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ON THE STRUCTURE OF GRADIENT YAMABE SOLITONS

Huai-Dong Cao, Xiaofeng Sun and Yingying Zhang

Abstract. We show that every complete nontrivial gradient Yamabe soliton admits a
special global warped product structure with a one-dimensional base. Based on this, we
obtain a general classification theorem for complete nontrivial locally conformally flat
gradient Yamabe solitons.

1. The results

Self-similar solutions and translating solutions, often called soliton solutions, have
emerged in recent years as important objects in geometric flows since they appear as
possible singularity models. Much progress has been made recently in the study of
soliton solutions of the Ricci flow (i.e., Ricci solitons) and the mean curvature flow.
In this paper, we are interested in geometric structures of Yamabe solitons, which are
soliton solutions to the Yamabe flow. Note that the Yamabe flow has been studied
extensively in recent years, see, e.g., the very recent survey by Brendle [2] and the
references therein.

A complete Riemannian metric g = gij dxi dxj on a smooth manifold Mn is called
a gradient Yamabe soliton if there exists a smooth function f such that its Hessian
satisfies the equation

(1.1) ∇i∇jf = (R − ρ)gij ,

where R is the scalar curvature of g and ρ is a constant. For ρ = 0 the Yamabe soliton
is steady, for ρ > 0 it is shrinking and for ρ < 0 expanding. The function f is called
a potential function of the gradient Yamabe soliton. When f is constant, we call it a
trivial Yamabe soliton. It has been known (see [8, 11]) that every compact Yamabe
soliton is of constant scalar curvature; hence trivial since f is harmonic and thus is
constant.

Recently, inspired by the classification of locally conformally flat Ricci solitons and
especially [3], Daskalopoulos and Sesum [10] initiated the investigation of conformally
flat Yamabe solitons and proved the following classification result:

Theorem 1.1 (Daskalopoulos–Sesum [10]). All complete locally conformally flat
gradient Yamabe solitons with positive sectional curvature K > 0 are rotationally
symmetric.

Moreover, they constructed examples of rotationally symmetric gradient Yamabe
solitons on R

n with positive sectional curvature K > 0.
In this paper, motivated by the above Theorem 1.1 and the recent works of the first

author and his collaborators [4,5] on Bach-flat Ricci solitons, we investigate geometric
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structures of gradient Yamabe solitons not necessarily locally conformally flat. It turns
out that, by exploring the special nature of the Yamabe soliton equation (1.1), every
complete nontrivial gradient Yamabe soliton (Mn, g, f) admits a special global warped
product structure with a 1-dimensional base and the warping function provided by
|∇f | (see Theorem 1.2). Based on this special warped product structure, we are able
to prove a classification theorem for locally conformally flat gradient Yamabe solitons
without any further assumption on the curvature (see Corollary 1.5). In particular,
Theorem 1.1 above is a special case of Corollary 1.3 or Corollary 1.6. Our main
result is:

Theorem 1.2. Let (Mn, g, f) be a nontrivial complete gradient Yamabe soliton sat-
isfying equation (1.1). Then |∇f |2 is constant on regular level surfaces of f , and
either

(i) f has a unique critical point at some point x0 ∈ Mn, and (Mn, g, f) is rota-
tionally symmetric and equal to the warped product

([0,∞), dr2) ×|∇f | (Sn−1, ḡcan),

where ḡcan is the round metric on S
n−1, or

(ii) f has no critical point and (Mn, g, f) is the warped product

(R, dr2) × |∇f | (Nn−1, ḡ),

where (Nn−1, ḡ) is a Riemannian manifold of constant scalar curvature, say
R̄. Moreover, if (Mn, g, f) has nonnegative Ricci curvature Rc ≥ 0 then
(Mn, g) is isometric to the Riemannian product (R, dr2) × (Nn−1, ḡ); if the
scalar curvature R ≥ 0 on Mn, then either R̄ > 0, or R = R̄ = 0 and (Mn, g)
is isometric to the Riemannian product (R, dr2) × (Nn−1, ḡ).

As an immediate consequence of Theorem 1.2, we have

Corollary 1.3. Let (Mn, g, f) be a nontrivial complete gradient Yamabe soliton with
positive Ricci curvature Rc > 0, then f has exactly one critical point and (Mn, g, f)
is rotationally symmetric.

Remark 1.1. Shortly after the first version of our paper appeared in the arXiv,
G. Catino, C. Mantegazza and L. Mazzieri [6] posted a paper on the global structure
of conformal gradient solitons with nonnegative Ricci tensor in which they proved
Theorem 1.2 with the additional assumption of nonnegative Ricci curvature (see The-
orem 3.2 in [6]). We also remark that, as pointed out in [10], steady and shrinking
Yamabe solitons have nonnegative scalar curvatures.

In the special case when (Mn, g, f) is locally conformally flat, we can say more
about the manifold (Nn−1, ḡ) in case (ii) of Theorem 1.2.

Theorem 1.4. Suppose (Mn, g, f) is a nontrivial complete locally conformally flat
gradient Yamabe soliton satisfying equation (1.1), and suppose f has no critical point.
Then (Mn, g, f) is the warped product

(R, dr2) × |∇f | (Nn−1, ḡN ),

where (Nn−1, ḡN ) is a space form (i.e., of constant sectional curvature).
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It is clear that Theorems 1.2 and 1.4 together imply the following classification of
locally conformally flat Yamabe solitons:

Corollary 1.5. Let (Mn, g, f) be a nontrivial complete locally conformally flat gra-
dient Yamabe soliton. Then, (Mn, g, f) is either

(a) defined on R
n, rotationally symmetric, and equal to the warped product

([0,∞), dr2) ×|∇f | (Sn−1, ḡcan), or

(b) the warped product

(R, dr2) × |∇f | (Nn−1, ḡN ),

where (Nn−1, ḡN ) is a space form.

By Corollary 1.5 and Theorem 1.2 (ii), we have

Corollary 1.6. Suppose (Mn, g, f) is a nontrivial, non-flat, complete, and locally
conformally flat gradient Yamabe soliton with nonnegative scalar curvature R ≥ 0 (as
in the steady and shrinking cases). Then (Mn, g, f) is rotationally symmetric: it is
either defined on R

n and equal to the warped product

([0,∞), dr2) ×|∇f | (Sn−1, ḡcan), or

is the warped product cylinder

(R, dr2) ×|∇f | (Sn−1, ḡcan)/Γ

for some finite group Γ ⊂ SO(n).

Remark 1.2. If we assume Rc ≥ 0 in Corollary 1.6 then, by Theorem 1.2 (ii), the
warped product cylinder is in fact the round cylinder

(R, dr2) × (Sn−1, ḡcan)/Γ.

Remark 1.3. As we mentioned before, examples of rotationally symmetric gradient
Yamabe solitons on R

n with positive sectional curvature K > 0 have been constructed
by Daskalopoulos and Sesum [10]. On the other hand, C. He [12] has shown that any
complete gradient steady Yamabe soliton on Mn = R×ϕNn−1 is necessarily isometric
to the Riemannian product with constant ϕ and N being of zero scalar curvature.
Moreover, he showed the existence of complete gradient Yamabe shrinking soliton
metrics on Mn = R ×ϕ Nn−1 with ρ = 1, R̄ > 0 and positive non-constant warping
function ϕ.

2. Warped product structures of complete gradient Yamabe solitons

We shall follow the notations in [3, 4, 10]. Let (Mn, gij , f) be a complete nontrivial
Yamabe soliton, satisfying the Yamabe soliton equation:

(R − ρ)gij = ∇i∇jf.

For any regular value c0 of the potential function f , consider the level surface Σc0 =
f−1(c0). Suppose I is an open interval containing c0 such that f has no critical points
in the open neighborhood UI = f−1(I) of Σc0 . Then we can express the soliton metric
g on UI as

ds2 =
1

|∇f |2 df2 + ḡΣc0
,
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where ḡΣc0
= gab(f, θ)dθadθb is the induced metric and θ = (θ2, . . . , θn) is any local

coordinates system on Σc0 .
On the other hand, as shown in [10], we have

(2.1) ∇(|∇f |2) = 2∇2f(∇f, ·) = 2(R − ρ)∇f.

Hence, |∇f |2 is constant on any regular level surface Σc = f−1(c) ⊂ UI , which are all
diffeomorphic to Σc0 . This allows us to make the change of variable by setting, up to
an additive constant,

(2.2) r(x) =
∫

df

|∇f | ,

so that we can further express the metric g on UI as

(2.3) ds2 = dr2 + gab(r, θ)dθadθb.

Let ∇r = ∂
∂r , then |∇r| = 1 and ∇f = f ′(r) ∂

∂r on UI . Note that f ′(r) does not change
sign on UI because f has no critical points there. Thus, we may assume I = (α, β)
with f ′(r) > 0 for r ∈ (α, β). It is also easy to check that

(2.4) ∇ ∂
∂r

∂

∂r
= 0,

so integral curves to ∇r are normal geodesics.
Next, by (2.4) and equation (1.1), it follows that

(2.5) R − ρ = ∇2f

(
∂

∂r
,

∂

∂r

)
= f ′′(r).

Therefore, we conclude immediately that the scalar curvature R is also constant on
Σc ⊂ UI . Moreover, the second fundamental form of Σc is given by

(2.6) hab =
∇a∇bf

|∇f | =
f ′′(r)
f ′(r)

gab.

In particular, Σc is umbilical and its mean curvature is given by

(2.7) H = (n − 1)
f ′′(r)
f ′(r)

,

which is again constant along Σc.
Now, we fix a local coordinates system

(2.8) (x1, x2, . . . , xn) = (r, θ2, . . . , θn)

in UI , where (θ2, . . . , θn) is any local coordinates system on the level surface Σc0 , and
indices a, b, c, . . . range from 2 to n. Then, computing in this local coordinates system
we obtain that

hab = −〈∂r,∇a∂b〉 = −〈∂r, Γ1
ab∂r〉 = −Γ1

ab.

But the Christoffel symbol Γ1
ab is given by

Γ1
ab =

1
2
g11

(
−∂gab

∂r

)
= −1

2
∂gab

∂r
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Hence, we get

(2.9)
∂gab

∂r
= 2

f ′′(r)
f ′(r)

gab.

Then, it follows easily from (2.9) that

(2.10) gab(r, θ) =
(

f ′(r)
f ′(r0)

)2

gab(r0, θ).

Here the level surface {r = r0} corresponds to Σc0 .
Therefore we have arrived at the following:

Proposition 2.1. Let (Mn, gij , f) be a complete gradient Yamabe soliton, satisfying
the soliton equation (1.1), and let Σc = f−1(c) be a regular level surface. Then

(a) |∇f |2 is constant on Σc;
(b) the scalar curvature R is constant on Σc;
(c) the second fundamental form of Σc is given by hab = R−ρ

|∇f |gab;

(d) the mean curvature H = (n − 1)R−ρ
|∇f | is constant on Σc;

(e) in any open neighborhood Uβ
α = f−1

(
(α, β)

)
of Σc in which f has no critical

points, the soliton metric g can be expressed as

(2.11) ds2 = dr2 +
(f ′(r))2

(f ′(r0))2
ḡr0 .

where (θ2, . . . , θn) is any local coordinates system on Σc and ḡr0 = gab(r0, θ)
dθadθb is the induced metric on Σc = r−1(r0).

Remark 2.1. Proposition 2.1(a) was observed first by Daskalopoulos and Sesum [10];
also Proposition 2.1(b)–(d) were proved in [10] under the additional assumption that
(Mn, g, f) is locally conformally flat.

Remark 2.2. Our proof of Proposition 2.1 was motivated by arguments in [3–5]
for Ricci solitons. After the first version of our paper appeared in the arXiv, we
learned that equations similar to equation (1.1) had been studied long time ago by
various people, see, e.g., [15] and the references therein. There are also more recent
works, e.g., [14] and [7]. In particular, Cheeger and Colding [7] presented beautifully a
characterization of warped product structures on a Riemannian manifold M in terms
of solutions to the more general equation

∇i∇jf = h gij ,

where h is some smooth function on M .

Next let us investigate the geometry of the regular level surfaces Σc. To do so, we
first need the curvature tensor formula of a warped product manifold

(2.12) (Mn, g) = (I, dr2) × ϕ (Nn−1, ḡ),

where g = dr2 + ϕ2(r)ḡ. Fix any local coordinates system θ = (θ2, . . . , θn) on Nn−1,
and choose (x1, x2, . . . , xn) = (r, θ2, . . . , θn), as in (2.8) for the local coordinates sys-
tem on M . From now on indices a, b, c, d range from 2 to n. Also curvature tensors
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with bar are the curvature tensors of (N, ḡ). Now from either direct computations
or [1, 13], the Riemann curvature tensor of (Mn, g) is given by

(2.13) R1a1b = −ϕϕ′′ ḡab, R1abc = 0,

and

(2.14) Rabcd = ϕ2R̄abcd − (ϕϕ′)2 (ḡacḡbd − ḡadḡbc).

The Ricci tensor of (Mn, g) is

(2.15) R11 = −(n − 1)
ϕ′′

ϕ
, R1a = 0 (2 ≤ a ≤ n),

and

(2.16) Rab = R̄ab −
[
(n − 2)(ϕ′)2 + ϕϕ′′]ḡab (2 ≤ a, b ≤ n).

Finally, the scalar curvatures of (Mn, g) and (Nn−1, ḡ) are related by

(2.17) R = ϕ−2R̄ − (n − 1)(n − 2)
(

ϕ′

ϕ

)2

− 2(n − 1)
ϕ′′

ϕ
.

From (2.15) and (2.16), we easily see the following basic facts:

Lemma 2.1. (a) The “radial” Ricci curvature R11 depends only on r, hence is con-
stant on level surfaces {r} × N ;

(b) (N, ḡ) is Einstein if and only if the eigenvalues of the Ricci tensor, when
restricted to {r} × N , are the same and depend only on r:

(2.18) R22(r, θ) = · · · = Rnn(r, θ) = μ(r).

Remark 2.3. Note that Mn is Einstein, with Rc = λg, if and only if Nn−1 is Einstein
with R̄c = λ̄ḡ and the warping function ϕ solves the first-order ODE

(2.19) ϕ′2 +
λ

n − 1
ϕ2 =

λ̄

n − 2
.

More details can be found in [1, 9.110].

Now we are ready to finish the proof Theorem 1.2.

Proof. Let (Mn, g, f) be a complete nontrivial gradient Yamabe soliton. From Propo-
sition 2.1, we know that |∇f |2 is constant on regular level surfaces of f .

Set Nn−1 = f−1(c0) and ḡ = (f ′(r0))−2ḡr0 as in Proposition 2.1 for some regular
value c0 of f . Then, since the warping function is |∇f | = f ′(r), the warped product
formula (2.11) in Proposition 2.1 implies that the potential function f has at most two
critical values. Thus, formula (2.11) extends to some maximal interval Imax, which is
either a finite closed interval [α0, β0] with f ′(α0) = f ′(β0) = 0, or a half-line [α0,∞)
with f ′(α0) = 0, or (−∞,∞). However, the first case cannot happen, for otherwise
Mn would be compact, but compact Yamabe solitons are trivial as we mentioned in
Section 1. Thus, f has at most one critical point and, after a shift in r if necessary,
either Imax = [0,∞), or Imax = (−∞,∞).
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To see that (Nn−1, ḡ) has constant scalar curvature, note that for our Yamabe
soliton (Mn, g, f), we have R = f ′′(r) + ρ and the warping function is ϕ(r) = f ′(r).
Thus, from (2.17) we get

(2.20) R̄ = (f ′)2R + (n − 1)
[
(n − 2)(f ′′)2 + 2f ′f ′′′],

which does not depend on θ. Therefore, R̄ is a constant.
Also, when f has a unique critical point x0, r(x) is simply the distance function

d(x0, x) from x0. So level surfaces of f are geodesic spheres centered at x0 which are
diffeomorphic to (n− 1)–sphere S

n−1. In addition, by the smoothness of the metric g
at x0 we can conclude that the induced metric ḡ on N is round (see, e.g., Lemma 9.114
in [1]).

Finally, assume we are in the case (ii). Then, ϕ = f ′ > 0 on (−∞,∞) and ϕ′ =
f ′′ = R − ρ. If (Mn, g, f) has nonnegative Ricci curvature Rc ≥ 0, then by (2.15)
we know ϕ′′ ≤ 0, so ϕ is a positive and weakly concave function on R. Thus ϕ
must be a constant and hence (Mn, g) is isomorphic to the Riemannian product
(R, dr2) × (N, ḡ). Now assume R ≥ 0. Again we prove R̄ > 0 unless R̄ = 0 and
(Mn, g) is the Riemannian product (R, dr2)× (Nn−1, ḡ). If R̄ ≤ 0, by (2.20) we know
that ϕ′′ ≤ 0. So once again ϕ is a positive weakly concave function on R hence a
constant function. Therefore, again by (2.20), we know that R = R̄ = 0 and (Mn, g)
is the Riemannian product (R, dr2) × (Nn−1, ḡ). �

3. Classification of locally conformally flat Yamabe solitons

Now let us discuss the classification of locally conformally flat gradient Yamabe soli-
tons and prove Theorem 1.4.

Proof. Let (Mn, g, f) be a nontrivial complete locally conformally flat gradient Yam-
abe soliton such that f has no critical point. By Theorem 1.2, (Mn, g) is a warped
product

(R, dr2) ×|∇f | (Nn−1, ḡ).

Clearly, it remains to prove the following:

Claim 1: (Nn−1, ḡ) is a space form.

Indeed, Claim 1 was first proved by Daskalopoulos and Sesum [10] (see Proposi-
tion 2.2 and Lemma 2.4(iii) in [10]) where they used B. Chow’s Li–Yau type differen-
tial Harnack for locally conformally flat Yamabe flow [9] to show that property (2.18)
holds and then deduced that (N, ḡ) is a space form. Here we present a simple and
direct proof based on the warped product structure of (Mn, g, f).

All we need is the explicit formula of the Weyl tensor W for an arbitrary warped
product manifold (2.12) which can be easily deduced from (2.13) to (2.17):

W1a1b =
R̄

(n − 1)(n − 2)
ḡab − 1

n − 2
R̄ab,(3.1)

W1abc = 0,(3.2)



774 HUAI-DONG CAO, XIAOFENG SUN AND YINGYING ZHANG

and

(3.3) Wabcd = ϕ2W abcd.

Here W denotes the Weyl tensor of (N, ḡ).
Now (Mn, g, f) is a warped product, with ϕ = f ′, and is locally conformally flat,

thus W = 0. From (3.1) and (3.3), we see that (N, ḡ) is Einstein and W = 0. Thus N
is a space form.

This proves Claim 1 and completes the proof of Theorem 1.4. �
Remark 3.1. By (3.1)–(3.3), it is clear that (N, ḡ) is a space form if and only if
(M, g) is locally conformally flat.
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