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Abstract
In this paper, we provide new necessary and sufficient conditions for the existence of
Kähler–Einstein metrics on small deformations of a Fano Kähler–Einstein manifold.
We also show that the Weil–Petersson metric can be approximated by the Ricci curva-
tures of the canonical L2 metrics on the direct image bundles. In addition, we describe
the plurisubharmonicity of the energy functional of harmonic maps on the Kuranishi
space of the deformation of compact Kähler–Einstein manifolds of general type.

1 Introduction

The existence of canonical metrics on compact complex manifolds is an important
component in understanding the structure of the moduli spaces and metrics on them.
Well-known examples include the Weil–Petersson metric on the moduli spaces of
hyperbolic Riemann surfaces, and polarized Calabi–Yau manifolds. The classical
approach to the Weil–Petersson metric is via the Kodaira–Spencer–Kuranishi theory.
In this case, theWeil–Petersson metric is the natural L2 metric induced by the Kähler–
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Einstein metrics and the harmonic representatives of Kodaira–Spencer classes. The
advantage of this classical approach is that we can define the Weil–Petersson metric
pointwisely on the Kuranishi space. This is indeed the case when we study the moduli
spaces of Kähler–Einstein manifolds of general type. Although the moduli spaces are
singular in general, the complexmanifold corresponding to a point in themoduli space
does admit a unique Kähler–Einstein metric, following the work of Yau [36].

On the other hand, when we study the deformation of a Fanomanifold X0, although
the deformation of the complex structure on X0 is unobstructed, there may not be any
Kähler–Einstein metric on such a manifold. By the recent work of Chen–Donaldson–
Sun [6–8] on the solution of the Yau’s conjecture [38], we know that the existence of
Kähler–Einstein metrics on such manifolds is equivalent to the K -stability.

For a Fano Kähler–Einstein manifold (X0, ω0)with discrete holomorphic automor-
phism group Aut (X0), Koiso [15] showed in 1983 that each small deformation of X0
admits a Kähler–Einsteinmetric by using the implicit function theorem. It is more sub-
tle when Aut (X0) is non-discrete. In the latter case, the existence of canonical metrics
such as cscK or extremal metrics were studied by Székelyhidi [30], Brönnle [2], and
Rollin–Simanca–Tipler [25] in terms of the Futaki invariant or the linear stability of
the action of Aut0 (X0) on the Kuranishi space of X0.

In this paper, we study small deformations of Fano Kähler–Einstein manifolds and
investigate the Weil–Petersson metric on their moduli spaces. Our first main result
is the following new necessary and sufficient conditions for the existence of Kähler–
Einstein metrics on small deformations of a Fano Kähler–Einstein manifold.

Theorem 1.1 Let (X0, ω0) be a Fano Kähler–Einstein manifold and let (X, B, π), with
Xt = π−1(t), be the Kuranishi family of X0 with respect to ω0. Then the following
statements are equivalent:

(1) Xt admits a Kähler–Einstein metric for each t ∈ B.
(2) The dimension h0

(
Xt , T 1,0Xt

)
of the space of holomorphic vector fields on Xt

is independent of t for all t ∈ B.
(3) The automorphism group Aut0 (Xt ) is isomorphic to Aut0 (X0) for each t ∈ B.

Remark 1 Since h0
(
Xt , T 1,0Xt

)
is upper semi-continuous in t according to [14],

Theorem 1.1 includes Koiso’s result in [15] as a special case.

Remark 2 In [24], Phong and Sturm introduced a stability condition preventing pos-
sible jump of the dimension of the spaces of holomorphic vector fields in the limit
metric to study the convergence of the Kähler–Ricci flow on Fano manifolds. This
stability condition, namely Condition (B), was further explored in Phong–Song–
Sturm–Weinkove [22]; see also [23].

Remark 3 It is well known that semisimple Lie algebras are rigid. Thus the third
statement of Theorem 1.1 would follow from the second one directly if the Lie algebra
H0

(
X0, T 1,0X0

) ∼= Lie (Aut (X0)) is semisimple. However, H0
(
X0, T 1,0X0

)
is

only reductive in general.

Returning to the study of theWeil–Petersson metric, in [10] Fujiki and Schumacher
defined generalized Weil–Petersson metrics on the deformation space of a family of
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extremal manifolds by pushing down the curvature of relative line bundles over the
total space. In particular, they showed that the generalized Weil–Petersson metric
for a family of Kähler–Einstein manifolds coincides with the classical one. Essen-
tially, assuming the family of Kähler–Einstein metrics is smooth, they showed that the
curvature form of the Deligne pairing of the relative canonical bundle (or relative anti-
canonical bundle) is precisely theWeil–Petersson curvature form; see alsoSchumacher
[27]. In our case, when (X0, ω0) is a Fano Kähler–Einstein manifold with non-discrete
automorphism group, the existence of such smooth family of Kähler–Einstein metrics
is guaranteed by Theorem 1.1 above, provided each fiber Xt admits a Kähler–Einstein
metric. In this case, the Weil–Petersson metric is well-defined. Namely, it is indepen-
dent of the choices of fiberwise Kähler–Einstein metrics. On the other hand, the L2

metrics on R0π∗K −k
X/B and their curvatures do depend on such choices in general.

Again, Theorem 1.1 assures that the L2 metrics are well-defined.
In this paper, we show that the Weil–Petersson metric ωW P can be approximated

by the (normalized) Ricci curvatures of the L2 metrics on the direct image bundles
R0π∗K −k

X/B . More precisely, we have

Theorem 1.2 Let (X0, ω0) be a Fano Kähler–Einstein manifold and let (X, B, π) be
the Kuranishi family of X0. We assume that each fiber Xt admits a Kähler–Einstein
metric. Let � = {ωt } be any smooth family of Kähler–Einstein metrics. For each
positive integer k, let Rick = Ric (Ek, Hk) be the Ricci form of the L2 metric Hk (�)

on Ek = R0π∗K −k
X/B. Then

lim
k→∞

πn

kn+1 Rick = −ωW P .

Remark 4 We note that the above approximation is natural due to the work of Fujiki–
Schumacher on the curvature of the Deligne pairing, and the Knudsen–Mumford
expansion of the determinant bundle of the direct image sheaf R0π∗K −k

X/B (see
Knudsen–Mumford [11], Zhang [40], and Phong–Ross–Sturm [21]). In this paper,
see Sect. 4, we take a more direct approach by establishing canonical local holo-
morphic sections of the direct image sheaves and the deformation of Kähler–Einstein
metrics. This leads to a systematic way to derive integral formulas for the full curvature
tensors of L2 metrics. While the Kähler–Einstein metric on each Xt is analytical in
nature, the advantage of our approach is that we can approximate the Weil–Petersson
metric by using algebraic metrics on each fiber.

The paper is organized as follows. In Sect. 2, in order to give a simple criterion
to check the existence of Kähler–Einstein metrics on small deformations of a Fano
Kähler–Einstein manifold, we first show that, given a Fano Kähler–Einstein manifold
(X0, ω0) and its Kuranishi family (X, B, π) with respect to ω0, the complex structure
on Xt = π−1(t) ⊂ X is compatible with the symplectic formω0. In this case, the con-
struction of the Kuranishi family is compatible with Donaldson’s infinite dimensional
GIT picture. One technical key ingredient is the equivalence of the Kuranishi gauge
and the divergence gauge; see Theorem 2.2. Section 3 is devoted to the proof of Theo-
rem 1.1. In Sect. 4, we investigate the Weil–Petersson metric and prove Theorem 1.2.
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An integral formula of the full curvature tensor of the L2 metric Hk (�) on Ek is also
derived. In addition, we obtain the deformation formulas for the Kähler form ωt and
the volume form Vt on Xt , respectively, for each t ∈ B.

Finally, in the last section, we describe the plurisubharmonicity of the energy func-
tionals of harmonic maps on the Kuranishi spaces of Kähler–Einstein manifolds of
general type. It is known that this energy functional plays a crucial role in under-
standing theWeil–Petersson geometry of such manifolds. When Tg is the Teichmüller
space of Riemann surfaces of genus g ≥ 2 and (N , h) a Riemannian manifold with
Hermitian nonpositive curvature, it was shown by Toledo [34] that the energy func-
tion is plurisubharmonic. Here, we consider the higher dimensional analogue. Assume
(X, B, π) is the Kuranishi family of a compact Kähler–Einstein manifold of general
type, and let (N , h) be a Riemannian manifold with Hermitian nonpositive curvature.
Let E(t) be the energy of a harmonic map from Xt to N in a given homotopy class.
By using the deformation theory established in [28] and the Siu–Sampson vanishing
theorem in [26], we derive the first and second variation formulas of E and prove its
plurisubharmonicity (Theorem 5.2).

2 The Kuranishi Gauge

In this section we derive some special properties of the Kuranishi gauge on a family of
compact complexmanifoldswhen the central fiber is a FanoKähler–Einsteinmanifold.
This leads to an explicit description of the action of the automorphism group of the
central fiber on the Kuranishi space via differential geometric data.

For any Kähler metric g on a complex manifold M with local holomorphic coor-
dinates z1, . . . , zn , the corresponding Kähler form is

ωg =
√−1

2
gi j dzi ∧ dz j ,

where gi j = g
(

∂
∂zi

, ∂
∂z j

)
, and the Ricci form is

Ric
(
ωg

) = −
√−1

2
∂∂ log det

(
gi j

)
.

We will often use g and ωg interchangeably. Throughout this section we assume that
(X , ω0, J0) is a Fano manifold with complex dimension dimC X = n ≥ 2. Here X is
a fixed smooth manifold and we denote by X0 = (X , J0) the corresponding complex
manifold. Since the canonical line bundle K X0 is negative, by the Serre duality and
the Kodaira vanishing theorem, we have

H0,k
(

X0, T 1,0X0

)
= 0 (2.1)

for all 2 ≤ k ≤ n. In particular, deformations of X0 are unobstructed.
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By theworkofKodaira–Spencer,weknow that any almost complex structure J on X
close to J0 can be described by a unique Beltrami differential ϕ ∈ A0,1

(
X0, T 1,0X0

)
,

and J is integrable if and only if

∂0ϕ = 1

2
[ϕ, ϕ] (2.2)

where ∂0 is the ∂-operator on X with respect to the complex structure J0. In order
to construct a complete family of small deformations of X0, Kuranishi introduced
another equation. Let �m

ε ⊂ C
m be the open ball with center 0 and radius ε. For any

Beltrami differential ϕ1 ∈ A0,1
(
X0, T 1,0X0

)
with ∂0ϕ1 = 0, there exists ε > 0 such

that the equation

ϕ(t) = tϕ1 + 1

2
∂

∗
0G0 [ϕ(t), ϕ(t)] (2.3)

has a unique power series solution ϕ(t) = ∑
i≥1 t iϕi ∈ A0,1

(
X0, T 1,0X0

)
which

converges (in some appropriateHölder norm) for all t ∈ �1
ε . Here, theGreen’s function

G0 and ∂
∗
0 are operators on X0 with respect to the Kähler metricω0. It follows from the

standard elliptic estimate and (2.1) that each ϕ(t) satisfies the integrability equation
(2.2) and defines a complex structure on X . We also note that

∂
∗
0 (ϕ(t) − tϕ1) = 0.

By using this construction and the Kodaira–Spencer theory, one can con-
struct a Kuranishi family in the following way. We pick a basis ϕ1, . . . , ϕm ∈
H

0,1
(
X0, T 1,0X0

)
, where we use H to denote the harmonic space or harmonic pro-

jection with respect to the metric ω0. Let B = �m
ε ⊂ C

m be a ball with coordinates
t = (t1, . . . , tm) and denote by

ϕ(t) =
m∑

i=1

tiϕi +
∑

|I |≥2

t I ϕI (2.4)

the unique solution of
⎧
⎪⎨

⎪⎩

∂0ϕ(t) = 1
2 [ϕ(t), ϕ(t)] ,

∂
∗
0ϕ(t) = 0,

H0 (ϕ(t)) = ∑m
i=1 tiϕi

(2.5)

where H0 is the harmonic projection with respect to the metric ω0.
We note that the second equation of (2.5) is the Kuranishi gauge condition, and

the third equation characterizes the flat coordinate system around 0 ∈ B up to affine
transformations.

Now we consider the smooth manifold

X = X × B (2.6)
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and define an almost complex structure J on X in the following way: for each point
(p, t) ∈ X, where p ∈ X and t ∈ B, we let

�
1,0
(p,t)X = (I + ϕ(t))

(
�1,0

p X0

)
⊕ π∗�1,0

t B, (2.7)

where ϕ(t) is given by (2.5). Kodaira and Spencer showed that this almost complex
structure J on X is integrable and π : X → B is a Kuranishi family of X0. For each
t ∈ B, we let Xt = π−1(t) and denote the corresponding complex structure by Jt .

Thanks to the works of Kuranishi [16,17] and Wavrik [35], we have the following
properties of the family π : X → B; see also [5].

Theorem 2.1 Let π : X → B be the Kuranishi family of X0 constructed above. Then

(1) The Kuranishi family of X0 parameterizes all small deformations of X0 and is
unique up to isomorphisms;

(2) π : X → B is semiuniversal at 0 ∈ B;
(3) π : X → B is complete at each point t ∈ B;
(4) If h0

(
Xt , T 1,0Xt

)
is constant in t ∈ B, then the Kuranishi family is universal at

each t ∈ B.

In general, the complex structure Jt is not compatible with ω0, which is viewed
as a symplectic form on X . The compatibility property requires ϕ(t)�ω0 = 0. Since
∂

∗
0ϕ(t) = 0, a direct computation shows that ϕ(t)�ω0 = 0 if and only if div0ϕ(t) = 0.

This divergencegaugewas introduced in [28,29],where itwas shown that theKuranishi
gauge ∂

∗
0ϕ(t) = 0 is equivalent to the divergence gauge div0ϕ(t) = 0 when the fibers

Xt areKähler–Einsteinmanifoldswith negative or zero scalar curvature. In this section,
we generalize this equivalence to the Fano case.

Theorem 2.2 Let (X0, ω0) be a Fano Kähler–Einstein manifold.

(1) If ϕ(t) is the unique solution of equations (2.5), then div0ϕ(t) = 0 and ϕ(t)�ω0 =
0.

(2) If ϕ ∈ A0,1
(
X0, T 1,0X0

)
is a Beltrami differential with ∂0ϕ = 1

2 [ϕ, ϕ] and

div0ϕ = 0, then ∂
∗
0ϕ = 0 and ϕ(t)�ω0 = 0.

To prove this theorem, we need the following technical results.

Lemma 2.1 Let
(
X , ωg

)
be a Kähler manifold.

(a) If ϕ ∈ A0,1
(
X , T 1,0X

)
with ∂

(
ϕ�ωg

) = 0 and ∂
∗
ϕ = 0, then

�∂

(
ϕ�ωg

) =
√−1

2
div

(
∂ϕ

) + ϕ�Ric
(
ωg

)
.

(b) If
(
X , ωg

)
is Fano Kähler–Einstein, and η ∈ A0,2 (X) such that ∂η = 0 and

�∂η = η, then η = 0.
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Proof The first claim (a) follows from direct computations; we refer the reader to [28,
29] for details. To prove the second claim, by the assumptions, we have the following
Bochner formula,

�|η|2 = |∂η|2 + ∣∣∇η
∣∣2 .

This implies ∂η = 0. Since ∂∗η = 0, we conclude that �∂η = 0. Thus

η = �∂η = �∂η = 0.

��

Now we can prove Theorem 2.2.

Proof The proof of claim (2) is similar to that in [28]. Indeed, since div0ϕ = 0, we
have

0 = ∂0 (div0ϕ) =div0
(
∂0ϕ

) − 2
√−1ϕ�Ric (ω0)

=1

2
div0 [ϕ, ϕ] − 2

√−1ϕ�ω0

=ϕ�∂0 (div0ϕ) − 2
√−1ϕ�ω0

= − 2
√−1ϕ�ω0.

Together with div0ϕ = 0, a direct computation shows that ∂
∗
0ϕ = 0.

Now we prove claim (1). Consider the power series (2.4) which satisfies equations
(2.5). We will use induction on |I | to show that div0ϕI = 0. If |I | = 1, then ϕI = ϕi

for some 1 ≤ i ≤ m which is harmonic. Thus

∂0 (ϕi�ω0) = 0 and ∂
∗
0ϕi = 0. (2.8)

Then Lemma 2.1 implies that

�∂0
(ϕi�ω0) =

√−1

2
div0

(
∂0ϕi

) + ϕi�Ric (ω0) . (2.9)

Since ∂0ϕi = 0 and Ric (ω0) = ω0, we have

�∂0
(ϕi�ω0) = ϕi�ω0. (2.10)

Again by Lemma 2.1, we know that ϕi�ω0 = 0. Combining with ∂
∗
0ϕi = 0 we get

div0ϕi = 0.
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Nowwe assume div0ϕI = 0 for all |I | ≤ k −1. For any multi-index I with |I | = k,
we have

∂0
(
ϕI �ω0

) = ∂0ϕI �ω0

=1

2

∑

J+K=I

[
ϕJ , ϕK

]
�ω0

=1

2

∑

J+K=I

(
ϕJ �∂0

(
ϕK �ω0

) + ϕK �∂0
(
ϕJ �ω0

)) = 0.

Since ∂
∗
0ϕI = 0, we conclude from Lemma 2.1 that

�∂

(
ϕI �ω0

) =
√−1

2
div0

(
∂0ϕI

) + ϕI �Ric (ω0)

=
√−1

4

(
∑

J+K=I

[
ϕJ , ϕK

]
)

+ ϕI �ω0

=
√−1

4

(
∑

J+K=I

ϕJ �∂0
(
div0ϕK

) + ϕK �∂0
(
div0ϕJ

)
)

+ ϕI �ω0

= ϕI �ω0,

where we have used the fact that div0ϕJ = div0ϕK = 0 for all |J |, |K | < |I |. It then
follows from Lemma 2.1 that ϕI �ω0 = 0. Together with the assumption ∂

∗
0ϕI = 0,

we conclude that div0ϕI = 0. ��

Remark 5 Let (X0, ω0) be a Fano manifold with [ω0] = πc1 (X0) and let π : X → B
be aKuranishi family of X0 defined by (2.6) and (2.7) whereϕ(t) is the unique solution
of equations (2.5).

(1) For any Beltrami differentials ϕ,ψ ∈ A0,1
(
X0, T 1,0X0

)
with ϕ�ω0 = 0 or

ψ�ω0 = 0, the pointwise Hermitian inner product is given by

ϕ · ψ = 〈ϕ,ψ〉g = ϕi
j
ψ l

k
gil g

k j = ϕi
j
ψ

j
i
, (2.11)

where g is the corresponding Kähler metric.
(2) Ifω0 is a Kähler–Einsteinmetric, then each Jt is compatible withω0. This implies

that, in the Kähler–Einstein case, the Kuranishi gauge is compatible with Don-
aldson’s infinite dimensional GIT picture. In fact, let ω = ω0 be the symplectic
form on X and letJ int be the space of integrable almost complex structures on X
which are compatible with ω. Theorem 2.2 shows that B can be viewed naturally
as a slice in J int containing J0 via Kuranishi’s construction described above.
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(3) Theorem 2.2 holds in more general situation if we allow appropriate twist. Let f
be the normalized Ricci potential satisfying

{
Ric (ω0) = ω0 +

√−1
2 ∂0∂0 f

∫
X0

f ωn
0 = 0.

Ifwe define the twisted operators ∂
∗
f and div f with respect to theweighted volume

form e f ωn
0

n! , then the twisted Kuranishi gauge ∂
∗
f ϕ(t) = 0 is equivalent to the

twisted divergence gauge div f ϕ(t) = 0. In particular, we still have ϕ(t)�ω0 = 0.
The proof is essentially the same as that of Theorem 2.2.

An immediate corollary ofTheorem2.2 is the explicit expression of aRicci potential
of the Kähler manifold (Xt , ω0). This turns out to play an important role in the proof
of Theorem 1.1 (Theorem 3.1). As above, let (X0, ω0) be a Fano Kähler–Einstein
manifold, let ϕ(t) be the solution of equation (2.5) and let (X, B, π) be the Kuranishi
family of (X0, ω0) constructed above. Then Theorem 2.2 implies that the symplectic
form ω0 is indeed a Kähler form on Xt .

Corollary 2.1 A Ricci potential of the Kähler manifold (Xt , ω0) is given by

ht = log det
(

I − ϕ(t)ϕ(t)
)

. (2.12)

Namely,

Ric (Xt , ω0) = ω0 +
√−1

2
∂t∂ t log det

(
I − ϕ(t)ϕ(t)

)
(2.13)

where ∂ t is the ∂-operator on Xt .

Proof We want to show that −∂t∂ t log
(

eht ωn
0

n!
)

= ω0. Fixing a point t ∈ B and

we let ϕ = ϕ(t), z = (z1, . . . , zn) be local holomorphic coordinates on X0, w =
(w1, . . . , wn) be local holomorphic coordinates on Xt , ω0 =

√−1
2 gi j dzi ∧ dz j , g =

det
[
gi j

]
, A = [aαi ] =

[
∂wα

∂zi

]
and B = [

biα
] = A−1. Then

eht
ωn
0

n! = cn |det A|−2 gdw1 ∧ · · · ∧ dwn ∧ dw1 ∧ · · · ∧ dwn

where cn = (−1)
n(n−1)

2

(√−1
2

)n
. On the other hand, we have

∂wα

∂z j
= ϕi

j
aαi ,

∂zi

∂wα

= (I − ϕϕ)ik bkα,
∂zi

∂wβ

= −ϕi
j
(I − ϕϕ) jlblβ, (2.14)
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where (I − ϕϕ)ik is the (i, k)-entry of thematrix (I − ϕϕ)−1. By a direct computation,
we have

− ∂2

∂wα∂wβ

log
(

cn |det A|−2 g
)

= ∂zl

∂wβ

bkα

[
∂

∂zk
ϕ

p
l
μp + Rkl + ∂

∂zk

(
(div0ϕ)l

)
]

− ∂zl

∂wβ

bkα

(
∂

∂zl
− ϕi

l

∂

∂zi

) (
μk

)
, (2.15)

where

μk = (I − ϕϕ)ik
[
ϕ

j
i

(div0ϕ) j − (
div0ϕ

)
i

]
,

and
√−1
2 Ri j dzi ∧ dz j is the Ricci form of (X0, ω0). Since ω0 is a Kähler–Einstein

metric on X0, we have Ri j = gi j . By Theorem 2.2, we know div0ϕ = 0 which implies

μk = 0. Hence the above formula reduces to

− ∂2

∂wα∂wβ

log
(

cn |det A|−2 g
)

= ∂zl

∂wβ

bkαgkl . (2.16)

It remains to show that

√−1

2

∂zl

∂wβ

bkαgkldwα ∧ dwβ = ω0.

Again, by Theorem 2.2, we know ϕi
j
gil = ϕi

l
gi j and the above identity follows

immediately from formula (2.14). ��
Nowwe look at the action of the automorphism group of X0 on the Kuranishi space

B. For the rest of this section, we assume ω0 is a Kähler–Einstein metric on X0.
Let G = Isom0 (X0, ω0) be the isometry group with Lie algebra g. By the work

of Matsushima [20] and Calabi [3], we know that the complexification GC of G is
isomorphic to the holomorphic automorphism group Aut0 (X0) and we have gC ∼=
H0

(
X0, T 1,0X0

)
. Furthermore, if we let


R

1 = {
f ∈ C∞ (X0,R) | (�0 + 1) f = 0

}

be the first eigenspace of the Laplacian on X0 and let 
C

1 = 
R

1 ⊗R C, then we have

g ∼=
{
Im

(
∇1,0
0 f

) ∣
∣ f ∈ 
R

1

}
(2.17)

and

gC ∼=
{
∇1,0
0 f

∣∣ f ∈ 
C
1

}
. (2.18)
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The diffeomorphism group of X acts on the space of complex structures on X via
pullback and thus acts locally on the set of Beltrami differentials on X0 which satisfy
the obstruction equation (2.2). Let D ⊂ Diff0 (X) be a neighborhood of the identity
map and let Y = (X , J ) be a complex manifold obtained by deforming the complex
structure J0 via ϕ ∈ A0,1

(
X0, T 1,0X0

)
. We assume ‖ϕ‖ is small and σ ∈ D. In

[17] Kuranishi showed that the Beltrami differential ψ = ϕ ◦ σ corresponding to the
complex structure σ ∗ J is characterized by

∂σk

∂z j
+ ϕk

l
(σ (z))

∂σ l

∂z j
= ψ i

j

(
∂σk

∂zi
+ ϕk

l
(σ (z))

∂σ l

∂zi

)
, (2.19)

where z1, . . . , zn are local holomorphic coordinates on X0. It follows that

Corollary 2.2 If σ ∈ Aut0 (X0) is a biholomorphism of X0 then ϕ ◦ σ = σ ∗ϕ. If
σ ∈ Aut0 (Y ) is a biholomorphism of Y then ϕ ◦ σ = ϕ.

Now we assume that σ ∈ G ∩ D is an isometry of (X0, ω0) and ϕ(t) is a solution
of equation (2.5). Then ϕ(t) ◦ σ = σ ∗ϕ(t) satisfies the first two equations of (2.5)
since σ preserves ω0 and J0. Thus, for each t with |t | small, σ ∗ϕ(t) = ϕ

(
t ′
)
where t ′

is characterized by
∑

i t ′i ϕi = H (σ ∗ϕ(t)). Let V = T 1,0
0 B ∼= H0,1

(
X0, T 1,0X0

)
. If

we linearize the above action with respect to ϕ, then we see that the linear action of
G on T 1,0

0 B, denoted by ρ : G → GL(V ), is given by

ρ (σ) ([ϕ]) = [
σ ∗ϕ

]
. (2.20)

This is also true at the form level: σ ∗ϕ is harmonic when σ is an isometry and ϕ is
harmonic. The representation ρ naturally extends to the representation ρC : GC →
GL(V ) which is also given by (2.20). Now we linearize the representation ρ and we
have the representation of Lie algebra ρ∗ : g → End(V ) given by

ρ∗ (v) ([ϕ]) = [Lvϕ] . (2.21)

Again, this holds at the form level: Lvϕ is harmonic when v ∈ g is a Killing field and ϕ

is harmonic. This representation also extends to a representation ρC∗ : gC → End (V ).

Remark 6 We note that, by the construction of Kuranishi family (2.6) and (2.7), both
G and GC act on X holomorphically.

Note that if v ∈ H0
(
X0, T 1,0X0

)
is a holomorphic vector field and ϕ,ψ ∈

H
0,1

(
X0, T 1,0X0

)
are harmonic Beltrami differentials, then by direct computations

we have

Lvϕ = [v, ϕ] ,

Lvϕ = ∂ (v�ϕ) ,

[v, ϕ] · ψ = v
(
ϕ · ψ

) − div
((

v�ψ
)
�ϕ

) + (
v�ψ

)
� (divϕ) . (2.22)
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Now we look at the representation ρ∗ : g → End (V ). Let ξ ∈ g be a Killing field.
By the identification (2.18), there exists a unique eigenfunction f ∈ 
R

1 such that
ξ = Im(v), where

v = ∇1,0 f ∈ H0
(

X0, T 1,0X0

)
.

For any harmonic Beltrami differentials ϕ,ψ ∈ H
0,1

(
X0, T 1,0X0

)
, we have

〈Lξ ϕ, ψ〉L2 = 1

2
√−1

(〈Lvϕ, ψ〉L2 − 〈Lvϕ, ψ〉L2
)
.

By (2.22), we know that

〈Lvϕ, ψ〉L2 =
∫

X0

(
∂ (v�ϕ)

) · ψ dVg = 0

since ψ is harmonic. By integration by parts and Theorem 2.2, we have

〈Lvϕ, ψ〉L2 =
∫

X0

(
v

(
ϕ · ψ

) − div
((

v�ψ
)
�ϕ

) + (
v�ψ

)
� (divϕ)

)
dVg

=
∫

X0

v
(
ϕ · ψ

)
dVg =

∫

X0

(divv)
(
ϕ · ψ

)
dVg

= −
∫

X0

f
(
ϕ · ψ

)
dVg.

This implies

〈Lξ ϕ, ψ〉L2 =
√−1

2

∫

X0

f
(
ϕ · ψ

)
dVg.

Let

Q =
{
ϕ · ψ | ϕ,ψ ∈ H

0,1
(

X0, T 1,0X0

)}
⊂ C∞ (X0) . (2.23)

Since Lξ ϕ is harmonic, we know that Lξ ϕ = 0 if and only if f ⊥L2 Q.
In conclusion, we have proved the following

Corollary 2.3 The representation ρ∗ is trivial (and thus ρC∗ , ρ and ρC are trivial) if
and only if 
R

1 ⊥L2 Q (and thus 
C

1 ⊥L2 Q).

3 Small deformation of Fano Kähler–Einsteinmanifolds

Throughout this section, we assume (X0, ω0) is a Fano Kähler–Einstein manifold
and denote by (X, B, π) the Kuranishi family with respect to ω0 as constructed in
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Sect. 2. An important question concerning the geometry of the moduli space of X0 is
the existence of Kähler–Einstein metrics on small deformations of (X0, ω0). By using
the implicit function theorem, Koiso [15] showed that any small deformation of X0
admits a Kähler–Einstein metric, provided the automorphism group of X0 is discrete.
The case that X0 has non-trivial holomorphic vector fields is much more delicate. In
[30] Szekelyhidi showed that a small deformation of a cscK manifold admits a cscK
metric if and only if it is K -polystable. A similar result was established by Brönnle [2]
in terms of the polystability of the action of the automorphism group on the Kuranishi
space. Later, it was proved by Chen et al. [6–8] that the existence of a Kähler–Einstein
metric on a Fano manifold X is equivalent to the K -stability of X . However, it is
highly nontrivial to check the K -stability of a Fano manifold in general.

In this section, we provide new and simple necessary and sufficient conditions on
the existence of Kähler–Einstein metrics on small deformations of X0 as stated in
Theorem 1.1.

Theorem 3.1 Let (X0, ω0) be a Fano Kähler–Einstein manifold and let (X, B, π) be
the Kuranishi family with respect to ω0. By shrinking B if necessary, the following
statements are equivalent:

(1) Xt admits a Kähler–Einstein metric for each t ∈ B;
(2) The dimension h0

(
Xt , T 1,0Xt

)
of the space of holomorphic vector fields on Xt

is independent of t for all t ∈ B;
(3) The automorphism group Aut0 (Xt ) is isomorphic to Aut0 (X0) for all t ∈ B.

Proof Firstly, we assume that Xt admits Kähler–Einstein metrics for each t ∈ B. By
Remark 5, we know that ω0 defines a Kähler metric on Xt . We shall show that

Isom0 (X0, ω0) = Isom0 (Xt , ω0) (3.1)

for each t ∈ B. Once we have this, then statements (2) and (3) follow from the upper
semi-continuity of h0

(
Xt , T 1,0Xt

)
as a function of t [14]. Indeed, after shrinking B

we can assume that h0
(
Xt , T 1,0Xt

) ≤ h0
(
X0, T 1,0X0

)
for all t ∈ B. We know that

(Isom0 (Xt , ω0))
C is a subgroup of Aut0 (Xt ) for each t and (Isom0 (X0, ω0))

C ∼=
Aut0 (X0). Since

dimR Isom0 (Xt , ω0) ≤ dimCAut0 (Xt ) = h0
(

Xt , T 1,0Xt

)

≤h0
(

X0, T 1,0X0

)
= dimC Aut0 (X0)

= dimR Isom0 (X0, ω0) ,

identity (3.1) would imply that h0
(
Xt , T 1,0Xt

) = h0
(
X0, T 1,0X0

)
and (Isom0

(Xt , ω0))
C ∼= Aut0 (Xt ) for all t ∈ B. It then follows that Aut0 (Xt ) ∼= Aut0 (X0) for

all t ∈ B since they are complexifications of the same compact Lie group.
To prove (3.1), it suffices to show that each isometry σ ∈ G = Isom0 (X0, ω0),

viewed as a diffeomorphism of X , is also an isometry of (Xt , ω0). This will give us a
natural embedding
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G ↪→ Isom0 (Xt , ω0) (3.2)

and (3.1) follows from the dimensional reason as above.
By the discussion in Sect. 2, since each isometry σ ∈ G preserves both the Kähler–

Einstein metric ω0 and the complex structure J0, it preserves all operators which are
canonically associated to ω0 and J0. Hence, such σ maps each solution of equation
(2.5) to another solution since these solutions are given by the Kuranishi equation
(2.3). On the other hand, since a solution ϕ(t) of equation (2.3) is determined by its
harmonic partH (ϕ(t)) = ∑m

i=1 tiϕi , it is enough to show that the action of G (or GC)
on B, as described in Sect. 2, is trivial. Indeed, thiswould imply that, for each t ∈ B and
σ ∈ G, we have σ ∗ (∑m

i=1 tiϕi
) = ∑m

i=1 tiϕi and thus, by the uniqueness of solution
of the Kuranishi equation (2.3), we have σ ∗ϕ(t) = ϕ(t) which implies σ preserves
the complex structure Jt . Since σ preserves ω0, we conclude that σ ∈ Isom0 (Xt , ω0).

It remains to show that the action of GC on B is trivial. Let us denote by

V = T 1,0
0 B ∼= H0,1

(
X0, T 1,0X0

)

as before. If the action of GC on B is nontrivial, then there exists a subgroup λ : C∗ →
GC whose action on V is nontrivial. We can then pick a basis e1, . . . , em of V such
that

λ(s) (ei ) = sκi ei , s ∈ C
∗

with κi ∈ Z for each i . It follows that at least one of the κi ’s is nonzero. Replacing λ

by λ−1 if necessary, we can assume κi > 0 for some i . Let

�ε = {
(0, . . . , 0, ti , 0, . . . , 0)

∣
∣ |ti | < ε

} ⊂ B

be the one-dimensional disk, in the i-th coordinate line of the Kuranishi space, with
center 0 and radius ε. We pick some t ′ ∈ �∗

ε = �ε \ {0}.
Let X′ = X |�ε and consider the subfamily

(
X′,�ε, π

)
with an action of H =

{s ∈ C∗ | |s| < 1} on�ε given by λ(s)(t) = sκi t . We note that Xt is biholomorphic to
Xt ′ if t �= 0 because of the action of H . Furthermore, X0 is not biholomorphic to Xt ′ .
To see this, we note that, by Theorem 2.1, the Kodaira–Spencer map K St : T 1,0

t B →
H0,1

(
Xt , T 1,0Xt

)
is an isomorphism if t = 0, and is surjective if t �= 0. The above

argument shows that the deformation of Xt ′ is trivial along at least one direction due
to the action of C∗. Thus

h0,1
(

Xt ′, T 1,0Xt ′
)

< h0,1
(

X0, T 1,0X0

)
.

This shows that X0 is not biholomorphic to Xt ′ . By Remark 6, we also get the action
of H on X′. The family

(
X′,�ε, π

)
naturally extends to a family

(
X′′,C, π

)
with a

C
∗ action on the base C with weight κi and the corresponding action on X′′. By the

standard argument of base change, we can assume κi = 1 and we get a nontrivial

test configuration of
(

Xt ′ , K −k
Xt ′

)
, where theC∗ action on the line bundle K −k

X′′/C is the
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induced one. Since Xt ′ admits aKähler–Einsteinmetric, it is K -polystable [1,32]. Now
the central fiber of the nontrivial test configuration

(
X′′,C, π

)
is X0, which also admits

a Kähler–Einstein metric and thus the Futaki invariant is 0. This is a contradiction,
thus statements (2) and (3) hold.

Conversely, it is obvious that statement (3) implies (2), so it remains to show that
(2) implies (1), namely if the dimension h0

(
Xt , T 1,0Xt

)
of the space of holomorphic

vector fields on Xt is independent of t :

h0
(

Xt , T 1,0Xt

)
= h0

(
X0, T 1,0X0

)
= l for all t ∈ B,

then each Xt admits a Kähler–Einstein metric. Pick a basis {v1, . . . , vl} of
H0

(
X0, T 1,0X0

)
. By the above assumption and the work of Kodaira [13], we can

extend each vi to vi (t) ∈ A0
(
X0, TCX0

)
such that vi (t) ∈ H0

(
Xt , T 1,0Xt

)
and

vi (t) depends on t holomorphically. By continuity, and by shrinking B if necessary,
we know that {v1(t), . . . , vl(t)} span H0

(
Xt , T 1,0Xt

)
for each t ∈ B.

Now we define a map

τt : A0
(

X0, T 1,0X0

)
→ A0

(
Xt , T 1,0Xt

)

by

τt (v) =
(

I − ϕ(t)ϕ(t)
)−1

(v) − ϕ(t)

((
I − ϕ(t)ϕ(t)

)−1
(v)

)
.

Then τt is a linear isomorphism for each t ∈ B. Let ṽi (t) = τ−1
t (vi (t)). Since

∂ tvi (t) = 0, a direct computation shows that

∂0ṽi (t) = − [̃vi (t), ϕ(t)] . (3.3)

Since ϕ(0) = 0, we have

∂0

(
∂

∂tk

∣∣∣∣
t=0

ṽi (t)

)
= ∂

∂tk

∣∣∣∣
t=0

∂0ṽi (t) = − ∂

∂tk

∣∣∣∣
t=0

[̃vi (t), ϕ(t)] = − [vi , ϕk] .

This implies that the cohomology class [[vi , ϕk]] = 0 for all 1 ≤ i ≤ l and 1 ≤
k ≤ m. Thus, by (2.22), the action of the Lie algebra g on H0,1

(
X0, T 1,0X0

)
given by

(2.21) is trivial which implies that the G-action (2.20) on T 1,0
0 B ∼= H0,1

(
X0, T 1,0X0

)

is trivial. By the previous arguments, we have the identification Isom0 (X0, ω0) =
Isom0 (Xt , ω0) for each t ∈ B.

We can now restrict our attention to G-invariant Kähler potentials and apply the
implicit function theorem as in [2,18,25,30] (which can be further traced back, e.g., to
the work of Donaldson–Kronheimer [9]). More specifically, by the work in [18] (see
also Corollary 1 in [25]), the above identification Isom0 (X0, ω0) = Isom0 (Xt , ω0)

leads to the existence of an extremal metric on each Xt . On the other hand, by Corol-

lary 2.1, we know that ht = log det
(

I − ϕ(t)ϕ(t)
)
is a Ricci potential of (Xt , ω0).
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It follows from Corollary 2.2 that each σ ∈ Aut0 (Xt ) preserves ϕ(t), hence the Ricci
potential ht is a σ -invariant function. Thus, for each ξ ∈ H0

(
Xt , T 1,0Xt

)
, we have

ξ (ht ) = 0 and the vanishing Futaki invariant [12]:

fXt (ω0, ξ) =
∫

Xt

ξ (ht )
ωn
0

n! = 0.

Therefore, the extremal metric on Xt must be a Kähler–Einstein metric. This proves
statement (1) and concludes the proof of Theorem 3.1. ��

Remark 7 As discussed in [4], under any of the equivalent conditions in Theorem 3.1,
any Kähler–Einstein metric ω0 on X0 can be extended to a smooth family {ωt }t∈B
such that ωt is a Kähler–Einstein metric on Xt for each t ∈ B.

Remark 8 Szekelyhidi [30] showed that if X ′ is a sufficiently small deformation of a
Fano Kähler–Einstein manifold X , then either X ′ admits a Kähler–Einstein metric or
there is a test configuration for X ′ with smooth central fibre X ′′. Moreover, X ′′ admits
a Kähler–Einstein metric and it is itself a small deformation of X . Combining this
result of Szekelyhidi and the assumption that h0

(
Xt , T 1,0Xt

)
is independent of t , one

can give an alternative proof of “(2) �⇒ (1)′′ in Theorem 3.1.

Theorems 3.1 and 2.1 immediately imply the following universal property of the
Kuranishi family.

Corollary 3.1 Let (X0, ω0) be a Fano Kähler–Einstein manifold and let (X, B, π) be
the Kuranishi family with respect to ω0. If Xt admits a Kähler–Einstein metric for
each t ∈ B, then the family (X, B, π) is universal at each t.

4 Curvature of the L2 metrics on direct image sheaves

The Weil–Petersson metric is a L2 metric on the parameter space of a family of
complex manifolds which admit certain canonical metrics. It was first introduced by
Weil to study themoduli spaces of hyperbolic Riemann surfaces based on the Petersson
pairing. See, e.g., [4] for a brief survey on certain aspects of theWeil–Peterssonmetric.

In general, we consider a complex analytic family (Y, D, p) of compact complex
manifolds, where D ⊂ C

m is the parameter space, and we let Ys = p−1(s) for each
point s ∈ D. If we assume that each fiber Ys admits a Kähler–Einstein metric ωs , then
we can define the Weil–Petersson metric in the following way. For any s ∈ D and
u, v ∈ T 1,0

s D, we let ϕ,ψ ∈ H
0,1

(
Ys, T 1,0Ys

)
be the harmonic representatives of the

Kodaira–Spencer classes K Ss(u) and K Ss(v) respectively, where we use the chosen
Kähler–Einstein metric ωs on Ys to determine ϕ and ψ . Then the Weil–Petersson
metric ωW P is given by

hs (u, v) =
∫

Ys

〈ϕ,ψ〉ωs

ωn
s

n! . (4.1)
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When Ys is a Kähler–Einstein manifold of general type or a polarized Calabi–Yau
manifold, there is a unique Kähler–Einstein metric on Ys . Therefore, in this case,
ϕ and ψ are uniquely determined and the Weil–Petersson metric is well-defined.
Furthermore, for any submanifold D′ ⊂ D, when we consider the restricted family(
Y |D′ , D′, p

)
, the Weil–Petersson metric on D′ defined by (4.1) is just the restriction

of the Weil–Petersson metric on D to D′. In fact, one can define the canonical L2

metric on H0,1
(
Ys, T 1,0Ys

)
in this case by using the unique Kähler–Einstein metric

on Ys , even when there are obstructions on deforming the complex structure on Ys .
This generalization of the classical Weil–Petersson metric plays an important role in
studying the moduli space of Ys .

Let (X0, ω0) be a FanoKähler–Einsteinmanifold and let (X, B, π) be theKuranishi
family constructed in Sect. 2.We assume that each Xt admits aKähler–Einsteinmetric.
Then, by Theorem 3.1 and Remark 7, we know that each Kähler–Einstein metric on
X0 can be extended to a smooth family of Kähler–Einstein metrics. In this case it is not
hard to show that the Weil–Petersson metric is well-defined, namely it is independent
of the choice of Kähler–Einstein metrics on each Xt . In fact, following the classical
approach, if {ω(s)} is any family of Kähler–Einstein metrics on X0 and let ϕs and ψs

be harmonic representatives of any two given Kodaira–Spencer classes with respect
to ω(s). Then a simple computation shows that

d

ds

∣
∣∣∣
s=0

〈ϕs, ψs〉L2(ω(s)) = 0

for all choices of {ω(s)} if and only if
{
ϕiϕ j

} ⊥L2(ω(0))

R
1 (ω(0)) and the latter

condition is guaranteed by Theorem 3.1 and Corollary 2.3.
Now we turn our attention to the approximation of the Weil–Petersson metric.

Given a smooth family (X, B, π) of Kähler–Einstein manifolds of general type, it was
shown in [28] that the Ricci curvatures of the L2 metrics, induced by the fiberwise
Kähler–Einstein metrics on the direct image bundle R0π∗K k

X/B , converge to theWeil–
Petersson metric after an appropriate normalization. There are two steps involved
in establishing the curvature formula of the L2 metrics. The first step is to extend

sections in H0
(

X0, K k
X0

)
to H0

(
Xt , K k

Xt

)
in a canonical way in order to obtain

local holomorphic sections of R0π∗K k
X/B . We note that the background smooth pair

of
(
Xt , K Xt

)
is independent of t . In [28], a slight different notion inspired by the work

of Todorov [33] was used. This technique can be directly applied to more general
situations, e.g., a family (Y, D, p) of compact complexmanifolds and a relative ample
holomorphic line bundle L over Y . In [29], this idea was used to construct local
holomorphic sections of the bundle over D whose fiber at s ∈ D is H0

(
Ys,

(
Lk |Ys

))
.

The second step is to find deformation of the Kähler–Einstein metrics with respect to
the Kuranishi-divergence gauge.

It turns out that similar results hold in our situation if we replace the relative canon-
ical bundle used in [28] by the relative anti-canonical bundle. Let (X0, ω0) be a Fano
Kähler–Einstein manifold and let (X, B, π) be the Kuranishi family with respect to
ω0. Note that for any positive integer k, by the Serre duality and Kodaira vanishing
theorems, we have
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hi
(

Xt , K −k
Xt

)
= hn−i

(
Xt , K k+1

Xt

)
= 0 (4.2)

for all 1 ≤ i ≤ n since K k+1
Xt

is negative. Thus, by the Riemann–Roch theorem, we

know that h0
(

Xt , K −k
Xt

)
remain constant for all t ∈ B. This implies that the direct

image sheaf R0π∗K −k
X/B is a holomorphic vector bundle over B .We denote this bundle

by Ek and its rank by Nk .

Similar to the work in [33], we define the linear map σt : A0
(

X0, K −k
X0

)
→

A0
(

Xt , K −k
Xt

)
by

σt (s) =
(
det

(
I − ϕ(t)ϕ(t)

))−k (
s
1
k �e−ϕ(t)

)k
. (4.3)

It is easy to see thatσt iswell-defined and is an isomorphism if |t | is small. Furthermore,
a direct computation shows that σt (s) is a holomorphic section of K −k

Xt
if and only if

∂0s = ϕ(t)�∇0s, (4.4)

where ∇0 is the metric connection on K −k
X0

induced by the Kähler–Einstein metric
on X0. By using (4.2), equation (4.4) can be solved inductively. Indeed, given any

holomorphic section s ∈ H0
(

X0, K −k
X0

)
, we look for a power series solution

s(t) = s +
∑

|I |≥1

sI t I ∈ A0
(

X0, K −k
X0

)
(4.5)

to equation (4.4) with normalization H0 (s(t)) = s. By induction, it is not hard to see
that

sI = ∂
∗
0G0

(
∑

J+K=I

ϕJ �∇0sK

)

. (4.6)

Furthermore, standard elliptic estimates imply that the power series (4.5) converges
in any C p,α norm when t is sufficiently small. Similar to the work in [28], we have

Theorem 4.1 For any holomorphic section s ∈ H0
(

X0, K −k
X0

)
, the power series

solution (4.5) satisfies H0 (s(t)) = s and σt (s(t)) ∈ H0
(

Xt , K −k
Xt

)
for each t ∈ B.

Furthermore, by shrinking B if necessary, if {si }1≤i≤Nk
⊂ H0

(
X0, K −k

X0

)
is a basis

then {σt (si (t))}1≤i≤Nk
⊂ H0

(
Xt , K −k

Xt

)
is also a basis for all t ∈ B.

Remark 9 A direct computation shows that

ϕJ �∇0sK =div0
(
ϕJ ⊗ sK

) − (
div0ϕJ

) ⊗ sK

=div0
(
ϕJ ⊗ sK

)
,
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where the last equality follows from Theorem 2.2. Thus formula (4.6) is equivalent to

sI = ∂
∗
0G0

(
∑

J+K=I

div0
(
ϕJ ⊗ sK

)
)

. (4.7)

If we assume each Xt admits a Kähler–Einstein metric gt with volume form Vt ,
then the L2 metric Hk(V ) on Ek = R0π∗K −k

X/B is given by

〈s1, s2〉Hk (V ) =
∫

Xt

〈s1, s2〉gk
t
dVt (4.8)

for each t ∈ B and s1, s2 ∈ H0
(

Xt , K −k
Xt

)
, where V = {Vt }t∈B and gk

t is the metric

on K −k
Xt

induced by the Kähler–Einstein metric gt on Xt . It is clear that the L2 metric
Hk(V ) on Ek depends on the choice of the smooth family of fiberwise Kähler–Einstein
metrics.

In order to compute the curvature of the L2 metric, we need the deformation formu-
las ofVt . By using theKuranishi-divergence gauge,we view each Xt as the background
smooth manifold X equipped with the complex structure Jt obtained by deforming
the complex structure on X0 via ϕ(t). Thus we can view {Vt }t∈B as families of dif-
ferential forms on X . Similar to the work in [28], by deforming the corresponding
Monge–Ampére equation, we have

Theorem 4.2 Let (X0, ω0) be a Fano Kähler–Einstein manifold with Kuranishi
family (X, B, π). We assume that each Xt admits a Kähler–Einstein metric. Let
V = {Vt } be a smooth family of Kähler–Einstein volume forms and we write

Vt = eρ det
(

I − ϕ(t)ϕ(t)
)

V0 for some ρ ∈ C∞ (X0,R). Then ρ has an expan-

sion of the form

ρ =
∑

i

tiρi +
∑

j

t jρ j +
∑

i, j

ti t jρi j + O (ti tk) + O
(
t j t l

) + O
(
|t |3

)
, (4.9)

where

(1) (�0 + 1) ρi = 0;

(2) (�0 + 1) ρi j = ϕi · ϕ j − gαβ
0 gγ δ

0 ∂α∂δρi∂γ ∂βρ j .

Remark 10 Since the Kähler forms {ωt} of the Kähler–Einstein metrics {gt } are given
by ωt = −

√−1
2 ∂t∂ t log Vt , formula (4.9) also leads to the expansion of the Kähler–

Einstein Kähler forms {ωt }. Furthermore, we can also eliminate both the ti tk and t j t l

terms in the expansion (4.9) by modifying V via a biholomorphism of X. However,
we do not need these facts in the following discussion.

To effectively compute the curvature of the L2 metric 〈·, ·〉Hk (V ) for any chosen
family of Kähler–Einstein volume forms V , we need to adjust the total spaceXwithout
altering the Kuranishi gauge. We shall consider a certain special biholomorphism
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F : X → X which covers the identity map of B and we let Ft = F |Xt ∈ Aut (Xt ).
By Corollary 2.2, we know that Ft preserves ϕ(t). Such a map F would induce a
biholomorphic bundle map F̃ : Ek → Ek , which is indeed a Hermitian isometry

F̃ : (
Ek, 〈·, ·〉Hk (V )

) →
(

Ek, 〈·, ·〉Hk
(
(F−1)

∗V
)
)
.

For any smooth family V of Kähler–Einstein volume forms, we let ρ = ρV be the
function as in Theorem 4.2. The family V is said to be normalized if ρV

i = 0 for each
i . We now construct the special biholomorphism F of X, covering the identity map of
B, such that F∗V is normalized. For a given family V , by Theorem 4.2 we know that
ρV

i ∈ 
C
1 is an eigenfunction of �0 + 1, hence μi = ∇1,0

0 ρV
i ∈ H0

(
X0, T 1,0X0

)
is a

holomorphic vector field on X0. Since we have assumed that each Xt admits a Kähler–
Einsteinmetric, by Theorem3.1we know that h0

(
X0, T 1,0X0

) = h0
(
Xt , T 1,0Xt

)
for

each t ∈ B. It follows from Kodaira’s stability theorem that each μi can be extended
to a family μi (t) of vector fields such that

(i) μi (t) ∈ H0
(
Xt , T 1,0Xt

)
for each t ∈ B, and

(ii) μi (t) depends on t holomorphically.

We let μ(t) = ∑
i tiμi (t) ∈ H0

(
X, T 1,0

X/B

)
and let F be the time-one flow of μ(t).

Since ∂
∂ti

∣∣∣∣
t=0

F = μi and div0μi = −�0ρ
V
i = ρV

i , it follows from direct computa-

tions that F∗V is normalized. Thus, to compute the curvature of
(
Ek, 〈·, ·〉Hk (V )

)
, we

can always assume that V is normalized. In this case, it follows from Theorem 4.2 and
ρV

i = 0 that (�0 + 1) ρV
i j

= ϕi · ϕ j . We denote by (�0 + 1)−1 (
ϕi · ϕ j

)
the unique

solution of this equation which is perpendicular to 
C

1 . It then follows that

ρV
i j

= (�0 + 1)−1 (
ϕi · ϕ j

) + νV
i j

(4.10)

for some νV
i j

∈ 
C

1 .

The above discussion leads to the approximation of theWeil–Petersson metricωW P

on the parameter sapce B by the Ricci curvatures of the L2 metrics. Such approxi-
mations can be seen via the Knudsen–Mumford expansion [11,21,40] and the work
of Schumacher [27]. Here we give a simple and direct proof. Moreover, our method
gives the curvature tensor of the L2 metrics on the direct image sheaves rather than
their determinant bundles.

In the following, we will use �0 to denote the Hodge Laplacian on bundles over
X0 with respect to metrics induced by the Kähler–Einstein metric ω0.

Theorem 4.3 Let (X0, ω0) be a Fano Kähler–Einstein manifold with Kuranishi family
(X, B, π). We assume that each Xt admits a Kähler–Einstein metric. Let

{
sα

} ⊂
H0

(
X0, K −k

X0

)
be a basis, V be a smooth family of Kähler–Einstein volume forms,

and Rick = Ric (Ek, Hk (V )). Then

lim
k→∞

πn

kn+1 Rick = −ωW P . (4.11)
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Proof By the above discussion, we can assume that V is normalized. Let νi j = νV
i j
be

the function given by equation (4.10). We first show that the curvature tensor of the
L2 metric Hk(V ) on Ek is given by

Rαβi j (0) = (k + 1)
∫

X0

〈(�0 + k + 1)−1 (
ϕi ⊗ sα

)
, ϕ j ⊗ sβ 〉g0dV0

− (k + 1)
∫

X0

〈sα , sβ 〉gk
0

(
(�0 + 1)−1 (

ϕi · ϕ j
) + νi j

)
dV0.

(4.12)

To prove this formula, since the curvature of Hk is tensorial, we can use the local
sections of Ek constructed in Theorem 4.1 to compute it. For each sα , let sα (t) ⊂
A0

(
X0, K −k

X0

)
be the sections constructed by formulas (4.5) and (4.6) and let hαβ(t) =

〈σt
(
sα (t)

)
, σt

(
sβ (t)

)〉Hk (V ). By Theorems 4.1 and 4.2 , we have

hαβ(t) =
∫

X0

〈sα (t), sβ (t)〉gk
0
e(k+1)ρ det

(
I − ϕ(t)ϕ(t)

)
dV0,

where ρ is the function defined by

Vt = eρ det
(

I − ϕ(t)ϕ(t)
)

V0.

Since V is normalized, by formula (4.7), we have

∂hαβ

∂ti

∣∣
∣∣
t=0

=
∫

X0

〈∂∗
0G0div0

(
ϕi ⊗ sα

)
, sβ 〉gk

0
dV0

=
∫

X0

〈G0div0
(
ϕi ⊗ sα

)
, ∂0sβ 〉gk

0
dV0 = 0, (4.13)

because sβ is holomorphic. Similarly, we have
∂hαβ

∂t j

∣∣∣∣
t=0

= 0 and

∂2hαβ

∂ti∂t j

∣
∣∣∣
t=0

=〈∂∗
0G0div0

(
ϕi ⊗ sα

)
, ∂

∗
0G0div0

(
ϕ j ⊗ sβ

)〉L2

+
∫

X0

〈sα , sβ 〉gk
0

(
(k+1)

(
(�0+1)−1 (

ϕi · ϕ j
)+νi j

)
− (

ϕi · ϕ j
))

dV0.

(4.14)

Now we analyze the first term on the right hand side of the above formula. Note
that, by the proof of Theorem 4.1, we have

∂0div0
(
ϕi ⊗ sα

) =∂0
(
ϕi�∇0sα

)

=∂0ϕi�∇0sα − 2k
√−1 (ϕi�ω0) ⊗ sα = 0.
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It follows that

∂0G0div0
(
ϕi ⊗ sα

) = 0. (4.15)

Integrating by parts, we get

〈∂∗
0G0div0

(
ϕi ⊗ sα

)
, ∂

∗
0G0div0

(
ϕ j ⊗ sβ

)〉L2 = 〈div∗
0G0div0

(
ϕi ⊗ sα

)
, ϕ j ⊗ sβ 〉L2 .

By using Eq. (4.15) and the fact that ∂0
(
ϕi ⊗ sα

) = 0, a simple computation shows
that

div∗
0G0div0

(
ϕi ⊗ sα

) = (�0 + k + 1)−1 (
div∗

0div0
(
ϕi ⊗ sα

))

= (�0 + k + 1)−1 �0
(
ϕi ⊗ sα

)

=ϕi ⊗ sα − (k + 1) (�0 + k + 1)−1 (
ϕi ⊗ sα

)
.

Thus

〈∂∗
0G0div0

(
ϕi ⊗ sα

)
, ∂

∗
0G0div0

(
ϕ j ⊗ sβ

)〉L2

=〈ϕi ⊗ sα , ϕ j ⊗ sβ 〉L2 − (k + 1) 〈(�0 + k + 1)−1 (
ϕi ⊗ sα

)
, ϕ j ⊗ sβ 〉L2 .

Inserting this into equation (4.14), we get

∂2hαβ

∂ti∂t j

∣∣
∣∣
t=0

= (k + 1)
∫

X0

〈sα , sβ 〉gk
0

(
(�0 + 1)−1 (

ϕi · ϕ j
) + νi j

)
dV0

− (k + 1)
∫

X0

〈(�0 + k + 1)−1 (
ϕi ⊗ sα

)
, ϕ j ⊗ sβ 〉g0dV0.

(4.16)

The curvature formula (4.12) of the metric Hk (V ) now follows easily from the above
formula and Eq. (4.13).

To estimate the limit of Ricci curvatures, we take any vector v ∈ T 1,0
0 B. By rotation

and scaling, we can assume v = ∂
∂t1

. Let
{
sα

} ⊂ H0
(

X0, K −k
X0

)
be an orthonormal

basis with respect to the L2 metric. By formula (4.12), we have

1

k + 1
Rick (v, v) =

∑

α

∫

X0

〈(�0 + k + 1)−1 (
ϕ1 ⊗ sα

)
, ϕ1 ⊗ sα 〉g0dV0

−
∫

X0

τk

(
(�0 + 1)−1

(
|ϕ1|2

)
+ ν11

)
dV0,

(4.17)
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where τk = ∑
α ‖sα‖2

gk
0
is the Bergman kernel function. Since the operator �0 + k +1

is self-adjoint and its first eigenvalue is at least k + 1, we have

0 ≤
∑

α

∫

X0

〈(�0 + k + 1)−1 (
ϕ1 ⊗ sα

)
, ϕ1 ⊗ sα 〉g0dV0

≤
∑

α

1

k + 1

∫

X0

〈ϕ1 ⊗ sα , ϕ1 ⊗ sα 〉g0dV0

=
∑

α

1

k + 1

∫

X0

|ϕ1|2‖sα‖2
gk
0
dV0 = 1

k + 1

∫

X0

τk |ϕ1|2dV0.

Combining the above inequality with equation (4.17), we have

0 ≤ 1

k + 1
Rick (v, v) +

∫

X0

τk (�0 + 1)−1
(
|ϕ1|2

)
dV0

≤ 1

k + 1

∫

X0

τk |ϕ1|2dV0.

(4.18)

By the Bergman kernel expansion (see [19,31,37,39])

τk = kn

πn
+ nkn−1

2πn
+ O

(
kn−2

)

and the fact that

ωW P (v, v) =
∫

X0

(�0 + 1)−1
(
|ϕ1|2

)
dV0,

we have

lim
k→∞

πn

kn

∫

X0

τk

(
(�0 + 1)−1

(
|ϕ1|2

)
+ ν11

)
dV0

=
∫

X0

(
1 + n

2k
+ O

(
k−2

))
(�0 + 1)−1

(
|ϕ1|2

)
dV0 + lim

k→∞
πn

kn

∫

X0

τkν11dV0

= ωW P (v, v) − lim
k→∞

∫

X0

(
1 + n

2k
+ O

(
k−2

))
�0ν11dV0

= ωW P (v, v)

and

lim
k→∞

πn

kn

(
1

k + 1

∫

X0

τk |ϕ1|2dV0

)
= 0.

Thus, (4.11) follows from inequality (4.18) and the above limits directly. ��
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5 Plurisubharmonicity of energy of harmonic maps

Another application of the deformation of Kähler–Einstein metrics, such as Theo-
rem 4.2, is the variation of energy of harmonic maps. In [34], Toledo studied the
harmonic maps from hyperbolic Riemann surfaces to a fixed Riemannian manifold
(N , h). For a Riemann surface �, fixing a homotopy class A of continuous maps
from � to N and assuming that the sectional curvature of N is nonpositive, there
exist smooth harmonic maps from � to N in the homotopy class A. Although such
harmonic maps may not be unique, the energy depends only on the conformal struc-
ture of �, thus one obtains an energy function E on the Teichmüller space T of �.
Toledo showed that if one further assumes that the curvature of N is Hermitian non-
positive, then E is a plurisubharmonic function on T . Shortly after Toledo’s work,
Yau pointed out that such construction can be used to study the Teichmüller spaces
of higher dimensional Kähler–Einstein manifolds and the plurisubharmonicity of the
energy functions should hold in these cases. This was carried out in [41] back in 2014.

Let (X , ω) be a Kähler manifold with metric g and let (N , h) be a Riemannian
manifold. To ensure the existence of harmonicmaps,we assume that N has nonpositive
sectional curvature. A W 1,2-map f : X → N is harmonic if it minimizes the energy

E( f ) =
∫

X
|∂ f |2 ωn

n!

in its homotopy class. In this case, f is indeed smooth and satisfies the Euler–Lagrange
equation

� f α + �α
βγ ( f )

∂ f β

∂zi

∂ f γ

∂z j
gi j = 0, (5.1)

where �α
βγ is the Christoffell symbol of h. Furthermore, the Hopf differential of f is

the section

H( f ) = ∂ f α

∂zi

∂ f β

∂zk
hαβdzi ⊗ dzk

of S2�1,0X . The curvature of (N , h) is Hermitian nonpositive if RN (u, v, u, v) ≤ 0
for each point p ∈ N and all complex tangent vectors u, v ∈ TC

p N . If f : X → N is
harmonic, then by using Eq. (5.1) we have the Siu-Sampson identity

div (div (H ( f ))) = −RN
αβγ δ

∂ f α

∂zi

∂ f γ

∂z j

∂ f β

∂zk

∂ f δ

∂zl
gi j gkl + ‖∇1,0∂ f ‖2. (5.2)

The following result was shown in Sampson [26].
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Theorem 5.1 If the curvature of (N , h) is Hermitian nonpositive and f : X → N is
a harmonic map, then ∇1,0∂ f = 0 and

RN
αβγ δ

∂ f α

∂zi

∂ f γ

∂z j

∂ f β

∂zk

∂ f δ

∂zl
gi j gkl = 0.

In view of constructing nontrivial plurisubharmonic functions on the Teichmüller
spaces of Kähler–Einstein manifolds by using energy of harmonic maps, the Bochner
formula implies that the only interesting case is that when each Kähler–Einstein man-
ifold is of general type.

Let (X0, ω0) be a Kähler–Einstein manifold of general type, and ϕ1, . . . , ϕm ∈
H

0,1
(
X0, T 1,0X0

)
be a basis of harmonic Beltrami differentials. We consider the

power series ϕ(t) as in Eq. (2.4) which is the solution of the Kuranishi equation (2.3).
In this section, we give a formal discussion of the plurisubharmonicity of the energy
of harmonic maps. The study of nonsmoothness of the Kuranishi space of X0, the
existence of smooth family of harmonic maps and the asymptotic behavior of the
energy function will be discussed elsewhere since they are of independent interests.
Thus we assume the deformation of the complex structure on X0 is unobstructed. Let
(X, B, π) be the Kuranishi family of X0 as constructed in Sect. 2. It was shown in
[28] that, in this case, the Kuranishi gauge is equivalent to the divergence gauge. In
particular, we have

ϕ(t)�ω0 = 0. (5.3)

To simplify the notation, we assume m = 1. The general case follows from the same
type of computations. The deformation of Kähler–Einstein metrics in this case was
established in [28]. We let Vt and ωt be the volume form and the Kähler form of the
Kähler–Einstein metric on Xt , respectively. Then

dVt =
(
1 + |t |2�0(1 − �0)

−1
(
|ϕ1|2

)
+ O

(
|t |3

))
dV0,

ωt =ω0 + |t |2
(√−1

2
∂0∂0

(
(1 − �0)

−1|ϕ1|2
)
)

+ O
(
|t |3

)
.

(5.4)

Now we let (N , h) be a Riemannian manifold of nonpositive sectional curvature,
A be a homotopy class of maps from X0 to N , and F : X → N be a smooth map such
that each ft = F |Xt : Xt → N is a harmonic map in the class A. We note that the
energy function E

(
t, t

) = E ( ft ) is independent of the choice of F and is a function
on B.

Theorem 5.2 The first variation of E is given by

∂ E

∂t

∣∣
∣∣
t=0

= −
∫

X0


(ϕ1�H( f0)) dV0 (5.5)
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and the second variation of E is given by

∂2E

∂t∂t

∣
∣∣∣
t=0

=−
∫

X0

RN
αβγ δ∂i f α

0 ∂ j f γ
0 ∂p f β

0 ∂q f δ
0 gi j g pq K dV0+

∫

X0

‖∇1,0∂ f0‖2K dV0

− 2
∫

X0

gi j RN
αβγ δ∂i f α

0 ∂ j f γ
0 uβuδdV0 + 2

∫

X0

‖∇1,0u − ϕ1�∂ f0‖2dV0,

(5.6)

where u = ∂ ft
∂t

∣∣∣∣
t=0

∈ �
(

f ∗
0 TCN

)
and K = (1 − �0)

−1 (|ϕ1|2
)
.

Furthermore, if we assume that the curvature of (N , h) is Hermitian nonpositive
then the second variation of E can be expressed as

∂2E

∂t∂t

∣∣∣∣
t=0

= −2
∫

X0

gi j RN
αβγ δ∂i f α

0 ∂ j f γ
0 uβuδdV0 + 2

∫

X0

‖∇1,0u − ϕ1�∂ f0‖2dV0.

(5.7)

In particular, in this case, the energy function E is plurisubharmonic on B.

Proof Formulas (5.4) and (2.7) give us complete information about the operators ∂t

and ∂ t , as well as the Kähler–Einstein metric on Xt . Thus, by using formula (5.3)
and the harmonic map equation (5.1), the first variation formula (5.5) follows from
integration by parts. This also leads to the following expression of the second variation
of E :

∂2E

∂t∂t

∣∣∣∣
t=0

=
∫

X0

hαβ∂i f α
0 ∂ j f β

0 gi j�0K dV0 −
∫

X0

hαβ∂i f α
0 ∂ j f β

0 giq g p j∂p∂q K dV0

− 2
∫

X0

gi j RN
αβγ δ∂i f α

0 ∂ j f γ
0 uβuδdV0 + 2

∫

X0

‖∇1,0u − ψ�∂ f0‖2dV0.

(5.8)

Formula (5.6) now follows from 5.8 by integration by parts. Furthermore, if we assume
the curvature of N is Hermitian nonpositive then, by the Siu–Sampson vanishing
Theorem 5.1, the first two terms on the right hand side of the second variation formula
(5.6) vanish, thus we have formula (5.7). The plurisubharmonicity of E now follows
immediately from the Hermitian nonpositivity of the curvature of N . ��
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