Residue formula for an obstruction to coupled Kähler-Einstein metrics

By Akito Futaki and Yingying Zhang

(Received Oct. 20, 2019)

Abstract

We obtain a residue formula for an obstruction to the existence of coupled Kähler-Einstein metrics described by Futaki-Zhang. We apply it to an example studied separately by Futaki and Hultgren which is a toric Fano manifold with reductive automorphism, does not admit a KählerEinstein metric but still admits coupled Kähler-Einstein metrics.

1. Introduction.

A k-tuple of Kähler metrics $\omega_{1}, \ldots, \omega_{k}$ on a compact Kähler manifold M is called coupled Kähler metrics if it satisfies

$$
\begin{equation*}
\operatorname{Ric}\left(\omega_{1}\right)=\cdots=\operatorname{Ric}\left(\omega_{k}\right)=\lambda \sum_{\alpha=1}^{k} \omega_{\alpha} \tag{1}
\end{equation*}
$$

for $\lambda=-1,0$ or 1 where $\operatorname{Ric}\left(\omega_{\alpha}\right)$ is the Ricci form of ω_{α} (we do not distinguish Kähler metrics g_{α} and their Kähler forms ω_{α}). Such metrics were introduced by Hultgren and Witt Nyström [16]. If $\lambda=0$ this is just a k-tuple of Ricci-flat metrics and the existence is well-known for compact Kähler manifolds with $c_{1}(M)=0$ by the celebrated solution by Yau [23] of the Calabi conjecture. For $\lambda=-1$ or $\lambda=1$ the existence problem is an extension for the problem for negative or positive Kähler-Einstein metrics, and an obvious condition is $c_{1}(M)<0$ or $c_{1}(M)>0$. Hultgren and Witt Nyström [16] proved the existence of the solution for $\lambda=-1$ under the condition $c_{1}(M)<0$ extending [23] and [1], and there are many interesting results for $\lambda=1$ under the condition $c_{1}(M)>0$ including attempts to extend $[\mathbf{3}]$ and $[\mathbf{2 2}]$. Further studies of coupled Kähler-Einstein metrics have been done in [4], [5], [13], [15], [18], [19], [20], [21].

In this paper we derive a residue formula for an obstruction to the existence of positive coupled Kähler-Einstein metrics described in our previous paper [13] and apply to a computation of an example which appeared in Hultgren [15].

The obstruction is described as follows. Let M be a Fano manifold of complex dimension m. Assume the anticanonical line bundle has a splitting $K_{M}^{-1}=L_{1} \otimes \cdots \otimes$ L_{k} into the tensor product of ample line bundles $L_{\alpha} \rightarrow M$. Then we have $c_{1}\left(L_{\alpha}\right)=$ $(1 / 2 \pi)\left[\omega_{\alpha}\right]$ for a Kähler form $\omega_{\alpha}=\sqrt{-1} g_{\alpha i \bar{j}} d z^{i} \wedge d \bar{z}^{j}$, and thus

[^0]$$
c_{1}(M)=\frac{1}{2 \pi} \sum_{\alpha=1}^{k}\left[\omega_{\alpha}\right] .
$$

For each ω_{α} we have $f_{\alpha} \in C^{\infty}(M)$ such that

$$
\operatorname{Ric}\left(\omega_{\alpha}\right)=\sum_{\beta=1}^{k} \omega_{\beta}+\sqrt{-1} \partial \bar{\partial} f_{\alpha}
$$

where f_{α} are normalized by

$$
\begin{equation*}
e^{f_{1}} \omega_{1}^{m}=\cdots=e^{f_{k}} \omega_{k}^{m} . \tag{2}
\end{equation*}
$$

Note that this normalization still leaves an ambiguity up to a constant. However, we ignore this ambiguity since it does not cause any problem in later arguments. Of course $\omega_{1}, \ldots, \omega_{k}$ are coupled Kähler-Einstein metrics if and only if f_{α} are all constant.

Let X be a holomorphic vector field. Since a Fano manifold is simply connected there exist complex-valued smooth functions defined up to constant u_{α} such that

$$
\begin{equation*}
i_{X} \omega_{\alpha}=\bar{\partial}\left(\sqrt{-1} u_{\alpha}\right) \tag{3}
\end{equation*}
$$

By the abuse of terminology we call u_{α} the Hamiltonian function of X with respect to ω_{α} though u_{α} is a Hamiltonian function for the imaginary part of X in the usual sense of symplectic geometry only when u_{α} is real valued. In Theorem 3.3 of [13], it is shown for some choices of u_{α} we have

$$
\begin{equation*}
\Delta_{\alpha} u_{\alpha}+\left(\operatorname{grad}_{\alpha} u_{\alpha}\right) f_{\alpha}=-\sum_{\beta=1}^{k} u_{\beta} \tag{4}
\end{equation*}
$$

where $\Delta_{\alpha}=-\bar{\partial}_{\alpha}^{*} \bar{\partial}$ is the Laplacian with respect to ω_{α} and $\operatorname{grad}_{\alpha} u_{\alpha}$ is the type $(1,0)-$ part of the gradient of u_{α} expressed as $\operatorname{grad}_{\alpha} u_{\alpha}=g_{\alpha}^{i \bar{j}}\left(\partial u_{\alpha} / \partial \bar{z}^{j}\right)\left(\partial / \partial z^{i}\right)$ in terms of local holomorphic coordinates $\left(z^{1}, \ldots, z^{m}\right)$. The case of $k=1$ of this result has been obtained in [8]. If we replace u_{α} by $u_{\alpha}^{c_{\alpha}}=u_{\alpha}+c_{\alpha}$ the equations (4) are satisfied for $u_{\alpha}^{c_{\alpha}}$ if and only if

$$
\begin{equation*}
\sum_{\alpha=1}^{k} c_{\alpha}=0 \tag{5}
\end{equation*}
$$

Definition 1.1 ([13]). With the choice of u_{α} satisfying (4) the Lie algebra character is defined as

$$
\begin{align*}
& \text { Fut : } \mathfrak{h}(M) \rightarrow \mathbb{C} \\
& X \quad \mapsto \operatorname{Fut}(X)=\sum_{\alpha=1}^{k} \frac{\int_{M} u_{\alpha} \omega_{\alpha}^{m}}{\int_{M} \omega_{\alpha}^{m}} . \tag{6}
\end{align*}
$$

Notice that this definition of Fut is not affected by the ambiguity of the choice of
u_{α} because of (5). Note also Fut is the coupled infinitesimal form of the group character obtained in [7].

To formulate the localization formula let $Z=\bigcup_{\lambda \in \Lambda} Z_{\lambda}$ be zero set of X where Z_{λ} 's are connected components. Let $N_{\alpha}\left(Z_{\lambda}\right)=\left(\left.T_{M}\right|_{Z_{\lambda}}\right) / T_{Z_{\lambda}}$ be the normal bundle of Z_{λ} with respect to ω_{α}. Then the Levi-Civita connection ∇^{α} of ω_{α} naturally induces an endomorphism $L^{N_{\alpha}}(X)$ of $N_{\alpha}\left(Z_{\lambda}\right)$ by

$$
L^{N_{\alpha}}(X)(Y)=\left(\nabla_{Y}^{\alpha} X\right)^{\perp} \in N_{\alpha}\left(Z_{\lambda}\right), \quad \text { for any } Y \in N_{\alpha}\left(Z_{\lambda}\right) .
$$

We also assume Z is nondegenerate in the sense that $L^{N_{\alpha}}$ is nondegenerate. Let K_{α} be the curvature of $N_{\alpha}\left(Z_{\lambda}\right)$. The localization formula of $\operatorname{Fut}(X)$ we obtain is the following.

Theorem 1.2. Let M be a Fano manifold with $K_{M}^{-1}=L_{1} \otimes \cdots \otimes L_{k}$. Let X be a holomorphic vector field with nondegenerate zero set $Z=\bigcup_{\lambda \in \Lambda} Z_{\lambda}$, then

$$
\operatorname{Fut}(X)
$$

$$
\begin{equation*}
=\frac{1}{m+1} \sum_{\alpha=1}^{k}\left(\frac{\sum_{\lambda \in \Lambda} \int_{Z_{\lambda}}\left(\left.\left(E_{\alpha}+c_{1}\left(L_{\alpha}\right)\right)\right|_{Z_{\lambda}}\right)^{m+1} / \operatorname{det}\left((2 \pi)^{-1}\left(L^{N_{\alpha}}(X)+\sqrt{-1} K_{\alpha}\right)\right)}{\sum_{\lambda \in \Lambda} \int_{Z_{\lambda}}\left(\left(E_{\alpha}+c_{1}\left(L_{\alpha}\right)\right) \mid Z_{\lambda}\right)^{m} / \operatorname{det}\left((2 \pi)^{-1}\left(L^{N_{\alpha}}(X)+\sqrt{-1} K_{\alpha}\right)\right)}\right) \tag{7}
\end{equation*}
$$

where $E_{\alpha} \in \Gamma\left(\operatorname{End}\left(L_{\alpha}\right)\right)$ is given by $E_{\alpha} s=u_{\alpha} s$ with $L^{N_{\alpha}}$ and K_{α} being as above.
Corollary 1.3. If Z contains only discrete points, then

$$
\begin{aligned}
\operatorname{Fut}(X) & =\frac{1}{m+1} \sum_{\alpha=1}^{k}\left(\frac{\sum_{p \in Z}\left(u_{\alpha}(p)\right)^{m+1} / \operatorname{det}(\nabla X)(p)}{\sum_{p \in Z}\left(u_{\alpha}(p)\right)^{m} / \operatorname{det}(\nabla X)(p)}\right) \\
& =\frac{1}{m+1}\left(\sum_{\alpha=1}^{k} \frac{\sum_{p \in Z}\left(u_{\alpha}(p)\right)^{m+1}}{\sum_{p \in Z}\left(u_{\alpha}(p)\right)^{m}}\right)
\end{aligned}
$$

We can apply the obtained localization formula for the invariant Fut in the coupled situation to verify the example considered in Hultgren's paper [15]. This example was first considered by the first author in [6], where he showed that the invariant Fut is non-vanishing, hence there does not exist a Kähler-Einstein metric on this example though the automorphism group is reductive and thus Matsushima's condition [17] is satisfied. Later, in [11], the localization formula in [12] was used to show a much simpler computation of the invariant Fut can be done. Hultgren [15] considered decompositions of the anticanonical line bundle, and proved in a special case of the decomposition there do exist coupled Kähler-Einstein metrics on this manifold.

The rest of the paper proceeds as follows. In Section 2 we prove Theorem 1.2. In Section 3 we verify the existence result of Hultgren in [15] by checking the vanishing of Fut as an application of Theorem 1.2.

2. Localization formula.

We first consider an ample line bundle $L \rightarrow M$ with $c_{1}(L)=(1 / 2 \pi)[\omega]$ where $[\omega]$ is a Kähler class of M. Let e_{U} be a non-vanishing local holomorphic section of $\left.L\right|_{U}$ where U is an open set of M. Then e_{U} determines a local trivialization of the line bundle $\left.L\right|_{U} \cong U \times \mathbb{C}$, given by $z e_{U} \mapsto(p, z)$, where z is the fiber coordinate. Let h be the Hermitian metric of L, and $h_{U}=h\left(e_{U}, e_{U}\right)$. The local connection form is given by $\theta_{U}=\partial \log h_{U}$. Let

$$
\begin{equation*}
\theta=\theta_{U}+\frac{d z}{z} \tag{8}
\end{equation*}
$$

then θ is a globally defined connection form on the associated principle \mathbb{C}^{*}-bundle. To see this, we first remark that $d z / z$ is the Maurer-Cartan form of \mathbb{C}^{*}. If $U \cap V \neq \emptyset$, and we take another trivialization on $\left.L\right|_{V} \cong V \times \mathbb{C}$, given by $w e_{V} \mapsto(p, w)$, where e_{V} is a non-vanishing local holomorphic section and w is the fiber coordinate. Let f be the non-vanishing holomorphic function such that $e_{V}=f e_{U}$, then $h_{V}=|f|^{2} h_{U}$ and $z=f w$. Then,

$$
\theta_{V}+\frac{d w}{w}=\partial \log |f|^{2} h_{U}+\frac{f}{z} d\left(\frac{z}{f}\right)=\frac{d f}{f}+\partial \log h_{U}+\frac{d z}{z}-\frac{d f}{f}=\theta_{U}+\frac{d z}{z}
$$

Hence $\theta=\theta_{U}+d z / z$ is independent of the trivialization. Obviously $\sqrt{-1} \bar{\partial} \theta=\omega$. Let u be a complex-valued smooth function such that

$$
\begin{equation*}
i_{X} \omega=\bar{\partial}(\sqrt{-1} u) \tag{9}
\end{equation*}
$$

It is well-known (c.f. $[\mathbf{1 0}]$ for example) that a Hamiltonian vector field X written in this way lifts to L uniquely up to $c z \partial / \partial z$ for a constant c. Let \tilde{X} be a lift of X to L. Then obviously $u_{X}:=-\theta(\tilde{X})$ is a Hamiltonian function for X and $-\theta(\tilde{X}-c z \partial / \partial z)=u_{X}+c$. Thus, the ambiguity of c_{α} for L_{α} above appears in this way. The connection form θ determines a horizontal lift X^{h} of X, given by

$$
X^{h}=\tilde{X}-\theta(\tilde{X}) z \frac{\partial}{\partial z}
$$

Apparently, this expression is independent of the lift \tilde{X} and $\theta\left(X^{h}\right)=0$.
Now, for each ample line bundle $L_{\alpha} \rightarrow M, \alpha=1, \ldots, k$, choose Hermitian metric h_{α}, let θ_{α} be corresponding connection form on the associated principal \mathbb{C}^{*}-bundle, and Θ_{α} is the curvature form such that $\Theta_{\alpha}=\bar{\partial} \partial \log h_{\alpha}=-\sqrt{-1} \omega_{\alpha}$.

Hence, with a choice of a Hamiltonian function u_{α}, the lifted holomorphic vector field X_{α} (omitting the tilde) of X on L_{α} is

$$
X_{\alpha}=X_{\alpha}^{h}-u_{\alpha} z \frac{\partial}{\partial z}
$$

where X_{α}^{h} is the horizontal lift of X. Then of course

$$
u_{\alpha}=-\theta_{\alpha}\left(X_{\alpha}\right)
$$

The infinitesimal action on the space $\Gamma\left(L_{\alpha}\right)$ of holomorphic sections of L_{α} is given by

$$
\begin{aligned}
\Lambda_{\alpha}: \Gamma\left(L_{\alpha}\right) & \rightarrow \Gamma\left(L_{\alpha}\right) \\
s \quad & \mapsto \Lambda_{\alpha}(s)=\nabla_{X}^{\alpha} s+u_{\alpha} s
\end{aligned}
$$

where ∇^{α} is the covariant derivative determined by θ_{α}.
Then we can check that for $f \in C^{\infty}(M), s \in \Gamma\left(L_{\alpha}\right)$,
(1) Λ_{α} satisfies the Leibniz rule.

$$
\begin{aligned}
\Lambda_{\alpha}(f s) & =\nabla_{X}^{\alpha}(f s)+u_{\alpha} f s \\
& =X(f) s+f \nabla_{X}^{\alpha} s+f u_{\alpha} s \\
& =X(f) s+f \Lambda_{\alpha} s .
\end{aligned}
$$

(2) $\bar{\partial} \Lambda_{\alpha}=\Lambda_{\alpha} \overline{\bar{\partial}}$. This follows from

$$
\begin{aligned}
\bar{\partial} \Lambda_{\alpha} s & =\bar{\partial}\left(i_{X} \nabla^{\alpha} s+u_{\alpha} s\right)=-i_{X} \bar{\partial} \nabla^{\alpha} s+\bar{\partial} u_{\alpha} s \\
& =\left(-i_{X} \Theta_{\alpha}+\bar{\partial} u_{\alpha}\right) s=\sqrt{-1}\left(i_{X} \omega_{\alpha}-\bar{\partial}\left(\sqrt{-1} u_{\alpha}\right)\right) s=0 .
\end{aligned}
$$

(3) It is obvious that $\left.\Lambda_{\alpha}\right|_{\operatorname{Zero}(X)}=\left.u_{\alpha}\right|_{\operatorname{Zero}(X)}$ is a linear map on $\Gamma\left(\left.L_{\alpha}\right|_{\operatorname{Zero}(X)}\right)$.

This implies $\left.\Lambda_{\alpha}\right|_{\operatorname{Zero}(X)} \in \operatorname{End}\left(\left.L_{\alpha}\right|_{\operatorname{Zero}(X)}\right)$. This endomorphism along the zero set of X can be extended to a global endomorphism of L_{α} by letting for $s \in \Gamma\left(L_{\alpha}\right)$

$$
E_{\alpha} s=\Lambda_{\alpha} s-\nabla_{X}^{\alpha} s=u_{\alpha} s=-\theta_{\alpha}\left(X_{\alpha}\right) s
$$

Then $E_{\alpha} \in \operatorname{End}\left(L_{\alpha}\right)$ and

$$
\begin{equation*}
\bar{\partial} E_{\alpha}=\bar{\partial} u_{\alpha}=i_{X}\left(-\sqrt{-1} \omega_{\alpha}\right)=i_{X} \Theta_{\alpha} \tag{10}
\end{equation*}
$$

The above discussion enables us to write the Lie algebra character (6) as

$$
\begin{align*}
\operatorname{Fut}(X) & =\sum_{\alpha=1}^{k} \frac{\int_{M} u_{\alpha} \omega_{\alpha}^{m}}{\int_{M} \omega_{\alpha}^{m}} \\
& =\frac{1}{m+1} \sum_{\alpha=1}^{k} \frac{\int_{M}\left(u_{\alpha}+\omega_{\alpha}\right)^{m+1}}{\int_{M}\left(u_{\alpha}+\omega_{\alpha}\right)^{m}} \\
& =\frac{1}{m+1} \sum_{\alpha=1}^{k} \frac{\int_{M}\left(-\theta_{\alpha}\left(X_{\alpha}\right)+\sqrt{-1} \Theta_{\alpha}\right)^{m+1}}{\int_{M}\left(-\theta_{\alpha}\left(X_{\alpha}\right)+\sqrt{-1} \Theta_{\alpha}\right)^{m}} \\
& =\frac{1}{m+1} \sum_{\alpha=1}^{k} \frac{\int_{M}\left(E_{\alpha}+\sqrt{-1} \Theta_{\alpha}\right)^{m+1}}{\int_{M}\left(E_{\alpha}+\sqrt{-1} \Theta_{\alpha}\right)^{m}} \tag{11}
\end{align*}
$$

Here we remark that the both expressions $\int_{M}\left(-\theta_{\alpha}\left(X_{\alpha}\right)+\sqrt{-1} \Theta_{\alpha}\right)^{m+1}$ and $\int_{M}\left(-\theta_{\alpha}\left(X_{\alpha}\right)+\sqrt{-1} \Theta_{\alpha}\right)^{m}$ are independent of the choice of Hermitian metric h_{α}. This could either follow from [12, Proposition 2.1] or argue as follows. We choose a family of

Hermitian metrics $h_{\alpha}(t)$, let $h_{\alpha}(t)=e^{-t \varphi_{\alpha}} h_{\alpha}$, for $\varphi_{\alpha} \in C^{\infty}(M)$. Then

$$
\theta_{\alpha}(t)=\partial \log h_{\alpha}(t)+\frac{d z}{z}=\theta_{\alpha}-t \partial \varphi_{\alpha}
$$

is the corresponding family of connections on associated principle \mathbb{C}^{*}-bundle, and the curvature forms are

$$
\Theta_{\alpha}(t)=\Theta_{\alpha}+t \partial \bar{\partial} \varphi_{\alpha}
$$

and we compute that

$$
i_{X} \Theta_{\alpha}(t)=i_{X} \Theta_{\alpha}+i_{X}\left(t \partial \bar{\partial} \varphi_{\alpha}\right)=\bar{\partial}\left(u_{\alpha}+t X\left(\varphi_{\alpha}\right)\right)
$$

we let $u_{\alpha}(t)=u_{\alpha}+t X\left(\varphi_{\alpha}\right)$. This $u_{\alpha}(t)$ is a Hamiltonian function of X for the Kähler form $\omega_{\alpha}(t)$ corresponding to $h_{\alpha}(t)$. As we saw above the lifted vector field on L_{α} is given by

$$
X_{\alpha}(t)=X_{\alpha}^{h}(t)-u_{\alpha}(t) z \frac{\partial}{\partial z}
$$

Then

$$
-\theta_{\alpha}(t)\left(X_{\alpha}(t)\right)=u_{\alpha}(t)=-\theta_{\alpha}\left(X_{\alpha}\right)+t X\left(\varphi_{\alpha}\right)
$$

We will check the metric independence of $\int_{M}\left(-\theta_{\alpha}\left(X_{\alpha}\right)+\sqrt{-1} \Theta_{\alpha}\right)^{m+1}$, and similar argument works for $\int_{M}\left(-\theta_{\alpha}\left(X_{\alpha}\right)+\sqrt{-1} \Theta_{\alpha}\right)^{m}$. We compute that
$\frac{d}{d t} \int_{M}\left(-\theta_{\alpha}(t)\left(X_{\alpha}(t)\right)+\sqrt{-1} \Theta_{\alpha}(t)\right)^{m+1}$
$=(m+1) \int_{M}\left(-\theta_{\alpha}(t)\left(X_{\alpha}(t)\right)+\sqrt{-1} \Theta_{\alpha}(t)\right)^{m} \wedge\left(X\left(\varphi_{\alpha}\right)+\sqrt{-1} \partial \bar{\partial} \varphi_{\alpha}\right)$
$=(m+1)\left(\int_{M} X\left(\varphi_{\alpha}\right)\left(\sqrt{-1} \Theta_{\alpha}(t)\right)^{m}-m \theta_{\alpha}(t)\left(X_{\alpha}(t)\right)\left(\sqrt{-1} \Theta_{\alpha}(t)\right)^{m-1} \wedge \sqrt{-1} \partial \bar{\partial} \varphi_{\alpha}\right)$
$=(m+1)\left(\int_{M} X\left(\varphi_{\alpha}\right)\left(\sqrt{-1} \Theta_{\alpha}(t)\right)^{m}-m \int_{M} \bar{\partial}\left(\theta_{\alpha}(t)\left(X_{\alpha}(t)\right)\right)\left(\sqrt{-1} \Theta_{\alpha}(t)\right)^{m-1} \wedge \sqrt{-1} \partial \varphi_{\alpha}\right)$
$=(m+1)\left(\int_{M} X\left(\varphi_{\alpha}\right)\left(\sqrt{-1} \Theta_{\alpha}(t)\right)^{m}+m \int_{M} i_{X} \Theta_{\alpha}(t) \wedge\left(\sqrt{-1} \Theta_{\alpha}(t)\right)^{m-1} \wedge \sqrt{-1} \partial \varphi_{\alpha}\right)$
$=0$.
Proof of Theorem 1.2. Now, we follow an argument in the book [9] (see Theorem 5.2.8), originally due to Bott [2] to give the localization formula.

Consider an invariant polynomial P of degree $(m+l)$ for $l=0,1$, let

$$
P_{\alpha}\left(E_{\alpha}+\sqrt{-1} \Theta_{\alpha}\right)=\sum_{r=0}^{m+l} P_{\alpha, r}\left(E_{\alpha}, \sqrt{-1} \Theta_{\alpha}\right)
$$

where

$$
P_{\alpha, r}\left(E_{\alpha}, \sqrt{-1} \Theta_{\alpha}\right)=\binom{m+l}{r} P(E_{\alpha}, \ldots, E_{\alpha} ; \underbrace{\sqrt{-1} \Theta_{\alpha}, \ldots, \sqrt{-1} \Theta_{\alpha}}_{r}) .
$$

Since $\bar{\partial} E_{\alpha}=i_{X} \Theta_{\alpha}$, we have

$$
\sqrt{-1} \bar{\partial} P_{\alpha}=i_{X} P_{\alpha} .
$$

Define a $(1,0)$ form π_{α} as follows: for a holomorphic vector field Y,

$$
i_{Y} \pi_{\alpha}=\frac{\omega_{\alpha}(Y, X)}{\omega_{\alpha}(X, X)},
$$

then

$$
i_{X} \pi_{\alpha}=1, \quad \text { and } \quad i_{X} \bar{\partial} \pi_{\alpha}=0
$$

We further define

$$
\eta_{\alpha}=\pi_{\alpha} \wedge \sum_{i=0}^{m-1}\left(\sqrt{-1} \bar{\partial} \pi_{\alpha}\right)^{i} \wedge P_{\alpha}\left(E_{\alpha}+\sqrt{-1} \Theta_{\alpha}\right)
$$

then η_{α} is defined outside zero set of X. The computation shows

$$
P_{\alpha}\left(E_{\alpha}+\sqrt{-1} \Theta_{\alpha}\right)=-\sqrt{-1} \bar{\partial} \eta_{\alpha}+i_{X} \eta_{\alpha}
$$

Let $B_{\epsilon}(Z)$ be an ϵ-neighbourhood of Z. Then, denoting the type $(2 m-1)$-part of η_{α} by $\eta_{\alpha}^{(2 m-1)}$ we have

$$
\begin{aligned}
& \int_{M} P_{\alpha}\left(E_{\alpha}+\sqrt{-1} \Theta_{\alpha}\right) \\
& =\lim _{\epsilon \rightarrow 0} \int_{M-B_{\epsilon(Z)}} P_{\alpha}\left(E_{\alpha}+\sqrt{-1} \Theta_{\alpha}\right) \\
& =\sqrt{-1} \lim _{\epsilon \rightarrow 0} \int_{M-B_{\epsilon(Z)}}-\bar{\partial} \eta_{\alpha}^{(2 m-1)}=\sqrt{-1} \lim _{\epsilon \rightarrow 0} \int_{\partial B_{\epsilon(Z)}} \eta_{\alpha}^{(2 m-1)} \\
& =\sqrt{-1} \lim _{\epsilon \rightarrow 0} \int_{\partial B_{\epsilon(Z)}} \pi_{\alpha} \wedge\left(1+\left(\sqrt{-1} \bar{\partial} \pi_{\alpha}\right)+\left(\sqrt{-1} \bar{\partial} \pi_{\alpha}\right)^{2}+\cdots+\left(\sqrt{-1} \bar{\partial} \pi_{\alpha}\right)^{m-1}\right) \\
& \quad \wedge \sum_{r=0}^{m-1} P_{\alpha, r}\left(E_{\alpha}, \sqrt{-1} \Theta_{\alpha}\right)
\end{aligned}
$$

As computed in Theorem 5.2.8 in [9] or [2],

$$
(2 \pi)^{-m} \int_{M} P_{\alpha}\left(E_{\alpha}+\sqrt{-1} \Theta_{\alpha}\right)=\sum_{\lambda \in \Lambda} \int_{Z_{\lambda}} \frac{\left.P_{\alpha}\left(E_{\alpha}+\sqrt{-1} \Theta_{\alpha}\right)\right|_{Z_{\lambda}}}{\operatorname{det}\left((2 \pi)^{-1}\left(L^{N_{\alpha}}(X)+\sqrt{-1} K_{\alpha}\right)\right)}
$$

where K_{α} is the curvature of the normal bundle N_{α} with respect to the induced metric. Taking $P=t r^{m+1}$ and $P=t r^{m}$, and apply above to (11), we obtain the localization formula of $\operatorname{Fut}(X)$ in the coupled case (7).

3. Application of localization formula.

Before computing the example, we remark that by Theorem 3.2 in [13], (4) is equivalent to

$$
\int_{M}\left(u_{1}+\cdots+u_{k}\right) d V=0
$$

where $d V=e^{f_{\alpha}} \omega_{\alpha}^{m}$ which is independent of α by the normalization (2). By Theorem 5.2 in [13] this condition is equivalent to

$$
\begin{equation*}
\sum_{\alpha=1}^{k} \mathcal{P}_{\alpha}=\mathcal{P}_{-K_{M}} \tag{12}
\end{equation*}
$$

where \mathcal{P}_{α} is the moment map image of ω_{α}.
We consider the tautological line bundles $\mathcal{O}_{\mathbb{C P}^{1}}(-1) \rightarrow \mathbb{C P}^{1}$ and $\mathcal{O}_{\mathbb{C P}^{2}}(-1) \rightarrow \mathbb{C P}^{2}$, and the bundle $E=\mathcal{O}_{\mathbb{C P}^{1}}(-1) \oplus \mathcal{O}_{\mathbb{C P}^{2}}(-1)$ over $\mathbb{C P}^{1} \times \mathbb{C P}^{2}$. Let M be the total space of the projective line bundle $\mathbb{P}(E)$ over $\mathbb{C P}^{1} \times \mathbb{C P}^{2}$. In local coordinates, we let

$$
\mathbb{C P}^{1}=\left\{\left(b_{0}: b_{1}\right)\right\}, \quad \mathbb{C P}^{2}=\left\{\left(a_{0}: a_{1}: a_{2}\right)\right\},
$$

$$
\begin{aligned}
& \mathcal{O}_{\mathbb{C P}^{1}}(-1)=\left\{\left[\left(w_{0}, w_{1}\right),\left(b_{0}: b_{1}\right)\right] \mid\left(w_{0}, w_{1}\right)=\lambda\left(b_{0}, b_{1}\right) \text { for some } \lambda \in \mathbb{C}\right\}, \\
& \mathcal{O}_{\mathbb{C P}^{2}}(-1)=\left\{\left[\left(z_{0}, z_{1}, z_{2}\right),\left(a_{0}: a_{1}: a_{2}\right)\right] \mid\left(z_{0}, z_{1}, z_{2}\right)=\mu\left(a_{0}, a_{1}, a_{2}\right) \text { for some } \mu \in \mathbb{C}\right\}, \\
& M=\left\{\left[\left(z_{0}: z_{1}: z_{2}: w_{0}: w_{1}\right),\left(a_{0}: a_{1}: a_{2}\right),\left(b_{0}: b_{1}\right)\right] \mid\right. \\
&\left.\left(w_{0}, w_{1}\right)=\lambda\left(b_{0}, b_{1}\right),\left(z_{0}, z_{1}, z_{2}\right)=\mu\left(a_{0}, a_{1}, a_{2}\right) \text { for some }(\lambda, \mu) \neq(0,0) \text { in } \mathbb{C} \times \mathbb{C}\right\} .
\end{aligned}
$$

The $\left(\mathbb{C}^{*}\right)^{4}$-action on M is defined by extending the \mathbb{C}^{*}-action on $\mathbb{C P}^{1}$ and $\left(\mathbb{C}^{*}\right)^{2}$-action on $\mathbb{C P}^{2}$. We let $\left(t_{1}, t_{2}, t_{3}, t_{4}\right) \in\left(\mathbb{C}^{*}\right)^{4}$, then

$$
\begin{aligned}
& \left(t_{1}, t_{2}, t_{3}, t_{4}\right) \cdot\left[\left(z_{0}: z_{1}: z_{2}: w_{0}: w_{1}\right),\left(a_{0}: a_{1}: a_{2}\right),\left(b_{0}: b_{1}\right)\right] \\
& \quad=\left[\left(z_{0}: t_{1} z_{1}: t_{2} z_{2}: t_{4} w_{0}: t_{4} t_{3} w_{1}\right),\left(a_{0}: t_{1} a_{1}: t_{2} a_{2}\right),\left(b_{0}: t_{3} b_{1}\right)\right] .
\end{aligned}
$$

There are totally seven $\left(\mathbb{C}^{*}\right)^{4}$-invariant divisors;

$$
D_{1}=\left\{z_{0}=a_{0}=0\right\}, \quad D_{2}=\left\{z_{1}=a_{1}=0\right\}, \quad D_{3}=\left\{z_{2}=a_{2}=0\right\}
$$

which are identified with $\mathbb{C P}^{1}$-bundle over $\mathbb{C P}^{1} \times \mathbb{C P}^{1}$;

$$
D_{4}=\left\{b_{0}=w_{0}=0\right\}, \quad D_{5}=\left\{b_{1}=w_{1}=0\right\}
$$

which are identified with $\mathbb{C P}^{1}$-bundle over $\mathbb{C P}^{2}$;

$$
D_{6}=\left\{z_{0}=z_{1}=z_{2}=0\right\}, \quad D_{7}=\left\{w_{0}=w_{1}=0\right\}
$$

which are identified with $\mathbb{C P}^{1} \times \mathbb{C P}^{2}$. It is known that

$$
K_{M}^{-1}=\sum_{i=1}^{7} D_{i}
$$

As in [15], we consider the following decomposition for $c \in(1 / 4,3 / 4)$ which is ampleness condition for the line bundles associated with $D(c)$ and $D(1-c)$ below. Define

$$
\begin{aligned}
D(c) & =\frac{1}{2} K_{M}^{-1}+\left(c-\frac{1}{2}\right)\left(D_{4}+D_{5}\right), \\
D(1-c) & =\frac{1}{2} K_{M}^{-1}+\left(\frac{1}{2}-c\right)\left(D_{4}+D_{5}\right),
\end{aligned}
$$

then

$$
\begin{equation*}
K_{M}^{-1}=D(c)+D(1-c), \tag{13}
\end{equation*}
$$

in particular, putting $c=1 / 2$ corresponds to the canonical decomposition $K_{M}^{-1}=$ $(1 / 2) K_{M}^{-1}+(1 / 2) K_{M}^{-1}$. In this case, the coupled setting is completely reduced to the ordinary Kähler-Einstein setting, and one can no longer expect the existence of coupled Kähler-Einstein metric due to [6]. So we would like to consider the deformation from this, and try to find c such that the invariant Fut vanishes.

We remark that the torus action preserves the above decomposition (13). Note also that the invariant Fut is invariant under any automorphism of M preserving the decomposition (13). Using the automorphism $\left(b_{0}, b_{1}\right) \mapsto\left(b_{1}, b_{0}\right)$ one can see $\operatorname{Fut}\left(X_{3}\right)=$ $\operatorname{Fut}\left(-X_{3}\right)$ and thus $\operatorname{Fut}\left(X_{3}\right)=0$ for the infinitesimal generator X_{3} for the t_{3}-action, and similarly $\operatorname{Fut}\left(X_{1}\right)=\operatorname{Fut}\left(X_{2}\right)=0$ for the infinitesimal generators X_{1} and X_{2} of t_{1} and t_{2}-actions using the automorphisms induced by the odd permutations of the coordinates ($a_{0}: a_{1}: a_{2}$). Hence, to compute the coupled Fut invariant, it is sufficient to consider the action of one parameter subgroup ($1,1,1, t_{4}$) on M by

$$
\begin{aligned}
& \left(1,1,1, t_{4}\right) \cdot\left[\left(z_{0}: z_{1}: z_{2}: w_{0}: w_{1}\right),\left(a_{0}: a_{1}: a_{2}\right),\left(b_{0}: b_{1}\right)\right] \\
& \quad=\left[\left(z_{0}: z_{1}: z_{2}: t_{4} w_{0}: t_{4} w_{1}\right),\left(a_{0}: a_{1}: a_{2}\right),\left(b_{0}: b_{1}\right)\right] .
\end{aligned}
$$

For this action, let $\xi=\lambda / \mu, \eta=1 / \xi$, then the associated holomorphic vector field is

$$
X=\xi \frac{\partial}{\partial \xi}=-\eta \frac{\partial}{\partial \eta}
$$

Zero sets are

$$
Z_{\infty}=\{\mu=0\}=D_{6}, \quad \text { and } \quad Z_{0}=\{\lambda=0\}=D_{7} .
$$

Since

$$
\begin{aligned}
\mathbb{P}\left(\mathcal{O}_{\mathbb{C P}^{1}}(-1) \oplus \mathcal{O}_{\mathbb{C P}^{2}}(-1)\right) & =\mathbb{P}\left(\left(\mathcal{O}_{\mathbb{C P}^{1}}(-1) \oplus \mathcal{O}_{\mathbb{C P}^{2}}(-1)\right) \otimes \mathcal{O}_{\mathbb{C P}^{2}}(1)\right) \\
& =\mathbb{P}\left(\left(\mathcal{O}_{\mathbb{C P}^{1}}(-1) \otimes \mathcal{O}_{\mathbb{C P}^{2}}(1)\right) \oplus \mathcal{O}_{\mathbb{C P}^{2}}\right),
\end{aligned}
$$

the normal bundle of Z_{∞} is

$$
\nu\left(Z_{\infty}\right)=\mathcal{O}_{\mathbb{C P}^{1}}(-1) \otimes \mathcal{O}_{\mathbb{C P}^{2}}(1)
$$

similarly, the normal bundle of Z_{0} is

$$
\nu\left(Z_{0}\right)=\mathcal{O}_{\mathbb{C P}^{1}}(1) \otimes \mathcal{O}_{\mathbb{C P}^{2}}(-1)=\nu\left(Z_{\infty}\right)^{-1}
$$

Let a, b be the positive generators of $H^{2}\left(\mathbb{C P}^{1}, \mathbb{Z}\right)$ and $H^{2}\left(\mathbb{C P}^{2}, \mathbb{Z}\right)$. Then

$$
c_{1}\left(\mathbb{C P}^{1}\right)=2 a, \quad c_{1}\left(\mathbb{C P}^{2}\right)=3 b
$$

and

$$
\left.c_{1}\left(K_{M}^{-1}\right)\right|_{Z_{\infty}}=c_{1}\left(Z_{\infty}\right)+c_{1}\left(\nu\left(Z_{\infty}\right)\right)=2 a+3 b-a+b=a+4 b .
$$

Similarly we have

$$
\left.c_{1}\left(K_{M}^{-1}\right)\right|_{Z_{0}}=3 a+2 b .
$$

Since the line bundle $\left[D_{4}\right]$ restricted to $Z_{\infty}=D_{6}$ is isomorphic to the line bundle corresponding to the divisor $\left\{b_{0}=0\right\}$ in $\mathbb{C P}^{1} \times \mathbb{C P}^{2}$ we have $\left.c_{1}\left(\left[D_{4}\right]\right)\right|_{z_{\infty}}=a$. Similarly we have

$$
\left.c_{1}\left(\left[D_{4}\right]\right)\right|_{Z_{0}}=\left.c_{1}\left(\left[D_{5}\right]\right)\right|_{Z_{\infty}}=\left.c_{1}\left(\left[D_{5}\right]\right)\right|_{Z_{0}}=a
$$

Then

$$
\begin{aligned}
\left.c_{1}(D(c))\right|_{z_{\infty}} & =\frac{1}{2}(a+4 b)+\left(c-\frac{1}{2}\right) 2 a=\left(2 c-\frac{1}{2}\right) a+2 b, \\
\left.c_{1}(D(c))\right|_{Z_{0}} & =\frac{1}{2}(3 a+2 b)+\left(c-\frac{1}{2}\right) 2 a=\left(2 c+\frac{1}{2}\right) a+b
\end{aligned}
$$

To see the value of u along the zero set of X we may use the description of the moment polytope $P(c)$ in [15]

$$
P(c)=\left\{y \in \mathbb{R}^{4}:\left\langle y, d_{i}\right\rangle \leq \frac{1}{2}, i \neq 4,5,\left\langle y, d_{i}\right\rangle \leq c, i=4,5\right\}
$$

where d_{i} are as described in [15]. Since $P(c)+P(1-c)=P_{-K_{M}}$ the moment polytopes are those obtained by the Hamiltonian functions satisfying (4) as follows from the arguments of the beginning of this section. From this description for $d_{6}=(0,0,0,-1)$ and $d_{7}=$ $(0,0,0,1)$ we see

$$
\left.u\right|_{Z_{\infty}}=-\frac{1}{2},\left.\quad u\right|_{Z_{0}}=\frac{1}{2}
$$

By using the fact

$$
a^{2}=b^{3}=0
$$

we first compute

$$
\begin{align*}
\operatorname{Vol}(D(c)) & =\left[\frac{\left(\left.u\right|_{Z_{\infty}}+\left.c_{1}(D(c))\right|_{Z_{\infty}}\right)^{4}}{\left.u\right|_{Z_{\infty}}+c_{1}\left(\nu\left(Z_{\infty}\right)\right)}+\frac{\left(\left.u\right|_{Z_{0}}+\left.c_{1}(D(c))\right|_{Z_{0}}\right)^{4}}{\left.u\right|_{Z_{0}}+c_{1}\left(\nu\left(Z_{0}\right)\right)}\right]\left[\mathbb{C P}^{1} \times \mathbb{C P}^{2}\right] \\
& =\left[\frac{(-1 / 2+(2 c-1 / 2) a+2 b)^{4}}{-1 / 2-a+b}+\frac{(1 / 2+(2 c+1 / 2) a+b)^{4}}{1 / 2+a-b}\right]\left[\mathbb{C P}^{1} \times \mathbb{C P}^{2}\right] \\
& =112 c-6, \tag{14}
\end{align*}
$$

replacing c by $1-c$, we get

$$
\begin{equation*}
\operatorname{Vol}(D(1-c))=106-112 c . \tag{15}
\end{equation*}
$$

We also need to compute the numerators in the localization formula. For the divisor $D(c)$,

$$
\begin{align*}
& {\left[\frac{\left(\left.u\right|_{Z_{\infty}}+\left.c_{1}(D(c))\right|_{z_{\infty}}\right)^{5}}{\left.u\right|_{Z_{\infty}}+c_{1}\left(\nu\left(Z_{\infty}\right)\right)}+\frac{\left(\left.u\right|_{Z_{0}}+\left.c_{1}(D(c))\right|_{Z_{0}}\right)^{5}}{\left.u\right|_{Z_{0}}+c_{1}\left(\nu\left(Z_{0}\right)\right)}\right]\left[\mathbb{C P}^{1} \times \mathbb{C P}^{2}\right]} \\
& \quad=\left[\frac{(-1 / 2+(2 c-1 / 2) a+2 b)^{5}}{-1 / 2-a+b}+\frac{(1 / 2+(2 c+1 / 2) a+b)^{5}}{1 / 2+a-b}\right]\left[\mathbb{C P}^{1} \times \mathbb{C P}^{2}\right] \\
& \quad=-30 c+12 \tag{16}
\end{align*}
$$

replacing c by $1-c$, we get for divisor $D(1-c)$,

$$
\begin{align*}
& {\left[\frac{\left(\left.u\right|_{Z_{\infty}}+\left.c_{1}(D(1-c))\right|_{Z_{\infty}}\right)^{5}}{\left.u\right|_{Z_{\infty}}+c_{1}\left(\nu\left(Z_{\infty}\right)\right)}+\frac{\left(\left.u\right|_{Z_{0}}+\left.c_{1}(D(1-c))\right|_{Z_{0}}\right)^{5}}{\left.u\right|_{Z_{0}}+c_{1}\left(\nu\left(Z_{0}\right)\right)}\right]\left[\mathbb{C P}^{1} \times \mathbb{C P}^{2}\right]} \\
& \quad=30 c-18 \tag{17}
\end{align*}
$$

Plugging above (14), (15), (16), (17) into the localization formula (Theorem 1.2), we obtain

$$
\begin{align*}
\operatorname{Fut}(X)= & \frac{\left[\frac{\left(u\left|Z_{\infty}+c_{1}(D(c))\right| z_{\infty}\right)^{5}}{u \mid Z_{\infty}+c_{1}\left(\nu\left(Z_{\infty}\right)\right)}+\frac{\left(\left.u\right|_{Z_{0}}+c_{1}(D(c)) \mid Z_{0}\right)^{5}}{\left.u\right|_{0}+c_{1}\left(\nu\left(Z_{0}\right)\right)}\right]\left[\mathbb{C P}^{1} \times \mathbb{C P}^{2}\right]}{\operatorname{Vol}(D(c))} \\
& +\frac{\left[\frac{\left(\left.u\right|_{z_{\infty}}+c_{1}(D(1-c))| |_{\infty}\right)^{5}}{u \mid Z_{\infty}+c_{1}\left(\nu\left(Z_{\infty}\right)\right)}+\frac{\left(u\left|Z_{0}+c_{1}(D(1-c))\right| Z_{0}\right)^{5}}{\left.\left.u\right|_{Z_{0}+}+c_{1}\left(\nu\left(Z_{0}\right)\right)\right)}\right]\left[\mathbb{C P}^{1} \times \mathbb{C P}^{2}\right]}{\operatorname{Vol}(D(1-c))} \\
= & \frac{-30 c+12}{112 c-6}+\frac{30 c-18}{106-112 c} \\
= & \frac{-15\left(112 c^{2}-112 c+23\right)}{(56 c-3)(56 c-53)}, \tag{18}
\end{align*}
$$

therefore, the invariant Fut character vanishes when

$$
c=\frac{1}{2} \pm \frac{1}{4} \sqrt{\frac{5}{7}}
$$

This is the same as in [15].

References

[1] T. Aubin, Équations du type de Monge-Ampère sur les variétés kählériennes compactes, C. R. Acad. Sci. Paris Sér. A-B, 283 (1976), no. 3, A119-A121.
[2] R. Bott, A residue formula for holomorphic vector-fields, J. Differential Geom., 1 (1967), 311-330.
[3] X.-X. Chen, S. K. Donaldson and S. Sun, Kähler-Einstein metrics on Fano manifolds. III: Limits as cone angle approaches 2π and completion of the main proof, J. Amer. Math. Soc., 28 (2015), 235-278.
[4] V. V. Datar and V. P. Pingali, On coupled constant scalar curvature Kähler metrics, preprint, arXiv:1901.10454, (2019).
[5] T. Delcroix and J. Hultgren, Coupled complex Monge-Ampère equations on Fano horosymmetric manifolds, preprint, arXiv:1812.07218.
[6] A. Futaki, An obstruction to the existence of Einstein Kähler metrics, Invent. Math., 73 (1983), 437-443.
[7] A. Futaki, On a character of the automorphism group of a compact complex manifold, Invent. Math., 87 (1987), 655-660.
[8] A. Futaki, The Ricci curvature of symplectic quotients of Fano manifolds, Tohoku Math. J. (2), 39 (1987), 329-339.
[9] A. Futaki, Kähler-Einstein Metrics and Integral Invariants, Lecture Notes in Math., 1314, Springer-Verlag, Berlin, 1988, iv+140 pp.
[10] A. Futaki and T. Mabuchi, Moment maps and symmetric multilinear forms associated with symplectic classes, Asian J. Math., 6 (2002), 349-371.
[11] A. Futaki, T. Mabuchi and Y. Sakane, Einstein-Kähler metrics with positive Ricci curvature, In: Kähler Metric and Moduli Spaces, Adv. Stud. Pure Math., 18-II, Academic Press, Boston, MA, 1990, 11-83.
[12] A. Futaki and S. Morita, Invariant polynomials of the automorphism group of a compact complex manifold, J. Differential Geom., 21 (1985), 135-142.
[13] A. Futaki and Y. Zhang, Coupled Sasaki-Ricci solitons, Sci. China Math., published online (2019), https://doi.org/10.1007/s11425-018-9499-y.
[14] V. Guillemin, Moment Maps and Combinatorial Invariants of Hamiltonian T^{n}-spaces, Progr. Math., 122, Birkhäuser, Boston, 1994.
[15] J. Hultgren, Coupled Kähler-Ricci solitons on toric Fano manifolds, Anal. PDE, 12 (2019), 20672094.
[16] J. Hultgren and D. Witt Nyström, Coupled Kähler-Einstein metrics, Int. Math. Res. Not. IMRN, 2019 (2019), 6765-6796.
[17] Y. Matsushima, Sur la structure du groupe d'homéomorphismes analytiques d'une certaine variété kaehlérienne, Nagoya Math. J., 11 (1957), 145-150.
[18] S. Nakamura, Deformation for coupled Kähler-Einstein metrics, preprint, arXiv:2003.02410.
[19] V. P. Pingali, Existence of coupled Kähler-Einstein metrics using the continuity method, Internat. J. Math., 29 (2018), 1850041, 8 pp.
[20] R. Takahashi, Ricci iteration for coupled Kähler-Einstein metrics, Int. Math. Res. Not. IMRN, (2019), rnz273.
[21] R. Takahashi, Geometric quantization of coupled Kähler-Einstein metrics, preprint, arXiv:1904.12812, (2019).
[22] G. Tian, K-stability and Kähler-Einstein metrics, Comm. Pure Appl. Math., 68 (2015), 10851156.
[23] S.-T. Yau, On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation I, Comm. Pure Appl. Math., 31 (1978), 339-411.

Akito Futaki
Yau Mathematical Sciences Center
Tsinghua University
Haidian district
Beijing 100084, China
E-mail: futaki@tsinghua.edu.cn

Yingying ZHANG
Yau Mathematical Sciences Center
Tsinghua University
Haidian district
Beijing 100084, China
E-mail: yingyzhang@tsinghua.edu.cn

[^0]: 2010 Mathematics Subject Classification. Primary 32Q15; Secondary 53C55.
 Key Words and Phrases. coupled Kähler-Einstein metrics, residue formula.
 The work of the second author was partially supported by Tsinghua University Initiative Scientific Research Program.

