial}{\partial t_{i}}\right|_{t=0} F=\mu_{i}$ and $\operatorname{div}_{0} \mu_{i}=-\Delta_{0} \rho_{i}^{V}=\rho_{i}^{V}$, it follows from direct computations that $F^{*} V$ is normalized. Thus, to compute the curvature of $\left(E_{k},\langle\cdot, \cdot\rangle_{H_{k}(V)}\right)$, we can always assume that V is normalized. In this case, it follows from Theorem 4.2 and $\rho_{i}^{V}=0$ that $\left(\Delta_{0}+1\right) \rho_{i \bar{j}}^{V}=\varphi_{i} \cdot \bar{\varphi}_{j}$. We denote by $\left(\Delta_{0}+1\right)^{-1}\left(\varphi_{i} \cdot \bar{\varphi}_{j}\right)$ the unique solution of this equation which is perpendicular to $\Lambda_{1}^{\mathbb{C}}$. It then follows that

$$
\begin{equation*}
\rho_{i \bar{j}}^{V}=\left(\Delta_{0}+1\right)^{-1}\left(\varphi_{i} \cdot \bar{\varphi}_{j}\right)+v_{i \bar{j}}^{V} \tag{4.10}
\end{equation*}
$$

for some $v_{i \bar{j}}^{V} \in \Lambda_{1}^{\mathbb{C}}$.
The above discussion leads to the approximation of the Weil-Petersson metric $\omega_{W P}$ on the parameter sapce B by the Ricci curvatures of the L^{2} metrics. Such approximations can be seen via the Knudsen-Mumford expansion [11,21,40] and the work of Schumacher [27]. Here we give a simple and direct proof. Moreover, our method gives the curvature tensor of the L^{2} metrics on the direct image sheaves rather than their determinant bundles.

In the following, we will use \square_{0} to denote the Hodge Laplacian on bundles over X_{0} with respect to metrics induced by the Kähler-Einstein metric ω_{0}.

Theorem 4.3 Let $\left(X_{0}, \omega_{0}\right)$ be a Fano Kähler-Einstein manifold with Kuranishi family (\mathfrak{X}, B, π). We assume that each X_{t} admits a Kähler-Einstein metric. Let $\left\{s_{\alpha}\right\} \subset$ $H^{0}\left(X_{0}, K_{X_{0}}^{-k}\right)$ be a basis, V be a smooth family of Kähler-Einstein volume forms, and $\operatorname{Ric}_{k}=\operatorname{Ric}\left(E_{k}, H_{k}(V)\right)$. Then

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \frac{\pi^{n}}{k^{n+1}} \text { Ric }_{k}=-\omega_{W P} \tag{4.11}
\end{equation*}
$$

Proof By the above discussion, we can assume that V is normalized. Let $v_{i \bar{j}}=v_{i \bar{j}}^{V}$ be the function given by equation (4.10). We first show that the curvature tensor of the L^{2} metric $H_{k}(V)$ on E_{k} is given by

$$
\begin{align*}
R_{\alpha \bar{\beta} i \bar{j}}(0)= & (k+1) \int_{X_{0}}\left\langle\left(\square_{0}+k+1\right)^{-1}\left(\varphi_{i} \otimes s_{\alpha}\right), \varphi_{j} \otimes s_{\beta}\right\rangle_{g_{0}} d V_{0} \\
& -(k+1) \int_{X_{0}}\left\langle s_{\alpha}, s_{\beta}\right\rangle_{g_{0}^{k}}\left(\left(\Delta_{0}+1\right)^{-1}\left(\varphi_{i} \cdot \bar{\varphi}_{j}\right)+v_{i \bar{j}}\right) d V_{0} . \tag{4.12}
\end{align*}
$$

To prove this formula, since the curvature of H_{k} is tensorial, we can use the local sections of E_{k} constructed in Theorem 4.1 to compute it. For each s_{α}, let $s_{\alpha}(t) \subset$ $A^{0}\left(X_{0}, K_{X_{0}}^{-k}\right)$ be the sections constructed by formulas (4.5) and (4.6) and let $h_{\alpha \bar{\beta}}(t)=$ $\left\langle\sigma_{t}\left(s_{\alpha}(t)\right), \sigma_{t}\left(s_{\beta}(t)\right)\right\rangle_{H_{k}(V)}$. By Theorems 4.1 and 4.2 , we have

$$
h_{\alpha \bar{\beta}}(t)=\int_{X_{0}}\left\langle s_{\alpha}(t), s_{\beta}(t)\right\rangle_{g_{0}^{k}} e^{(k+1) \rho} \operatorname{det}(I-\varphi(t) \overline{\varphi(t)}) d V_{0},
$$

where ρ is the function defined by

$$
V_{t}=e^{\rho} \operatorname{det}(I-\varphi(t) \overline{\varphi(t)}) V_{0}
$$

Since V is normalized, by formula (4.7), we have

$$
\begin{align*}
\left.\frac{\partial h_{\alpha \bar{\beta}}}{\partial t_{i}}\right|_{t=0} & =\int_{X_{0}}\left\langle\bar{\partial}_{0}^{*} G_{0} \operatorname{div}_{0}\left(\varphi_{i} \otimes s_{\alpha}\right), s_{\beta}\right\rangle_{g_{0}^{k}} d V_{0} \\
& =\int_{X_{0}}\left\langle G_{0} \operatorname{div}_{0}\left(\varphi_{i} \otimes s_{\alpha}\right), \bar{\partial}_{0} s_{\beta}\right\rangle_{g_{0}^{k}} d V_{0}=0, \tag{4.13}
\end{align*}
$$

because s_{β} is holomorphic. Similarly, we have $\left.\frac{\partial h_{\alpha \bar{\beta}}}{\partial \bar{t}_{j}}\right|_{t=0}=0$ and

$$
\begin{align*}
\left.\frac{\partial^{2} h_{\alpha \bar{\beta}}}{\partial t_{i} \partial \bar{t}_{j}}\right|_{t=0}= & \left\langle\bar{\partial}_{0}^{*} G_{0} \operatorname{div}_{0}\left(\varphi_{i} \otimes s_{\alpha}\right), \bar{\partial}_{0}^{*} G_{0} \operatorname{div}_{0}\left(\varphi_{j} \otimes s_{\beta}\right)\right\rangle_{L^{2}} \\
& +\int_{X_{0}}\left\langle s_{\alpha}, s_{\beta}\right\rangle_{g_{0}^{k}}\left((k+1)\left(\left(\Delta_{0}+1\right)^{-1}\left(\varphi_{i} \cdot \bar{\varphi}_{j}\right)+v_{i \bar{j}}\right)-\left(\varphi_{i} \cdot \bar{\varphi}_{j}\right)\right) d V_{0} . \tag{4.14}
\end{align*}
$$

Now we analyze the first term on the right hand side of the above formula. Note that, by the proof of Theorem 4.1, we have

$$
\begin{aligned}
\bar{\partial}_{0} \operatorname{div}_{0}\left(\varphi_{i} \otimes s_{\alpha}\right) & \left.=\bar{\partial}_{0}\left(\varphi_{i}\right\lrcorner \nabla_{0} s_{\alpha}\right) \\
& \left.\left.=\bar{\partial}_{0} \varphi_{i}\right\lrcorner \nabla_{0} s_{\alpha}-2 k \sqrt{-1}\left(\varphi_{i}\right\lrcorner \omega_{0}\right) \otimes s_{\alpha}=0 .
\end{aligned}
$$

It follows that

$$
\begin{equation*}
\bar{\partial}_{0} G_{0} \operatorname{div}_{0}\left(\varphi_{i} \otimes s_{\alpha}\right)=0 . \tag{4.15}
\end{equation*}
$$

Integrating by parts, we get
$\left\langle\bar{\partial}_{0}^{*} G_{0} \operatorname{div}_{0}\left(\varphi_{i} \otimes s_{\alpha}\right), \bar{\partial}_{0}^{*} G_{0} \operatorname{div}_{0}\left(\varphi_{j} \otimes s_{\beta}\right)\right\rangle_{L^{2}}=\left\langle\operatorname{div}_{0}^{*} G_{0} \operatorname{div}_{0}\left(\varphi_{i} \otimes s_{\alpha}\right), \varphi_{j} \otimes s_{\beta}\right\rangle_{L^{2}}$.

By using Eq. (4.15) and the fact that $\bar{\partial}_{0}\left(\varphi_{i} \otimes s_{\alpha}\right)=0$, a simple computation shows that

$$
\begin{aligned}
\operatorname{div}_{0}^{*} G_{0} \operatorname{div}_{0}\left(\varphi_{i} \otimes s_{\alpha}\right) & =\left(\square_{0}+k+1\right)^{-1}\left(\operatorname{div}_{0}^{*} \operatorname{div}_{0}\left(\varphi_{i} \otimes s_{\alpha}\right)\right) \\
& =\left(\square_{0}+k+1\right)^{-1} \square_{0}\left(\varphi_{i} \otimes s_{\alpha}\right) \\
& =\varphi_{i} \otimes s_{\alpha}-(k+1)\left(\square_{0}+k+1\right)^{-1}\left(\varphi_{i} \otimes s_{\alpha}\right)
\end{aligned}
$$

Thus

$$
\begin{aligned}
& \left\langle\bar{\partial}_{0}^{*} G_{0} \operatorname{div}_{0}\left(\varphi_{i} \otimes s_{\alpha}\right), \bar{\partial}_{0}^{*} G_{0} \operatorname{div}_{0}\left(\varphi_{j} \otimes s_{\beta}\right)\right\rangle_{L^{2}} \\
& =\left\langle\varphi_{i} \otimes s_{\alpha}, \varphi_{j} \otimes s_{\beta}\right\rangle_{L^{2}}-(k+1)\left\langle\left(\square_{0}+k+1\right)^{-1}\left(\varphi_{i} \otimes s_{\alpha}\right), \varphi_{j} \otimes s_{\beta}\right\rangle_{L^{2}} .
\end{aligned}
$$

Inserting this into equation (4.14), we get

$$
\begin{align*}
\left.\frac{\partial^{2} h_{\alpha \bar{\beta}}}{\partial t_{i} \partial \bar{t}_{j}}\right|_{t=0}= & (k+1) \int_{X_{0}}\left\langle s_{\alpha}, s_{\beta}\right\rangle_{g_{0}^{k}}\left(\left(\Delta_{0}+1\right)^{-1}\left(\varphi_{i} \cdot \bar{\varphi}_{j}\right)+v_{i \bar{j}}\right) d V_{0} \tag{4.16}\\
& -(k+1) \int_{X_{0}}\left\langle\left(\square_{0}+k+1\right)^{-1}\left(\varphi_{i} \otimes s_{\alpha}\right), \varphi_{j} \otimes s_{\beta}\right\rangle_{g_{0}} d V_{0}
\end{align*}
$$

The curvature formula (4.12) of the metric $H_{k}(V)$ now follows easily from the above formula and Eq. (4.13).

To estimate the limit of Ricci curvatures, we take any vector $v \in T_{0}^{1,0} B$. By rotation and scaling, we can assume $v=\frac{\partial}{\partial t_{1}}$. Let $\left\{s_{\alpha}\right\} \subset H^{0}\left(X_{0}, K_{X_{0}}^{-k}\right)$ be an orthonormal basis with respect to the L^{2} metric. By formula (4.12), we have

$$
\begin{align*}
\frac{1}{k+1} \operatorname{Ric}_{k}(v, v)= & \sum_{\alpha} \int_{X_{0}}\left\langle\left(\square_{0}+k+1\right)^{-1}\left(\varphi_{1} \otimes s_{\alpha}\right), \varphi_{1} \otimes s_{\alpha}\right\rangle_{g_{0}} d V_{0} \tag{4.17}\\
& -\int_{X_{0}} \tau_{k}\left(\left(\Delta_{0}+1\right)^{-1}\left(\left|\varphi_{1}\right|^{2}\right)+v_{1 \overline{1}}\right) d V_{0}
\end{align*}
$$

where $\tau_{k}=\sum_{\alpha}\left\|s_{\alpha}\right\|_{g_{0}^{k}}^{2}$ is the Bergman kernel function. Since the operator $\square_{0}+k+1$ is self-adjoint and its first eigenvalue is at least $k+1$, we have

$$
\begin{aligned}
0 & \leq \sum_{\alpha} \int_{X_{0}}\left\langle\left(\square_{0}+k+1\right)^{-1}\left(\varphi_{1} \otimes s_{\alpha}\right), \varphi_{1} \otimes s_{\alpha}\right\rangle_{g_{0}} d V_{0} \\
& \leq \sum_{\alpha} \frac{1}{k+1} \int_{X_{0}}\left\langle\varphi_{1} \otimes s_{\alpha}, \varphi_{1} \otimes s_{\alpha}\right\rangle_{g_{0}} d V_{0} \\
& =\sum_{\alpha} \frac{1}{k+1} \int_{X_{0}}\left|\varphi_{1}\right|^{2}\left\|s_{\alpha}\right\|_{g_{0}^{k}}^{2} d V_{0}=\frac{1}{k+1} \int_{X_{0}} \tau_{k}\left|\varphi_{1}\right|^{2} d V_{0}
\end{aligned}
$$

Combining the above inequality with equation (4.17), we have

$$
\begin{align*}
0 & \leq \frac{1}{k+1} \operatorname{Ric}_{k}(v, v)+\int_{X_{0}} \tau_{k}\left(\Delta_{0}+1\right)^{-1}\left(\left|\varphi_{1}\right|^{2}\right) d V_{0} \\
& \leq \frac{1}{k+1} \int_{X_{0}} \tau_{k}\left|\varphi_{1}\right|^{2} d V_{0} \tag{4.18}
\end{align*}
$$

By the Bergman kernel expansion (see [19,31,37,39])

$$
\tau_{k}=\frac{k^{n}}{\pi^{n}}+\frac{n k^{n-1}}{2 \pi^{n}}+O\left(k^{n-2}\right)
$$

and the fact that

$$
\omega_{W P}(v, v)=\int_{X_{0}}\left(\Delta_{0}+1\right)^{-1}\left(\left|\varphi_{1}\right|^{2}\right) d V_{0}
$$

we have

$$
\begin{aligned}
& \lim _{k \rightarrow \infty} \frac{\pi^{n}}{k^{n}} \int_{X_{0}} \tau_{k}\left(\left(\Delta_{0}+1\right)^{-1}\left(\left|\varphi_{1}\right|^{2}\right)+v_{1 \overline{1}}\right) d V_{0} \\
& =\int_{X_{0}}\left(1+\frac{n}{2 k}+O\left(k^{-2}\right)\right)\left(\Delta_{0}+1\right)^{-1}\left(\left|\varphi_{1}\right|^{2}\right) d V_{0}+\lim _{k \rightarrow \infty} \frac{\pi^{n}}{k^{n}} \int_{X_{0}} \tau_{k} v_{1 \overline{1}} d V_{0} \\
& =\omega_{W P}(v, v)-\lim _{k \rightarrow \infty} \int_{X_{0}}\left(1+\frac{n}{2 k}+O\left(k^{-2}\right)\right) \Delta_{0} v_{1 \overline{1}} d V_{0} \\
& =\omega_{W P}(v, v)
\end{aligned}
$$

and

$$
\lim _{k \rightarrow \infty} \frac{\pi^{n}}{k^{n}}\left(\frac{1}{k+1} \int_{X_{0}} \tau_{k}\left|\varphi_{1}\right|^{2} d V_{0}\right)=0
$$

Thus, (4.11) follows from inequality (4.18) and the above limits directly.

5 Plurisubharmonicity of energy of harmonic maps

Another application of the deformation of Kähler-Einstein metrics, such as Theorem 4.2, is the variation of energy of harmonic maps. In [34], Toledo studied the harmonic maps from hyperbolic Riemann surfaces to a fixed Riemannian manifold (N, h). For a Riemann surface Σ, fixing a homotopy class A of continuous maps from Σ to N and assuming that the sectional curvature of N is nonpositive, there exist smooth harmonic maps from Σ to N in the homotopy class A. Although such harmonic maps may not be unique, the energy depends only on the conformal structure of Σ, thus one obtains an energy function E on the Teichmüller space \mathcal{T} of Σ. Toledo showed that if one further assumes that the curvature of N is Hermitian nonpositive, then E is a plurisubharmonic function on \mathcal{T}. Shortly after Toledo's work, Yau pointed out that such construction can be used to study the Teichmüller spaces of higher dimensional Kähler-Einstein manifolds and the plurisubharmonicity of the energy functions should hold in these cases. This was carried out in [41] back in 2014.

Let (X, ω) be a Kähler manifold with metric g and let (N, h) be a Riemannian manifold. To ensure the existence of harmonic maps, we assume that N has nonpositive sectional curvature. A $W^{1,2}$-map $f: X \rightarrow N$ is harmonic if it minimizes the energy

$$
E(f)=\int_{X}|\partial f|^{2} \frac{\omega^{n}}{n!}
$$

in its homotopy class. In this case, f is indeed smooth and satisfies the Euler-Lagrange equation

$$
\begin{equation*}
\Delta f^{\alpha}+\Gamma_{\beta \gamma}^{\alpha}(f) \frac{\partial f^{\beta}}{\partial z_{i}} \frac{\partial f^{\gamma}}{\partial \bar{z}_{j}} g^{i \bar{j}}=0 \tag{5.1}
\end{equation*}
$$

where $\Gamma_{\beta \gamma}^{\alpha}$ is the Christoffell symbol of h. Furthermore, the Hopf differential of f is the section

$$
H(f)=\frac{\partial f^{\alpha}}{\partial z_{i}} \frac{\partial f^{\beta}}{\partial z_{k}} h_{\alpha \beta} d z_{i} \otimes d z_{k}
$$

of $S^{2} \Omega^{1,0} X$. The curvature of (N, h) is Hermitian nonpositive if $R^{N}(u, v, \bar{u}, \bar{v}) \leq 0$ for each point $p \in N$ and all complex tangent vectors $u, v \in T_{p}^{\mathbb{C}} N$. If $f: X \rightarrow N$ is harmonic, then by using Eq. (5.1) we have the Siu-Sampson identity

$$
\begin{equation*}
\operatorname{div}(\operatorname{div}(H(f)))=-R_{\alpha \beta \gamma \delta}^{N} \frac{\partial f^{\alpha}}{\partial z_{i}} \frac{\partial f^{\gamma}}{\partial \bar{z}_{j}} \frac{\partial f^{\beta}}{\partial z_{k}} \frac{\partial f^{\delta}}{\partial \bar{z}_{l}} g^{i \bar{j}} g^{k \bar{l}}+\left\|\nabla^{1,0} \bar{\partial} f\right\|^{2} . \tag{5.2}
\end{equation*}
$$

The following result was shown in Sampson [26].

Theorem 5.1 If the curvature of (N, h) is Hermitian nonpositive and $f: X \rightarrow N$ is a harmonic map, then $\nabla^{1,0} \bar{\partial} f=0$ and

$$
R_{\alpha \beta \gamma \delta}^{N} \frac{\partial f^{\alpha}}{\partial z_{i}} \frac{\partial f^{\gamma}}{\partial \bar{z}_{j}} \frac{\partial f^{\beta}}{\partial z_{k}} \frac{\partial f^{\delta}}{\partial \bar{z}_{l}} g^{i \bar{j}} g^{k \bar{l}}=0 .
$$

In view of constructing nontrivial plurisubharmonic functions on the Teichmüller spaces of Kähler-Einstein manifolds by using energy of harmonic maps, the Bochner formula implies that the only interesting case is that when each Kähler-Einstein manifold is of general type.

Let $\left(X_{0}, \omega_{0}\right)$ be a Kähler-Einstein manifold of general type, and $\varphi_{1}, \ldots, \varphi_{m} \in$ $\mathbb{H}^{0,1}\left(X_{0}, T^{1,0} X_{0}\right)$ be a basis of harmonic Beltrami differentials. We consider the power series $\varphi(t)$ as in Eq. (2.4) which is the solution of the Kuranishi equation (2.3). In this section, we give a formal discussion of the plurisubharmonicity of the energy of harmonic maps. The study of nonsmoothness of the Kuranishi space of X_{0}, the existence of smooth family of harmonic maps and the asymptotic behavior of the energy function will be discussed elsewhere since they are of independent interests. Thus we assume the deformation of the complex structure on X_{0} is unobstructed. Let (\mathfrak{X}, B, π) be the Kuranishi family of X_{0} as constructed in Sect. 2. It was shown in [28] that, in this case, the Kuranishi gauge is equivalent to the divergence gauge. In particular, we have

$$
\begin{equation*}
\varphi(t)\lrcorner \omega_{0}=0 . \tag{5.3}
\end{equation*}
$$

To simplify the notation, we assume $m=1$. The general case follows from the same type of computations. The deformation of Kähler-Einstein metrics in this case was established in [28]. We let V_{t} and ω_{t} be the volume form and the Kähler form of the Kähler-Einstein metric on X_{t}, respectively. Then

$$
\begin{align*}
d V_{t} & =\left(1+|t|^{2} \Delta_{0}\left(1-\Delta_{0}\right)^{-1}\left(\left|\varphi_{1}\right|^{2}\right)+O\left(|t|^{3}\right)\right) d V_{0} \\
\omega_{t} & =\omega_{0}+|t|^{2}\left(\frac{\sqrt{-1}}{2} \partial_{0} \bar{\partial}_{0}\left(\left(1-\Delta_{0}\right)^{-1}\left|\varphi_{1}\right|^{2}\right)\right)+O\left(|t|^{3}\right) . \tag{5.4}
\end{align*}
$$

Now we let (N, h) be a Riemannian manifold of nonpositive sectional curvature, A be a homotopy class of maps from X_{0} to N, and $F: \mathfrak{X} \rightarrow N$ be a smooth map such that each $f_{t}=\left.F\right|_{X_{t}}: X_{t} \rightarrow N$ is a harmonic map in the class A. We note that the energy function $E(t, \bar{t})=E\left(f_{t}\right)$ is independent of the choice of F and is a function on B.

Theorem 5.2 The first variation of E is given by

$$
\begin{equation*}
\left.\left.\frac{\partial E}{\partial t}\right|_{t=0}=-\int_{X_{0}} \Lambda\left(\varphi_{1}\right\lrcorner H\left(f_{0}\right)\right) d V_{0} \tag{5.5}
\end{equation*}
$$

and the second variation of E is given by

$$
\begin{align*}
\left.\frac{\partial^{2} E}{\partial t \partial \bar{t}}\right|_{t=0}= & -\int_{X_{0}} R_{\alpha \beta \gamma \delta}^{N} \partial_{i} f_{0}^{\alpha} \partial_{\bar{j}} f_{0}^{\gamma} \partial_{p} f_{0}^{\beta} \partial_{\bar{q}} f_{0}^{\delta} g^{i \bar{j}} g^{p \bar{q}} K d V_{0}+\int_{X_{0}}\left\|\nabla^{1,0} \bar{\partial} f_{0}\right\|^{2} K d V_{0} \\
& \left.-2 \int_{X_{0}} g^{i \bar{j}} R_{\alpha \beta \gamma \delta}^{N} \partial_{i} f_{0}^{\alpha} \partial_{\bar{j}} f_{0}^{\gamma} u^{\beta} \bar{u}^{\delta} d V_{0}+2 \int_{X_{0}} \| \nabla^{1,0} \bar{u}-\bar{\varphi}_{1}\right\lrcorner \bar{\partial} f_{0} \|^{2} d V_{0}, \tag{5.6}
\end{align*}
$$

where $u=\left.\frac{\partial f_{t}}{\partial t}\right|_{t=0} \in \Gamma\left(f_{0}^{*} T^{\mathbb{C}} N\right)$ and $K=\left(1-\Delta_{0}\right)^{-1}\left(\left|\varphi_{1}\right|^{2}\right)$.
Furthermore, if we assume that the curvature of (N, h) is Hermitian nonpositive then the second variation of E can be expressed as

$$
\begin{equation*}
\left.\left.\frac{\partial^{2} E}{\partial t \partial \bar{t}}\right|_{t=0}=-2 \int_{X_{0}} g^{i \bar{j}} R_{\alpha \beta \gamma \delta}^{N} \partial_{i} f_{0}^{\alpha} \partial_{\bar{j}} f_{0}^{\gamma} u^{\beta} \bar{u}^{\delta} d V_{0}+2 \int_{X_{0}} \| \nabla^{1,0} \bar{u}-\bar{\varphi}_{1}\right\lrcorner \bar{\partial} f_{0} \|^{2} d V_{0} \tag{5.7}
\end{equation*}
$$

In particular, in this case, the energy function E is plurisubharmonic on B.
Proof Formulas (5.4) and (2.7) give us complete information about the operators ∂_{t} and $\bar{\partial}_{t}$, as well as the Kähler-Einstein metric on X_{t}. Thus, by using formula (5.3) and the harmonic map equation (5.1), the first variation formula (5.5) follows from integration by parts. This also leads to the following expression of the second variation of E :

$$
\begin{align*}
\left.\frac{\partial^{2} E}{\partial t \partial \bar{t}}\right|_{t=0}= & \int_{X_{0}} h_{\alpha \beta} \partial_{i} f_{0}^{\alpha} \partial_{\bar{j}} f_{0}^{\beta} g^{i \bar{j}} \Delta_{0} K d V_{0}-\int_{X_{0}} h_{\alpha \beta} \partial_{i} f_{0}^{\alpha} \partial_{\bar{j}} f_{0}^{\beta} g^{i \bar{q}} g^{p^{\bar{j}}} \partial_{p} \partial_{\bar{q}} K d V_{0} \\
& \left.-2 \int_{X_{0}} g^{i \bar{j}} R_{\alpha \beta \gamma \delta}^{N} \partial_{i} f_{0}^{\alpha} \partial_{\bar{j}} f_{0}^{\gamma} u^{\beta} \bar{u}^{\delta} d V_{0}+2 \int_{X_{0}} \| \nabla^{1,0} \bar{u}-\bar{\psi}\right\lrcorner \bar{\partial} f_{0} \|^{2} d V_{0} \tag{5.8}
\end{align*}
$$

Formula (5.6) now follows from 5.8 by integration by parts. Furthermore, if we assume the curvature of N is Hermitian nonpositive then, by the Siu-Sampson vanishing Theorem 5.1, the first two terms on the right hand side of the second variation formula (5.6) vanish, thus we have formula (5.7). The plurisubharmonicity of E now follows immediately from the Hermitian nonpositivity of the curvature of N.

Acknowledgements We would like to thank T. Collins and J. Keller for their helpful comments on an earlier version of the paper. We would also like to thank the anonymous referee for providing helpful comments. The second named author would also like to thank S. K. Donaldson, D. H. Phong, R. Schoen and X. Wang for helpful discussions.

Declarations

Data availability No data associate for the submission.

References

1. Berman, R.J.: K-polystability of \mathbb{Q}-Fano varieties admitting Kähler-Einstein metrics. Invent. Math. 203(3), 973-1025 (2016)
2. Brönnle, A.: Deformation constructions of extremal metrics. Ph.D. thesis, Imperial College (2011)
3. Calabi, E.: Extremal Kähler metrics II. Differential Geometry and Complex Analysis, pp. 95-114. Springer, Berlin (1985)
4. Cao, H.-D., Sun, X., Yau, S.-T., Zhang, Y.: Weil-Petersson metrics on deformation spaces. J. Iran. Math. Soc. 1(1), 117-128 (2020)
5. Catanese, F.: Theory of Moduli (Montecatini Terme, 1985), Volume 1337 Moduli of algebraic surfaces. Lecture Notes in Mathematic, pp. 1-83. Springer, Berlin (1988)
6. Chen, X., Donaldson, S., Sun, S.: Kähler-Einstein metrics on Fano manifolds. I: Approximation of metrics with cone singularities. J. Am. Math. Soc. 28(1), 183-197 (2015)
7. Chen, X., Donaldson, S., Sun, S.: Kähler-Einstein metrics on Fano manifolds. II: Limits with cone angle less than 2π. J. Am. Math. Soc. 28(1), 199-234 (2015)
8. Chen, X., Donaldson, S., Sun, S.: Kähler-Einstein metrics on Fano manifolds III: Limits as cone angle approaches 2π and completion of the main proof. J. Am. Math. Soc. 28(1), 235-278 (2015)
9. Donaldson, S.K., Kronheimer, P.B.: The Geometry of Four-Manifolds. Oxford Mathematical Monographs. Oxford University Press, New York (1990)
10. Fujiki, A., Schumacher, G.: The moduli space of extremal compact Kähler manifolds and generalized Weil-Petersson metrics. Publ. Res. Inst. Math. Sci. 26(1), 101-183 (1990)
11. Knudsen, F.F., Mumford, D.: The Projectivity of the Moduli Space of Stable Curves. I. Preliminaries on "det"and "Div". Math. Scand. 39(1), 19-55 (1976)
12. Futaki, A.: An obstruction to the existence of Einstein Kähler metrics. Invent. Math. 73(3), 437-443 (1983)
13. Kodaira, K.: Complex Manifolds and Deformation of Complex Structures, Volume 283, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer, New York (1986). Translated from the Japanese by Kazuo Akao, With an appendix by Daisuke Fujiwara
14. Kodaira, K., Spencer, D.C.: On the variation of almost-complex structure. Algebraic Geometry and Topology. A Symposium in Honor of S. Lefschetz, pp. 139-150. Princeton University Press, Princeton (1957)
15. Koiso, N.: Einstein metrics and complex structures. Invent. Math. 73(1), 71-106 (1983)
16. Kuranishi, M.: On the locally complete families of complex analytic structures. Ann. Math. 2(75), 536-577 (1962)
17. Kuranishi, M.: New proof for the existence of locally complete families of complex structures. In: Proceedings of Conference on Complex Analysis (Minneapolis, 1964). Springer, Berlin, pp. 142-154 (1965)
18. LeBrun, C., Simanca, S.R.: Extremal Kähler metrics and complex deformation theory. Geom. Funct. Anal. 4(3), 298-336 (1994)
19. Lu, Z.: On the lower order terms of the asymptotic expansion of Tian-Yau-Zelditch. Am. J. Math. 122(2), 235-273 (2000)
20. Matsushima, Y.: Sur les espaces homogènes kählériens d'un groupe de Lie réductif. Nagoya Math. J. 11, 53-60 (1957)
21. Phong, D.H., Ross, J., Sturm, J.: Deligne pairings and the Knudsen-Mumford expansion. J. Differ. Geom. 78(3), 475-496 (2008)
22. Phong, D.H., Song, J., Sturm, J., Weinkove, B.: The Kähler-Ricci flow with positive bisectional curvature. Invent. Math. 173(3), 651-665 (2008)
23. Phong, D.H., Song, J., Sturm, J., Weinkove, B.: The Kähler-Ricci flow and the $\bar{\partial}$ operator on vector fields. J. Differ. Geom. 81(3), 631-647 (2009)
24. Phong, D.H., Sturm, J.: On stability and the convergence of the Kähler-Ricci flow. J. Differ. Geom. 72(1), 149-168 (2006)
25. Rollin, Y., Simanca, S.R., Tipler, C.: Deformation of extremal metrics, complex manifolds and the relative Futaki invariant. Math. Z. 273(1-2), 547-568 (2013)
26. Sampson, J.H.: Applications of harmonic maps to Kähler geometry. Complex Differential Geometry and Nonlinear Differential Equations (Brunswick, Maine, 1984). American Mathematical Society, Providence (1986)
27. Schumacher, G.: The curvature of the Petersson-Weil metric on the moduli space of Kähler-Einstein manifolds. Complex Analysis and Geometry, University, Series Mathematics, pp. 339-354. Plenum, New York (1993)
28. Sun, X.: Deformation of canonical metrics I. Asian J. Math. 16(1), 141-155 (2012)
29. Sun, X., Yau, S.-T.: Deformation of Kähler-Einstein metrics. Surveys in Geometric Analysis and Relativity, Volume 20 of Advanced Lectures in Mathematics (ALM), pp. 467-489. Internatinnal Press, Somerville (2011)
30. Székelyhidi, G.: The Kähler-Ricci flow and K-polystability. Am. J. Math. 132(4), 1077-1090 (2010)
31. Tian, G.: On a set of polarized Kähler metrics on algebraic manifolds. J. Differ. Geom. 32(1), 99-130 (1990)
32. Tian, G.: Kähler-Einstein metrics with positive scalar curvature. Invent. Math. 130(1), 1-37 (1997)
33. Todorov, A.N.: The Weil-Petersson geometry of the moduli space of $\mathrm{SU}(n \geq 3)$ (Calabi-Yau) manifolds. I. Commun. Math. Phys. 126(2), 325-346 (1989)
34. Toledo, D.: Hermitian curvature and plurisubharmonicity of energy on Teichmüller space. Geom. Funct. Anal. 22(4), 1015-1032 (2012)
35. Wavrik, J.J.: Obstructions to the existence of a space of moduli. Global Analysis (Papers in Honor of K Kodaira), pp. 403-414. University Tokyo Press, Tokyo (1969)
36. Yau, S.T.: On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation. I. Commun. Pure Appl. Math. 31(3), 339-411 (1978)
37. Yau, S.-T.: Nonlinear analysis in geometry. Monographies de L'Enseignement Mathématique [Monographs of L'Enseignement Mathématique], 33. Série des Conférences de l'Union Mathématique Internationale [Lecture Series of the International Mathematics Union], 8. L'Enseignement Mathématique, Geneva, 1986. 54 pp
38. Yau, S.-T.: Open problems in geometry. Differential Geometry: Partial Differential Equations on Manifolds (Los Angeles, CA, 1990). American Mathematical Society, Providence (1993)
39. Zelditch, S.: Szegö kernels and a theorem of Tian. Int. Math. Res. Not. 6, 317-331 (1998)
40. Zhang, S.: Heights and reductions of semi-stable varieties. Compos. Math. 104, 77-105 (1996)
41. Zhang, Y.: Ph.D. thesis, Lehigh University (2014). https://preserve.lehigh.edu/etd/1689

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

[^0]: Huai-Dong Cao
 huc2@lehigh.edu
 Xiaofeng Sun
 xis205@lehigh.edu
 Shing-Tung Yau
 yau@math.harvard.edu
 Yingying Zhang
 yingyzhang@tsinghua.edu.cn
 1 Department of Mathematics, Lehigh University, Bethlehem, PA 18015, USA
 2 Department of Mathematics, Harvard University, Cambridge, MA 02138, USA
 3 Yau Mathematical Sciences Center, Tsinghua University, Beijing 100084, China

