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Abstract We determine regularity results for energy minimizing maps from an n-
dimensional Riemannian polyhedral complex X into a CAT(1) space. Provided that the
metric on X is Lipschitz regular, we prove Hölder regularity with Hölder constant and expo-
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nent dependent on the total energy of the map and the metric on the domain. Moreover, at
points away from the (n−2)-skeleton, we improve the regularity to locally Lipschitz. Finally,
for points x ∈ X (k) with k ≤ n − 2, we demonstrate that the Hölder exponent depends on
geometric and combinatorial data of the link of x ∈ X .

Mathematics Subject Classification 53C43 · 58E20

1 Introduction

A natural notion of energy for a map between geometric spaces is defined by measuring the
total stretch of the map at each point of the domain and then integrating it over the domain.
Harmonic maps are critical points of the energy functional. They can be seen as both a gen-
eralization of harmonic functions in complex analysis and a higher dimensional analogue of
parameterized geodesics in Riemannian geometry. In the absence of a totally geodesic map, a
harmonic map is perhaps the most natural way to map one given geometric space into another.

The celebrated work of Eells and Sampson [9] initiated a wide interest in the study of har-
monic maps between Riemannian manifolds, and harmonic maps have proven to be a useful
tool in geometry. A more recent development is the harmonic map theory for non-smooth
spaces. The seminal works of Gromov–Schoen [13] and Korevaar–Schoen [15] consider
harmonic maps from a Riemannian domain into a non-Riemannian target. Further explo-
ration of harmonic map theory in the singular setting includes works of Jost [14], Chen [3],
Eells–Fuglede [8] and Daskalopoulos–Mese [5]. The above mentioned works all assume
non-positivity of curvature (NPC) in the target space. In this paper, the goal is to investigate
the regularity issues of harmonic maps in the case when the target curvature is bounded
above by a constant that is not necessarily 0. In this direction, we mention earlier works
of Serbinowski [20] for harmonic maps from Riemannian manifold domains and Fuglede
[11,12] for polyhedral domains.

By understanding the regularity of harmonic maps, we can realize the potential applica-
tions of harmonic map theory. The key issue is to prove regularity theorems strong enough to
be able to apply differential geometric methods. Applications of harmonic maps already in
the literature include those in rigidity problems (for example, [4,13,21]) and in Teichmüller
theory (for example, [6,7,22]) amongst others. Our goal is to apply harmonic map theory in
a more general setting (namely for CAT(1) targets) than the NPC targets considered in the
above mentioned applications. Indeed, in the follow-up of this paper [1], we prove a gener-
alization to the metric space setting of Sacks and Uhlenbeck’s celebrated work [19] on the
bubbling phenomena for harmonic maps. The generalization of Sacks and Uhlenbeck’s work
has important connections to the non-smooth uniformization problem (cf. [2] and references
therein) which in turn is related to the Cannon conjecture and the asymptotic geometry of
negatively curved spaces. Details of these connections are provided in the introduction of
[1]. We now state our main theorems.

Theorem 1.1 (Hölder regularity) Let B(r) be a ball of radius r around a point x in an
admissible complex X endowed with a Lipschitz Riemannian metric g and let (Y, d) be a
CAT(1) space and � ∈ (0, 1). If f : (B(r), g) → Bτ (P) ⊂ Y is an energy minimizing map,
where 0 < τ < π

4 , then there exist C > 0, γ > 0 such that

d( f (x), f (y)) ≤ C |x − y|γ for all x, y ∈ B(�r).

The constants C, γ depend only on the total energy E f
g of the map, (B(r), g) and �.
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Remark 1.2 Note that in the statement of the main theorems, the radius r of the ball B(r) is
measured with respect to the Euclidean metric δi j on each cell.

Fuglede proves a similar result in [11,12]. The main improvements of our results are
the following: First, the metric on the domain space is more general; more specifically, the
metrics considered in this paper are only assumed to be Lipschitz continuous while Fuglede
considers simplex-wise smooth metrics (cf. p. 380, subsection “Maps into metric spaces”
in [11]). We hope that this will lead to wider applications for the theory of harmonic maps
from polyhedral domains. Second, and more importantly, we explicitly give the dependence
of the Hölder constant and exponent on the total energy of the map. This statement in the
special case of NPC targets has been crucial in the applications of harmonic map theory. In
particular, the explicit dependence leads to a compactness result for a family of harmonic
maps with uniformly bounded energy (see [1, Lemma 2.3]). Moreover, we can deduce the
existence of tangent maps associated to harmonic maps (see Proposition 7.5).

We further remark that our proof uses very different techniques from those in [11,12].
Specifically, we take advantage of the work done by Daskalopoulos and Mese for NPC targets
in [5], using the order function and a Campanato type theorem to prove the Hölder regularity.
One of the advantages of this method is that, on high dimensional faces, we can improve
the regularity to gain Lipschitz control, as given in Theorem 1.3. Moreover, as in [5], for
points in the lower dimensional skeleta, we provide a lower bound on the Hölder exponent
of the minimizing map in terms of the first eigenvalue of the link of the normal strata of the
skeleton, λN

1 .

Theorem 1.3 (Lipschitz regularity) Let B(r) be a ball of radius r around a point x in an
admissible complex X endowed with a Lipschitz Riemannian metric g and let (Y, d) be a
CAT(1) space. Suppose that f : (B(r), g) → Bτ (P) ⊂ Y is an energy minimizing map
where 0 < τ < π

4 .

(1) For x ∈ X − X (n−2), let d̄ denote the distance of x to X (n−2). Then for � ∈ (0, 1) and
d ′ ≤ min{�r, �d̄}, f is Lipschitz continuous in B(d ′) with Lipschitz constant depending
on the total energy E f

g of the map f , (B(r), g), and d ′.
(2) For x ∈ X (k) − X (k−1) and k = 0, 1, . . . , n −2, let d̄ denote the distance of x to X (k−1).

Then for � ∈ (0, 1) and d ′ ≤ min{�r, �d̄}, f is Hölder continuous in B(d ′) with Hölder
exponent and constant depending on the total energy E f

g of the map f , (B(r), g), and
d ′. More precisely, the Hölder exponent α has lower bound given by the following: If
λN

1 ≥ β (> β) then α (α + n − k − 2) ≥ β (> β). In particular, if λN
1 ≥ n − k − 1,

then f is Lipschitz continuous in a neighborhood of x.

To understand the second item, for x ∈ X (k) − X (k−1), let N = N (x) denote the link of
X (k) at x with metric induced by the Lipschitz Riemannian metric on X . Set

λN
1 := inf

Q∈Y
λ1(N , TQY ),

where λ1(N , TQY ) denotes the first eigenvalue of the Laplacian of N with values in the
tangent cone of Y at Q. For more details, see Sect. 8.

Serbinowski [20], in an unpublished thesis, proves Lipschitz regularity from a Riemannian
domain. Again, our proof is quite different from his.

The paper is organized as follows. In Sect. 2, we define the domains and targets of interest
and prove a few key estimates on CAT(1) spaces. Section 3 includes background and necessary
references for defining the energy and minimizing maps into metric spaces. This section also
includes the definition of the cone over Y and important distance relations. In Sect. 4, we
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prove a monotonicity formula for minimizing maps into CAT(1) spaces. In Sect. 5, we use
the monotonicity formula to prove Theorem 1.1. Section 6 uses Theorem 1.1 to improve
the monotonicity result which in turn allows us to improve the Hölder regularity so that the
Hölder exponent is given by the order of the map. In Sect. 7, we determine a tangent map
construction using the cone over Y , where the existence of a tangent map is given by the
Hölder regularity. Finally, in Sect. 8, we use the tangent map construction and the improved
Hölder regularity to prove Theorem 1.3.

2 Domain and target spaces

2.1 Admissible cell complexes and local models

Throughout the paper, X will denote an admissible n-dimensional cell complex (i.e. a dimen-
sionally homogeneously, locally (n − 1)-chainable convex cell complex) with a Lipschitz
continuous Riemannian metric defined on each cell. We refer to [5, Section 2.2] for more
details. In particular, since the regularity theorems we prove are local, we will study harmonic
maps from a “local model” that represents a neighborhood of a point of X . We refer the reader
to [5, Section 2.1] for the precise formulation of a local model, but will briefly describe this
here. To do so, we inductively define a k-dimensional conical cell. First, a 1-dimensional
conical cell is either the interval [0,∞) or the interval (−∞, 0]. Having defined (k − 1)-
dimensional conical cells, we define a k-dimensional conical cell C as a subset of Rk with
the following properties:

(i) The set C is non-empty and closed.
(ii) The set C is conical; i.e. if x ∈ C , then t x ∈ C for t ≥ 0.

(iii) The intersection of C with the unit sphere S
k−1 ⊂ R

k is geodesically convex (with
respect the standard metric on S

k−1).
(iv) The boundary ∂C of C is a finite union of {ci } where each ci is a subset of a (k − 1)-

dimensional hyperplane Hi ofRk containing the origin such that if we identify Hi ⊂ R
k

with R
k−1 = {(x1, . . . , xk−1, 0)} ⊂ R

k , (via an orthogonal transformation which takes
Hi to R

k−1), then ci is a (k − 1)-dimensional conical cell. We will say that ci is a
(k − 1)-dimensional boundary cell of C .

An l-dimensional boundary cell of a k-dimensional conical cell C is H ∩C , where H is again
a hyperplane of Rk containing the origin, such that there exists an orthogonal transformation
of R

k which takes H ∩ C into R
l = {(x1, . . . , xl , 0, . . . , 0)} ⊂ R

k but there exists no
orthogonal transformation which takes H ∩C into R

l−1 = {(x1, . . . , xl−1, 0, . . . , 0)} ⊂ R
k .

The union of l-dimensional boundary cells is called the l-skeleton of C .
Note that since ∂C bounds a conical cell, the hyperplanes Hi containing ci are linearly

independent in the sense that the set of normal vectors defining the hyperplanes are all linearly
independent. Indeed, one may consider C as the intersection of appropriately oriented half-
spaces, each with boundary one of the Hi . A k-dimensional conical cell C is said to have
codimension ν if ∂C = ∪ν

i=1ci . In that case, there exists a hyperplane H of Rk containing
the origin and an orthogonal transformation T of R

k such that T (H ∩ ∂C) is equal to
R

k−ν = {(x1, . . . , xk−ν, 0, . . . , 0)} ⊂ R
k . We let D := T −1(Rk−ν).

A dimension-n, codimension-ν local model (of a neighborhood of a point in an n-
dimensional cell complex) isB := ⊔

W/ ∼, i.e. a disjoint union of a finite numberW = {W }
of n-dimensional conical cells of codimension ν modulo an equivalence relation ∼. We refer
to W ∈ W as a wedge. The equivalence relation ∼ is defined by a finite set of isometries
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{ϕ} where each ϕ maps a boundary cell of one wedge to a boundary cell of another wedge.
Note that the equivalence relation implies that we may consider a single D as belonging to
the local model B.

We assume B is admissible, i.e. whenever W ∈ W and S is a (n − 2)-skeleton of W ,⊔
W\S/ ∼ is connected.
Each wedge W of B is a subset of Rn and therefore B comes equipped with the Euclidean

metric (because each W inherits the Euclidean metric from R
n). Let B(r) denote the ball

of radius r , with respect to the Euclidean metric, centered at the origin of B. Throughout
the rest of the paper Bx (σ ) will denote a Euclidean ball in B, centered at x and of radius σ .
Furthermore, using the coordinates inherited from R

n , we can define a Riemannian metric
g on B by defining component functions (gi j ) on each wedge W . We say g is a Lipschitz
Riemannian metric on B if on each W

|gi j (x) − gi j (x̄)| ≤ c|x − x̄ |, ∀x, x̄ ∈ W.

As explained in [5, Proposition 2.1], we can and will often assume that the Lipschitz metrics
are normalized, i.e.

|gi j (x) − δi j | ≤ cσ for |x | ≤ σ. (2.1)

Thus, for a normalized Lipschitz metric,

gi j (0) = δi j .

Lastly, we say λ ∈ (0, 1] is an ellipticity constant for g if for each wedge W and for
x ∈ W ,

λ|ξ |2 ≤
n∑

i, j=1

gi j (x)ξ iξ j ≤ λ−1|ξ |2.

2.2 CAT(1) spaces

Given a complete metric space (Y, d), Y is called a geodesic space if for each P, Q ∈ Y ,
there exists a curve γP Q such that the length of γP Q is exactly d(P, Q). We call γP Q a
geodesic between P and Q.

Remark 2.1 For ease of notation, we will often denote d(P, Q) by dP Q .

We determine a weak notion of an upper sectional curvature bound on Y by using com-
parison triangles. Given any three points P, Q, R ∈ Y such that dP Q + dQ R + dRS < 2π ,
the geodesic triangle P Q R is the triangle in Y with sides given by the geodesics
γP Q, γQ R, γRS .

Let P̃ Q̃ R̃ denote a geodesic triangle on the standard sphere S
2 such that dP Q = dP̃ Q̃ ,

dQ R = dQ̃ R̃ and dR P = dR̃ P̃ . We call P̃ Q̃ R̃ a comparison triangle for the geodesic triangle
P Q R. Note that a comparison triangle is convex since the perimeter of the geodesic triangle
is less than 2π .

Definition 2.2 Given a geodesic space (Y, d) and a geodesic γP Q with dP Q < π , for τ ∈
[0, 1] let (1 − τ)P + τ Q denote the point on γP Q at distance τdP Q from P . That is,

d((1 − τ)P + τ Q, P) = τdP Q .

Definition 2.3 Let (Y, d) be a complete geodesic space. Then Y is a CAT(1) space if:
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Given any geodesic triangle P Q R (with perimeter less than 2π) and a comparison
triangle P̃ Q̃ R̃ in S

2,
dPt Rs ≤ dP̃t R̃s

(2.2)

where

Pt = (1 − t)P + t Q, Rs = (1 − s)R + s Q,

P̃t = (1 − t)P̃ + t Q̃, R̃s = (1 − s)R̃ + s Q̃.

We conclude this section with a few key estimates that we will use later in the paper. The
first estimate appeared in the thesis of [20, Estimate II] without proof. See [1, Lemma A.4]
for a proof.

Lemma 2.4 Let P QS be a geodesic triangle in a CAT(1) space (Y, d). For a pair of
numbers 0 ≤ η, η′ ≤ 1 define

Pη′ = (1 − η′)P + η′Q
Sη = (1 − η)S + ηQ.

Then

d2(Pη′ , Sη) ≤ sin2((1 − η)dQS)

sin2 dQS

(
d2

P S − (dQS − dQ P )2)

+ (
(1 − η)(dQS − dQ P ) + (η′ − η)dQS

)2

+ Cub
(
dP S, dQS − dQ P , η − η′) .

(2.3)

As an immediate consequence, we have the following lemma.

Lemma 2.5 Let P QS be a geodesic triangle in a CAT(1) space (Y, d). For 0 ≤ η, η′ ≤ 1
and Pη′ , Sη as above,

d2(Pη′ , Sη) ≤ (
1 − 2η + ηd2

QS

)
d2

P S − 2(η − η′)(dQS − dQ P )dQS + (η′ − η)2d2
QS

+ Quad(η, η′)Quad(dP S, dQS − dQ P ) + Cub
(
dP S, dQS − dQ P , η − η′) .

Proof By Taylor expansion, sin((1 − η)dQS) = sin dQS − ηdQS cos dQS + O(η2). Since
a

sin a ≥ 1 and cos a ≥ 1 − a2

2 for 0 ≤ a < π ,

sin2((1 − η)dQS)

sin2 dQS
=

(

1 − η
dQS

sin dQS
cos dQS + O(η2)

)2

≤ 1 − 2η + ηd2
QS + O(η2).

Substituting into (2.3) implies that

d2(Pη′ , Sη) ≤ (
1 − 2η + ηd2

QS

) (
d2

P S − (dQS − dQ P )2)

+ (
(1 − η)(dQS − dQ P ) + (η′ − η)dQS

)2

+ η2Quad(dP S, dQS − dQ P ) + Cub
(
dP S, dQS − dQ P , η − η′) .

Expanding the quadratic term and collecting the remaining like terms implies the result. ��

We conclude this section with a convexity bound.
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Lemma 2.6 Let P Q R be a geodesic triangle in a CAT(1) space (Y, d). If dP Q, dP R < π
2 ,

then
1

8
cos

(

dQ 1
2

P

)

d2
Q R ≤ 1

2

(
d2

R P + d2
Q P

) − d2
Q 1

2
P (2.4)

where Q 1
2

denotes the midpoint between Q and R.

Proof By the triangle comparison, it suffices to prove inequality (2.4) assuming that P Q R
is a geodesic triangle on the unit sphere. Let γ (s) be an arclength parameterized geodesic on
the sphere. Let

dγ (s) := d(γ (s), P)

and assume that for all s, dγ (s) < π
2 . The function dγ (s) satisfies

(cos dγ (s))′′ = − cos dγ (s).

Direct computation shows that

(dγ (s))′′ = 1

tan dγ (s)

(
1 − (d ′

γ (s))2
)

(
d2
γ (s)

)′′ = 2
dγ (s)

tan dγ (s)

(
1 − (d ′

γ (s))2
)

+ 2
(

d ′
γ (s)

)2
.

Thus,
(

d2
γ (s) + 2 cos dγ (s)

)′′ = 2

(
dγ (s)

tan dγ (s)
− cos dγ (s)

)

+ 2

(

1 − dγ (s)

tan dγ (s)

) (
d ′
γ (s)

)2
.

Now let σ(t) be a constant speed parameterization of the geodesic with σ(0) = Q and
σ(1) = R. Thus, γ (s) := σ(s/δ), where δ = dQ R , is an arclength parameterized geodesic.
With

d(t) := d(σ (t), P),

the chain rule implies that

(d2(t) + 2 cos d(t))′′ = 2δ2
(

d(t)

tan d(t)
− cos d(t)

)

+ 2δ2
(

1 − d(t)

tan d(t)

)

(d ′(t))2.

Since 0 ≤ d(t) < π
2 ,

cos d(t) ≤ d(t)

tan d(t)
≤ 1.

Therefore

(d2(t) + 2 cos d(t))′′ ≥ 0.

The convexity of t �→ d2(t) + 2 cos d(t) implies that

d2
Q 1

2 P
+ 2 cos dQ 1

2
P ≤ 1

2

(
d2

Q P + 2 cos dQ P + d2
R P + 2 cos dR P

)
. (2.5)

Using the identity on the sphere and a double angle formula,

cos dQ 1
2

P = sin dQ R
2

sin dQ R
cos dQ P + sin dQ R

2

sin dQ R
cos dR P = 1

2 cos dQ R
2

(
cos dQ P + cos dR P

)
.
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12 Page 8 of 35 C. Breiner et al.

Since cos a ≤ 1 − a2

4 for 0 ≤ a < π
4 ,

cos dQ P + cos dR P = 2 cos dQ 1
2

P cos
dQ R

2
≤ 2 cos

(

dQ 1
2

P

)

− 1

8
cos

(

dQ 1
2

P

)

d2
Q R .

The desired inequality follows from inserting the above into (2.5). ��

3 Sobolev space and the energy density

In the seminal work of Korevaar–Schoen (cf. [15, Chapter 1]) the authors define the energy
density and directional energies for maps from Riemannian manifolds into metric spaces.
Using [5, Proposition 2.1], these definitions immediately extend to include maps from an
admissible complex X (cf. [5, Section 2]). Following the usual convention, we say f ∈
W 1,2(�, Y ) if f ∈ L2(�) and the energy is finite. We then write |∇ f |2g(x) in place of the
energy density function and let

E f
g =

∫

B(r)

|∇ f |2gdμg.

For a set S ⊂ B(r), let

E f
g [S] =

∫

S
|∇ f |2gdμg.

To study energy minimizing maps, we use the notion of the trace of f , for f ∈ W 1,2(�, Y ),
as defined in [8,15]. We denote the space of admissible maps W 1,2

f (�,B) := {h ∈
W 1,2(�,B) : d( f, h) ∈ W 1,2

0 (�)}.
Definition 3.1 Let � be a compact domain in an admissible complex with Lipschitz Rie-
mannian metric g and (Y, d) be a CAT(1) space. A finite energy map f : � → Bτ (P) ⊂ Y
is energy minimizing if f minimizes energy amongst maps in W 1,2

f (�,Bτ (P)).

The existence and uniqueness of energy minimizers from Riemannian domains appeared
in the thesis [20] and the same result from Riemannian complexes into small balls in a CAT(1)
space was established in [10]. We verify the existence and uniqueness in the Riemannian case
in the appendix of [1].

Remark 3.2 Note that unlike the definition in [20], the comparison maps in Definition 3.1
not only have the same trace as f but also map into the same ball. The reason that we define
energy minimizing maps in this way is that, unlike in the NPC setting, the projection map
onto convex domains in a CAT(1) space is not globally distance decreasing. Therefore, one
cannot guarantee that a minimizer in the class W 1,2

f (�, Y ) maps into the closure of Bτ (P)

without some extra hypotheses. For simplicity, we define a minimizer by considering only
competitors in the smaller class of maps.

3.1 The pullback metric

The directional energies are defined in a fashion similar to the energy density function. See
[15] for the definition of the directional energy and of the pull-back inner product π when Y
is an NPC space.

We use the triangle comparison in CAT(1) spaces to demonstrate that directional energies
and the pull-back inner product are well defined for finite energy maps into CAT(1) spaces.
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The next lemma appeared in [17, Lemma 3.6] and is a consequence of (2.2). We include the
proof here both for completeness and because we have simplified the proof.

Lemma 3.3 Let Y be a CAT(1) space. For every ε0 > 0, there exists δ0 > 0 such that if
P, Q, R, S ∈ Y with max{dP Q, dQ R, dRS, dP S} ≤ δ0, then

d2
P R + d2

QS ≤ d2
P Q + d2

Q R + d2
RS + d2

P S + ε0δ
2
0 .

Proof By comparing a geodesic quadrilateral �P Q RS in Y to a comparison quadrilateral
�P̃ Q̃ R̃ S̃ in S

2 (and noting [18] which says that the pairwise distance of points on �P Q RS
is bounded by the distance of the corresponding pair in �P̃ Q̃ R̃ S̃), it is sufficient to prove
the assertion when Y = S

2. Suppose the assertion is not true on S
2. Then there exists ε0 > 0

and a sequence Pi , Qi , Ri , Si with max{dPi Qi , dQi Ri , dRi Si , dPi Si } ≤ δi → 0 such that

d2
Pi Ri

+ d2
Qi Si

> d2
Pi Qi

+ d2
Qi Ri

+ d2
Ri Si

+ d2
Pi Si

+ ε0δ
2
i .

For each i , denote by 1
δi
S

2 the rescaling of the unit sphere S
2 by a factor of 1

δi
and let

P ′
i , Q′

i , R′
i , S′

i ∈ 1
δi
S

2 be the corresponding points to Pi , Qi , Ri , Si ∈ S
2 respectively. Thus,

d2
P ′

i R′
i
+ d2

Q′
i S′

i
> d2

P ′
i Q′

i
+ d2

Q′
i R′

i
+ d2

R′
i S′

i
+ d2

P ′
i S′

i
+ ε0.

and max{dP ′
i Q′

i
, dQ′

i R′
i
, dR′

i S′
i
, dP ′

i S′
i
} = 1. This is a contradiction since the Gauss curvature

of the sphere 1
δi
S

2 goes to 0 as δi → 0 and

d2
P̄ R̄

+ d2
Q̄ S̄

≤ d2
P̄ Q̄

+ d2
Q̄ R̄

+ d2
R̄ S̄

+ d2
S̄ P̄

for every P̄, Q̄, R̄, S̄ ∈ R
2. ��

Lemma 3.4 Let f : (B(r), g) → Y be a finite energy map and (Y, d) a CAT(1) space. Then
letting | f∗(Z)|2 denote the directional energy density function in the direction of Z (cf. [15,
Section 1.8]), the parallelogram identity

| f∗(Z + W )|2g + | f∗(Z − W )|2g = 2| f∗(Z)|2g + 2| f∗(W )|2g
holds for a.e. x ∈ B(r) and any pair of Lipschitz vector fields Z , W on B(r).

Proof Fix ε0 > 0. Let ε �→ x1(x, ε), ε �→ x2(x, ε) and ε �→ x3(x, ε) be the flow induced
by the vector fields Z , Z + W and W respectively with x1(x, 0) = x2(x, 0) = x3(x, 0) =
x . By [15, Lemma 1.9.2], ε �→ f (xi (x, ε)) is continuous at ε = 0, i = 1, 2, 3 for a.e.
x ∈ �. For such x , apply Lemma 3.3 with P = f (x), Q = f (x1(x, ε)), R = f (x2(x, ε)),
S = f (x3(x, ε)), divide by ε2 and multiply the resulting inequality by φ ∈ C∞

c (�). Now
following the argument of [15, Lemma 2.3.1], we conclude that

| f∗(Z + W )|2g(x) + | f∗(Z − W )|2g(x) ≤ 2| f∗(Z)|2g(x) + 2| f∗(W )|2g(x) + ε0�

where

� ≥ max
{
| f∗(Z + W )|2g(x), | f∗(Z − W )|2g(x), | f∗(Z)|2g(x), | f∗(W )|2g(x)

}
.

Since ε0 > 0 is arbitrary, we conclude that

| f∗(Z + W )|2g + | f∗(Z − W )|2g ≤ 2| f∗(Z)|2g + 2| f∗(W )|2g.
Repeat using Z + W and Z − W in place of Z and W to get the opposite inequality. ��
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Lemma 3.5 Let f : (B(r), g) → Y be a finite energy map and let Z , W be Lipschitz vector
fields on B(r). The operator gπ f defined by

gπ f (Z , W ) := 1

4
| f∗(Z + W )|2g − 1

4
| f∗(Z − W )|2g

is symmetric, bilinear, non-negative and tensorial.

Proof Using Lemma 3.4, we can follow the proof of [15, Theorem 2.3.2]. ��

Notation 3.6 Let
{

∂
∂x1 , . . . , ∂

∂xn

}
be the standard Euclidean basis defined on each wedge

inherited from R
n and δ the standard Euclidean metric. Set

∂ f

∂xi
· ∂ f

∂x j
= δπ f

(
∂

∂xi
,

∂

∂x j

)

and

∣
∣
∣
∣
∂ f

∂xi

∣
∣
∣
∣

2

= ∂ f

∂xi
· ∂ f

∂xi
.

Similarly for the standard Euclidean polar coordinates (r, θ1, . . . , θn−1) on each wedge we
denote

∂ f

∂xk
· ∂ f

∂r
= δπ f

(
∂

∂xk
,

∂

∂r

)

,

∣
∣
∣
∣
∂ f

∂r

∣
∣
∣
∣

2

= ∂ f

∂r
· ∂ f

∂r
= δπ f

(
∂

∂r
,

∂

∂r

)

and

∂ f

∂θi
· ∂ f

∂θ j
= δπ f

(
∂

∂θi
,

∂

∂θ j

)

.

Note that the energy density with respect to the metric g is given by

|∇ f |2g =
∑

i, j

gi j ∂ f

∂xi
· ∂ f

∂x j
,

whereas the energy density with respect to the Euclidean metric is given by

|∇ f |2 = |∇ f |2δ =
∑

i

∣
∣
∣
∣
∂ f

∂xi

∣
∣
∣
∣

2

.

3.2 The cone over Y and energy comparisons

We denote by CY the metric cone over Y . Topologically, CY is defined by

CY = Y × [0,∞)/Y × {0}.
A point in CY is a pair [P, t] for P ∈ Y and t ∈ [0,∞), with [P, 0] and [Q, 0] representing
the same point in CY for all P, Q ∈ Y . We endow CY with a distance function D defined
by D2([P, t], [Q, s]) = t2 + s2 − 2ts cos min(dP Q, π). It is well known that when Y is a
CAT(1) space, the metric space (CY, D) is an NPC space.

For P, Q ∈ Y with dP Q < π/2,

1

2
≤ D2([P, 1], [Q, 1])

d2
P Q

≤ 1, (3.1)

lim
P→Q

D2([P, 1], [Q, 1])
d2

P Q

= lim
P→Q

2(1 − cos(dP Q))

d2
P Q

= 1, (3.2)
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i.e., Y is isometrically embedded into Y × {1} in an infinitesimal sense. Moreover, for dP Q

small,
d2

P Q(1 − d2
P Q) ≤ D2([P, 1], [Q, 1]). (3.3)

Definition 3.7 For any map w : � → Y , we let w : � → Y × {1} be given by w(x) =
[w(x), 1]. We call w the lifted map of w.

If w ∈ W 1,2(�, Y ) then w ∈ W 1,2(�, CY ) and the definition of energy implies that

d Ew
g [�] = D Ew

g [�]. (3.4)

We let � : CY → Y × {1} denote the projection map �([P, t]) = [P, 1]. Then for
dP Q < π ,

D2([P, t], [Q, s]) = t2 + s2 − 2st cos(dP Q)

= (t − s)2 + 2st (1 − cos(dP Q))

≥ 2st (1 − cos(dP Q))

= st D2(�([P, t]),�([Q, s])). (3.5)

4 A monotonicity formula

The goal of this section is to prove a proposition analogous to [5, Proposition 3.1]. The reader
would benefit from familiarity with Sect. 3, up through Lemma 3.5, of that paper.

Let B be a local model. In each wedge W , we use Euclidean coordinates (x1, . . . , xn).
For x, y ∈ B, denote the induced Euclidean distance by |x − y|. Thus, if x = (x1, . . . , xn)

and y = (y1, . . . , yn) are on the same wedge of B, then |x − y|2 = ∑n
i=1 (xi − yi )2. Let

(r, θ1, . . . , θn−1) denote polar coordinates, so r represents radial distance from the origin and
θ = (θ1, . . . , θn−1) are the standard coordinates on the (n − 1)-sphere.

Presume, unless otherwise stated, that g is a normalized Lipschitz metric defined on B(r).
For σ ∈ (0, r), set

E f
g (σ ) =

∫

B(σ )

|∇ f |2gdμg (4.1)

and

I f
g (σ, Q) =

∫

∂B(σ )

d2( f, Q)d�g (4.2)

for Q ∈ Y . Here d�g is the measure on ∂B(σ ) induced by g.

Notation 4.1 For simplicity, in the rest of this section we will use the notation

E(σ ) = E f
g (σ ) and I (σ ) = I (σ, Q) = I f

g (σ, Q),

if Q is a generic point. Furthermore in all statements we assume that the metric g is normal-
ized.

We begin with a technical lemma which provides a unique center of mass for energy
minimizers into sufficiently small balls. See [15, Lemma 2.5.1] for the analogous statement
for L2 maps with NPC targets.
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Lemma 4.2 Let (Y, d) be a CAT(1) space and 0 < τ < π
4 . If f : (B(r), g) → Bτ (P) ⊂ Y

is an L2 map, then for each 0 < σ < r there exists a unique Qσ ∈ Y such that

I (σ, Qσ ) = inf
Q∈Y

I (σ, Q).

Proof Note that it is enough to consider points Q in Bτ (P) since the projection function is
distance decreasing on balls of radius π

4 in CAT(1) spaces. By Lemma 2.6, for x ∈ B(r) and
Q, R ∈ Bτ (P), (2.4) implies that

1

8
cos

(

dQ 1
2

f (x)

)

d2
Q R ≤ 1

2
(d2(R, f (x)) + d2(Q, f (x))) − d2(Q 1

2
, f (x))

where Q 1
2

is the midpoint between Q, R. Note that cos

(

dQ 1
2

f (x)

)

≥ cos(2τ) > 0. Thus,

integrating over (B(σ ), g) implies that

d2
Q R ≤ C

cos(2τ)

(
1

2
(I (σ, R) + I (σ, Q)) − I (σ, Q 1

2
)

)

.

It follows that any minimizing sequence for I (σ, Q) is Cauchy and therefore there is a unique
minimum. ��

We next prove a type of subharmonicity result for the d2 function. See [13, Proposition
2.2.], [5, Lemma 3.3] for a similar result when Y is NPC. Note that in the NPC setting the
integral of d2( f, Q)|∇ f |2g does not appear in (4.3).

Lemma 4.3 Let 0 < τ < π
2 and f : (B(r), g) → Bτ (P) ⊂ Y be an energy minimizing

map and (Y, d) a CAT(1) space. Presume that Q ∈ Bτ (P). Then for all 0 < σ ≤ r

2E(σ ) −
∫

B(σ )

d2( f, Q)|∇ f |2gdμg ≤
∫

∂B(σ )

〈∇|x |,∇d2( f, Q)〉gd�g. (4.3)

Proof Define fη : (B(r), g) → Y by setting

fη(x) = (1 − η(x)) f (x) + η(x)Q

for η ∈ C∞
c (B(r)). Letting S = f (x), P = f (y), η′ = η(y), we use the estimate of

Lemma 2.5 to observe that for d̂(x) := d(Q, f (x)),

d2( fη(y), fη(x)) ≤ (1 − 2η(x) + η(x)d̂2(x))d2( f (x), f (y))

− 2(η(x) − η(y))(d̂(x) − d̂(y))d̂(x)

+ (η(y) − η(x))2d̂2(x) + η2(x)Quad(d( f (x), f (y)), d̂(x) − d̂(y))

+ Cub
(

d( f (x), f (y)), d̂(x) − d̂(y), η(x) − η(y)
)

.

Divide by εn+1 and fix x ∈ B(r)ε where

B(r)ε = {x ∈ B(r) : d(x, ∂B(r)) > ε}.
Let S(x, ε) denote the ε-sphere centered at x . By integrating over all y ∈ S(x, ε) with respect
to the induced measure on S(x, ε), integrating over all x ∈ B(r)ε , and letting ε → 0, we
obtain
∫

B(r)

|∇ fη|2gdμg ≤
∫

B(r)

|∇ f |2gdμg − 2
∫

B(r)

η|∇ f |2gdμg +
∫

B(r)

ηd2( f, Q)|∇ f |2gdμg

−
∫

B(r)

〈∇η,∇d2( f, Q)〉gdμg + O(η2, |∇η|2g).
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Note that the cubic error terms either vanish as ε → 0 or can be absorbed into the remaining
error.

Now note that the energy of f is bounded from above by the energy of fη. Thus,

2
∫

B(r)

η|∇ f |2gdμg −
∫

B(r)

ηd2( f, Q)|∇ f |2gdμg

≤ −
∫

B(r)

〈∇η,∇d2( f, Q)〉gdμg + O(η2, |∇η|2g).

Replace η by αη, divide by α and let α → 0 to cancel out the O(η2, |∇η|2g) term. Letting η

approximate the characteristic function on B(σ ) implies (4.3). ��
Lemma 4.4 Let 0 < τ < 1 and f : (B(r), g) → Bτ (P) ⊂ Y be an energy minimizing map,
(Y, d) a CAT(1) space, and g a normalized Lipschitz metric. Then, for all 0 < σ < r ,

1

2
E(σ ) ≤ I (σ )1/2

⎛

⎝

(∫

∂B(σ )

∣
∣
∣
∣
∂ f

∂r

∣
∣
∣
∣

2

d�g

)1/2

+ cσ(E ′(σ ))1/2

⎞

⎠ , (4.4)

where c depends on B(r), and the Lipschitz bound and ellipticity constant of g.

Proof By (4.3) and the Lipschitz bound |gi j − δi j | ≤ cσ , for Q ∈ Bτ (P),

(2 − 4τ 2)E(σ ) ≤
∫

∂B(σ )

〈∇|x |,∇d2( f, Q)〉gd�g

=
∫

∂B(σ )

gi j x j

|x |
∂

∂xi
d2( f, Q) d�g

≤
∫

∂B(σ )

∂

∂r
d2( f, Q) d�g + cσ

∫

∂B(σ )

∑

i

∣
∣
∣

∂

∂xi
d2( f, Q)

∣
∣
∣d�g

= 2
∫

∂B(σ )

d( f, Q)
∂

∂r
d( f, Q)d�g

+ 2cσ
∫

∂B(σ )

d( f, Q)
∑

i

∣
∣
∣
∣

∂

∂xi
d( f, Q)

∣
∣
∣
∣ d�g

≤ 2I (σ )1/2

⎛

⎝

(∫

∂B(σ )

∣
∣
∣
∣
∂ f

∂r

∣
∣
∣
∣

2

d�g

)1/2

+ cσ(E ′(σ ))1/2

⎞

⎠ . (4.5)

In the final inequality we use Hölder’s inequality and the fact that
∣
∣
∣
∣

∂

∂r
d( f, Q)

∣
∣
∣
∣

2

≤
∣
∣
∣
∣
∂ f

∂r

∣
∣
∣
∣

2

,

∣
∣
∣
∣

∂

∂xi
d( f, Q)

∣
∣
∣
∣

2

≤
∣
∣
∣
∣
∂ f

∂xi

∣
∣
∣
∣

2

, |∇ f |2 ≤ 1

λ2 |∇ f |2g,

where λ is the ellipticity constant of g. ��
Lemma 4.5 Let 0 < τ < π

4 and f : (B(r), g) → Bτ (P) ⊂ Y be an energy minimizing
map into a CAT(1) space (Y, d). There exist σ0 > 0 and γ > 0 depending on B(r), and the
Lipschitz bound and the ellipticity constant of g so that

σ �→ E(σ )

σ n−2+2γ
, σ ∈ (0, σ0)

is non-decreasing.
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Proof Let Qσ ∈ Y such that

I (σ, Qσ ) = inf
Q∈Y

I (σ, Q)

where the existence is guaranteed by Lemma 4.2. We now follow the exact argument of [5,
Lemma 3.5]. Note that their invocation of [5, (3.12)] is replaced by (4.4) here. All other
inequalities they reference arise from appropriate domain variations and are therefore true
for maps into Y . ��

As in [5], all of the previous results extend from the setting of normalized metrics to
admissible complexes with Lipschitz Riemannian metrics. See [5, p. 289-290] to understand
how the properties of the map Lx in [5, Proposition 2.1] affect the energy of f and the domain
over which Lemma 4.5 can be applied.

LetB be a dimension-n, codimension-(n−k) local model and g a Lipschitz metric onB(r)

with ellipticity constant λ ∈ (0, 1]. For x ∈ B(r), let R(x) denote the radius of the largest
homogeneous ball centered at x contained in B(r). The value σ0 > 0 was defined above as
the upper bound for which the monotonicity formula of Lemma 4.5 holds for any energy
minimizing map from a local model with a normalized metric. Therefore, the monotonicity
formula for f ◦ Lx is valid for balls B′(σ ) contained in B′(r0(x)) where

r0(x) := min{σ0, λR(x)}. (4.6)

Recalling that Bx (σ ) is the Euclidean ball about x of radius σ , we define Ex (σ ) for σ

sufficiently small by setting

Ex (σ ) =
∫

Bx (σ )

|∇ f |2dμg.

Proposition 4.6 Let B be a dimension-n, codimension-ν local model, g a Lipschitz Rieman-
nian metric defined on B(r) with ellipticity constant λ ∈ (0, 1], (Y, d) a CAT(1) space and
f : (B(r), g) → Bτ (P) ⊂ Y an energy minimizing map. If 0 < τ < π

4 , then there exist
constants γ > 0 and C ≥ 1 depending on B(r), the Lipschitz bound and the ellipticity
constant of g so that for every x ∈ B(r),

Ex (σ )

σ n−2+2γ
≤ C

Ex (ρ)

ρn−2+2γ
, 0 < σ < ρ ≤ r(x) (4.7)

where
r(x) := λr0(x) = min{λσ0, λ

2 R(x)}. (4.8)

Here, R(x) is defined as above and σ0 > 0 is as in Lemma 4.5.

Proof The proof proceeds exactly as in the proof of [5, Proposition 3.1], using Lemma 4.5.
��

5 Hölder regularity

The goal of this section is to prove Theorem 1.1. The proof is modeled on the proof of Hölder
regularity in [5] for minimizing maps into an NPC space. The reader would benefit from a
familiarity with Section 4 of that paper. The method of proof is classical, as the regularity
result will follow from a Campanato theorem and the monotonicity given by (4.7). Many of
the technical aspects of this argument in [5] are related to the singular nature of the domain
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and thus can be immediately applied for CAT(1) targets. We will highlight the key places
where the target curvature plays a role and provide suitable adaptations of the arguments
involved.

Before proceeding to the main argument, we prove a technical lemma.

Lemma 5.1 Let � be a Euclidean domain, (Y, d) a CAT(1) space, and 0 < τ < π
4 . If

f : � → Bτ (P) ⊂ Y is an L2 map then, for all ε > 0, there exists hε : �ε → Y Lipschitz
such that

∫

�ε

d2( f, hε)dμg < ε,

where �ε := {x ∈ � : d(x, ∂�) > ε}.
Proof For f : � → Y , recall f : � → CY is defined by setting

f (x) = [ f (x), 1].
(See Sect. 3.2 for further relevant definitions and energy comparisons.)

We use the notation BCY
r (·) to denote a ball of radius r in CY . By (3.1),

f (x) ∈ BCY
τ ([P, 1]), ∀x ∈ �.

and f is an L2-map into CY . Since CY is NPC, we can apply the mollification procedure of
[16, Section 1.5] to produce a Lipschitz map gε : �ε → BCY

τ ([P, 1]) ⊂ CY such that
∫

�ε

D2( f , gε)dx <
ε

4
.

Write gε(x) = [ϕ(x), t (x)]. The map gε(x) is constructed as the center of mass of the map
f with respect to a probability measure ηε(x − y)dy where ηε can be chosen to be a function
with compact support in a small ball centered at 0. Therefore, since Image( f ) ⊂ Y × {1},
we can assume that D(gε(x), Y × {1}) satisfies

|1 − t (x)| < (volume(�ε))
−1/2

√
ε

4
.

Thus,
∫

�ε

D2( f ,� ◦ gε)dx ≤
∫

�ε

D2( f , gε)dx +
∫

�ε

D2(gε,� ◦ gε)dx <
ε

2

where � : CY → Y × {1} is the projection map as in Sect. 3.2. Since |1 − t (x)| is bounded
for all x ∈ � and gε is Lipschitz, (3.5) implies that � ◦ gε is Lipschitz on �ε . Define

hε : �ε → Y, hε = � ◦ gε

by identifying Y with Y × {1} ⊂ CY . Then by (3.1)
∫

�ε

d2( f, hε)dx ≤ 2
∫

�ε

D2( f ,� ◦ gε)dx < ε.

��
We now prove a Campanato type lemma. In [5, Lemma 4.1], the authors prove a similar

result for any L2 map into an NPC space.
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Lemma 5.2 Let B be a dimension-n, codimension-ν local model, g a Lipschitz Riemannian
metric on B(r), (Y, d) a CAT(1) space, 0 < τ < π

4 and f : (B(r), g) → Bτ (P) ⊂ Y an L2

map. Fix � ∈ (0, 1). If there exist K > 0, R ∈ (0, (1 − �)r) and β ∈ (0, 1] such that

inf
Q∈Y

σ−n
∫

Bx (σ )

d2( f, Q) dμg ≤ K 2σ 2β, ∀x ∈ B(�r) and σ ∈ (0, R), (5.1)

then there exists C > 0 and a representative in the L2-equivalence class of f , which we still
denote by f , such that

d( f (x), f (y)) ≤ C |x − y|β, ∀x, y ∈ B(�r)

with C depending on K , r , R, β, � and B(r).

Proof The lemma will follow from the Campanato lemma [5, Lemma 4.1], provided that
each aspect of the proof that relied on the non-positive curvature of the target still holds if
the target is CAT(1) and f has small image. The NPC hypothesis gave the existence and
uniqueness of Qx,σ for each x ∈ B(�r) and σ ∈ (0, R). Lemma 4.2 above provides this for
our setting. The NPC condition also provided the existence of Lipschitz maps L2 close to
f . For a CAT(1) space Y , we appeal to Lemma 5.1 above, since, by hypothesis, f has small
image. All other aspects of the proof are related to properties of the domain, and thus carry
through with no trouble. ��

Recall the following proposition [5, Proposition 4.3], which converts the monotonicity
information of (4.7) into a uniform estimate on the decay of the scale invariant energy for all
x .

Proposition 5.3 Let B be a dimension-n, codimension-ν local model, g a Lipschitz Rieman-
nian metric defined on B(r), (Y, d) a metric space and f : (B(r), g) → Y a finite energy
map. Fix � ∈ (0, 1) and suppose that for x ∈ B (�r) there exist β > 0 and Ĉ ≥ 1 so that

Ex (σ )

σ n−2+2β
≤ Ĉ

Ex (ρ)

ρn−2+2β
, 0 < σ ≤ ρ ≤ r(x) (5.2)

where r(x) is as defined in (4.8). Then there exist K and R > 0 depending only on the total
energy of f , E f , the ellipticity constant and Lipschitz bound of g, B(r) and � so that

Ex (σ ) ≤ K 2σ n−2+2β, ∀x ∈ B(�r), σ < R.

This immediately implies the Hölder regularity for a local model.

Theorem 5.4 Let B be a local model, g a Lipschitz Riemannian metric defined on B(r),
(Y, d) a CAT(1) space and f : (B(r), g) → Bτ (P) ⊂ Y an energy minimizing map where
0 < τ < π

4 . For � ∈ (0, 1), there exist CH > 0 and γ > 0 depending only on the Lipschitz
bound and ellipticity constant of g, E f , B(r) and � such that

d( f (x), f (y)) ≤ CH |x − y|γ , ∀x, y ∈ B(�r).

Proof The result follows immediately from (4.7), Proposition 5.3, the Poincaré inequality
of [5, Theorem 2.7], and Lemma 5.2. ��

By using [5, Proposition 2.1] we obtain Theorem 1.1.
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6 Improved Hölder regularity

To extend the regularity from Hölder to Lipschitz requires a better result than Theorem 5.4
provides. The objective of this section is twofold. First, we prove that the order function
ord f (x) is well-defined (see Proposition 6.5 and Definition 6.9). Second, we use monotonicity
to demonstrate that the Hölder regularity on a ball can be improved to have Hölder exponent
equal to α ≤ ord f (x) for x ∈ B(r). The Lipschitz regularity will then immediately hold in
any neighborhood with α ≥ 1.

In [5], the authors proved the stronger Hölder regularity in parallel with the weaker version.
In the CAT(1) setting, however, we rely in a fundamental way on the weaker Hölder result. We
use the weak Hölder result in (4.3) to improve the inequality from (4.5). This improvement
allows us adapt the techniques of [5] to our setting. Following their ideas, we demonstrate
that the order function is well-defined. We then demonstrate that E(σ )

σ n−2+α is monotone, which
immediately implies the improved regularity.

Throughout this section, unless explicitly stated otherwise, presume that g is a normalized
Lipschitz metric on B(r).

6.1 The order function

The goal of this subsection is to prove that the order α := limσ→0+ σ E(σ )
I (σ )

exists. In the
Euclidean setting, the existence of the limit follows from proving the differential inequality
E ′(σ )
E(σ )

− I ′(σ )
I (σ )

+ 1
σ

≥ 0, which implies that the function σ �→ σ E(σ )
I (σ )

is monotone. Under the
current hypotheses, we cannot hope to prove a differential inequality of exactly the desired
type. The inequality we determine includes additional terms. Nevertheless, we still show that
the limit α exists.

We begin by recalling two essential inequalities derived in [5, (3.9),(3.17)] for energy
minimizing maps from a local model into a metric space target. These calculations use only
domain variations and the Lipschitz assumption on the domain metric and thus immediately
extend to our setting.

Lemma 6.1 Let f : (B(r), g) → Y be an energy minimizing map, Y a metric space, and
g a normalized Lipschitz metric. Then there exist constants c1, c2 > 0 and σ0 > 0 small,
all depending only on B(r) and the Lipschitz bounds of g, such that for all 0 < σ ≤ σ0 and
Q ∈ Y ,

(1 + cσ)
E ′(σ )

E(σ )
≥ n − 2

σ
+ 2

E(σ )

∫

∂B(σ )

∣
∣
∣
∂ f

∂r

∣
∣
∣
2

d�g − c1,

and ∣
∣
∣
∣

I ′(σ )

I (σ )
− n − 1

σ
− 1

I (σ )

∫

∂B(σ )

∂

∂r
d2( f, Q) d�g

∣
∣
∣
∣ ≤ c2. (6.1)

Therefore, for c3 = c1 + c2,

(1 + cσ)
E ′(σ )

E(σ )
− I ′(σ )

I (σ )
+ 1

σ
+ c3

≥ 2

E(σ )

∫

∂B(σ )

∣
∣
∣
∂ f

∂r

∣
∣
∣
2

d�g − 1

I (σ )

∫

∂B(σ )

∂

∂r
d2( f, Q) d�g

= 1

E(σ )I (σ )

(
2I (σ )

∫

∂B(σ )

∣
∣
∣
∂ f

∂r

∣
∣
∣
2

d�g − E(σ )

∫

∂B(σ )

∂

∂r
d2( f, Q) d�g

)
. (6.2)
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We now determine a lower bound for the right hand side of (6.2), modifying the differential
inequality to one more conducive to the proof of monotonicity.

Lemma 6.2 Suppose that B is a local model, (Y, d) is a CAT(1) space, and g is a normalized
Lipschitz metric. If f : (B(r), g) → Bτ (P) ⊂ Y is an energy minimizing map with 0 < τ <
π
4 , then for B(σ ) ⊂ B(r/2) and any Q ∈ BCH σγ ( f (0)),

2
(

1 − c′σ 2γ
)

E(σ ) ≤
∫

∂B(σ )

∂

∂r
d2( f, Q)d�g + I (σ ) + kσ 2 E ′(σ ) (6.3)

and

E(σ )

∫

∂B(σ )

∂

∂r
d2( f, Q)d�g ≤ 2I (σ )

∫

∂B(σ )

∣
∣
∣
∂ f

∂r

∣
∣
∣
2
d�g + (

cσ + cc′σ 2γ
)
I (σ )E ′(σ )

(6.4)
where c, k depend on B(r), the Lipschitz bound and the ellipticity constant of g and c′, γ
depend on E f , B(r), and the Lipschitz bound and ellipticity constant of g.

Proof First observe that by Theorem 5.4, f (∂B(σ )) ⊂ BCH σγ ( f (0)). By (4.3) and the
Lipschitz bound |gi j (x) − δi j | ≤ cσ , for |x | ≤ σ , we can improve the estimate in (4.5) to

(
2 − C2

H σ 2γ
)

E(σ ) ≤
∫

∂B(σ )

∂

∂r
d2( f, Q) d�g +cσ

∫

∂B(σ )

∑

i

∣
∣
∣

∂

∂xi
d2( f, Q)

∣
∣
∣d�g (6.5)

where CH is the Hölder constant, and γ is the Hölder exponent.
Then, for c′ = C2

H /2, (6.3) follows by applying the following elementary inequality to
the last term in (6.5)

2cσd( f, Q)

n∑

i=1

∣
∣
∣

∂

∂xi
d( f, Q)

∣
∣
∣ ≤ d2( f, Q) + c2σ 2

n∑

i=1

∣
∣
∣

∂

∂xi
d( f, Q)

∣
∣
∣
2

≤ d2( f, Q) + c2σ 2
n∑

i=1

∣
∣
∣
∂ f

∂xi

∣
∣
∣
2
.

To prove (6.4), first note that if
∫
∂B(σ )

∂
∂r d2( f, Q)d�g ≤ 0, the result holds simply because

the right hand side of the inequality is non-negative. So suppose that
∫
∂B(σ )

∂
∂r d2( f, Q)d�g ≥

0. Recall the estimates determined in (4.5):

∫

∂B(σ )

∂

∂r
d2( f, Q)d�g ≤ 2

(

I (σ )

∫

∂B(σ )

∣
∣
∣
∂ f

∂r

∣
∣
∣
2
d�g

)1/2

≤ 2cI (σ )1/2 E ′(σ )1/2, (6.6)

∫

∂B(σ )

∑

i

∣
∣
∣

∂

∂xi
d2( f, Q)

∣
∣
∣d�g ≤ 2cI (σ )1/2 E ′(σ )1/2. (6.7)

Note that in the above equations, c depends on the ellipticity constant of g. In what follows,
c may increase from one line to the next, but its dependence will always be only on B(r), the
Lipschitz bound and the ellipticity constant of g.
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Using (6.5), (6.6), (6.7) we observe that

2
(
1 − c′σ 2γ

)
E(σ )

∫

∂B(σ )

∂

∂r
d2( f, Q)d�g

≤
( ∫

∂B(σ )

∂

∂r
d2( f, Q)d�g + cσ

∫

∂B(σ )

∑

i

∣
∣
∣

∂

∂xi
d2( f, Q)

∣
∣
∣d�g

) ∫

∂B(σ )

∂

∂r
d2( f, Q)d�g

≤ c(1 + σ)I (σ )E ′(σ ).

(6.8)
Thus, for sufficiently small σ > 0,

E(σ )

∫

∂B(σ )

∂

∂r
d2( f, Q)d�g ≤ cI (σ )E ′(σ ).

Now, using the middle inequality in (6.6) and substituting the above inequality into (6.8)
implies that

E(σ )

∫

∂B(σ )

∂

∂r
d2( f, Q)d�g

≤ 2I (σ )

∫

∂B(σ )

∣
∣
∣
∂ f

∂r

∣
∣
∣
2
d�g + cσ I (σ )E ′(σ ) + 2c′σ 2γ E(σ )

∫

∂B(σ )

∂

∂r
d2( f, Q)d�g

≤ 2I (σ )

∫

∂B(σ )

∣
∣
∣
∂ f

∂r

∣
∣
∣
2
d�g + cσ I (σ )E ′(σ ) + cc′σ 2γ I (σ )E ′(σ ).

��
Combining (6.2) and (6.4), we conclude that for sufficiently small σ ,

(
1 + cσ + cc′σ 2γ

) E ′(σ )

E(σ )
− I ′(σ )

I (σ )
+ 1

σ
+ c3 ≥ 0.

Note that if γ ≥ 1
2 , we may appeal directly to the work of [5] since the term cσ dominates.

Therefore, we presume that γ < 1/2. In what follows, for notational simplicity, we rescale
the domain metric g so that c ≤ 1, since c depends only on the domain metric. If we assume
that σ0 = 1 and let C ≥ 1 + 2c′ then

(1 + Cσ 2γ )
E ′(σ )

E(σ )
− I ′(σ )

I (σ )
+ 1

σ
+ c3 ≥ 0. (6.9)

For the analogous inequality in the NPC setting see [5, (3.20)].
We remark that due to the extra term σ 2γ , the original monotonicity in [13] no longer

works. Following the ideas of [5], we introduce a modified energy. Let

J (σ ) = max
s∈(0,σ ] I (s),

and

A :=
{
σ : E ′(σ )

E(σ )
− J ′(σ )

J (σ )
+ 1

σ
+ c3 ≤ 0

}
.

Note that A is exactly the set on which a standard monotonicity formula fails. For σ ∈ (0, 1),
we define the modified energy

F(σ ) = E(σ ) exp (ϕ(σ )) , (6.10)
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where

ϕ(σ) = −
∫

A∩(σ,1)

Cs2γ E ′(s)
E(s)

ds

and C is as in (6.9). Then exactly as in the proof of [5, Lemma 3.7],

F ′(σ )

F(σ )
=

{
E ′(σ )
E(σ )

if σ /∈ A

(1 + Cσ 2γ )
E ′(σ )
E(σ )

if σ ∈ A.
(6.11)

By (6.9) and (6.11), we observe that

σ �→ ec3σ
σ F(σ )

I (σ )
(6.12)

is monotone nondecreasing for any Q ∈ BCH σγ ( f (0)). For σ > 0 sufficiently small,
CH σγ < τ < π

4 and thus the projection map πσ : Bτ (P) → BCH σγ ( f (0)) is distance
decreasing. It follows that for every σ > 0 sufficiently small, Qσ ∈ BCH σγ ( f (0)). Thus
applying (6.12) for σ1 < σ2 sufficiently small, and noting that by the definition of I (σ, Qσ ),
I (σ2, Qσ1) ≥ I (σ2, Qσ2), we observe that

ec3σ1
σ1 F(σ1)

I (σ1, Qσ1)
≤ ec3σ2

σ2 F(σ2)

I (σ2, Qσ1)
≤ ec3σ2

σ2 F(σ2)

I (σ2, Qσ2)
.

Therefore, σ �→ ec3σ σ F(σ )
I (σ,Qσ )

is monotone and lim
σ→0+ ec3σ σ F(σ )

I (σ,Qσ )
exists. To show that

limσ→0+ ec3σ σ E(σ )
I (σ,Qσ )

exists, it is therefore enough to consider

lim
σ→0+

E(σ )

F(σ )
= lim

σ→0+ exp
( − ϕ(σ)

)
.

Lemma 6.3 lim
σ→0+ −ϕ(σ) = lim

σ→0+
∫

A∩(σ,1)
Cs2γ E ′(s)

E(s) ds < ∞.

Proof The proof follows from straightforward modifications of the argument in [5, Lemma
3.8].

By the definition of A, for all s ∈ A

E ′(s)
E(s)

≤ J ′(s)
J (s)

. (6.13)

So it suffices to show that

lim
σ→0+

∫

A∩(σ,1)

Cs2γ J ′(s)
J (s)

ds < ∞.

Following [5, Proof of Lemma 3.8], there exists a sufficiently large constant C ′ depending
on the domain such that for any ε > 0 and 0 < θ1 < θ2 ≤ 1,

[

1 −
(

1

ε
+ C ′

θ1

)
(
θ2 − θ1

)
]

J (θ2) − εM E(θ2) ≤ J (θ1) (6.14)

where

1

E(σ )

∫

B(σ )

|∇ f |2dμg ≤ M.
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Let

φ(θ, n, j) = 1

2
−

(

2K θ− j p(θ,n) + C ′

θ

)

(1 − θ),

where

p(θ, n) = C
1 − θ2γ n

1 − θ2γ
, K = Mec3

F(1)

J (1)
.

Note that p(θ, 0) = 0 and

lim
θ→1− φ(θ, n, j) = 1

2
uniformly in j, n.

Therefore, there exists θ0 < 1 sufficiently close to 1, such that φ(θ0, n, j) > 1
4 . We also

choose j such that θ
j

0 < 1
4 . Then for all n, we have that

θ
j

0 < φ(θ0, n, j) = 1

2
−

(

2K θ
− j p(θ0,n)
0 + C ′

θ0

)

(1 − θ0). (6.15)

Now, for the chosen θ0 and j as above, we let

ε = 1

2K
θ

j p(θ0,n)+n
0 .

Then by (6.14),
[

1 −
(

2K θ
− j p(θ0,n)−n
0 + C ′

θ1

)
(
θ2 − θ1

)
]

J (θ2) − E(θ2)J (1)

2ec3 F(1)
θ

j p(θ0,n)+n
0 ≤ J (θ1).

(6.16)
��

Claim 6.4 For any n,

θ
j

0 J
(
θn

0

)
< J

(
θn+1

0

)
, (6.17)

and ∫ 1

θn
0

Cs2γ J ′(s)
J (s)

ds ≤ log θ
− j p(θ0,n)
0 ≤ C(θ0, γ, j). (6.18)

Note that the proof of the lemma will follow once we prove the claim since

lim
σ→0+

∫

A∩(σ,1)

Cs2γ E ′(s)
E(s)

ds ≤ lim
σ→0+

∫

A∩(σ,1)

Cs2γ J ′(s)
J (s)

ds ≤ lim
n→∞

∫ 1

θn
0

Cs2γ J ′(s)
J (s)

ds

and by the claim, the right hand side is bounded independent of n. ��
Proof of claim We proceed by induction on the powers of θ0. First, take n = 0, θ1 = θ0,
θ2 = 1, and notice that F(1) = E(1) by the definition of F(σ ), and thus E(1)J (1)

ec3 F(1)
= J (1)

ec3 ≤
J (1). Then by (6.15) and (6.16),

θ
j

0 J (1) < φ(θ0, 0, j)J (1) =
[

1

2
−

(

2K + C ′

θ0

)

(1 − θ0)

]

J (1) ≤ J (θ0).

Next, we assume θ
j

0 J (θk
0 ) < J (θk+1

0 ) for all k = 0, 1, 2, . . . , n − 1.
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By the definition of F(σ ) and (6.13),

log
E(θn

0 )

F(θn
0 )

= −ϕ(θn
0 ) =

∫

A∩(θn
0 ,1)

Cs2γ E ′(s)
E(s)

ds

≤
∫ 1

θn
0

Cs2γ J ′(s)
J (s)

ds.

(6.19)

We estimate

∫ 1

θn
0

Cs2γ J ′(s)
J (s)

ds =
n−1∑

k=0

∫ θk
0

θk+1
0

Cs2γ d

ds
log J (s)ds

≤
n−1∑

k=0

Cθ
2γ k
0 log

J (θk
0 )

J (θk+1
0 )

≤
n−1∑

k=0

Cθ
2γ k
0 log θ

− j
0 (by the induction hypothesis)

= log θ

− jC
1−θ

2γ n
0

1−θ
2γ
0

0 = log θ
− j p(θ0,n)
0 .

So since
σ F(σ )

J (σ )
≤ ec3σ

σ F(σ )

J (σ )
≤ ec3

F(1)

J (1)

(6.19) and the integral estimate imply that

θ
j p(θ0,n)

0 E(θn
0 ) ≤ F(θn

0 ) ≤ ec3 F(1)J (θn
0 )

J (1)θn
0

That is

θ
j p(θ0,n)+n

0
E(θn

0 )J (1)

ec3 F(1)
≤ J (θn

0 ).

We now take θ1 = θn+1
0 , θ2 = θn

0 in (6.16), and together with (6.15) and the above inequality
we conclude that

θ
j

0 J (θn
0 )<φ(θ0, n, j)J (θn

0 )=
[

1

2
−

(

2K θ
− j p(θ0,n)
0 + C ′

θ0

)

(1 − θ0)

]

J
(
θn

0

) ≤ J
(
θn+1

0

)
.

This implies that (6.17) is true for all n. Therefore, we may make the substitution in the
integral estimate to conclude that for all n

∫ 1

θn
0

Cs2γ J ′(s)
J (s)

ds ≤ log θ

− jC
1−θ

2γ n
0

1−θ
2γ
0

0 = log θ
− j p(θ0,n)
0 . (6.20)

Since p(θ0, n) is increasing in n and limn→∞ p(θ0, n) = C 1
1−θ

2γ
0

= C(θ0, γ ), we prove the

integral estimate. ��
Proposition 6.5 Suppose that B is a local model, (Y, d) is a CAT(1) space, and g is a
normalized Lipschitz metric. If f : (B(r), g) → Bτ (P) ⊂ Y is an energy minimizing map
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where 0 < τ < π
4 , then the order

α := lim
σ→0

σ E(σ )

I (σ, Qσ )
< ∞

is well defined.

Proof The monotonicity of σ �→ σ F(σ )
I (σ,Qσ )

together with Lemma 6.3 implies that

α := lim
σ→0+

σ E(σ )

I (σ, Qσ )
= lim

σ→0+

(
σ F(σ )

I (σ, Qσ )

E(σ )

F(σ )

)

= lim
σ→0+

σ F(σ )

I (σ, Qσ )
lim

σ �→0+
E(σ )

F(σ )
< ∞.

��
Definition 6.6 The value α is the order of f at 0 and denoted by α = ord f (0).

6.2 Improved monotonicity

Using the Hölder regularity of Theorem 5.4 and the definition of α given by Proposition 6.5,
we improve the Hölder result to have exponent corresponding to the order function. Such a
result allows us to immediately conclude Lipschitz regularity whenever α ≥ 1.

Lemma 6.7 Let B be a local model, g a normalized Lipschitz metric defined on B(r), (Y, d)

a CAT(1) space and f : (B(r), g) → Bτ (P) ⊂ Y an energy minimizing map where 0 < τ <
π
4 . Let α = ord f (0) and γ > 0 be the Hölder exponent of Theorem 5.4. There exist constants
c0, c′

0 and σ0 depending only onB(r), E f , and the Lipschitz bound and the ellipticity constant
of g so that if C is as in (6.9) and

Ẽ(σ ) := E(σ ) exp

(

c0

∫

A∩(0,σ )

Cs2γ E ′(s)
E(s)

ds

)

,

then

σ �→ ec0σ+c′
0σ 2γ Ẽ(σ )

σ 2α+n−2

is non-decreasing for σ ∈ (0, σ0).

Proof Let

G(σ ) = E(σ ) exp

(∫

A∩(0,σ )

Cs2γ E ′(s)
E(s)

ds

)

.

Since (6.13), (6.20) imply that exp
(∫

A∩(0,1)
Cs2γ E ′(s)

E(s) ds
)

is finite and by definition

G(σ ) = F(σ ) exp

(∫

A∩(0,1)

Cs2γ E ′(s)
E(s)

ds

)

,

the monotonicity of (6.12) implies that

σ �→ ec3σ
σ G(σ )

I (σ )

123



12 Page 24 of 35 C. Breiner et al.

is non-decreasing. Since
∫

A∩(0,σ )
Cs2γ E ′(s)

E(s) ds ≥ 0, E(σ ) ≤ G(σ ). Therefore,

α = lim
σ→0

σ E(σ )

I (σ, Qσ )
≤ lim

σ→0

σ G(σ )

I (σ, Qσ )
= lim

σ→0
ec3σ

σ G(σ )

I (σ, Qσ )
. (6.21)

Thus for σ sufficiently small,

α ≤ ec3σ
σ G(σ )

I (σ, Qσ )
= ec3σ

σ E(σ )

I (σ, Qσ )
· exp

(∫

A∩(0,σ )

Cs2γ E ′(s)
E(s)

ds

)

(6.22)

and
σ E(σ )

I (σ, Qσ )
≤ ec3σ

σ G(σ )

I (σ, Qσ )
≤ ec3

G(1)

I (1)
=: K . (6.23)

We now use arguments from the proof of Lemma 6.3. By (6.17), for n such that θn+1
0 ≤ σ <

θn
0 ,

∫

A∩(0,σ )

Cs2γ E ′(s)
E(s)

ds ≤
∫ σ

0
Cs2γ J ′(s)

J (s)
ds

≤
∞∑

k=n

∫ θk
0

θk+1
0

Cs2γ J ′(s)
J (s)

ds

≤
( ∞∑

k=n

Cθ
2γ k
0

)

log θ
− j
0

=
(

Cθ
2γ n
0

1 − θ
2γ
0

)

log θ
− j
0

≤ c4θ
2γ n
0

≤ c4

θ
2γ
0

σ 2γ =: c5σ
2γ . (6.24)

By (6.22) and (6.24)

α ≤ ec3σ+c5σ
2γ σ E(σ )

I (σ, Qσ )
≤ ec6σ

2γ σ E(σ )

I (σ, Qσ )
. (6.25)

By (6.1) and (6.3),

2
(

1 − c′σ 2γ
)

E(σ ) ≤
∫

∂B(σ )

∂

∂r
d2( f, f (0))d�g + I (σ ) + kσ 2 E ′(σ )

≤ I ′(σ ) − n − 1

σ
I (σ ) + (1 + c2)I (σ ) + kσ 2 E ′(σ ).

Here k, c2 depend on the Lipschitz bound of g. Therefore

2
(
1−c′σ 2γ

)
σ E(σ )

I (σ )
+ n − 1 − O(σ )

σ
≤ I ′(σ )

I (σ )
+ kσ 2 E ′(σ )

I (σ )

≤ I ′(σ )

I (σ )
+ kKσ

E ′(σ )

E(σ )
by (6.23)

≤ G ′(σ )

G(σ )
+ 1

σ
+ kKσ

E ′(σ )

E(σ )
+ c3.
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For the last inequality we use (6.9) and (6.11) to show that

G ′(σ )

G(σ )
= F ′(σ )

F(σ )
≥ I ′(σ )

I (σ )
− 1

σ
− c3.

Note further that by applying (6.25) and absorbing the higher order terms of the exponential
into O(σ ), there exists c′

0 such that

G ′(σ )

G(σ )
+ kKσ

E ′(σ )

E(σ )
≥ 2α − c′

0σ
2γ

σ
+ n − 2 − O(σ )

σ
− c3.

From this point forward, we presume that σ ∈ A. Indeed, if σ /∈ A then the appropriate
differential inequality is satisfied which immediately proves the monotonicity. By definition

Ẽ ′(σ )

Ẽ(σ )
≥ E ′(σ )

E(σ )

(
1 + c0Cσ 2γ

)
.

Choose c0 sufficiently large so that c0C ≥ kK + C . Then, since σ ∈ A,

Ẽ ′(σ )

Ẽ(σ )
≥ E ′(σ )

E(σ )

(
1 + (kK + C)σ 2γ

) ≥ G ′(σ )

G(σ )
+ kKσ

E ′(σ )

E(σ )
.

Then, we may increase c0 if necessary to determine that

Ẽ ′(σ )

Ẽ(σ )
≥ n − 2 + 2α

σ
− c′

0σ
2γ−1 − c0.

It follows that

d

dσ
log

(
ec0σ+c′

0σ 2γ
Ẽ(σ )

σ n−2+2α

)

≥ 0.

��
Corollary 6.8 LetB be a dimension-n, codimension-ν local model, g a normalized Lipschitz
metric defined on B(r), and (Y, d) a CAT(1) space and f : (B(r), g) → Bτ (P) ⊂ Y an
energy minimizing map where 0 < τ < π

4 . Let α = ord f (0) and γ > 0 be the Hölder
exponent of Theorem 5.4. Then there exist constants c, k > 0, σ0 < 1 depending on B(r),
E f , and the Lipschitz bound and the ellipticity constant of g so that

σ E(σ )

I (σ, Qσ )
≤ cekρ ρE(ρ)

I (ρ, Qρ)
for 0 < σ ≤ ρ ≤ σ0, (6.26)

and
E(σ )

σ n−2+2α
≤ ekρ2γ E(ρ)

ρn−2+2α
for 0 < σ ≤ ρ ≤ σ0. (6.27)

Proof For F(σ ) defined as in (6.10), (6.13) and (6.20) imply that

1

c
E(σ ) ≤ F(σ ) ≤ E(σ )

for some c > 1 depending on the Hölder constant from Theorem 5.4. Using this uniform
bound and the fact that ec3σ σ F(σ )

I (σ,Qσ )
is monotone by (6.12) implies (6.26).

Lemma 6.7, the definition of Ẽ , and the fact that (6.24) gives the bound

E(σ ) ≤ Ẽ(σ ) ≤ ec0c5σ
2γ

E(σ ).

together imply (6.27). ��
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As in the conclusion of Sect. 4, we now consider monotonicity for metrics g that are not
necessarily normalized. Recall that if g is a Lipschitz metric and h := L∗

x g, where Lx is the
map given by [5, Proposition 2.1], then h is normalized. Moreover, when f is minimizing
with respect to the metric g, then f ◦ Lx is minimizing with respect to h.

Definition 6.9 For f minimizing with respect to a Lipschitz metric g, we define the order
of f at x as

αx = ord f (x) := ord f ◦Lx (0).

Recalling that

Ex (σ ) :=
∫

Bx (σ )

|∇ f |2dμg,

and Bx (σ ) denotes the Euclidean ball about x of radius σ , we prove the monotonicity of
Proposition 4.6 with exponent n − 2 + 2α.

Proposition 6.10 Let B be a dimension-n, codimension-ν local model, g a Lipschitz met-
ric defined on B(r) with ellipticity constant λ ∈ (0, 1], (Y, d) a CAT(1) space and
f : (B(r), g) → Bτ (P) ⊂ Y an energy minimizing map where 0 < τ < π

4 . Then there
exists C ≥ 1 depending on B(r), the Lipschitz bound and the ellipticity constant of g so that
for every x ∈ B(r),

Ex (σ )

σ n−2+2αx
≤ C

Ex (ρ)

ρn−2+2αx
, 0 < σ < ρ ≤ r(x) (6.28)

where r(x) is defined as in (4.8).

Proof Following the proof of Proposition 4.6, the result follows from [5, Proposition 2.1]
and Corollary 6.8. ��

Using (6.28) and the techniques of Sect. 5, we immediately determine Hölder regularity
for f with exponent depending on the order function.

Theorem 6.11 Let B be a local model, g a Lipschitz Riemannian metric defined on B(r),
(Y, d) a CAT(1) space and f : (B(r), g) → Bτ (P) ⊂ Y an energy minimizing map where
0 < τ < π

4 . If 0 < α ≤ αx for all x ∈ B(�r) where � ∈ (0, 1), then there exists C depending
only on the Lipchitz bound and ellipticity constant of g, E f , B(r) and � such that

d( f (x), f (y)) ≤ C |x − y|α, ∀x, y ∈ B(�r).

Proof The result follows immediately from (6.28), Proposition 5.3, the Poincaré inequality
of [5, Theorem 2.7], and Lemma 5.2. ��

7 Tangent map construction

Given a domain �, NPC spaces (Yk, dk), and maps fk : � → Yk , Korevaar and Schoen [16,
Section 3] develop the notion of convergence of maps in the pullback sense. This allowed [5]
to define a tangent map of f : B(r) → Y when Y is NPC. They then related the homogeneity
of a tangent map to the order of f and used this to get the Lipschitz regularity.

Rather than reconstruct the entire argument when Y is CAT(1), we will consider the
tangent map of f that is determined by the tangent map construction in [5] for the lifted map
f : B(r) → CY . Since CY is NPC, we do not need to reconstruct the theory. Instead, we use
the minimizing property of f to prove that the proposed tangent map exists.

123



Regularity of harmonic maps from polyhedra to CAT(1) spaces Page 27 of 35 12

7.1 Limit maps in the pullback sense

We first recall the construction in [16, Section 3] and its extension to local models in [5,
Section 5].

Let fk : B(r) → Yk where each (Yk, dk) is an NPC space. Since each fk maps to
a different metric space, convergence cannot be understood in a pointwise sense without
further work. If one considers the closed convex hull of each set fk(B(r)) and corresponding
pseudodistances dk,∞, convergence can be well understood by considering convergence of
the pseudodistances. The construction proceeds as follows.

Let f : B(r) → Y and denote �0 = B(r), f0 = f , and let d0 : �0 × �0 → R
+ ∪ {0} be

the pseudodistance function d0(x, y) := d( f0(x), f0(y)). Inductively define �i+1 = �i ×
�i ×[0, 1] and identify �i ⊂ �i+1 via the inclusion x �→ (x, x, 0). Define fi+1 : �i+1 → Y
by

fi+1(x, y, t) = (1 − t) fi (x) + t fi (y).

Let

di+1(x, y) := d( fi+1(x), fi+1(y)).

Then

di+1((x, x, 0), (y, y, 0)) = di (x, y),

di+1((x, y, s), (x, y, t)) = |s − t |di (x, y),

d2
i+1(z, (x, y, s)) ≤ (1 − s)d2

i+1(z, (x, x, 0)) + sd2
i+1(z, (y, y, 0))

− s(1 − s)d2
i+1((x, x, 0), (y, y, 0)).

Set �∞ = ∪i�i and define f∞ : �∞ → (Y, d) such that f∞|�i = fi . Define a
pseudodistance function d∞(x, y) := d( f∞(x), f∞(y)). Define the metric space (Y∗, d∗) as
the completion of the quotient metric space constructed from (�∞, d∞), where the quotient
space is defined via the equivalence relation of zero pseudodistance. Then by construction,
in particular the properties of di , (Y∗, d∗) is an NPC space. Moreover, (Y∗, d∗) is isometric
to Cvx( f (B(r))), the closed convex hull of f (B(r)), with isometry given by the unique
extension of f∞ to Y∗.

Definition 7.1 Let vk : B(r) → (Yk, dk) be a sequence of maps to NPC spaces. We say vk

converges to v∗ in the pullback sense if the corresponding pullback pseudodistances dk,∞
converge pointwise to a limit pseudodistance d∞ on �∞ × �∞, and v∗ = π ◦ ι where
ι : B(r) → �∞ is the inclusion map and π is the natural projection map of �∞ onto the
metric completion (Y∗, d∗) of the quotient space constructed from (�∞, d∞).

Given v∗ as above, we can replace f in the outlined construction by v∗. Then d∗,i denotes
the corresponding pullback pseudodistance function of v∗,i and d∗,∞ denotes the correspond-
ing pullback pseudodistance function of v∗,∞. In this case, (d∗)∗ = d∗.

Definition 7.2 Suppose vk converge to v∗ in the pullback sense. Let dk,i (resp. d∞,i ) be the
corresponding pullback pseudodistance function to vk,i : �i → (Yk, dk) (resp. v∗,i : �i →
(Y∗, d∗)). We say that the convergence is locally uniform if the convergence of dk,i to the
limit d∗,i is uniform on each compact subset of �i × �i . In this case, we also say vk → v∗
locally uniformly in the pullback sense.
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Proposition 7.3 [16, Proposition 3.7], [5, Proposition 5.1] Let vk : B(r) → (Yk, dk) be a
sequence of maps to NPC spaces Yk for which there is uniform modulus of continuity control.
That is, assume that for each x ∈ B(r) and R > 0 there exists a positive function ω(x, R)

which is monotone in R satisfying

lim
R→0

ω(x, R) = 0,

and so that for each k ∈ Z

max
y∈B(x,R)

dk(vk(x), vk(y)) ≤ ω(x, R).

Then there is a subsequence of vk which converges locally uniformly in the pullback sense
to a limit map v∗ : B(r) → (Y∗, d∗). Moreover, v∗ satisfies the same modulus of continuity
estimates.

7.2 The tangent map construction

Let B be a dimension-n, codimension-ν local model and g a normalized Lipschitz metric
on B(1). For r ∈ (0, 1) and a map f : B(r) → Y we will consider the λ-blow up map
fλ : B(r/λ) → (Y, dλ) and the lifted λ-blow up map f λ : B(r/λ) → (CY, Dλ) where

gλ(x) := g(λx)

μd
λ := (λ1−n d I (λ))1/2

μD
λ := (λ1−n D I (λ))1/2

dλ(P, Q) := (μd
λ)−1d(P, Q)

Dλ(P, Q) := (μD
λ )−1 D(P, Q)

fλ(x) := f (λx) ∈ Y

f λ(x) := [ f (λx), 1] ∈ Y × {1} ⊂ CY.

Above we have denoted

d I (λ) := inf
Q∈Y

∫

∂B(λ)

d2( f, Q)d�g

D I (λ) := inf
Q∈CY

∫

∂B(λ)

D2([ f, 1], Q)d�g.

Definition 7.4 If there exists an NPC space (Y∗, d∗) and a sequence λk → 0 such that fλk

converges locally uniformly in the pullback sense to f ∗ : B → (Y∗, d∗) then f ∗ is called a
tangent map of f .

Proposition 7.5 For B a dimension-n, codimension-ν local model, g a normalized Lipschitz
metric defined on B(r), and (Y, d) a CAT(1) space, let f : (B(r), g) → Bτ (P) ⊂ Y be an
energy minimizing map where 0 < τ < π

4 . Then f has a tangent map f ∗ : (B, g) → (Y∗, d∗).
Moreover, f ∗ : B(1) → (Y∗, d∗) is a non-constant, energy minimizing map.

Proof We first determine uniform modulus of continuity control on the maps f λ. Following
[5, Lemma 6.1], for the maps fλ : B(r) → (Y, dλ), for sufficiently small λ > 0

dλ E fλ
gλ

[B(1)] =
∫

B(1)

|∇ fλ|2dμgλ ≤ 2α
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where α is the order of f at zero. Given the uniform Lipschitz bounds on the metrics gλ, we
appeal to Theorem 5.4 and note that

dλ( fλ(x), fλ(y)) ≤ C |x − y|γ for all x, y ∈ B(r), (7.1)

where C, γ are independent of λ. This immediately implies uniform modulus of continuity
control on the maps fλ but not on their lifted maps f λ. To determine the necessary control
for the lifted maps, we will consider the relation between dλ and Dλ as λ → 0.

Since f is energy minimizing into Y , Theorem 5.4 implies that f (∂B(λ)) ⊂
BCλγ ( f (0)) ⊂ Y where C depends only on the Lipschitz bound and ellipticity constant
of g, E f , and B(r). By (3.1), given Q ∈ BCλγ ( f (0)), for all x ∈ ∂B(λ),

D2( f (x), [Q, 1]) ≤ d2( f (x), Q). (7.2)

It follows that for Qd
λ such that d I (λ, Qd

λ) = inf d I (λ, Q),

DI (λ) ≤ DI (λ, [Qd
λ, 1]) ≤ dI (λ).

Let Q D
λ ∈ CY such that DI (λ, Q D

λ ) = inf DI (λ, Q). Then Q D
λ ∈ BCλγ ([ f (0), 1]) ⊂ CY

and by (3.3),

dI (λ) ≤ d I
(
λ, π1(Q D

λ )
)

≤ (1 + Cλ2γ ) D I (λ),

where π1 : CY → Y is the projection map onto the first component of Y ×[0,∞). Therefore,
for μd

λ, μD
λ the rescalings of d, D respectively, and λ > 0 sufficiently small,

1

2
≤ (1 + Cλ2γ )−1/2 ≤ μD

λ

μd
λ

≤ 1. (7.3)

It follows by (3.1), (7.2), and (7.3) that for sufficiently small λ > 0 and all x, y ∈ B(r),

Dλ( f λ(x), f λ(y)) = (μD
λ )−1 D([ f (λx), 1], [ f (λy), 1])

≤ 2(μd
λ)−1 D([ f (λx), 1], [ f (λy), 1])

≤ 2(μd
λ)−1d( f (λx), f (λy))

= 2dλ( fλ(x), fλ(y)).

By (7.1), the maps f λ into (CY, Dλ) possess uniform modulus of continuity control. There-
fore, by Proposition 7.3, there exists a sequence λk → 0 and an NPC space ((CY )∗, D∗)
such that f λk

converge locally uniformly in the pullback sense to a limit map f ∗ : B(1) →
((CY )∗, D∗).

Claim 7.6 f ∗ is a tangent map of f .

Proof We need to show that dλ,n → d∗,n uniformly on �n × �n for all n ∈ N ∪ {0}. Since
the uniform convergence for Dλ,n → d∗,n is already established, and since μd

λ/μD
λ → 1

uniformly by (7.3), it is enough to show that for all n ∈ N ∪ {0},
d( fλ,n(x), fλ,n(y))

D( f λ,n(x), f λ,n(y))
→ 1 (7.4)
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uniformly for all x �= y ∈ �n . Proceeding by induction requires that we also demonstrate
that

D([ fλ,n(x), 1], f λ,n(x)) → 0 (7.5)

uniformly for x ∈ �n .
Observe that by (3.2),

d( fλ(x), fλ(y))

D( f λ(x), f λ(y))
→ 1

uniformly for all x �= y ∈ B(1) = �0 so (7.4) holds easily for n = 0. Moreover, (7.5) is
trivial for n = 0 since f λ,0(x) = [ fλ,0(x), 1] ∈ CY .

Now suppose that
d( fλ,i−1(x), fλ,i−1(y))

D( f λ,i−1(x), f λ,i−1(y))
→ 1

uniformly for x �= y ∈ �i−1 and that

D([ fλ,i−1(x), 1], f λ,i−1(x)) → 0 (7.6)

uniformly for x ∈ �i−1. We claim that together these imply that (7.4) and (7.5) hold for
n = i and x �= y ∈ �i .

Consider x, y ∈ �i with x = (x1, x2, s) and x �= y. Since, by Theorem 5.4, fλ,i (B(1)) ⊂
BCλγ ( f (0)), (3.2) implies that

d( fλ,i (x), fλ,i (y))
D([ fλ,i (x), 1], [ fλ,i (y), 1]) → 1 uniformly for x �= y ∈ �i .

Thus, it is enough to show that

D([ fλ,i (x), 1], [ fλ,i (y), 1])
D( f λ,i (x), f λ,i (y))

→ 1 uniformly for x �= y ∈ �i .

Note that if x1 = x2 then fλ,i (x) = fλ,i−1(x1) and f λ,i (x) = f λ,i−1(x1). Thus
D([ fλ,i (x), 1], f λ,i (x)) → 0 uniformly by (7.6). Now suppose that x1 �= x2. By hypothesis,
with γλ ⊂ Y the geodesic connecting fλ,i−1(x1) to fλ,i−1(x2) and γ λ ⊂ CY the geodesic
connecting f λ,i−1(x1) to f λ,i−1(x2),

�(γλ)

�(γ λ)
= d( fλ,i−1(x1), fλ,i−1(x2))

D( f λ,i−1(x1), f λ,i−1(x2))
→ 1 (7.7)

uniformly. For j = 1, 2, let γ
j
λ ⊂ CY be the geodesic connecting f λ,i−1(x j ) to [ fλ,i (x), 1].

Then by the triangle inequality,

�(γ λ) ≤ �(γ 1
λ) + �(γ 2

λ) ≤ �(γλ) +
∑

j=1,2

D( f λ,i−1(x j ), [ fλ,i−1(x j ), 1]).

Thus by (7.6) and (7.7),

�(γ 1
λ) + �(γ 2

λ)

�(γ λ)
→ 1 uniformly.

We consider the geodesic triangle in CY with endpoints f λ,i−1(x1), f λ,i−1(x2), [ fλ,i (x), 1].
Using a comparison triangle in R

2, the side length relation implies that

D([ fλ,i (x), 1], f λ,i (x)) → 0 uniformly for all x ∈ �i .
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Therefore (7.5) holds for n = i . By the triangle inequality,

D([ fλ,1(x), 1], [ fλ,1(y), 1]) − D( f λ,1(x), f λ,1(y)) → 0 uniformly (7.8)

and thus (7.4) holds for n = i and x �= y.
Therefore fλk converges uniformly locally in a pullback sense to f ∗ and it is reasonable

to consider the target using the notation (Y∗, d∗). ��
Finally, we prove that f ∗ is minimizing. Let vλ =Dir f λ : B(1) → (CY, Dλ) denote the

Dirichlet solution for f λ. As before, we note that fλ(B(1)) ⊂ BCλγ ( f (0)), and so by (3.1),
it follows that f λ(B(1)) ⊂ BCY

Cλγ ([ f (0), 1]). Now, since CY is an NPC space, projection
onto convex domains decreases energy. Therefore, since vλ is an energy minimizer and
vλ|∂B(1) = f λ|∂B(1) ⊂ BCY

Cλγ ([ f (0), 1]), it follows that vλ(B(1)) ⊂ BCY
Cλγ ([ f (0), 1]). Thus,

π2(vλ) ≥ 1 − Cλγ , where π2 : CY → [0,∞) is the projection onto the second component
of the cone over Y . For λ sufficiently small, we apply (3.5) and observe that

D2(vλ(x), vλ(y)) ≥ (1 − Cλγ )2 D2(�(vλ(x)),�(vλ(y))),

and thus D E�(vλ)[B(1)] ≤ (1 − Cλγ )−2 D Evλ [B(1)]. By (3.4), if π1 : CY → Y denotes the
projection onto the first component of the cone over Y , then dEπ1(vλ)[B(1)] = D E�(vλ)[B(1)],
and thus

d Eπ1(vλ)[B(1)] ≤ (1 − Cλγ )−2 D Evλ [B(1)]. (7.9)

Again using (3.4), and noting that fλ is energy minimizing with respect to dλ,

D E f λ [B(1)] = d E fλ [B(1)]
= (μd

λ)2 dλ E fλ [B(1)] ≤ (μd
λ)2 dλ Eπ1(vλ)[B(1)] = d Eπ1(vλ)[B(1)]. (7.10)

Combining (7.9) and (7.10) we observe that

D E f λ [B(1)] ≤ (1 − Cλγ )−2 D Evλ [B(1)]
and therefore

Dλ E f λ [B(1)] = (μD
λ )−2 D E f λ [B(1)] ≤ (μD

λ )−2(1 − Cλγ )−2 D Evλ [B(1)]
= (1 − Cλγ )−2 Dλ Evλ [B(1)].

Finally, since vλ is energy minimizing with respect to Dλ, we have that

Dλ Evλ [B(1)] ≤ Dλ E f λ [B(1)] ≤ (1 − Cλγ )−2 Dλ Evλ [B(1)],
and so it follows from [16, Theorem 3.11] that f ∗ is minimizing. The non-constancy of f ∗
follows exactly as in the proof of [13, Proposition 3.3]. ��

8 Higher regularity results

8.1 Lipschitz regularity

The Lipschitz regularity of f at points in X − X (n−2) will follow from regularity results for
minimizing maps into an NPC space, once we show that the order of f is bounded below by
the order of its tangent map f ∗.

123



12 Page 32 of 35 C. Breiner et al.

Lemma 8.1 Let B be a dimension-n, codimension-ν local model, g a normalized Lipschitz
metric defined on B(r) and (Y, d) a CAT(1) space. If f : (B(r), g) → Bτ (P) ⊂ Y is an
energy minimizing map with 0 < τ < π

4 , let f ∗ : B → (Y∗, d∗) denote a tangent map of f ,
constructed as in Proposition 7.5. Then

ord f ∗(0) ≤ ord f (0), i.e., α∗ ≤ α.

Proof Note that f ∗ is a minimizing map into an NPC space and thus by [5, Corollary 3.1],

α∗ := lim
σ→0

σ d∗ E f ∗(σ )

d∗ I f ∗(σ )
< ∞.

Let λk denote the sequence defining the lifted tangent map f . Define fk := fλk , μk := μd
λk

,
dk := dλk , and gk := gλk . Then,

lim
k→∞

σ dk E fk
gk (σ )

dk I fk
gk (σ )

= lim
k→∞

σμ−2
k λ2−n

k
dE f

g (λkσ)

μ−2
k λ1−n

k
dI f

g (λkσ)

= lim
k→∞

λkσ
d E f

g (λkσ)

dI f
g (λkσ)

= α.

Therefore, it is enough to show that

σ d∗ E f ∗(σ )

d∗ I f ∗(σ )
≤ lim

k→∞
σ dk E fk

gk (σ )

dk I fk
gk (σ )

.

By the pointwise convergence of (μD
λk

)−1 D := Dk → D∗ locally, uniformly on compact
sets,

Dk I
f k

gk (σ ) → d∗ I f ∗(σ ).

By a change of variables and properties of the λk-blow up maps,

dk I fk
gk (σ ) =

(
μd

k

)−2
λ1−n

k (d I ) f
g (λkσ),

Dk I
f k

gk (σ ) =
(
μD

k

)−2
λ1−n

k (D I ) f
g (λkσ).

The proof of Proposition 7.5 immediately implies that

dk I fk
gk (σ ) − Dk I

f k
gk (σ ) → 0

as k → ∞ and thus

dk I fk
gk (σ ) → d∗ I f ∗(σ ) as k → ∞.

By [16, Lemma 8.1, Lemma 8.7], lim infk→∞ Dk E
f k

gk (σ ) ≥ d∗ E f ∗(σ ). By (3.2), d E fk
gk (σ ) =

D E
f k

gk (σ ) for all k. Moreover, since μd
k − μD

k → 0 as k → ∞,

d∗ E f ∗(σ ) ≤ lim inf
k→∞

dk E fk
gk (σ ).

This implies the result. ��
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Proposition 8.2 Let B be a dimension-n, codimension-ν local model with ν ∈ {0, 1}, g a
normalized Lipschitz metric defined on B(r), (Y, d) a CAT(1) space and f : (B(r), g) →
Bτ (P) ⊂ Y an energy minimizing map with 0 < τ < π

4 . Then f is Lipschitz continuous in
B(�r) with Lipschitz constant depending on � ∈ (0, 1), (B(r), g), and the total energy of the
map f .

Proof For each x ∈ B(�r), consider the normalized map fx := f ◦ Lx , minimizing with
respect to the normalized metric h = L∗

x g. Here the map Lx is as in [5, Proposition 2.1] but it
plays a slightly different role. The metric on B is normalized at the origin of B. To determine
a lower bound for the order of f at x , we want to consider its tangent map about x , which
requires that the metric be normalized about x . Lx does this for us, and thus we may consider
the tangent map of fx at 0 (or f at x).

By Proposition 7.5, the tangent map ( fx )∗ : B(1) → Y∗ is minimizing into the NPC space
Y∗. Therefore, by [5, Lemma 8.1, Lemma 8.7], α∗ ≥ 1. Lemma 8.1 implies that ord fx (0) ≥ 1
and thus ord f (x) ≥ 1. The result now follows from Theorem 6.11. ��

The Lipschitz regularity, Theorem 1.3 item (1), follows immediately from [5, Proposition
2.1].

8.2 Regularity at a higher codimension singular point

Given a Riemannian complex X and an NPC space T , we define the center of mass of a map
u ∈ L2(X, T ) to be the unique point u ∈ T (with existence and uniqueness given by [15,
Proposition 2.5.4]) such that

∫

X
d2

T (u, u) dμg := inf
P∈T

∫

X
d2

T (u, P) dμg.

We define the first eigenvalue of X with values in T by the Rayleigh quotient

λ1(X, T ) := inf
u∈W 1,2(X,T )

∫
X |∇u|2 dμg

∫
X d2(u, u) dμg

.

In application, T will be the tangent cone of the CAT(1) space Y at a point Q ∈ Y . While Y
is not NPC, TQY is always NPC by construction.

To prove item (2) in Theorem 1.3, we first note that all of the results of [5, section 6] can
be immediately applied. In particular, set fk := fλk and define hk : (B(1), δ) → (CY, Dλk )

to be the minimizer into CY with hk |∂B(1) = f k |∂B(1). Then hk converges uniformly locally

in the pull-back sense to f ∗ and in fact the pseudodistance functions d f∗ , dh∗ , determined by
the maps fk and hk , are equal.

The results of [5, section 8.3] rely on the fact that the sequence fk satisfies the mono-
tonicity formula and that the tangent map f∗ is homogeneous. We have already established
monotonicity for the sequence fk . To prove homogeneity for the tangent map f ∗, we proceed
exactly as in [5].

Lemma 8.3 For B a dimension-n, codimension-ν local model, ν ≥ 2, and g a normalized
Lipschitz metric defined on B(r), (Y, d) a CAT(1) space, let f : (B(r), g) → Bτ (P) ⊂ Y
be an energy minimizing map where 0 < τ < π

4 . Let fk, hk, f ∗ be as above. Then the
directional energies of the sequences hk, fk converge to the directional energies of f ∗.

Proof Since the hk are Hölder continuous and satisfy a monotonicity formula, the proof of
[5, Lemma 8.8] can be followed verbatim. To prove the directional energies converge relies
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only on estimates relating the energies of hk, fk , and lower semi-continuity of the energy.
Since the energy comparisons follow from the comments above, the result is immediate. ��

Now, following the proof of [5, Lemma 6.3], since the directional energies of hk converge
to those of f ∗, f ∗ is homogeneous of order α, i.e.

d∗( f ∗(x), f ∗(0)) = |x |αd∗
(

f ∗
(

x

|x |
)

, f ∗(0)

)

.

Note that in the proof in [5], the right hand side of the equation for (E f∗(σ ))′ should include
the term n−2

σ
E f∗(σ ) and the first term in the parenthesis in (6.10) should be the product of

boundary integrals.
With the homogeneity in hand, we can now follow the proofs of [5] to conclude the nec-

essary results. For B a dimension-n, codimension-ν local model, recall that D is isomorphic
to R

n−ν . For each x ∈ D, let N (x) be the ν-plane orthogonal to D at x . Then, for |x | < 1,
∂B(1) ∩ N (x) is a spherical (ν − 1)-complex. The key proposition, which follows exactly
the proof of [5, Theorem 8.4], is as follows.

Proposition 8.4 Let B be a dimension-n, codimension-ν local model, ν ≥ 2, and g a nor-
malized Lipschitz metric defined on B(r) and (Y, d) a CAT(1) space, let f : (B(r), g) →
Bτ (P) ⊂ Y be an energy minimizing map where 0 < τ < π

4 . If λ1(∂B(1) ∩ N (0), TQY ) ≥
β(> β) for all Q ∈ Y and α < 1, then the order α of f at 0 satisfies α(α+ν −2) ≥ β(> β).

For a local model B and any x ∈ B(r), recall that f ◦ Lx : B′
x (r(x)) → Bτ P where Lx

is given by [5, Proposition 2.1] and B′
x (r(x)) is a local model centered at x . Define

λN
1 := inf

x∈B(r)∩N (0),Q∈Y
λ1(∂B′

x (1), TQY ).

As an immediately corollary of the previous proposition, we observe that:

Corollary 8.5 For B a dimension-n, codimension-ν local model, ν ≥ 2, g a Lipschitz Rie-
mannian metric defined onB(r), and (Y, d) a CAT(1) space, let f : (B(r), g) → Bτ (P) ⊂ Y
be an energy minimizing map where 0 < τ < π

4 . If λN
1 ≥ ν−1 then f is Lipschitz continuous

in B(�r) for � ∈ (0, 1).

Theorem 1.3, item (2), immediately follow from the above results following the observa-
tion that ν = n − k.
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