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Abstract. We obtain a residue formula for an obstruction to the ex-

istence of coupled Kähler–Einstein metrics described by Futaki–Zhang. We
apply it to an example studied separately by Futaki and Hultgren which is a
toric Fano manifold with reductive automorphism, does not admit a Kähler–
Einstein metric but still admits coupled Kähler–Einstein metrics.

1. Introduction.

A k-tuple of Kähler metrics ω1, . . . , ωk on a compact Kähler manifold M is called

coupled Kähler metrics if it satisfies

Ric(ω1) = · · · = Ric(ωk) = λ

k∑
α=1

ωα (1)

for λ = −1, 0 or 1 where Ric(ωα) is the Ricci form of ωα (we do not distinguish Kähler

metrics gα and their Kähler forms ωα). Such metrics were introduced by Hultgren and

Witt Nyström [16]. If λ = 0 this is just a k-tuple of Ricci-flat metrics and the existence

is well-known for compact Kähler manifolds with c1(M) = 0 by the celebrated solution

by Yau [23] of the Calabi conjecture. For λ = −1 or λ = 1 the existence problem is

an extension for the problem for negative or positive Kähler–Einstein metrics, and an

obvious condition is c1(M) < 0 or c1(M) > 0. Hultgren and Witt Nyström [16] proved

the existence of the solution for λ = −1 under the condition c1(M) < 0 extending [23]

and [1], and there are many interesting results for λ = 1 under the condition c1(M) > 0

including attempts to extend [3] and [22]. Further studies of coupled Kähler–Einstein

metrics have been done in [4], [5], [13], [15], [18], [19], [20], [21].

In this paper we derive a residue formula for an obstruction to the existence of

positive coupled Kähler–Einstein metrics described in our previous paper [13] and apply

to a computation of an example which appeared in Hultgren [15].

The obstruction is described as follows. Let M be a Fano manifold of complex

dimension m. Assume the anticanonical line bundle has a splitting K−1
M = L1 ⊗ · · · ⊗

Lk into the tensor product of ample line bundles Lα → M . Then we have c1(Lα) =

(1/2π)[ωα] for a Kähler form ωα =
√
−1gα ijdz

i ∧ dzj , and thus
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c1(M) =
1

2π

k∑
α=1

[ωα].

For each ωα we have fα ∈ C∞(M) such that

Ric(ωα) =

k∑
β=1

ωβ +
√
−1 ∂∂fα,

where fα are normalized by

ef1ωm
1 = · · · = efkωm

k . (2)

Note that this normalization still leaves an ambiguity up to a constant. However, we

ignore this ambiguity since it does not cause any problem in later arguments. Of course

ω1, . . . , ωk are coupled Kähler–Einstein metrics if and only if fα are all constant.

Let X be a holomorphic vector field. Since a Fano manifold is simply connected

there exist complex-valued smooth functions defined up to constant uα such that

iXωα = ∂(
√
−1uα). (3)

By the abuse of terminology we call uα the Hamiltonian function of X with respect to

ωα though uα is a Hamiltonian function for the imaginary part of X in the usual sense

of symplectic geometry only when uα is real valued. In Theorem 3.3 of [13], it is shown

for some choices of uα we have

∆αuα + (gradαuα)fα = −
k∑

β=1

uβ , (4)

where ∆α = −∂
∗
α∂ is the Laplacian with respect to ωα and gradαuα is the type (1, 0)-

part of the gradient of uα expressed as gradαuα = gijα (∂uα/∂z
j)(∂/∂zi) in terms of local

holomorphic coordinates (z1, . . . , zm). The case of k = 1 of this result has been obtained

in [8]. If we replace uα by ucα
α = uα + cα the equations (4) are satisfied for ucα

α if and

only if

k∑
α=1

cα = 0. (5)

Definition 1.1 ([13]). With the choice of uα satisfying (4) the Lie algebra char-

acter is defined as

Fut : h(M) → C

X 7→ Fut(X) =
k∑

α=1

∫
M

uα ωm
α∫

M
ωm
α

.
(6)

Notice that this definition of Fut is not affected by the ambiguity of the choice of
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uα because of (5). Note also Fut is the coupled infinitesimal form of the group character

obtained in [7].

To formulate the localization formula let Z =
∪

λ∈Λ Zλ be zero set of X where Zλ’s

are connected components. Let Nα(Zλ) = (TM |Zλ
)/TZλ

be the normal bundle of Zλ

with respect to ωα. Then the Levi-Civita connection ∇α of ωα naturally induces an

endomorphism LNα(X) of Nα(Zλ) by

LNα(X)(Y ) = (∇α
Y X)⊥ ∈ Nα(Zλ), for any Y ∈ Nα(Zλ).

We also assume Z is nondegenerate in the sense that LNα is nondegenerate. Let Kα be

the curvature of Nα(Zλ). The localization formula of Fut(X) we obtain is the following.

Theorem 1.2. Let M be a Fano manifold with K−1
M = L1 ⊗ · · · ⊗ Lk. Let X be a

holomorphic vector field with nondegenerate zero set Z =
∪

λ∈Λ Zλ, then

Fut(X)

=
1

m+ 1

k∑
α=1


∑
λ∈Λ

∫
Zλ

((
Eα + c1(Lα)

)
|Zλ

)m+1/
det

(
(2π)−1(LNα(X) +

√
−1Kα)

)
∑
λ∈Λ

∫
Zλ

((
Eα + c1(Lα)

)
|Zλ

)m/
det

(
(2π)−1(LNα(X) +

√
−1Kα)

)
, (7)

where Eα ∈ Γ(End(Lα)) is given by Eαs = uαs with LNα and Kα being as above.

Corollary 1.3. If Z contains only discrete points, then

Fut(X) =
1

m+ 1

k∑
α=1


∑
p∈Z

(uα(p))
m+1/det(∇X)(p)∑

p∈Z

(uα(p))m/det(∇X)(p)



=
1

m+ 1

 k∑
α=1

∑
p∈Z

(uα(p))
m+1∑

p∈Z

(uα(p))m

 .

We can apply the obtained localization formula for the invariant Fut in the coupled

situation to verify the example considered in Hultgren’s paper [15]. This example was

first considered by the first author in [6], where he showed that the invariant Fut is

non-vanishing, hence there does not exist a Kähler–Einstein metric on this example

though the automorphism group is reductive and thus Matsushima’s condition [17] is

satisfied. Later, in [11], the localization formula in [12] was used to show a much simpler

computation of the invariant Fut can be done. Hultgren [15] considered decompositions

of the anticanonical line bundle, and proved in a special case of the decomposition there

do exist coupled Kähler–Einstein metrics on this manifold.

The rest of the paper proceeds as follows. In Section 2 we prove Theorem 1.2. In

Section 3 we verify the existence result of Hultgren in [15] by checking the vanishing of

Fut as an application of Theorem 1.2.
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2. Localization formula.

We first consider an ample line bundle L → M with c1(L) = (1/2π)[ω] where [ω]

is a Kähler class of M . Let eU be a non-vanishing local holomorphic section of L|U
where U is an open set of M . Then eU determines a local trivialization of the line

bundle L|U ∼= U × C, given by zeU 7→ (p, z), where z is the fiber coordinate. Let h be

the Hermitian metric of L, and hU = h(eU , eU ). The local connection form is given by

θU = ∂ log hU . Let

θ = θU +
dz

z
, (8)

then θ is a globally defined connection form on the associated principle C∗-bundle. To

see this, we first remark that dz/z is the Maurer–Cartan form of C∗. If U ∩ V ̸= ∅, and
we take another trivialization on L|V ∼= V × C, given by weV 7→ (p, w), where eV is

a non-vanishing local holomorphic section and w is the fiber coordinate. Let f be the

non-vanishing holomorphic function such that eV = feU , then hV = |f |2hU and z = fw.

Then,

θV +
dw

w
= ∂ log |f |2hU +

f

z
d

(
z

f

)
=

df

f
+ ∂ log hU +

dz

z
− df

f
= θU +

dz

z
.

Hence θ = θU + dz/z is independent of the trivialization. Obviously
√
−1 ∂θ = ω. Let u

be a complex-valued smooth function such that

iXω = ∂(
√
−1u). (9)

It is well-known (c.f. [10] for example) that a Hamiltonian vector field X written in this

way lifts to L uniquely up to cz∂/∂z for a constant c. Let X̃ be a lift of X to L. Then

obviously uX := −θ(X̃) is a Hamiltonian function for X and −θ(X̃ − cz∂/∂z) = uX + c.

Thus, the ambiguity of cα for Lα above appears in this way. The connection form θ

determines a horizontal lift Xh of X, given by

Xh = X̃ − θ(X̃)z
∂

∂z
.

Apparently, this expression is independent of the lift X̃ and θ(Xh) = 0.

Now, for each ample line bundle Lα → M , α = 1, . . . , k, choose Hermitian metric

hα, let θα be corresponding connection form on the associated principal C∗-bundle, and

Θα is the curvature form such that Θα = ∂∂ log hα = −
√
−1ωα.

Hence, with a choice of a Hamiltonian function uα, the lifted holomorphic vector

field Xα (omitting the tilde) of X on Lα is

Xα = Xh
α − uαz

∂

∂z

where Xh
α is the horizontal lift of X. Then of course

uα = −θα(Xα).
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The infinitesimal action on the space Γ(Lα) of holomorphic sections of Lα is given by

Λα : Γ(Lα) → Γ(Lα)

s 7→ Λα(s) = ∇α
Xs+ uαs

where ∇α is the covariant derivative determined by θα.

Then we can check that for f ∈ C∞(M), s ∈ Γ(Lα),

(1) Λα satisfies the Leibniz rule.

Λα(fs) = ∇α
X(fs) + uαfs

= X(f)s+ f∇α
Xs+ fuαs

= X(f)s+ fΛαs.

(2) ∂Λα = Λα∂. This follows from

∂Λαs = ∂(iX∇αs+ uαs) = −iX∂∇αs+ ∂uαs

=
(
− iXΘα + ∂uα

)
s =

√
−1

(
iXωα − ∂(

√
−1uα)

)
s = 0.

(3) It is obvious that Λα|Zero(X) = uα|Zero(X) is a linear map on Γ(Lα|Zero(X)).

This implies Λα|Zero(X) ∈ End(Lα|Zero(X)). This endomorphism along the zero set of X

can be extended to a global endomorphism of Lα by letting for s ∈ Γ(Lα)

Eαs = Λαs−∇α
Xs = uαs = −θα(Xα)s.

Then Eα ∈ End(Lα) and

∂Eα = ∂uα = iX(−
√
−1ωα) = iXΘα. (10)

The above discussion enables us to write the Lie algebra character (6) as

Fut(X) =
k∑

α=1

∫
M

uα ωm
α∫

M
ωm
α

=
1

m+ 1

k∑
α=1

∫
M
(uα + ωα)

m+1∫
M
(uα + ωα)m

=
1

m+ 1

k∑
α=1

∫
M
(−θα(Xα) +

√
−1Θα)

m+1∫
M
(−θα(Xα) +

√
−1Θα)m

=
1

m+ 1

k∑
α=1

∫
M
(Eα +

√
−1Θα)

m+1∫
M
(Eα +

√
−1Θα)m

. (11)

Here we remark that the both expressions
∫
M
(−θα(Xα) +

√
−1Θα)

m+1 and∫
M
(−θα(Xα) +

√
−1Θα)

m are independent of the choice of Hermitian metric hα. This

could either follow from [12, Proposition 2.1] or argue as follows. We choose a family of
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Hermitian metrics hα(t), let hα(t) = e−tφαhα, for φα ∈ C∞(M). Then

θα(t) = ∂ log hα(t) +
dz

z
= θα − t∂φα

is the corresponding family of connections on associated principle C∗-bundle, and the

curvature forms are

Θα(t) = Θα + t∂∂φα,

and we compute that

iXΘα(t) = iXΘα + iX(t∂∂φα) = ∂
(
uα + tX(φα)

)
,

we let uα(t) = uα + tX(φα). This uα(t) is a Hamiltonian function of X for the Kähler

form ωα(t) corresponding to hα(t). As we saw above the lifted vector field on Lα is given

by

Xα(t) = Xh
α(t)− uα(t)z

∂

∂z
.

Then

−θα(t)(Xα(t)) = uα(t) = −θα(Xα) + tX(φα).

We will check the metric independence of
∫
M
(−θα(Xα) +

√
−1Θα)

m+1, and similar ar-

gument works for
∫
M
(−θα(Xα) +

√
−1Θα)

m. We compute that

d

dt

∫
M

(
− θα(t)(Xα(t)) +

√
−1Θα(t)

)m+1

= (m+ 1)

∫
M

(
− θα(t)(Xα(t)) +

√
−1Θα(t)

)m ∧
(
X(φα) +

√
−1 ∂∂φα

)
= (m+ 1)

(∫
M

X(φα)(
√
−1Θα(t))

m −mθα(t)(Xα(t))(
√
−1Θα(t))

m−1 ∧
√
−1 ∂∂φα

)
= (m+ 1)

(∫
M

X(φα)(
√
−1Θα(t))

m −m

∫
M

∂
(
θα(t)(Xα(t))

)
(
√
−1Θα(t))

m−1 ∧
√
−1 ∂φα

)
= (m+ 1)

(∫
M

X(φα)(
√
−1Θα(t))

m +m

∫
M

iXΘα(t) ∧ (
√
−1Θα(t))

m−1 ∧
√
−1 ∂φα

)
= 0.

Proof of Theorem 1.2. Now, we follow an argument in the book [9] (see The-

orem 5.2.8), originally due to Bott [2] to give the localization formula.

Consider an invariant polynomial P of degree (m+ l) for l = 0, 1, let

Pα(Eα +
√
−1Θα) =

m+l∑
r=0

Pα,r(Eα,
√
−1Θα),

where
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Pα,r(Eα,
√
−1Θα) =

(
m+ l

r

)
P (Eα, . . . , Eα;

√
−1Θα, . . . ,

√
−1Θα︸ ︷︷ ︸

r

).

Since ∂Eα = iXΘα, we have

√
−1 ∂Pα = iXPα.

Define a (1, 0) form πα as follows: for a holomorphic vector field Y ,

iY πα =
ωα(Y,X)

ωα(X,X)
,

then

iXπα = 1, and iX∂πα = 0.

We further define

ηα = πα ∧
m−1∑
i=0

(
√
−1 ∂πα)

i ∧ Pα(Eα +
√
−1Θα),

then ηα is defined outside zero set of X. The computation shows

Pα(Eα +
√
−1Θα) = −

√
−1 ∂ηα + iXηα.

Let Bϵ(Z) be an ϵ-neighbourhood of Z. Then, denoting the type (2m− 1)-part of ηα by

η
(2m−1)
α we have∫

M

Pα(Eα +
√
−1Θα)

= lim
ϵ→0

∫
M−Bϵ(Z)

Pα(Eα +
√
−1Θα)

=
√
−1 lim

ϵ→0

∫
M−Bϵ(Z)

−∂η(2m−1)
α =

√
−1 lim

ϵ→0

∫
∂Bϵ(Z)

η(2m−1)
α

=
√
−1 lim

ϵ→0

∫
∂Bϵ(Z)

πα ∧
(
1 + (

√
−1 ∂πα) + (

√
−1 ∂πα)

2 + · · ·+ (
√
−1 ∂πα)

m−1
)

∧
m−1∑
r=0

Pα,r(Eα,
√
−1Θα).

As computed in Theorem 5.2.8 in [9] or [2],

(2π)−m

∫
M

Pα(Eα +
√
−1Θα) =

∑
λ∈Λ

∫
Zλ

Pα(Eα +
√
−1Θα)|Zλ

det
(
(2π)−1(LNα(X) +

√
−1Kα)

) ,
where Kα is the curvature of the normal bundle Nα with respect to the induced metric.

Taking P = trm+1 and P = trm, and apply above to (11), we obtain the localization

formula of Fut(X) in the coupled case (7). □
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3. Application of localization formula.

Before computing the example, we remark that by Theorem 3.2 in [13], (4) is equiv-

alent to ∫
M

(u1 + · · ·+ uk)dV = 0

where dV = efαωm
α which is independent of α by the normalization (2). By Theorem 5.2

in [13] this condition is equivalent to

k∑
α=1

Pα = P−KM
(12)

where Pα is the moment map image of ωα.

We consider the tautological line bundles OCP1(−1) → CP1 and OCP2(−1) → CP2,

and the bundle E = OCP1(−1)⊕OCP2(−1) over CP1 ×CP2. Let M be the total space of

the projective line bundle P(E) over CP1 × CP2. In local coordinates, we let

CP1 = {(b0 : b1)}, CP2 = {(a0 : a1 : a2)},

OCP1(−1) = {[(w0, w1), (b0 : b1)]| (w0, w1) = λ(b0, b1) for some λ ∈ C},
OCP2(−1) = {[(z0, z1, z2), (a0 : a1 : a2)]| (z0, z1, z2) = µ(a0, a1, a2) for some µ ∈ C},

M = {[(z0 : z1 : z2 : w0 : w1), (a0 : a1 : a2), (b0 : b1)]|
(w0, w1) = λ(b0, b1), (z0, z1, z2) = µ(a0, a1, a2) for some (λ, µ) ̸= (0, 0) in C× C}.

The (C∗)4-action on M is defined by extending the C∗-action on CP1 and (C∗)2-action

on CP2. We let (t1, t2, t3, t4) ∈ (C∗)4, then

(t1, t2, t3, t4) · [(z0 : z1 : z2 : w0 : w1), (a0 : a1 : a2), (b0 : b1)]

= [(z0 : t1z1 : t2z2 : t4w0 : t4t3w1), (a0 : t1a1 : t2a2), (b0 : t3b1)].

There are totally seven (C∗)4-invariant divisors;

D1 = {z0 = a0 = 0}, D2 = {z1 = a1 = 0}, D3 = {z2 = a2 = 0},

which are identified with CP1-bundle over CP1 × CP1;

D4 = {b0 = w0 = 0}, D5 = {b1 = w1 = 0},

which are identified with CP1-bundle over CP2;

D6 = {z0 = z1 = z2 = 0}, D7 = {w0 = w1 = 0},

which are identified with CP1 × CP2. It is known that
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K−1
M =

7∑
i=1

Di.

As in [15], we consider the following decomposition for c ∈ (1/4, 3/4) which is ampleness

condition for the line bundles associated with D(c) and D(1− c) below. Define

D(c) =
1

2
K−1

M +

(
c− 1

2

)
(D4 +D5),

D(1− c) =
1

2
K−1

M +

(
1

2
− c

)
(D4 +D5),

then

K−1
M = D(c) +D(1− c), (13)

in particular, putting c = 1/2 corresponds to the canonical decomposition K−1
M =

(1/2)K−1
M + (1/2)K−1

M . In this case, the coupled setting is completely reduced to the

ordinary Kähler–Einstein setting, and one can no longer expect the existence of coupled

Kähler–Einstein metric due to [6]. So we would like to consider the deformation from

this, and try to find c such that the invariant Fut vanishes.

We remark that the torus action preserves the above decomposition (13). Note

also that the invariant Fut is invariant under any automorphism of M preserving the

decomposition (13). Using the automorphism (b0, b1) 7→ (b1, b0) one can see Fut(X3) =

Fut(−X3) and thus Fut(X3) = 0 for the infinitesimal generator X3 for the t3-action, and

similarly Fut(X1) = Fut(X2) = 0 for the infinitesimal generators X1 and X2 of t1 and

t2-actions using the automorphisms induced by the odd permutations of the coordinates

(a0 : a1 : a2). Hence, to compute the coupled Fut invariant, it is sufficient to consider

the action of one parameter subgroup (1, 1, 1, t4) on M by

(1, 1, 1, t4) · [(z0 : z1 : z2 : w0 : w1), (a0 : a1 : a2), (b0 : b1)]

= [(z0 : z1 : z2 : t4w0 : t4w1), (a0 : a1 : a2), (b0 : b1)].

For this action, let ξ = λ/µ, η = 1/ξ, then the associated holomorphic vector field is

X = ξ
∂

∂ξ
= −η

∂

∂η
.

Zero sets are

Z∞ = {µ = 0} = D6, and Z0 = {λ = 0} = D7.

Since

P(OCP1(−1)⊕OCP2(−1)) = P
(
(OCP1(−1)⊕OCP2(−1))⊗OCP2(1)

)
= P

(
(OCP1(−1)⊗OCP2(1))⊕OCP2

)
,

the normal bundle of Z∞ is
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ν(Z∞) = OCP1(−1)⊗OCP2(1),

similarly, the normal bundle of Z0 is

ν(Z0) = OCP1(1)⊗OCP2(−1) = ν(Z∞)−1.

Let a, b be the positive generators of H2(CP1,Z) and H2(CP2,Z). Then

c1(CP1) = 2a, c1(CP2) = 3b,

and

c1(K
−1
M )|Z∞ = c1(Z∞) + c1(ν(Z∞)) = 2a+ 3b− a+ b = a+ 4b.

Similarly we have

c1(K
−1
M )|Z0 = 3a+ 2b.

Since the line bundle [D4] restricted to Z∞ = D6 is isomorphic to the line bundle corre-

sponding to the divisor {b0 = 0} in CP1 × CP2 we have c1([D4])|Z∞ = a. Similarly we

have

c1([D4])|Z0 = c1([D5])|Z∞ = c1([D5])|Z0 = a.

Then

c1(D(c))|Z∞ =
1

2
(a+ 4b) +

(
c− 1

2

)
2a =

(
2c− 1

2

)
a+ 2b,

c1(D(c))|Z0 =
1

2
(3a+ 2b) +

(
c− 1

2

)
2a =

(
2c+

1

2

)
a+ b.

To see the value of u along the zero set of X we may use the description of the moment

polytope P (c) in [15]

P (c) =

{
y ∈ R4 : ⟨y, di⟩ ≤

1

2
, i ̸= 4, 5, ⟨y, di⟩ ≤ c, i = 4, 5

}
where di are as described in [15]. Since P (c)+P (1−c) = P−KM the moment polytopes are

those obtained by the Hamiltonian functions satisfying (4) as follows from the arguments

of the beginning of this section. From this description for d6 = (0, 0, 0,−1) and d7 =

(0, 0, 0, 1) we see

u
∣∣
Z∞

= −1

2
, u

∣∣
Z0

=
1

2
.

By using the fact

a2 = b3 = 0,

we first compute
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Vol(D(c)) =

[
(u|Z∞ + c1(D(c))|Z∞)4

u|Z∞ + c1(ν(Z∞))
+

(u|Z0 + c1(D(c))|Z0)
4

u|Z0 + c1(ν(Z0))

]
[CP1 × CP2]

=

[(
− 1/2 + (2c− 1/2)a+ 2b

)4
−1/2− a+ b

+

(
1/2 + (2c+ 1/2)a+ b

)4
1/2 + a− b

]
[CP1 × CP2]

= 112c− 6, (14)

replacing c by 1− c, we get

Vol(D(1− c)) = 106− 112c. (15)

We also need to compute the numerators in the localization formula. For the divisor

D(c),[
(u|Z∞ + c1(D(c))|Z∞)5

u|Z∞ + c1(ν(Z∞))
+

(u|Z0 + c1(D(c))|Z0)
5

u|Z0 + c1(ν(Z0))

]
[CP1 × CP2]

=

[(
− 1/2 + (2c− 1/2)a+ 2b

)5
−1/2− a+ b

+

(
1/2 + (2c+ 1/2)a+ b

)5
1/2 + a− b

]
[CP1 × CP2]

= −30c+ 12, (16)

replacing c by 1− c, we get for divisor D(1− c),[
(u|Z∞ + c1(D(1− c))|Z∞)5

u|Z∞ + c1(ν(Z∞))
+

(u|Z0 + c1(D(1− c))|Z0)
5

u|Z0 + c1(ν(Z0))

]
[CP1 × CP2]

= 30c− 18. (17)

Plugging above (14), (15), (16), (17) into the localization formula (Theorem 1.2),

we obtain

Fut(X) =

[
(u|Z∞+c1(D(c))|Z∞ )5

u|Z∞+c1(ν(Z∞)) +
(u|Z0

+c1(D(c))|Z0
)5

u|Z0
+c1(ν(Z0))

]
[CP1 × CP2]

Vol(D(c))

+

[
(u|Z∞+c1(D(1−c))|Z∞ )5

u|Z∞+c1(ν(Z∞)) +
(u|Z0

+c1(D(1−c))|Z0
)5

u|Z0
+c1(ν(Z0))

]
[CP1 × CP2]

Vol(D(1− c))

=
−30c+ 12

112c− 6
+

30c− 18

106− 112c

=
−15(112c2 − 112c+ 23)

(56c− 3)(56c− 53)
, (18)

therefore, the invariant Fut character vanishes when

c =
1

2
± 1

4

√
5

7
.

This is the same as in [15].
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