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Abstract Motivated by the study of coupled Kähler-Einstein metrics by Hultgren and Witt Nyström (2018)

and coupled Kähler-Ricci solitons by Hultgren (2017), we study in this paper coupled Sasaki-Einstein metrics

and coupled Sasaki-Ricci solitons. We first show an isomorphism between the Lie algebra of all transverse

holomorphic vector fields and certain space of coupled basic functions related to coupled twisted Laplacians for

basic functions, and obtain extensions of the well-known obstructions to the existence of Kähler-Einstein metrics

to this coupled case. These results are reduced to coupled Kähler-Einstein metrics when the Sasaki structure

is regular. Secondly we show the existence of toric coupled Sasaki-Einstein metrics when the basic first Chern

class is positive extending the work of Hultgren (2017).
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1 Introduction

Motivated by the proposed study of coupled Kähler-Einstein metrics by Hultgren and Witt Nyström [17]

and coupled Kähler-Ricci solitons by Hultgren [16] we study in this paper coupled Sasaki-Einstein metrics

and coupled Sasaki-Ricci solitons. Our work started in trying to understand their works from the view-

point of the former studies [6–10] of Kähler-Einstein metrics, and hopefully would serve as a supplement

to their papers since our results reduce to the case of coupled Kähler-Einstein metrics when the Sasaki

structure is regular.

LetM be a Fano manifold and choose the Kähler class to be the anti-canonical classK−1
M or equivalently

the first Chern class c1(M). A decomposition of c1(M) is a sum

c1(M) = (γ1 + · · ·+ γk)/2π (1.1)

with Kähler classes γ1, . . . , γk. If we choose a Kähler form ωα representing γα for each α, since both the

Ricci form Ric(ωα) and
∑k

β=1 ωβ represent 2πc1(M), there exists a smooth function fα such that

Ric(ωα)−
√
−1∂∂fα =

k∑
β=1

ωβ , α = 1, . . . , k. (1.2)
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Coupled Kähler-Ricci solitons are defined in [16] to be Kähler metrics with Kähler forms ωα represent-

ing γα such that, for each α, fα is a Hamiltonian Killing potential with respect to ωα so that Jgradαfα
is a Hamiltonian Killing vector field where gradα denotes the gradient with respect to ωα. Coupled

Kähler-Einstein metrics defined in [17] are the case where fα’s are all constant so that

Ric(ω1) = · · · = Ric(ωk) =
k∑

β=1

ωβ . (1.3)

Now we consider Sasakian analogues of the above. Let S be a compact Sasaki manifold with the

positive basic first Chern class cB1 (S), which means cB1 (S) is represented by a positive basic (1, 1)-form.

We assume that the real dimension of S is 2m + 1. We define similarly a decomposition of cB1 (S) to be

a sum

cB1 (S) = (γ1 + · · ·+ γk)/2π (1.4)

of positive basic (1, 1) classes γα. If we choose basic Kähler forms ωα representing γα, there exist smooth

basic functions fα such that

RicT(ωα)−
√
−1∂B∂Bfα =

k∑
β=1

ωβ , α = 1, . . . , k, (1.5)

where RicT denotes the transverse Ricci form (see (2.2) below). We say ωα’s are coupled Sasaki-Ricci

solitons if for each α, fα is a Hamiltonian Killing potential for ωα and coupled Sasaki-Einstein metrics

if fα is constant so that coupled Sasaki-Einstein metrics satisfy

RicT(ω1) = · · · = RicT(ωk) =
k∑

β=1

ωβ . (1.6)

Remark 1.1. When k = 1, the definition does not coincide with the usual definition of the transverse

Kähler-Einstein metric of a Sasaki-Einstein metric which is known to be equivalent to saying the trans-

verse Kähler metric is Einstein. This is because the Riemannian metric of a Sasaki manifold naturally

determines a transverse Kähler form written in the form 1
2dη for the contact 1-form with respect to

the given Reeb vector field but the basic Chern class cB1 (S) need not be represented by 1
2dη. However

if we assume c1(D) = 0 as a de Rham class for the contact distribution D, we have cB1 (S) = [ 12dη]

and the definition coincides with the transverse Kähler-Einstein form of a Sasaki-Einstein metric (see [2,

Corollary 7.5.26]).

To study the coupled equations in Sasakian situation as described above we wish to extend the results

for the Fano manifold as in [9]. Suppose we are given a compact Sasaki manifold (S, g) with the positive

basic first Chern class and a decomposition of cB1 (S) as (1.4). We also choose ωα in γα and then have fα
satisfying (1.5). We may normalize fα so that

ef1ωm
1 = · · · = efkωm

k . (1.7)

We define the twisted basic Laplacian ∆α,fα acting on basic smooth functions u by

∆α,fαu = ∆αu+ (gradαu)fα, (1.8)

where ∆α = −∂
∗
B,α∂B is the basic Beltrami-Laplacian with respect to ωα and gradαu = gijα

∂u
∂zj

∂
∂zi , where

(x, z1, . . . , zm) is the local foliation chart (see Section 2 below).

Recall that a compact Sasaki manifold (S, g) is characterized by its Riemannian cone manifold C(S)

being a Kähler manifold. A transverse holomorphic vector field is a holomorphic vector field X on the

Kähler cone C(S) which commutes with the extended Reeb vector field on C(S) (see Section 2 for more

details). It descends to a vector field on S, and also descends to a holomorphic vector field on local orbit

spaces of the Reeb flow which we denote by the same letter X. Since cB1 (S) is positive the basic first
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cohomology is zero. Thus, for each basic Kähler form ωα, there is a basic complex-valued Hamiltonian

function uα such that X = gradαuα. Let h
T(S) be the complex Lie algebra of all transverse holomorphic

vector fields.

Theorem 1.2. Let (S, g) be a compact Sasaki manifold with the positive basic first Chern class cB1 (S)

with the decomposition satisfying (1.4). We choose basic Kähler forms and associated potential functions

satisfying (1.5) and (1.7).

(1) If non-constant complex valued basic functions u1, . . . , uk satisfy

(a) gradαuα = gradβuβ, α, β = 1, 2, . . . , k;

(b) −∆α,fαuα = λ
∑k

β=1 uβ, for α = 1, 2, . . . , k,

then λ > 1. Moreover if λ = 1, the complex vector field V = gradαuα = gradβuβ is a transverse

holomorphic vector field.

(2) The Lie algebra hT(S) of all transverse holomorphic vector fields is isomorphic to the set of all

k-tuples of complex valued smooth functions (u1, . . . , uk) satisfying (a) and (b) with λ = 1 endowed with

the Lie algebra structure with respect to the Poisson bracket.

This theorem is a generalization of [9, Theorem 2.4.3] (see also [8]). The case of k = 1 of (1) is an

eigenvalue estimate of the twisted basic Laplacian. If f1, . . . , fk are all constant then ∆α,fα = ∆α is a

real operator. It follows that the gradients of both the real part and the imaginary part of u1, . . . , uk

give a holomorphic vector field. Furthermore, since if a (real) Hamiltonian vector field is holomorphic it

is necessarily Killing and the group of all isometries is compact, we obtain the following extension of a

theorem of Matsushima [22].

Corollary 1.3. If a compact Sasaki manifold S admits coupled Kähler-Einstein metrics, then the Lie

algebra hT(S) of transverse holomorphic vector fields is reductive.

This result was stated in [17] for coupled Kähler-Einstein metrics, but our proof would be more

elementary.

As in other non-linear problems in Kähler geometry (see, e.g., [12, 13, 18, 19]), a Lie algebra character

obstruction as in [6] appears in pairs with the reductiveness result of Theorem 1.2. Using the isomorphism

in Theorem 1.2(2), we define

Fut : hT(S) → C

V 7→
k∑

α=1

∫
S
uα ωm

α ∧ η∫
S
ωm
α ∧ η

. (1.9)

We will see in Section 4 that this definition is independent of the choice of u1, . . . , uk satisfying (a) and (b)

with λ = 1 above.

Theorem 1.4. Suppose the basic Kähler classes γα give a basic decomposition cB1 (S) =
∑k

α=1 γα/2π.

Then Fut(V ) is independent of the choice of basic Kähler forms ωα ∈ γα, α = 1, . . . , k. Furthermore, if S

admits coupled Sasaki-Einstein metrics for the decomposition cB1 (S) =
∑k

α=1 γα/2π then Fut identically

vanishes.

The lifting of the Lie algebra character in [6] to a group character was obtained in [7]. This lifting is

expressed in terms of Ricci forms, and if we replace them by Kähler forms it becomes the form of the

Monge-Ampère energy or Aubin’s J-functional [1]. In [4], another form of lifting was obtained in the

sense that it satisfies the cocycle conditions, and it is now called Ding’s functional. The definition of Fut

in this paper uses the relationship of [4, 7]. This seems to be already implicitly used in [16,17].

We also extend the existence results of Wang and Zhu [25] and Hultgren [16] to toric coupled Sasaki-

Einstein metrics as follows.

Theorem 1.5. Let S be a compact toric Sasaki manifold with the positive basic first Chern class with

the decomposition satisfying (1.4). Then S admits coupled Sasaki-Einstein metrics for the decomposi-

tion (1.4) if and only if Fut identically vanishes.
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Here, a Sasaki manifold is said to be toric if the cone C(S) is toric, i.e., if C(S) admits an effective

(C∗)m+1-action. Theorem 1.5 follows from an existence result of toric coupled Sasaki-Ricci solitons (see

Theorem 5.1 in Section 5). In the case of toric Sasaki-Einstein metrics one can deform the Reeb vector

field so that Fut vanishes, and proving the existence of Sasaki-Ricci solitons one can conclude that there

always exists a Sasaki-Einstein metric under the condition of c1(D) = 0 (see [11, 14, 21]). It is not clear

whether such a volume minimization argument applies in the coupled case.

The rest of this paper is organized as follows. In Section 2 we review the transverse Kähler structure

and the notions of transverse holomorphic vector fields and Hamiltonian holomorphic vector fields. In

Section 3, the proof of Theorem 1.2 is given. We also prove in Theorem 3.2 an identification of the Lie

algebra of all transverse holomorphic vector fields with the Lie algebra expressed in terms of Hamiltonian

functions satisfying a normalization condition. In Section 4, the proof of Theorem 1.4 is given. We

also give an obstruction to the existence of coupled Sasaki-Ricci solitons. In Section 5, we first show

in Theorem 5.2 that the normalization in Theorem 3.2 is equivalent to a Minkowski sum condition

of the moment map image. Using this we reduce the proof of Theorem 1.5 to the same type of real

Monge-Ampère equations as considered by Hultgren [16]. In Appendix A, we supplement the proof of

Theorem 1.5 by making the standard moment map for the ample anti-canonical class explicit in terms of

the first non-zero eigenfunctions of the twisted Laplacian (5.3).

2 The transverse Kähler structure on a Sasaki manifold

A compact Riemannian manifold (S, g) of dimension 2m+1 is called a Sasaki manifold if its Riemannian

cone (C(S), dr2 + r2g) is a Kähler manifold. S is identified with the submanifold {r = 1}. By using the

convention dc =
√
−1(∂ − ∂), the restriction η of dc log r to S = {r = 1} is a contact form. If we denote

by J the complex structure of C(S), the restriction ξ of the vector field Jr ∂
∂r to S is the Reeb vector

field of the contact form η so that iξη = 1 and iξdη = 0.

Since the Sasaki structure is characterized by the Kähler structure of the cone C(S) the geometry of

Sasaki manifold S is often described in terms of the Kähler geometry of C(S). Therefore it is convenient

to extend the Reeb vector field ξ and the contact form η on S to C(S), and we use the same letters to

denote them. Thus on C(S) we have

ξ = Jr
∂

∂r
and η = dc log r. (2.1)

As this shows, when the holomorphic structure of the cone C(S) is fixed, the radial function r has all

the information about the Sasaki structure on S and the Kähler structure on C(S), and in fact the

Kähler form on C(S) is given by
√
−1
2 ∂∂r2. The complex vector field ξ−

√
−1Jξ is a holomorphic vector

field on C(S). It generates a C∗ action on C(S). The local orbit of this action defines a transversely

holomorphic foliation on S, given by one-dimensional leaves generated by ξ. Let
∪

λ Uλ be an open

covering of S with πλ : Uλ → Vλ ⊂ Cm a submersion to the local orbit spaces. Then, when Uλ ∩Uµ ̸= ∅,

πλ ◦ π−1
µ : πµ(Uλ ∩ Uµ) → πλ(Uλ ∩ Uµ)

is a biholomorphic transformation. We have the transverse Kähler structure in the following sense. On

each Vλ, we can give a Kähler structure as follows. Let D = ker η ⊂ TS, i.e.,

D = {X ∈ TS | η(X) = 0}.

There is a canonical isomorphism

dπλ : Dp → Tπλ(p)Vλ, p ∈ Uλ.

Then there is a Kähler form γλ on Vλ such that π∗
λγλ = 1

2dη.
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Let
∪

λ Uλ with Uλ = {(xλ, z
1
λ, . . . , z

m
λ )} be the foliation chart on S. If Uλ ∩ Uµ ̸= ∅, and (xλ, z

1
λ,

. . . , zmλ ) and (xµ, z
1
µ, . . . , z

m
µ ) are local foliation coordinates on Uλ and Uµ, respectively, where

∂
∂xλ

= ξ |Uλ
,

then
∂ziµ
∂xλ

= 0,
∂ziµ

∂zjλ
= 0.

Consequently, a (p, q)-form α = αi1,...,ip,j1,...,jq
dzi1 ∧ · · · ∧ dzip ∧ dzj1 ∧ · · · ∧ dzjq is well-defined on S.

Definition 2.1. A p-form α on S is called basic if

iξα = 0, Lξα = 0.

Let Λp
B be the sheaf of germs of basic p-forms, and Ωp

B be the set of all global sections of Λp
B .

The lifted Kähler form π∗
λγλ = 1

2dη is a basic (1, 1)-form. In the local holomorphic foliation coordinate

(x, z1, . . . , zm), we write
1

2
dη =

√
−1gT

ij
dzi ∧ dzj .

For basic forms, we have the following two lemmas which can be proved by using Stokes theorem and

the fact that dη is basic.

Lemma 2.2. If α is a basic (2m− 1)-form, then∫
S

dBα ∧ η = 0.

Lemma 2.3. If α and β are basic forms with degα+ deg β = 2m− 1, then∫
S

dBα ∧ β ∧ η = (−1)degα

∫
S

α ∧ dBβ ∧ η.

We also have well-defined operators

∂B : Λp,q
B → Λp+1,q

B , ∂B : Λp,q
B → Λp,q+1

B .

Put

dB = ∂B + ∂B , dcB =
√
−1(∂B − ∂B).

Then

dB = d |Ωp
B
, dBd

c
B = 2

√
−1∂B∂B, d2B = (dcB)

2 = 0.

The basic p-th de Rham cohomology group is

Hp
B(S) =

ker{dB : Ωp
B → Ωp+1

B }
Im{dB : Ωp−1

B → Ωp
B}

,

and the basic (p, q)-Dolbeault cohomology group is

Hp,q
B (S) =

ker{∂B : Ωp,q
B → Ωp,q+1

B }
Im{∂B : Ωp,q−1

B → Ωp,q
B }

on S. With respect to the volume form (12dη)
m∧η, we define the adjoint operator of d∗B : Ωp+1

B → Ωp
B by

⟨d∗Bα, β⟩ = ⟨α, dBβ⟩.

Similarly, the adjoint operator of ∂
∗
B : Ωp,q+1

B → Ωp,q
B is defined by

⟨∂∗
Bα, β⟩ = ⟨α, ∂Bβ⟩.

The corresponding basic Laplacian operators are defined by

2dB
= dBd

∗
B + d∗BdB , 2∂B

= ∂B∂
∗
B + ∂

∗
B∂B .
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It is known that by the transverse Kähler structures, 2dB = 22∂B
.

The transverse Ricci form RicT is defined as

RicT = −
√
−1∂B∂B log det(gT). (2.2)

RicT is a dB-closed form and defines the basic cohomology class of type (1, 1). The basic cohomology

class cB1 (S) = [RicT]/2π is called the basic first Chern class of S. We say the basic first Chern class cB1 (S)

is positive, if cB1 (S) is represented by a positive basic (1, 1)-form.

Remark 2.4. Note that if two real closed basic (1, 1)-forms σ1 and σ2 represent the same basic

cohomology class there is a basic smooth function φ such that σ1 − σ2 =
√
−1∂B∂Bφ. If we fix the

complex structure of the Kähler cone C(S) and the Reeb vector field ξ, the Sasaki structure can be

deformed by the change of the radial function r by r̃ = eφr for a basic function φ. Then the contact form

is deformed from η = dc log r to η̃ = η + dc logφ and thus the transverse Kähler form is deformed from
1
2dη to 1

2dη +
√
−1∂∂φ. The basic Chern class is independent of the choice of such contact form η.

Definition 2.5. Let S be a compact Sasaki manifold, ξ be the Reeb vector field and h(S) be the Lie

algebra of all holomorphic vector fields on the cone C(S). We define

hT(S) := {X ∈ h(S) | [ξ,X] = 0}

to be the Lie algebra of transverse holomorphic vector fields.

We remark that for X ∈ hT(S), we also have [ξ −
√
−1Jξ,X] = 0. It follows that X descends to a

holomorphic vector field on S, and also that X descends to local orbit spaces of the Reeb flow. By abuse

of notation, we use the same letter X to denote the corresponding vector fields on S and local orbit

spaces of the Reeb flow.

Definition 2.6. A complex vector field X on a Sasaki manifold is called a Hamiltonian holomorphic

vector field if

(1) dπα(X) is a holomorphic vector field on Vα;

(2) the complex valued function uX =
√
−1η(X) satisfies

∂BuX = −
√
−1iX

(
1

2
dη

)
.

Suppose that the basic first Chern class is positive. Then for any other basic Kähler class there is a

basic Kähler form of positive transverse Ricci form and thus the basic first cohomology vanishes by the

standard Bochner technique. From this we have the following lemma.

Lemma 2.7 (See [3]). Let S be a compact Sasaki manifold of positive basic first Chern class. Then

the Lie algebra of the automorphism group of transverse holomorphic structure is the Lie algebra of all

Hamiltonian holomorphic vector fields.

Let γ be a basic (1, 1)-class which contains a positive (1, 1)-form ω. Then we say that ω is a basic

Kähler form and that γ is a basic Kähler class. For example the transverse Kähler form 1
2dη is a basic

Kähler form and its basic cohomology class [ 12dη] is a basic Kähler class. If we assume the basic first

Chern class cB1 (S) is positive then it is a basic Kähler class. For each basic Kähler form ω we can define

the transverse Ricci form RicT(ω) as in (2.2), and it represents cB1 (S). Definition 2.6 and Lemma 2.7 also

apply even if we replace 1
2dη by ω.

3 Transverse holomorphic vector fields and transverse elliptic operators

Let (S, g) be a compact Sasaki manifold. We assume the basic first Chern class cB1 (S) > 0, and it admits

a basic decomposition cB1 (S) =
∑k

α=1 γα/2π, where each γα is a basic Kähler class. We fix a basic Kähler

form ωα in each basic Kähler class γα. In this section, we prove Theorem 1.2 stated in Section 1 which

is the relationship between the Lie algebra of transverse holomorphic vector fields and the twisted basic

Laplacians on S.
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For each basic Kähler form ωα, since both RicT(ωα) and
∑k

α=1 ωα are in the basic first Chern

class cB1 (S), by the transverse ∂B∂B lemma [5], there is a basic function fα satisfying (1.5). We normalize

fα by (1.7). This means efαωm
α is independent of α. If we put

dV := efαωm
α ∧ η, (3.1)

then dV defines a volume form on S. We may normalize it so that
∫
S
dV = 1.

For a transverse holomorphic vector field V ∈ hT(S), by Lemma 2.7, let the basic function uα be the

Hamiltonian function of V with respect to the basic Kähler form ωα. In the local holomorphic foliation

coordinate (x, z1, . . . , zm), ωα =
√
−1gα

ij
dzi ∧ dzj . Since for each α from 1 to k, ∂Buα =

√
−1iV ωα, we

have the coordinate components of V are given by

V = gradαuα = gradβuβ . (3.2)

Define ∆α,fα by (1.8).

Proposition 3.1. For a transverse holomorphic vector field V , the basic functions u1, . . . , uk satisfying

(3.2) after suitable modifications by addition of constants satisfy

∆1,f1u1 = ∆2,f2u2 = · · · = ∆k,fkuk = −
k∑

β=1

uβ . (3.3)

Proof. First, we show that for α ̸= β,

∆α,fαuα = ∆β,fβuβ .

Note that (3.2) implies

∂puα = gαipg
ij
β ∂juβ .

Thus

∂k∂puα = ∂k(g
α
ipg

ij
β ∂juβ) = gαipg

ij
β ∂k∂juβ + gijβ ∂juβ∂kg

α
ip + gαip∂kg

ij
β ∂juβ .

By taking trace with respect to gkpα and using the Kähler condition ∂ig
α
jk

= ∂jg
α
ik
,

∆αuα = ∆βuβ + (gkpα ∂kg
α
ip)g

ij
β ∂juβ + ∂ig

ij
β ∂juβ

= ∆βuβ + gijβ (∂i logω
m
α )∂juβ − gijβ (∂i logω

m
β )∂juβ

= ∆βuβ + gijβ ∂i log
ωm
α

ωm
β

∂juβ

= ∆βuβ + gijβ ∂ifβ∂juβ − gijβ ∂ifα∂juβ (⋆1)

= ∆βuβ + gijβ ∂ifβ∂juβ − gijα ∂ifα∂juα, (⋆2)

where (⋆1) is due to efαωm
α = efβωm

β , and (⋆2) is due to gradαuα = gradβuβ . Hence

∆α,fαuα = ∆β,fβuβ .

Next, we show for any α = 1, . . . , k, after a normalization,

∆α,fαuα +
k∑

β=1

uβ = 0.

We denote by ∇α the covariant derivative with respect to ωα. Then for smooth functions ∇′′
α = ∂B for

any α, and for this reason the derivative with respect to the i-th coordinate will be written as∇α,i = ∇B,i.

Using the fact that for all α, ∇α,i∇α,juα = 0, and ∇i
αuα = ∇i

βuβ , we have

∇B,k(∆α,fαuα) = ∇α,k∇α,i∇i
αuα +∇i

αuα∇α,k∇α,ifα
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= −gijα Rα,ik∇α,juα + gijα ∇α,k∇α,ifα∇α,juα

=

(
−

k∑
β=1

gβ
ik

)
∇i

αuα = −
k∑

β=1

gβ
ik
∇i

βuβ

= −∇B,k

( k∑
β=1

uβ

)
.

From the assumptions that uα are basic functions we obtain

∆α,fαuα +

k∑
β=1

uβ = cα

for constants cα. In particular, cα = cβ = c. Furthermore, we choose vα = uα − c
k . Then vα satisfies

∆α,fαvα +

k∑
β=1

vβ = 0.

This completes the proof.

Theorem 3.2. Let S be a compact Sasaki manifold with cB1 (S) > 0, the decomposition (1.4) and the

choice of basic Kähler forms ωα and basic smooth functions fα satisfying (1.5). Then the Lie algebra

hT(S) of all transverse holomorphic vector fields is isomorphic to

h′ :=

{
u1 + · · ·+ uk

∣∣∣∣ gradαuα = gradβuβ ∈ hT(S), α, β = 1, . . . , k,

∫
S

(u1 + · · ·+ uk)dV = 0

}
,

where the Lie algebra structure of the latter is given by the Poisson bracket of each uα. Here, the

isomorphism is given by V 7→ u1 + · · ·+ uk with V = gradαuα.

Proof. There is a natural injection from h′ to hT(S) sending u1 + · · ·+ uk to V = gradαuα. This map

is also surjective by Proposition 3.1.

Now we turn to the proof of Theorem 1.2. First, we prove it in the regular Sasaki case, namely the

Kähler case. The statement in this case should be helpful to understand the product configuration of the

definition of K-stability in the coupled Kähler case.

Theorem 3.3. Let M be a Fano Kähler manifold of complex dimension n. Suppose that for Kähler

forms ω1, . . . , ωk, there exist real smooth functions f1, . . . , fk ∈ C∞(M), such that
Ric(ωα) =

k∑
β=1

ωβ +
√
−1∂∂fα,

ef1ωm
1 = ef2ωm

2 = · · · = efkωm
k .

Suppose also that non-constant complex valued smooth functions u1, . . . , uk ∈ C∞(X)⊗C satisfy

(1) ∇i
αuα = ∇i

βuβ for i = 1, 2, . . . , n and α, β = 1, 2, . . . , k.

(2) −∆α,fαuα = λ
∑k

β=1 uβ for α = 1, 2, . . . , k, where ∆α,fαuα = ∆αuα+∇i
αuα∇ifα, and ∆α = −∂

∗
α∂

is the Beltrami-Laplacian with respect to the Kähler form ωα.

Then λ > 1. Moreover, if λ = 1, the vector field V = gradαuα = gradβuβ is a holomorphic vector field.

Proof. We compute∫
M

|∇′′
α∇′′

αuα|2ωα
efαωm

α

=

∫
M

∇i
α∇j

αuα∇α,i∇α,juα efαωm
α

= −
∫
M

∇α,j(∇i
α∇j

αuαe
fα)∇α,iuα ωm

α
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= −
∫
M

(∇i
α(∆αuα) +Rα,j

i∇j
αuα +∇i

α∇j
αuα∇α

j fα)∇α,iuα efαωm
α

= −
∫
M

(∇i
α(∆αuα) +∇α,j∇i

αfα∇j
αuα +∇i

α∇j
αuα∇α,jfα)∇α,iuα efαωm

α

−
∫
M

( k∑
β=1

gβ,ij

)
∇i

αuα∇j
αuα efαωm

α

= −
∫
M

∇i
α(∆α,fαuα)∇α,iuα efαωm

α −
∫
M

k∑
β=1

gβ,ij∇
i
βuβ∇j

βuβ efβωm
β

=

∫
M

|∆α,fαuα|2 efαωm
α +

k∑
β=1

∫
M

(∆β,fβuβ)uβ efβωm
β

=

∫
M

λ2

∣∣∣∣ k∑
β=1

uβ

∣∣∣∣2 efαωm
α − λ

k∑
β=1

∫
M

( k∑
γ=1

uγ

)
uβ efβωm

β

= λ(λ− 1)

∫
M

∣∣∣∣ k∑
β=1

uβ

∣∣∣∣2 efβωm
β , (3.4)

where we have used efαωm
α = efβωm

β and ∇i
αuα = ∇i

βuβ . Taking the L2-inner product with uγ on

both sides of −∆α,fαuα = λ
∑k

β=1 uβ and taking sum over γ = 1, . . . , k, we see that λ > 0 since we

assumed uα are non-constant. Then from the computations (3.4) we conclude λ > 1. Moreover, if λ = 1,

then V = gradαuα is a holomorphic vector field.

Proof of Theorem 1.2. In the proof of Theorem 3.3 we replace the volume form ef1ωm
1 = · · · = efkωm

k by

dV = ef1ωm
1 ∧ η = · · · = efkωm

k ∧ η. Then by Lemmas 2.2 and 2.3 the same computations of Theorem 3.3

prove Theorem 1.2(1). The part (2) follows from Lemma 2.7, Proposition 3.1 and Theorem 3.3.

4 The invariant for the coupled Sasaki-Einstein manifold

Let S be a compact Sasaki manifold, ξ be the Reeb vector field and η be the contact form. We assume

that the basic first Chern class cB1 (S) is positive and that it admits a basic decomposition cB1 (S) =

(
∑k

α=1 γα)/2π, where γ1, . . . , γk are basic Kähler classes. In this section, we define an invariant on S

which gives an obstruction to the existence of coupled Sasaki-Einstein metrics. This invariant extends

the obstruction to the existence of Kähler-Einstein metrics obtained in [6], but it is expressed in the form

obtained in [10, Proposition 2.3].

As in Section 1, we let ωα be the basic Kähler forms in γα and fα be the basic smooth functions such

that RicT(ωα) =
∑k

β=1 ωβ +
√
−1∂B∂Bfα, and the basic functions f1, . . . , fk are normalized by (1.7),

i.e.,

ef1ωm
1 = · · · = efkωm

k .

Take a transverse holomorphic vector field V ∈ hT(S). Let complex-valued basic functions u1, . . . , uk be

the Hamiltonian functions of V with respect to basic Kähler forms ω1, . . . , ωk.

In Section 1, we defined Fut : hT(S) → C by (1.9) using Theorem 1.2(2). But since the condition (3.3)

is equivalent to the normalization
∫
S
(u1 + · · · + uk)dV = 0 we may re-define Fut using the latter nor-

malization. Then this definition is independent of the choice u1, . . . , uk satisfying the normalization∫
S
(u1 + · · ·+ uk) dV = 0 since if ũ1, . . . , ũk are another choice to represent the same element in h′ then

ũα = uα + cα for some constants c1, . . . , ck with c1 + · · ·+ ck = 0.

Proof of Theorem 1.4. If we take basic Kähler forms ω̃α = ωα +
√
−1∂B∂Bφα, where φ1, . . . , φk

are basic functions, then
∑k

α=1 ω̃α =
∑k

α=1 ωα +
√
−1∂B∂B(

∑k
α=1 φα). Let f̃α be the basic functions
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satisfying 
RicT(ω̃α) =

k∑
β=1

ω̃β +
√
−1∂B∂B f̃α,

ef̃1 ω̃m
1 = · · · = ef̃k ω̃m

k .

Then

e
∑k

β=1 φβef̃α ω̃m
α = efαωm

α . (4.1)

For the transverse holomorphic vector field V , we take the Hamiltonian functions uα with respect

to ωα satisfying the normalization condition
∫
S
(u1+ · · ·+uk) dV = 0 or equivalently the condition (3.3).

We then take ũα = uα + V (φα) to be the Hamiltonian function of V with respect to ω̃α. We first show

that ũα’s satisfy the normalization condition
∫
S
(ũ1+· · ·+ũk) dṼ = 0 where dṼ denotes the corresponding

volume form ef̃α ω̃m
α ∧ η. We have

k∑
α=1

ũα =
k∑

α=1

uα + V

( k∑
α=1

φα

)
.

We compute using the condition (3.3) that∫
S

(ũ1 + · · ·+ ũk) dṼ =

∫
S

( k∑
β=1

ũβ

)
ef̃α ω̃m

α ∧ η

=

∫
S

( k∑
α=1

uα + V

( k∑
β=1

φβ

))
e−

∑k
β=1 φβefαωm

α ∧ η

= −
∫
S

∆α,fαuα e−
∑k

β=1 φβefα ωm
α ∧ η −

∫
S

V (e−
∑k

β=1 φβ )efαωm
α ∧ η

= 0.

Next, we show that Fut is independent of the choice of the basic Kähler forms ωα in γα. To show this,

consider the deformation ωα(t) = ωα +
√
−1∂B∂B(tφα) for basic functions φα. Let uα and uα(t) be the

Hamiltonian functions of V with respect to ωα and ωα(t), where uα(t) = uα+ tV (φα). Then it is enough

to show the integrals
∫
S
uα(t)(ωα(t))

m∧η and
∫
S
(ωα(t))

m∧η are independent of t. But this follows from

d

dt

∫
S

(ωα(t))
m ∧ η =

∫
S

(∆ωα(t)φα) (ωα(t))
m ∧ η = 0,

d

dt

∫
S

uα(t) (ωα(t))
m ∧ η =

∫
S

V (φα)(ωα(t))
m ∧ η +

∫
S

uα(t)∆ωα(t)φα (ωα(t))
m ∧ η = 0.

If S admits the coupled Sasaki-Einstein metrics ω1, . . . , ωk, then we can take all fα’s to be zeros. Thus

the normalization
∫
S
(u1 + · · ·+ uk) dV = 0 implies Fut(V ) = 0. This completes the proof.

Let ωα be a basic Kähler form in the basic Kähler class γα. For V,W1, . . . ,Wk ∈ hT(S) we put

FutW1,...,Wk
(V ) =

k∑
α=1

∫
S
uα,V euWαωm

α ∧ η∫
S
euWαωm

α ∧ η
, (4.2)

where gradαuα,V = V and gradαuWα
= Wα and we assume uα,V ’s satisfy (3.3) or equivalently the

normalization ∫
S

(u1,V + · · ·+ uk,V ) dV = 0.

By a similar proof to that of Theorem 1.4, one can show that this is also independent of the choice of ωα’s

in γα’s. When W1 = · · · = Wk = 0 , FutW1,...,Wk
(V ) coincides with Fut(V ) in (1.9).
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Theorem 4.1. If there exists the coupled Sasaki-Ricci solitons (1.5) for the decomposition cB1 (S) =∑k
α=1 γα/2π then FutW1,...,Wk

identically vanishes for Wα = gradαfα, α = 1, . . . , k.

Proof. Suppose we have a solution of coupled Sasaki-Ricci solitons (1.5). We may normalize fα so

that (1.7) is satisfied. Then since Wα = gradαfα and thus uWα = fα in (4.2), we obtain using (3.1),

FutW1,...,Wk
(V ) =

( k∑
α=1

∫
S

uα,V dV

)/∫
S

dV, (4.3)

which vanishes by Theorem 3.2. This completes the proof of Theorem 4.1.

The above theorem is an extension of [6, 24].

5 Toric Sasaki-Ricci solitons

Let T be a real torus of dimension m + 1 acting effectively on S as isometries and t its Lie algebra.

Naturally, T acts on the Kähler cone C(S) as holomorphic isometries. Note that in this case we have an

effective (C∗)m+1-action on C(S), and m + 1 is the maximal dimension of the torus action because of

the dimension reason. In such a case we say C(S) is a toric Kähler cone and S is a toric Sasaki manifold

(see [20] for a concise description of toric Sasaki geometry).

We identify an element X ∈ t with a vector field on C(S) and denote it by the same letter X. Note

that the Reeb vector field ξ lies in t. Since the Kähler form on C(S) is given by
√
−1
2 ∂∂r2 the moment

map µ : C(S) → t∗ on the Kähler cone C(S) for the action of T is given for X ∈ t by

⟨µ,X⟩ = r2η(X),

where we recall that the contact form η is extended on C(S) by (2.1). It is well known that the image

of µ is a rational convex polyhedral cone which we denote by C. The Sasaki manifold S ∼= {r = 1} is

characterized as ⟨µ, ξ⟩ = 1, and its moment map image is {p ∈ C | ⟨p, ξ⟩ = 1}. We denote by Pξ the

image of {p ∈ C | ⟨p, ξ⟩ = 1} under the projection πξ : t∗ → (t/Rξ)∗. Pξ is the image of µξ := πξ ◦ µ |S :

S → (t/Rξ)∗, which we call the transverse moment map for S. Pξ is a rational convex polytope when ξ

defines a quasi-regular Sasaki structure, but otherwise it is not rational. The inverse image by µ of each

facet of C is the fixed point set in C(S) of a one-dimensional torus. If λ ∈ t is its infinitesimal generator

then λ is normal to the facet. The inverse image by µξ of the corresponding facet of Pξ is the fixed point

set in S of the same one-dimensional torus, and λ/Rξ ∈ t/Rξ is normal to the corresponding facet of Pξ.

(Note that there is no meaning of rationality in t/Rξ if ξ is not rational.)

Suppose that the basic first Chern class is positive. For any basic Kähler form ω invariant under T

we have a transverse moment map µω : S → (t/Rξ)∗ defined up to translation by the same reason as

in the paragraph after Lemma 2.7. Note that the Hamiltonian functions in Lemma 2.7 can be taken to

be real functions since T acts by isometries. Then the image of the transverse moment map is a convex

polytope, which we denote by Pω, and the facets have the same description as above. In particular, the

facets of Pξ and Pω are parallel to each other.

Let cB1 (S) = (
∑k

α=1 γα)/2π be a basic decomposition where γ1, . . . , γk are basic Kähler classes, and

choose basic Kähler forms ωα ∈ γα. We put Pα := Pωα which is independent of ωα ∈ γα up to translation.

Choose W1, . . . ,Wk ∈ t. Then FutW1,...,Wk
in (4.2), which is independent of the choice of ωα ∈ γα, is

expressed as

FutW1,...,Wk
=

k∑
α=1

APα(Wα), (5.1)

where

APα(Wα) =

∫
Pα

p e⟨Wα,p⟩dp∫
Pα

e⟨Wα,p⟩dp
.
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Theorem 5.1. Let S be a compact toric Sasaki manifold with the basic first Chern class cB1 (S) positive,

and cB1 (S) = (
∑k

α=1 γα)/2π be a basic decomposition. Let Pα be the convex polytope which is the image

of the transverse moment map for γα with normalization
∑k

α=1

∫
Pα

pdp = 0. Then there exist coupled

Kähler-Ricci solitons satisfying (1.5) for Wα = gradαfα ∈ t if and only if

k∑
α=1

APα(Wα) = 0.

Note that the condition
∑k

α=1

∫
Pα

pdp = 0 implies that the barycenter of the Minkowski sum
∑k

α=1 Pα

lies at the origin. This condition is equivalent to the normalization∫
S

(u1,V + · · ·+ uk,V ) dV = 0

in Theorem 3.2. Let KS denote the complex line bundle over S consisting of basic (m, 0)-forms, and

call KS the transverse canonical line bundle and K−1
S the transverse anti-canonical line bundle. We put

ω := ω1 + · · ·+ ωk, which is a basic Kähler form in cB1 (S) = c1(K
−1
S ). Let F be a basic smooth function

such that

RicT(ω)− ω =
√
−1∂B∂BF. (5.2)

We put ∆Fu := ∆u + (gradωu)F . Then Theorems 1.2 and 3.2 assert that when k = 1 we have the

isomorphisms of the Lie algebra hT(S) of all transverse holomorphic vector fields

hT(S) ∼= {u ∈ C∞(S)B ⊗C | −∆Fu = u}

=

{
u ∈ C∞(S)B ⊗C

∣∣∣∣ ∫
S

u eFωm ∧ η = 0

}
. (5.3)

We will call the moment map for the class c1(K
−1
S ) defined by the Hamiltonian functions u in (5.3) the

standard moment map, and denote its moment polytope by P−KS . In Appendix A, we will show that

this moment map is indeed standard.

Theorem 5.2. The normalization condition
∫
S
(u1,V + · · ·+ uk,V )dV = 0 is equivalent to

k∑
α=1

Pα = P−KS
,

where the left-hand side is the Minkowski sum of the polytopes Pα’s.

Proof. By [5, 26], there exists a unique basic Kähler form ω0 in cB1 (S) such that RicT(ω0) = ω. Then

using (5.2) we have

eFωm = ωm
0

by adding a constant to F . On the other hand by (1.5) with the normalization (1.7) we also have for

any α,

efαωm
α = ωm

0 .

Thus, using (3.1), we have for any α,

eFωm ∧ η = efαωm
α ∧ η = dV.

Hence ∫
S

(u1,V + · · ·+ uk,V )dV = 0

implies that u = u1,V + · · · + uk,V satisfies the condition in (5.3). This implies the Minkowski sum∑k
α=1 Pα coincides with P−KS

. This completes the proof.

When S is the unit circle bundle of K−1
X of a Fano manifold X the Minkowski sum condition in

Theorem 5.2 is equivalent to
∑k

α=1 Pα = P−KX
in Hultgren’s paper [16].
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Proof of Theorem 5.1. We choose basic Kähler forms ωα in γα, and consider for t ∈ [0, 1] the family of

Monge-Ampère equations

eg1+W1(φ1)(ω1 +
√
−1∂B∂Bφ1)

m = · · · = egk+Wk(φk)(ωk +
√
−1∂B∂Bφk)

m = e−t
∑

α φαωm
0 (5.4)

in terms of basic functions φα, where ω0 is the unique basic Kähler form in a basic Kähler class such that

RicT(ω0) = ω1 + · · ·+ ωk and gα is the potential function of Wα with respect to ωα, i.e., gradαgα = Wα.

If we have a solution for t = 1 the Kähler forms ωα +
√
−1∂∂φα give the desired coupled Sasaki-Ricci

solitons. By the same argument as in [16, 23], we only need to show the C0-estimates. To do so, we

wish to reduce the equation to holomorphic logarithmic coordinates, further to the real Monge-Ampère

equation with respect to the real coordinates, and to show the same arguments in [16] apply in our

Sasakian situation.

As in [14, Section 7], we take any subtorus H ⊂ T of codimension 1 such that its Lie algebra h does not

contain ξ. Let Hc ∼= (C∗)m denote the complexification of H. Take any point p ∈ µ−1(Int C) and consider

the orbit OrbC(S)(H
c, p) of the Hc-action on C(S) through p. Since Hc-action preserves −Jξ = r∂/∂r, it

descends to an action on the set S ∼= {r = 1} ⊂ C(S). More precisely this action is described as follows.

Let γ : Hc × C(S) → C(S) denote the Hc-action on C(S). Let p and γ(g, p) respectively be the points

on {r = 1} at which the flow lines through p and γ(g, p) generated by r∂/∂r respectively meet {r = 1}.
Then the Hc-action on S ∼= {r = 1} is given by γ : Hc × {r = 1} → {r = 1} where

γ(g, p) = γ(g, p).

Let OrbS(H
c, p) be the orbit of the induced action of Hc on S ∼= {r = 1}. Then as in [14, Proposition 7.2],

the transverse Kähler structure of the Sasaki manifold S is completely determined by the restriction

of 1
2dη to OrbC(S)(H

c, p), and also to OrbS(H
c, p). For other basic Kähler forms ω on S we may

restrict ω to these two orbits, and consider the transverse Kähler geometry as the Kähler geometry

on OrbC(S)(H
c, p) and OrbS(H

c, p). The two Kähler manifolds (OrbC(S)(H
c, p), ωOrbC(S)(Hc,p)) and

(OrbS(H
c, p), ωOrbS(Hc,p)) thus obtained are essentially the same in that if we give them the holomorphic

structures induced from the holomorphic structure of Hc then they are isometric Kähler manifolds.

The difference between them is that OrbC(S)(H
c, p) is a complex submanifold of the complex manifold

C(S) while OrbS(H
c, p) is a complex submanifold in the real Sasaki manifold S. Furthermore, since

the Reeb vector field can be approximated by quasi-regular ones, we may assume that the closure of

(OrbS(H
c, p), ωOrbS(Hc,p)) is a toric Kähler orbifold.

For any generic point q′ ∈ S the trajectory through q′ generated by the Reeb vector field ξ meets

OrbS(H
c, p) and ξ generates a one-parameter subgroup of isometries. So, the transverse Kähler geometry

at any q′ is determined by the transverse Kähler geometry along the points on OrbS(H
c, p). This

trajectory may meet OrbS(H
c, p) infinitely many times when the Sasaki structure is irregular. But the

transverse structures at all of them define the same Kähler structure because ξ generates a subtorus

in Tm+1 and we assumed that Tm+1 preserves the Sasaki structure.

Now we will express the Kähler potentials of ωα in terms of real affine coordinates on Hc. On

OrbC(S)(H
c, p) ∼= (C∗)m,

we use the affine logarithmic coordinates

(w1, w2, . . . , wm) = (x1 +
√
−1θ1, x2 +

√
−1θ2, . . . , xm +

√
−1θm)

for a point

(ex
1+

√
−1θ1

, ex
2+

√
−1θ2

, . . . , ex
m+

√
−1θm

) ∈ (C∗)m ∼= Hc.

By [15, Subsection A.2.3], there is a real smooth function hα unique up to an affine linear function

such that

ωα =
√
−1

∂2hα

∂xi∂xj
dwi ∧ dwj .
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We call hα the Kähler potential of ωα. However, we have a fixed moment map image Pα so that hα is

determined only up to a constant. Since ω =
∑

α ωα and we have the equality of Minkowski sum P−KS =∑
α Pα the Kähler potential of ω is equal to

∑
α φα up to a constant. This implies on OrbC(S)(H

c, p),

ωm
0 = e−

∑
α hα(

√
−1 dw1 ∧ dw1) ∧ · · · ∧ (

√
−1 dwm ∧ dwm). (5.5)

If we set

fα = hα + φα,

then

ωα +
√
−1∂∂φα =

√
−1

∂2fα
∂xi∂xj

dwi ∧ dwj . (5.6)

By (5.5) and (5.6) we obtain

e−t
∑

α φαωm
0 = et

∑
α fα−(1−t)

∑
α hα(

√
−1 dw1 ∧ dw1) ∧ · · · ∧ (

√
−1 dwm ∧ dwm) (5.7)

and

(ωα +
√
−1∂∂φα)

m = det

(
∂2fα
∂xi∂xj

)
(
√
−1 dw1 ∧ dw1) ∧ · · · ∧ (

√
−1 dwm ∧ dwm). (5.8)

Since both Wα(fα) and gα +Wα(φα) are Hamiltonian functions of Wα with respect to ωα +
√
−1∂∂φα

we have

Wα(fα) + Cα = gα +Wα(φα)

for some constant Cα. Then normalizing gα so that∫
OrbS(Hc,p)

egαωm
α = 1

we obtain ∫
OrbS(Hc,p)

egα+Wα(φα)(ωα +
√
−1∂∂φα)

m = 1

and ∫
OrbS(Hc,p)

eWα(fα)+Cα(ωα +
√
−1∂∂φα)

m =

∫
Rm

eWα(fα)+Cα det

(
∂2fα
∂xi∂xj

)
dx

= eCα

∫
Pα

e⟨Wα,p⟩dp.

Thus we obtain Cα = − log VolWα
(Pα), and therefore

eWα(fα)

VolWα(Pα)
= egα+Wα(φα), (5.9)

where

VolWα(Pα) =

∫
Pα

e⟨Wα,p⟩dp.

From (5.7)–(5.9), the Monge-Ampère equation (5.4) reduces to the real Monge-Ampère equation

eW1(f1)

VolW1(P1)
det

(
∂2f1

∂xi∂xj

)
= · · · = eWk(fk)

VolWk
(Pk)

det

(
∂2fk

∂xi∂xj

)
= et

∑
α fα−(1−t)

∑
α hα .

For the rest of the proof the same arguments as in [16] apply. This completes the proof of Theorem 5.1.

In [24,25], it is shown that for a toric Fano manifold FutW is the derivative of a proper convex function

at W ∈ k and that there exists a unique soliton vector field W , i.e., FutW = 0. The same arguments

apply in our coupled Sasaki Ricci-soliton case to find W ∈ k with FutW,...,W = 0. Thus we obtain the

following corollary to Theorem 5.1.
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Corollary 5.3. Let S be a compact toric Sasaki manifold with the basic first Chern class cB1 (S) positive,

and cB1 (S) = (
∑k

α=1 γα)/2π be a basic decomposition. Then there exists a Killing potential W such that

for W1 = · · · = Wk = W we have coupled Sasaki Ricci-solitons.

The general uniqueness result modulo automorphisms was established for coupled Kähler-Einstein

metrics in [17]. The case for Sasaki-Ricci solitons will necessitate the pluripotential theory for Sasaki

manifolds, and is beyond the scope of this paper.
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Appendix A

Let L → X be an ample line bundle over a compact complex manifold X. We choose a Hermitian

metric h of L such that its curvature form ω is a positive form. Suppose that we have a Hamiltonian
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action of a torus T on X. The moment map for the torus action is defined up to a translation. This

ambiguity depends on the choice of lifting of the action on X to L. However for the anti-canonical line

bundle L = K−1
X we have the standard lifting, namely the action induced by the push-forward. We

call the moment map of K−1
X for the Fano manifold corresponding to the push-forward the standard

moment map. Similarly we have the standard moment map for K−1
S for a compact Sasaki manifold S

with cB1 (S) > 0.

Theorem A.1. Let S (resp. X) be a toric Sasaki manifold with cB1 (S) > 0 (resp. toric Fano manifold ).

The moment map given by the Hamiltonian functions u in (5.3) is the standard one for K−1
S (resp. K−1

X ).

Proof. We first consider the case of the toric Fano manifold X. Choose a Kähler form

ω =
√
−1gijdz

i ∧ dzj

with the positive Ricci form ρ := Ric(ω). Then det g gives a Hermitian metric on K−1
X and the connection

form θ on the associated principal C∗-bundle is given by θ = ζ−1dζ+(det g)−1∂ det g, where ζ is the fiber

coordinate of the C∗-bundle, and its curvature is ρ =
√
−1∂θ. The Hamiltonian function in terms of ρ for

an element V ∈ t is given by −θ(V ) = −divgV , i.e., minus the divergence of V with respect to g. Thus

the barycenter of the moment polytope with respect to the Kähler form ρ is given by −
∫
X
divgV ρmg . By

[10, Proposition 2.3], this is equal to −
∫
X
V (F )ωm. The Hamiltonian function uV in terms of ω satisfies

∆FuV = −uV . Thus

−
∫
X

V (F )ωm =

∫
X

uV ω
m.

This shows the standard moment map has the same barycenter as the one given by the Hamiltonian

functions in (5.3). The case of Sasaki manifolds is similar. This completes the proof.
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