Residue formula for an obstruction to coupled Kähler–Einstein metrics

By Akito FUTAKI and Yingying ZHANG

(Received Oct. 20, 2019)

Abstract. We obtain a residue formula for an obstruction to the existence of coupled Kähler–Einstein metrics described by Futaki–Zhang. We apply it to an example studied separately by Futaki and Hultgren which is a toric Fano manifold with reductive automorphism, does not admit a Kähler– Einstein metric but still admits coupled Kähler–Einstein metrics.

1. Introduction.

A k-tuple of Kähler metrics $\omega_1, \ldots, \omega_k$ on a compact Kähler manifold M is called coupled Kähler metrics if it satisfies

$$\operatorname{Ric}(\omega_1) = \dots = \operatorname{Ric}(\omega_k) = \lambda \sum_{\alpha=1}^k \omega_\alpha$$
 (1)

for $\lambda = -1$, 0 or 1 where $\operatorname{Ric}(\omega_{\alpha})$ is the Ricci form of ω_{α} (we do not distinguish Kähler metrics g_{α} and their Kähler forms ω_{α}). Such metrics were introduced by Hultgren and Witt Nyström [16]. If $\lambda = 0$ this is just a k-tuple of Ricci-flat metrics and the existence is well-known for compact Kähler manifolds with $c_1(M) = 0$ by the celebrated solution by Yau [23] of the Calabi conjecture. For $\lambda = -1$ or $\lambda = 1$ the existence problem is an extension for the problem for negative or positive Kähler–Einstein metrics, and an obvious condition is $c_1(M) < 0$ or $c_1(M) > 0$. Hultgren and Witt Nyström [16] proved the existence of the solution for $\lambda = -1$ under the condition $c_1(M) < 0$ extending [23] and [1], and there are many interesting results for $\lambda = 1$ under the condition $c_1(M) > 0$ including attempts to extend [3] and [22]. Further studies of coupled Kähler–Einstein metrics have been done in [4], [5], [13], [15], [18], [19], [20], [21].

In this paper we derive a residue formula for an obstruction to the existence of positive coupled Kähler–Einstein metrics described in our previous paper [13] and apply to a computation of an example which appeared in Hultgren [15].

The obstruction is described as follows. Let M be a Fano manifold of complex dimension m. Assume the anticanonical line bundle has a splitting $K_M^{-1} = L_1 \otimes \cdots \otimes$ L_k into the tensor product of ample line bundles $L_{\alpha} \to M$. Then we have $c_1(L_{\alpha}) =$ $(1/2\pi)[\omega_{\alpha}]$ for a Kähler form $\omega_{\alpha} = \sqrt{-1}g_{\alpha i\bar{i}}dz^i \wedge d\bar{z}^j$, and thus

²⁰¹⁰ Mathematics Subject Classification. Primary 32Q15; Secondary 53C55.

Key Words and Phrases. coupled Kähler-Einstein metrics, residue formula.

The work of the second author was partially supported by Tsinghua University Initiative Scientific Research Program.

A. FUTAKI and Y. ZHANG

$$c_1(M) = \frac{1}{2\pi} \sum_{\alpha=1}^k [\omega_\alpha].$$

For each ω_{α} we have $f_{\alpha} \in C^{\infty}(M)$ such that

$$\operatorname{Ric}(\omega_{\alpha}) = \sum_{\beta=1}^{k} \omega_{\beta} + \sqrt{-1} \,\partial \overline{\partial} f_{\alpha}.$$

where f_{α} are normalized by

$$e^{f_1}\omega_1^m = \dots = e^{f_k}\omega_k^m.$$
 (2)

Note that this normalization still leaves an ambiguity up to a constant. However, we ignore this ambiguity since it does not cause any problem in later arguments. Of course $\omega_1, \ldots, \omega_k$ are coupled Kähler–Einstein metrics if and only if f_{α} are all constant.

Let X be a holomorphic vector field. Since a Fano manifold is simply connected there exist complex-valued smooth functions defined up to constant u_{α} such that

$$i_X \omega_\alpha = \overline{\partial}(\sqrt{-1}u_\alpha). \tag{3}$$

By the abuse of terminology we call u_{α} the Hamiltonian function of X with respect to ω_{α} though u_{α} is a Hamiltonian function for the imaginary part of X in the usual sense of symplectic geometry only when u_{α} is real valued. In Theorem 3.3 of [13], it is shown for some choices of u_{α} we have

$$\Delta_{\alpha} u_{\alpha} + (\operatorname{grad}_{\alpha} u_{\alpha}) f_{\alpha} = -\sum_{\beta=1}^{k} u_{\beta}, \tag{4}$$

where $\Delta_{\alpha} = -\overline{\partial}_{\alpha}^* \overline{\partial}$ is the Laplacian with respect to ω_{α} and $\operatorname{grad}_{\alpha} u_{\alpha}$ is the type (1,0)part of the gradient of u_{α} expressed as $\operatorname{grad}_{\alpha} u_{\alpha} = g_{\alpha}^{i\overline{j}}(\partial u_{\alpha}/\partial \overline{z}^j)(\partial/\partial z^i)$ in terms of local holomorphic coordinates (z^1, \ldots, z^m) . The case of k = 1 of this result has been obtained in [8]. If we replace u_{α} by $u_{\alpha}^{c_{\alpha}} = u_{\alpha} + c_{\alpha}$ the equations (4) are satisfied for $u_{\alpha}^{c_{\alpha}}$ if and only if

$$\sum_{\alpha=1}^{k} c_{\alpha} = 0.$$
(5)

DEFINITION 1.1 ([13]). With the choice of u_{α} satisfying (4) the Lie algebra character is defined as

Fut :
$$\mathfrak{h}(M) \to \mathbb{C}$$

 $X \mapsto \operatorname{Fut}(X) = \sum_{\alpha=1}^{k} \frac{\int_{M} u_{\alpha} \, \omega_{\alpha}^{m}}{\int_{M} \omega_{\alpha}^{m}}.$
(6)

Notice that this definition of Fut is not affected by the ambiguity of the choice of

 u_{α} because of (5). Note also Fut is the coupled infinitesimal form of the group character obtained in [7].

To formulate the localization formula let $Z = \bigcup_{\lambda \in \Lambda} Z_{\lambda}$ be zero set of X where Z_{λ} 's are connected components. Let $N_{\alpha}(Z_{\lambda}) = (T_M|_{Z_{\lambda}})/T_{Z_{\lambda}}$ be the normal bundle of Z_{λ} with respect to ω_{α} . Then the Levi-Civita connection ∇^{α} of ω_{α} naturally induces an endomorphism $L^{N_{\alpha}}(X)$ of $N_{\alpha}(Z_{\lambda})$ by

$$L^{N_{\alpha}}(X)(Y) = (\nabla_Y^{\alpha} X)^{\perp} \in N_{\alpha}(Z_{\lambda}), \quad \text{for any } Y \in N_{\alpha}(Z_{\lambda})$$

We also assume Z is nondegenerate in the sense that $L^{N_{\alpha}}$ is nondegenerate. Let K_{α} be the curvature of $N_{\alpha}(Z_{\lambda})$. The localization formula of Fut(X) we obtain is the following.

THEOREM 1.2. Let M be a Fano manifold with $K_M^{-1} = L_1 \otimes \cdots \otimes L_k$. Let X be a holomorphic vector field with nondegenerate zero set $Z = \bigcup_{\lambda \in \Lambda} Z_{\lambda}$, then

 $\operatorname{Fut}(X)$

$$= \frac{1}{m+1} \sum_{\alpha=1}^{k} \left(\frac{\sum_{\lambda \in \Lambda} \int_{Z_{\lambda}} ((E_{\alpha} + c_{1}(L_{\alpha}))|_{Z_{\lambda}})^{m+1} / \det((2\pi)^{-1}(L^{N_{\alpha}}(X) + \sqrt{-1}K_{\alpha}))}{\sum_{\lambda \in \Lambda} \int_{Z_{\lambda}} ((E_{\alpha} + c_{1}(L_{\alpha}))|_{Z_{\lambda}})^{m} / \det((2\pi)^{-1}(L^{N_{\alpha}}(X) + \sqrt{-1}K_{\alpha}))} \right), \quad (7)$$

where $E_{\alpha} \in \Gamma(\text{End}(L_{\alpha}))$ is given by $E_{\alpha}s = u_{\alpha}s$ with $L^{N_{\alpha}}$ and K_{α} being as above.

COROLLARY 1.3. If Z contains only discrete points, then

$$\operatorname{Fut}(X) = \frac{1}{m+1} \sum_{\alpha=1}^{k} \left(\frac{\sum\limits_{p \in Z} (u_{\alpha}(p))^{m+1} / \det(\nabla X)(p)}{\sum\limits_{p \in Z} (u_{\alpha}(p))^{m} / \det(\nabla X)(p)} \right)$$
$$= \frac{1}{m+1} \left(\sum_{\alpha=1}^{k} \frac{\sum\limits_{p \in Z} (u_{\alpha}(p))^{m+1}}{\sum\limits_{p \in Z} (u_{\alpha}(p))^{m}} \right).$$

We can apply the obtained localization formula for the invariant Fut in the coupled situation to verify the example considered in Hultgren's paper [15]. This example was first considered by the first author in [6], where he showed that the invariant Fut is non-vanishing, hence there does not exist a Kähler–Einstein metric on this example though the automorphism group is reductive and thus Matsushima's condition [17] is satisfied. Later, in [11], the localization formula in [12] was used to show a much simpler computation of the invariant Fut can be done. Hultgren [15] considered decompositions of the anticanonical line bundle, and proved in a special case of the decomposition there do exist coupled Kähler–Einstein metrics on this manifold.

The rest of the paper proceeds as follows. In Section 2 we prove Theorem 1.2. In Section 3 we verify the existence result of Hultgren in [15] by checking the vanishing of Fut as an application of Theorem 1.2.

2. Localization formula.

We first consider an ample line bundle $L \to M$ with $c_1(L) = (1/2\pi)[\omega]$ where $[\omega]$ is a Kähler class of M. Let e_U be a non-vanishing local holomorphic section of $L|_U$ where U is an open set of M. Then e_U determines a local trivialization of the line bundle $L|_U \cong U \times \mathbb{C}$, given by $ze_U \mapsto (p, z)$, where z is the fiber coordinate. Let h be the Hermitian metric of L, and $h_U = h(e_U, e_U)$. The local connection form is given by $\theta_U = \partial \log h_U$. Let

$$\theta = \theta_U + \frac{dz}{z},\tag{8}$$

then θ is a globally defined connection form on the associated principle \mathbb{C}^* -bundle. To see this, we first remark that dz/z is the Maurer–Cartan form of \mathbb{C}^* . If $U \cap V \neq \emptyset$, and we take another trivialization on $L|_V \cong V \times \mathbb{C}$, given by $we_V \mapsto (p, w)$, where e_V is a non-vanishing local holomorphic section and w is the fiber coordinate. Let f be the non-vanishing holomorphic function such that $e_V = fe_U$, then $h_V = |f|^2 h_U$ and z = fw. Then,

$$\theta_V + \frac{dw}{w} = \partial \log |f|^2 h_U + \frac{f}{z} d\left(\frac{z}{f}\right) = \frac{df}{f} + \partial \log h_U + \frac{dz}{z} - \frac{df}{f} = \theta_U + \frac{dz}{z}.$$

Hence $\theta = \theta_U + dz/z$ is independent of the trivialization. Obviously $\sqrt{-1} \overline{\partial} \theta = \omega$. Let u be a complex-valued smooth function such that

$$i_X \omega = \overline{\partial}(\sqrt{-1}u). \tag{9}$$

It is well-known (c.f. [10] for example) that a Hamiltonian vector field X written in this way lifts to L uniquely up to $cz\partial/\partial z$ for a constant c. Let \tilde{X} be a lift of X to L. Then obviously $u_X := -\theta(\tilde{X})$ is a Hamiltonian function for X and $-\theta(\tilde{X} - cz\partial/\partial z) = u_X + c$. Thus, the ambiguity of c_{α} for L_{α} above appears in this way. The connection form θ determines a horizontal lift X^h of X, given by

$$X^{h} = \tilde{X} - \theta(\tilde{X})z\frac{\partial}{\partial z}.$$

Apparently, this expression is independent of the lift \tilde{X} and $\theta(X^h) = 0$.

Now, for each ample line bundle $L_{\alpha} \to M$, $\alpha = 1, \ldots, k$, choose Hermitian metric h_{α} , let θ_{α} be corresponding connection form on the associated principal \mathbb{C}^* -bundle, and Θ_{α} is the curvature form such that $\Theta_{\alpha} = \overline{\partial} \partial \log h_{\alpha} = -\sqrt{-1}\omega_{\alpha}$.

Hence, with a choice of a Hamiltonian function u_{α} , the lifted holomorphic vector field X_{α} (omitting the tilde) of X on L_{α} is

$$X_{\alpha} = X_{\alpha}^{h} - u_{\alpha} z \frac{\partial}{\partial z}$$

where X^h_{α} is the horizontal lift of X. Then of course

$$u_{\alpha} = -\theta_{\alpha}(X_{\alpha}).$$

The infinitesimal action on the space $\Gamma(L_{\alpha})$ of holomorphic sections of L_{α} is given by

$$\begin{split} \Lambda_{\alpha} &: \Gamma(L_{\alpha}) \to \Gamma(L_{\alpha}) \\ s &\mapsto \Lambda_{\alpha}(s) = \nabla_{X}^{\alpha} s + u_{\alpha} s \end{split}$$

where ∇^{α} is the covariant derivative determined by θ_{α} .

Then we can check that for $f \in C^{\infty}(M)$, $s \in \Gamma(L_{\alpha})$,

(1) Λ_{α} satisfies the Leibniz rule.

$$\Lambda_{\alpha}(fs) = \nabla_{X}^{\alpha}(fs) + u_{\alpha}fs$$
$$= X(f)s + f\nabla_{X}^{\alpha}s + fu_{\alpha}s$$
$$= X(f)s + f\Lambda_{\alpha}s.$$

(2) $\overline{\partial}\Lambda_{\alpha} = \Lambda_{\alpha}\overline{\partial}$. This follows from

$$\overline{\partial}\Lambda_{\alpha}s = \overline{\partial}(i_X\nabla^{\alpha}s + u_{\alpha}s) = -i_X\overline{\partial}\nabla^{\alpha}s + \overline{\partial}u_{\alpha}s$$
$$= \left(-i_X\Theta_{\alpha} + \overline{\partial}u_{\alpha}\right)s = \sqrt{-1}\left(i_X\omega_{\alpha} - \overline{\partial}(\sqrt{-1}u_{\alpha})\right)s = 0.$$

(3) It is obvious that $\Lambda_{\alpha}|_{\operatorname{Zero}(X)} = u_{\alpha}|_{\operatorname{Zero}(X)}$ is a linear map on $\Gamma(L_{\alpha}|_{\operatorname{Zero}(X)})$.

This implies $\Lambda_{\alpha}|_{\operatorname{Zero}(X)} \in \operatorname{End}(L_{\alpha}|_{\operatorname{Zero}(X)})$. This endomorphism along the zero set of X can be extended to a global endomorphism of L_{α} by letting for $s \in \Gamma(L_{\alpha})$

$$E_{\alpha}s = \Lambda_{\alpha}s - \nabla_X^{\alpha}s = u_{\alpha}s = -\theta_{\alpha}(X_{\alpha})s.$$

Then $E_{\alpha} \in \operatorname{End}(L_{\alpha})$ and

$$\overline{\partial} E_{\alpha} = \overline{\partial} u_{\alpha} = i_X (-\sqrt{-1}\omega_{\alpha}) = i_X \Theta_{\alpha}.$$
⁽¹⁰⁾

The above discussion enables us to write the Lie algebra character (6) as

$$\operatorname{Fut}(X) = \sum_{\alpha=1}^{k} \frac{\int_{M} u_{\alpha} \, \omega_{\alpha}^{m}}{\int_{M} \omega_{\alpha}^{m}}$$
$$= \frac{1}{m+1} \sum_{\alpha=1}^{k} \frac{\int_{M} (u_{\alpha} + \omega_{\alpha})^{m+1}}{\int_{M} (u_{\alpha} + \omega_{\alpha})^{m}}$$
$$= \frac{1}{m+1} \sum_{\alpha=1}^{k} \frac{\int_{M} (-\theta_{\alpha}(X_{\alpha}) + \sqrt{-1}\Theta_{\alpha})^{m+1}}{\int_{M} (-\theta_{\alpha}(X_{\alpha}) + \sqrt{-1}\Theta_{\alpha})^{m}}$$
$$= \frac{1}{m+1} \sum_{\alpha=1}^{k} \frac{\int_{M} (E_{\alpha} + \sqrt{-1}\Theta_{\alpha})^{m+1}}{\int_{M} (E_{\alpha} + \sqrt{-1}\Theta_{\alpha})^{m}}.$$
(11)

Here we remark that the both expressions $\int_M (-\theta_\alpha(X_\alpha) + \sqrt{-1}\Theta_\alpha)^{m+1}$ and $\int_M (-\theta_\alpha(X_\alpha) + \sqrt{-1}\Theta_\alpha)^m$ are independent of the choice of Hermitian metric h_α . This could either follow from [12, Proposition 2.1] or argue as follows. We choose a family of

Hermitian metrics $h_{\alpha}(t)$, let $h_{\alpha}(t) = e^{-t\varphi_{\alpha}}h_{\alpha}$, for $\varphi_{\alpha} \in C^{\infty}(M)$. Then

$$\theta_{\alpha}(t) = \partial \log h_{\alpha}(t) + \frac{dz}{z} = \theta_{\alpha} - t \partial \varphi_{\alpha}$$

is the corresponding family of connections on associated principle $\mathbb{C}^*\text{-bundle},$ and the curvature forms are

$$\Theta_{\alpha}(t) = \Theta_{\alpha} + t \partial \overline{\partial} \varphi_{\alpha},$$

and we compute that

$$i_X \Theta_\alpha(t) = i_X \Theta_\alpha + i_X (t \partial \overline{\partial} \varphi_\alpha) = \overline{\partial} \big(u_\alpha + t X(\varphi_\alpha) \big),$$

we let $u_{\alpha}(t) = u_{\alpha} + tX(\varphi_{\alpha})$. This $u_{\alpha}(t)$ is a Hamiltonian function of X for the Kähler form $\omega_{\alpha}(t)$ corresponding to $h_{\alpha}(t)$. As we saw above the lifted vector field on L_{α} is given by

$$X_{\alpha}(t) = X_{\alpha}^{h}(t) - u_{\alpha}(t)z\frac{\partial}{\partial z}.$$

Then

$$-\theta_{\alpha}(t)(X_{\alpha}(t)) = u_{\alpha}(t) = -\theta_{\alpha}(X_{\alpha}) + tX(\varphi_{\alpha}).$$

We will check the metric independence of $\int_M (-\theta_\alpha(X_\alpha) + \sqrt{-1}\Theta_\alpha)^{m+1}$, and similar argument works for $\int_M (-\theta_\alpha(X_\alpha) + \sqrt{-1}\Theta_\alpha)^m$. We compute that

$$\begin{split} &\frac{d}{dt} \int_{M} \left(-\theta_{\alpha}(t)(X_{\alpha}(t)) + \sqrt{-1}\,\Theta_{\alpha}(t) \right)^{m+1} \\ &= (m+1) \int_{M} \left(-\theta_{\alpha}(t)(X_{\alpha}(t)) + \sqrt{-1}\,\Theta_{\alpha}(t) \right)^{m} \wedge \left(X(\varphi_{\alpha}) + \sqrt{-1}\,\partial\overline{\partial}\varphi_{\alpha} \right) \\ &= (m+1) \left(\int_{M} X(\varphi_{\alpha})(\sqrt{-1}\,\Theta_{\alpha}(t))^{m} - m\theta_{\alpha}(t)(X_{\alpha}(t))(\sqrt{-1}\,\Theta_{\alpha}(t))^{m-1} \wedge \sqrt{-1}\,\partial\overline{\partial}\varphi_{\alpha} \right) \\ &= (m+1) \left(\int_{M} X(\varphi_{\alpha})(\sqrt{-1}\,\Theta_{\alpha}(t))^{m} - m \int_{M} \overline{\partial} \left(\theta_{\alpha}(t)(X_{\alpha}(t)) \right) (\sqrt{-1}\,\Theta_{\alpha}(t))^{m-1} \wedge \sqrt{-1}\,\partial\varphi_{\alpha} \right) \\ &= (m+1) \left(\int_{M} X(\varphi_{\alpha})(\sqrt{-1}\,\Theta_{\alpha}(t))^{m} + m \int_{M} i_{X}\Theta_{\alpha}(t) \wedge (\sqrt{-1}\,\Theta_{\alpha}(t))^{m-1} \wedge \sqrt{-1}\,\partial\varphi_{\alpha} \right) \\ &= 0. \end{split}$$

PROOF OF THEOREM 1.2. Now, we follow an argument in the book [9] (see Theorem 5.2.8), originally due to Bott [2] to give the localization formula.

Consider an invariant polynomial P of degree (m+l) for l = 0, 1, let

$$P_{\alpha}(E_{\alpha} + \sqrt{-1}\,\Theta_{\alpha}) = \sum_{r=0}^{m+l} P_{\alpha,r}(E_{\alpha}, \sqrt{-1}\,\Theta_{\alpha}),$$

where

$$P_{\alpha,r}(E_{\alpha},\sqrt{-1}\,\Theta_{\alpha}) = \binom{m+l}{r} P(E_{\alpha},\ldots,E_{\alpha};\underbrace{\sqrt{-1}\,\Theta_{\alpha},\ldots,\sqrt{-1}\,\Theta_{\alpha}}_{r}).$$

Since $\overline{\partial} E_{\alpha} = i_X \Theta_{\alpha}$, we have

$$\sqrt{-1}\,\overline{\partial}P_{\alpha} = i_X P_{\alpha}.$$

Define a (1,0) form π_{α} as follows: for a holomorphic vector field Y,

$$i_Y \pi_\alpha = \frac{\omega_\alpha(Y, X)}{\omega_\alpha(X, X)},$$

then

$$i_X \pi_\alpha = 1$$
, and $i_X \overline{\partial} \pi_\alpha = 0$.

We further define

$$\eta_{\alpha} = \pi_{\alpha} \wedge \sum_{i=0}^{m-1} (\sqrt{-1}\,\overline{\partial}\pi_{\alpha})^i \wedge P_{\alpha}(E_{\alpha} + \sqrt{-1}\,\Theta_{\alpha}),$$

then η_{α} is defined outside zero set of X. The computation shows

$$P_{\alpha}(E_{\alpha} + \sqrt{-1}\,\Theta_{\alpha}) = -\sqrt{-1}\,\overline{\partial}\eta_{\alpha} + i_X\eta_{\alpha}.$$

Let $B_{\epsilon}(Z)$ be an ϵ -neighbourhood of Z. Then, denoting the type (2m-1)-part of η_{α} by $\eta_{\alpha}^{(2m-1)}$ we have

$$\begin{split} &\int_{M} P_{\alpha}(E_{\alpha} + \sqrt{-1}\,\Theta_{\alpha}) \\ &= \lim_{\epsilon \to 0} \int_{M-B_{\epsilon(Z)}} P_{\alpha}(E_{\alpha} + \sqrt{-1}\,\Theta_{\alpha}) \\ &= \sqrt{-1} \lim_{\epsilon \to 0} \int_{M-B_{\epsilon(Z)}} -\overline{\partial}\eta_{\alpha}^{(2m-1)} = \sqrt{-1} \lim_{\epsilon \to 0} \int_{\partial B_{\epsilon(Z)}} \eta_{\alpha}^{(2m-1)} \\ &= \sqrt{-1} \lim_{\epsilon \to 0} \int_{\partial B_{\epsilon(Z)}} \pi_{\alpha} \wedge \left(1 + (\sqrt{-1}\,\overline{\partial}\pi_{\alpha}) + (\sqrt{-1}\,\overline{\partial}\pi_{\alpha})^2 + \dots + (\sqrt{-1}\,\overline{\partial}\pi_{\alpha})^{m-1}\right) \\ &\wedge \sum_{r=0}^{m-1} P_{\alpha,r}(E_{\alpha}, \sqrt{-1}\,\Theta_{\alpha}). \end{split}$$

As computed in Theorem 5.2.8 in [9] or [2],

$$(2\pi)^{-m} \int_M P_\alpha(E_\alpha + \sqrt{-1}\,\Theta_\alpha) = \sum_{\lambda \in \Lambda} \int_{Z_\lambda} \frac{P_\alpha(E_\alpha + \sqrt{-1}\,\Theta_\alpha)|_{Z_\lambda}}{\det\left((2\pi)^{-1}(L^{N_\alpha}(X) + \sqrt{-1}\,K_\alpha)\right)},$$

where K_{α} is the curvature of the normal bundle N_{α} with respect to the induced metric. Taking $P = tr^{m+1}$ and $P = tr^m$, and apply above to (11), we obtain the localization formula of Fut(X) in the coupled case (7).

3. Application of localization formula.

Before computing the example, we remark that by Theorem 3.2 in [13], (4) is equivalent to

$$\int_M (u_1 + \dots + u_k) dV = 0$$

where $dV = e^{f_{\alpha}} \omega_{\alpha}^{m}$ which is independent of α by the normalization (2). By Theorem 5.2 in [13] this condition is equivalent to

$$\sum_{\alpha=1}^{k} \mathcal{P}_{\alpha} = \mathcal{P}_{-K_M} \tag{12}$$

where \mathcal{P}_{α} is the moment map image of ω_{α} .

We consider the tautological line bundles $\mathcal{O}_{\mathbb{CP}^1}(-1) \to \mathbb{CP}^1$ and $\mathcal{O}_{\mathbb{CP}^2}(-1) \to \mathbb{CP}^2$, and the bundle $E = \mathcal{O}_{\mathbb{CP}^1}(-1) \oplus \mathcal{O}_{\mathbb{CP}^2}(-1)$ over $\mathbb{CP}^1 \times \mathbb{CP}^2$. Let M be the total space of the projective line bundle $\mathbb{P}(E)$ over $\mathbb{CP}^1 \times \mathbb{CP}^2$. In local coordinates, we let

$$\mathbb{CP}^1 = \{(b_0:b_1)\}, \qquad \mathbb{CP}^2 = \{(a_0:a_1:a_2)\},\$$

$$\mathcal{O}_{\mathbb{CP}^1}(-1) = \{ [(w_0, w_1), (b_0 : b_1)] | (w_0, w_1) = \lambda(b_0, b_1) \text{ for some } \lambda \in \mathbb{C} \}, \\ \mathcal{O}_{\mathbb{CP}^2}(-1) = \{ [(z_0, z_1, z_2), (a_0 : a_1 : a_2)] | (z_0, z_1, z_2) = \mu(a_0, a_1, a_2) \text{ for some } \mu \in \mathbb{C} \},$$

$$M = \{ [(z_0 : z_1 : z_2 : w_0 : w_1), (a_0 : a_1 : a_2), (b_0 : b_1)] | \\ (w_0, w_1) = \lambda(b_0, b_1), (z_0, z_1, z_2) = \mu(a_0, a_1, a_2) \text{ for some } (\lambda, \mu) \neq (0, 0) \text{ in } \mathbb{C} \times \mathbb{C} \}.$$

The $(\mathbb{C}^*)^4$ -action on M is defined by extending the \mathbb{C}^* -action on \mathbb{CP}^1 and $(\mathbb{C}^*)^2$ -action on \mathbb{CP}^2 . We let $(t_1, t_2, t_3, t_4) \in (\mathbb{C}^*)^4$, then

$$(t_1, t_2, t_3, t_4) \cdot [(z_0 : z_1 : z_2 : w_0 : w_1), (a_0 : a_1 : a_2), (b_0 : b_1)] = [(z_0 : t_1 z_1 : t_2 z_2 : t_4 w_0 : t_4 t_3 w_1), (a_0 : t_1 a_1 : t_2 a_2), (b_0 : t_3 b_1)].$$

There are totally seven $(\mathbb{C}^*)^4$ -invariant divisors;

$$D_1 = \{z_0 = a_0 = 0\}, \quad D_2 = \{z_1 = a_1 = 0\}, \quad D_3 = \{z_2 = a_2 = 0\}$$

which are identified with \mathbb{CP}^1 -bundle over $\mathbb{CP}^1 \times \mathbb{CP}^1$;

$$D_4 = \{b_0 = w_0 = 0\}, \quad D_5 = \{b_1 = w_1 = 0\},$$

which are identified with \mathbb{CP}^1 -bundle over \mathbb{CP}^2 ;

$$D_6 = \{z_0 = z_1 = z_2 = 0\}, \quad D_7 = \{w_0 = w_1 = 0\},$$

which are identified with $\mathbb{CP}^1 \times \mathbb{CP}^2$. It is known that

$$K_M^{-1} = \sum_{i=1}^7 D_i.$$

As in [15], we consider the following decomposition for $c \in (1/4, 3/4)$ which is ampleness condition for the line bundles associated with D(c) and D(1-c) below. Define

$$D(c) = \frac{1}{2}K_M^{-1} + \left(c - \frac{1}{2}\right)(D_4 + D_5),$$

$$D(1-c) = \frac{1}{2}K_M^{-1} + \left(\frac{1}{2} - c\right)(D_4 + D_5),$$

then

$$K_M^{-1} = D(c) + D(1-c), (13)$$

in particular, putting c = 1/2 corresponds to the canonical decomposition $K_M^{-1} = (1/2)K_M^{-1} + (1/2)K_M^{-1}$. In this case, the coupled setting is completely reduced to the ordinary Kähler–Einstein setting, and one can no longer expect the existence of coupled Kähler–Einstein metric due to [6]. So we would like to consider the deformation from this, and try to find c such that the invariant Fut vanishes.

We remark that the torus action preserves the above decomposition (13). Note also that the invariant Fut is invariant under any automorphism of M preserving the decomposition (13). Using the automorphism $(b_0, b_1) \mapsto (b_1, b_0)$ one can see $\operatorname{Fut}(X_3) =$ $\operatorname{Fut}(-X_3)$ and thus $\operatorname{Fut}(X_3) = 0$ for the infinitesimal generator X_3 for the t_3 -action, and similarly $\operatorname{Fut}(X_1) = \operatorname{Fut}(X_2) = 0$ for the infinitesimal generators X_1 and X_2 of t_1 and t_2 -actions using the automorphisms induced by the odd permutations of the coordinates $(a_0 : a_1 : a_2)$. Hence, to compute the coupled Fut invariant, it is sufficient to consider the action of one parameter subgroup $(1, 1, 1, t_4)$ on M by

$$(1,1,1,t_4) \cdot [(z_0:z_1:z_2:w_0:w_1),(a_0:a_1:a_2),(b_0:b_1)] \\= [(z_0:z_1:z_2:t_4w_0:t_4w_1),(a_0:a_1:a_2),(b_0:b_1)].$$

For this action, let $\xi = \lambda/\mu$, $\eta = 1/\xi$, then the associated holomorphic vector field is

$$X = \xi \frac{\partial}{\partial \xi} = -\eta \frac{\partial}{\partial \eta}.$$

Zero sets are

$$Z_{\infty} = \{\mu = 0\} = D_6$$
, and $Z_0 = \{\lambda = 0\} = D_7$.

Since

$$\mathbb{P}(\mathcal{O}_{\mathbb{CP}^1}(-1) \oplus \mathcal{O}_{\mathbb{CP}^2}(-1)) = \mathbb{P}\big((\mathcal{O}_{\mathbb{CP}^1}(-1) \oplus \mathcal{O}_{\mathbb{CP}^2}(-1)) \otimes \mathcal{O}_{\mathbb{CP}^2}(1)\big) \\ = \mathbb{P}\big((\mathcal{O}_{\mathbb{CP}^1}(-1) \otimes \mathcal{O}_{\mathbb{CP}^2}(1)) \oplus \mathcal{O}_{\mathbb{CP}^2}\big),$$

the normal bundle of Z_{∞} is

A. FUTAKI and Y. ZHANG

$$\nu(Z_{\infty}) = \mathcal{O}_{\mathbb{CP}^1}(-1) \otimes \mathcal{O}_{\mathbb{CP}^2}(1),$$

similarly, the normal bundle of Z_0 is

$$\nu(Z_0) = \mathcal{O}_{\mathbb{CP}^1}(1) \otimes \mathcal{O}_{\mathbb{CP}^2}(-1) = \nu(Z_\infty)^{-1}.$$

Let a, b be the positive generators of $H^2(\mathbb{CP}^1, \mathbb{Z})$ and $H^2(\mathbb{CP}^2, \mathbb{Z})$. Then

$$c_1(\mathbb{CP}^1) = 2a, \quad c_1(\mathbb{CP}^2) = 3b,$$

and

$$c_1(K_M^{-1})|_{Z_{\infty}} = c_1(Z_{\infty}) + c_1(\nu(Z_{\infty})) = 2a + 3b - a + b = a + 4b.$$

Similarly we have

$$c_1(K_M^{-1})|_{Z_0} = 3a + 2b.$$

Since the line bundle $[D_4]$ restricted to $Z_{\infty} = D_6$ is isomorphic to the line bundle corresponding to the divisor $\{b_0 = 0\}$ in $\mathbb{CP}^1 \times \mathbb{CP}^2$ we have $c_1([D_4])|_{Z_{\infty}} = a$. Similarly we have

$$c_1([D_4])|_{Z_0} = c_1([D_5])|_{Z_\infty} = c_1([D_5])|_{Z_0} = a$$

Then

$$c_1(D(c))|_{Z_{\infty}} = \frac{1}{2}(a+4b) + \left(c - \frac{1}{2}\right)2a = \left(2c - \frac{1}{2}\right)a + 2b,$$

$$c_1(D(c))|_{Z_0} = \frac{1}{2}(3a+2b) + \left(c - \frac{1}{2}\right)2a = \left(2c + \frac{1}{2}\right)a + b.$$

To see the value of u along the zero set of X we may use the description of the moment polytope P(c) in [15]

$$P(c) = \left\{ y \in \mathbb{R}^4 : \langle y, d_i \rangle \le \frac{1}{2}, i \neq 4, 5, \ \langle y, d_i \rangle \le c, i = 4, 5 \right\}$$

where d_i are as described in [15]. Since $P(c) + P(1-c) = P_{-K_M}$ the moment polytopes are those obtained by the Hamiltonian functions satisfying (4) as follows from the arguments of the beginning of this section. From this description for $d_6 = (0, 0, 0, -1)$ and $d_7 = (0, 0, 0, 1)$ we see

$$u\big|_{Z_{\infty}} = -\frac{1}{2}, \qquad u\big|_{Z_0} = \frac{1}{2}.$$

By using the fact

$$a^2 = b^3 = 0,$$

we first compute

Residue formula for an obstruction to coupled Kähler-Einstein metrics

$$\operatorname{Vol}(D(c)) = \left[\frac{(u|_{Z_{\infty}} + c_1(D(c))|_{Z_{\infty}})^4}{u|_{Z_{\infty}} + c_1(\nu(Z_{\infty}))} + \frac{(u|_{Z_0} + c_1(D(c))|_{Z_0})^4}{u|_{Z_0} + c_1(\nu(Z_0))}\right] [\mathbb{CP}^1 \times \mathbb{CP}^2]$$

=
$$\left[\frac{\left(-1/2 + (2c - 1/2)a + 2b\right)^4}{-1/2 - a + b} + \frac{\left(1/2 + (2c + 1/2)a + b\right)^4}{1/2 + a - b}\right] [\mathbb{CP}^1 \times \mathbb{CP}^2]$$

=
$$112c - 6,$$
 (14)

replacing c by 1 - c, we get

$$Vol(D(1-c)) = 106 - 112c.$$
(15)

We also need to compute the numerators in the localization formula. For the divisor D(c),

$$\begin{bmatrix} \frac{(u|_{Z_{\infty}} + c_1(D(c))|_{Z_{\infty}})^5}{u|_{Z_{\infty}} + c_1(\nu(Z_{\infty}))} + \frac{(u|_{Z_0} + c_1(D(c))|_{Z_0})^5}{u|_{Z_0} + c_1(\nu(Z_0))} \end{bmatrix} [\mathbb{CP}^1 \times \mathbb{CP}^2]
= \begin{bmatrix} \frac{(-1/2 + (2c - 1/2)a + 2b)^5}{-1/2 - a + b} + \frac{(1/2 + (2c + 1/2)a + b)^5}{1/2 + a - b} \end{bmatrix} [\mathbb{CP}^1 \times \mathbb{CP}^2]
= -30c + 12,$$
(16)

replacing c by 1 - c, we get for divisor D(1 - c),

$$\left[\frac{(u|_{Z_{\infty}} + c_1(D(1-c))|_{Z_{\infty}})^5}{u|_{Z_{\infty}} + c_1(\nu(Z_{\infty}))} + \frac{(u|_{Z_0} + c_1(D(1-c))|_{Z_0})^5}{u|_{Z_0} + c_1(\nu(Z_0))}\right] [\mathbb{CP}^1 \times \mathbb{CP}^2]$$

= 30c - 18. (17)

Plugging above (14), (15), (16), (17) into the localization formula (Theorem 1.2), we obtain

$$\operatorname{Fut}(X) = \frac{\left[\frac{(u|_{Z_{\infty}} + c_1(D(c))|_{Z_{\infty}})^5}{u|_{Z_{\infty}} + c_1(\nu(Z_{\infty}))} + \frac{(u|_{Z_0} + c_1(D(c))|_{Z_0})^5}{u|_{Z_0} + c_1(\nu(Z_0))}\right] [\mathbb{CP}^1 \times \mathbb{CP}^2]}{\operatorname{Vol}(D(c))} \\ + \frac{\left[\frac{(u|_{Z_{\infty}} + c_1(D(1-c))|_{Z_{\infty}})^5}{u|_{Z_{\infty}} + c_1(\nu(Z_{\infty}))} + \frac{(u|_{Z_0} + c_1(D(1-c))|_{Z_0})^5}{u|_{Z_0} + c_1(\nu(Z_0))}\right] [\mathbb{CP}^1 \times \mathbb{CP}^2]}{\operatorname{Vol}(D(1-c))} \\ = \frac{-30c + 12}{112c - 6} + \frac{30c - 18}{106 - 112c} \\ = \frac{-15(112c^2 - 112c + 23)}{(56c - 3)(56c - 53)},$$
(18)

therefore, the invariant Fut character vanishes when

$$c = \frac{1}{2} \pm \frac{1}{4}\sqrt{\frac{5}{7}}.$$

This is the same as in [15].

References

- T. Aubin, Équations du type de Monge-Ampère sur les variétés kählériennes compactes, C. R. Acad. Sci. Paris Sér. A-B, 283 (1976), no. 3, A119–A121.
- [2] R. Bott, A residue formula for holomorphic vector-fields, J. Differential Geom., 1 (1967), 311–330.
- [3] X.-X. Chen, S. K. Donaldson and S. Sun, Kähler–Einstein metrics on Fano manifolds. III: Limits as cone angle approaches 2π and completion of the main proof, J. Amer. Math. Soc., **28** (2015), 235–278.
- [4] V. V. Datar and V. P. Pingali, On coupled constant scalar curvature Kähler metrics, preprint, arXiv:1901.10454, (2019).
- [5] T. Delcroix and J. Hultgren, Coupled complex Monge–Ampère equations on Fano horosymmetric manifolds, preprint, arXiv:1812.07218.
- [6] A. Futaki, An obstruction to the existence of Einstein Kähler metrics, Invent. Math., 73 (1983), 437–443.
- [7] A. Futaki, On a character of the automorphism group of a compact complex manifold, Invent. Math., 87 (1987), 655–660.
- [8] A. Futaki, The Ricci curvature of symplectic quotients of Fano manifolds, Tohoku Math. J. (2), 39 (1987), 329–339.
- [9] A. Futaki, Kähler–Einstein Metrics and Integral Invariants, Lecture Notes in Math., 1314, Springer-Verlag, Berlin, 1988, iv+140 pp.
- [10] A. Futaki and T. Mabuchi, Moment maps and symmetric multilinear forms associated with symplectic classes, Asian J. Math., 6 (2002), 349–371.
- [11] A. Futaki, T. Mabuchi and Y. Sakane, Einstein-Kähler metrics with positive Ricci curvature, In: Kähler Metric and Moduli Spaces, Adv. Stud. Pure Math., 18-II, Academic Press, Boston, MA, 1990, 11–83.
- [12] A. Futaki and S. Morita, Invariant polynomials of the automorphism group of a compact complex manifold, J. Differential Geom., 21 (1985), 135–142.
- [13] A. Futaki and Y. Zhang, Coupled Sasaki–Ricci solitons, Sci. China Math., published online (2019), https://doi.org/10.1007/s11425-018-9499-y.
- [14] V. Guillemin, Moment Maps and Combinatorial Invariants of Hamiltonian Tⁿ-spaces, Progr. Math., 122, Birkhäuser, Boston, 1994.
- [15] J. Hultgren, Coupled Kähler–Ricci solitons on toric Fano manifolds, Anal. PDE, 12 (2019), 2067– 2094.
- [16] J. Hultgren and D. Witt Nyström, Coupled Kähler–Einstein metrics, Int. Math. Res. Not. IMRN, 2019 (2019), 6765–6796.
- [17] Y. Matsushima, Sur la structure du groupe d'homéomorphismes analytiques d'une certaine variété kaehlérienne, Nagoya Math. J., 11 (1957), 145–150.
- [18] S. Nakamura, Deformation for coupled Kähler–Einstein metrics, preprint, arXiv:2003.02410.
- [19] V. P. Pingali, Existence of coupled Kähler–Einstein metrics using the continuity method, Internat. J. Math., 29 (2018), 1850041, 8 pp.
- [20] R. Takahashi, Ricci iteration for coupled Kähler–Einstein metrics, Int. Math. Res. Not. IMRN, (2019), rnz273.
- [21] R. Takahashi, Geometric quantization of coupled Kähler–Einstein metrics, preprint, arXiv:1904.12812, (2019).
- [22] G. Tian, K-stability and Kähler–Einstein metrics, Comm. Pure Appl. Math., 68 (2015), 1085– 1156.
- [23] S.-T. Yau, On the Ricci curvature of a compact Kähler manifold and the complex Monge–Ampère equation I, Comm. Pure Appl. Math., 31 (1978), 339–411.

Akito Futaki	Yingying Zhang
Yau Mathematical Sciences Center	Yau Mathematical Sciences Center
Tsinghua University	Tsinghua University
Haidian district	Haidian district
Beijing 100084, China	Beijing 100084, China
E-mail: futaki@tsinghua.edu.cn	E-mail: yingyzhang@tsinghua.edu.cn