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A unital ring is called clean (resp. strongly clean) if every element can be written 
as the sum of an invertible element and an idempotent (resp. an invertible element 
and an idempotent that commutes). T.Y. Lam proposed a question: which von 
Neumann algebras are clean as rings? In this paper, we characterize strongly clean 
von Neumann algebras and prove that all finite von Neumann algebras and all 
separable infinite factors are clean.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

In his study of continuous geometry [38], in order to generalize the classical coordinatization theorem, 
von Neumann introduced a new class of rings, which he called regular rings; see [37]. Let R be a unital 
ring. An element T ∈ R is called (von Neumann) regular if there exists an inner inverse U ∈ R for T , i.e., 
TUT = T . Then R is called (von Neumann) regular if every element of R is regular. Moreover, if T has 
an invertible inner inverse, then we call T unit-regular and R is called unit-regular if every element of R is 
unit-regular; see [15]. Studies related to regular rings have been one of the central topics in ring theory; see 
[16] for a monograph on regular rings.

An important generalization of regular rings arose in the study of direct sum decomposition theory. 
Crawley and Jónsson [14] introduced the exchange property for modules to study the isomorphic refinement 
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problem. A module A is said to have the exchange property if for any module H and any two decompositions 
H = A ⊕M =

∑
i∈I Ni, there exist submodules N′

i ⊆ Ni such that H = A ⊕
(∑

i∈I N
′
i

)
. Based on the work 

of Crawley and Jónsson [14], Warfield introduced the notion of exchange rings in [39]. An exchange ring 
is a ring R such that the left module RR (or equivalently [39, Corollary 2], the right module RR) has the 
exchange property. Exchange rings are not only very useful in decomposition theory, but also form a large 
class of rings. Besides regular rings, the class of exchange rings includes π-regular rings [34], semiperfect 
rings [39] and (unital) C∗-algebras of real rank zero [3, Theorem 7.2]. We refer to [22,23] for some recent 
progress on exchange rings and references therein.

Later, Nicholson [29] showed that exchange rings are exactly those for which idempotents can be lifted 
modulo every left ideal, i.e., for every ring element A with A −A2 in a left ideal L, there exists an idempotent 
P in the ring such that P − A ∈ L. In addition, in order to characterize those exchange rings with central 
idempotents, Nicholson introduced a new class of rings.

Definition 1.1. A ring is called clean if every element can be written as the sum of an invertible element and 
an idempotent.

Clean rings can be regarded as an additive analogy of unit-regular rings, as every element in a unit-regular 
ring can be written as the product of an invertible element and an idempotent. It is very interesting that 
unit-regularity implies cleanness of rings; see [10,11]. Although, in general, clean rings are not necessarily 
exchange rings (see [19, Example 1], [11, p. 4746], and [33, Example 3.1]), many natural examples of exchange 
rings are clean rings, including abelian exchange rings [29], strongly π-regular rings [30] and endomorphism 
rings of continuous modules [12]. Among them, abelian exchange rings and strongly π-regular rings satisfy 
the following stronger condition: every element can be written as the sum of an invertible element and 
an idempotent that commutes. Such rings are called strongly clean rings. We refer to [31] for a survey on 
clean rings. The recent paper [32] provided a very nice discussion on connections between (unit-)regularity 
and (strong) cleanness of rings. Also see [24] for a very recent element-wise study on clean rings. Moreover, 
Aghajani and Tarizadeh [1] provided some new characterizations of clean rings from a topological viewpoint; 
Bezhanishvili, Morandi and Olberding [5], based on Gelfand-Neumark-Stone duality, found that the notion 
of clean ring appears naturally in a study of category theory (the category of bounded Archimedean lattice-
ordered algebras over R).

In [3], Ara et al. proved that a unital C∗-algebra is an exchange ring if and only if it has real rank zero. 
Based on this result, together with a result of Lin [26], Ara et al. [4] partially verified a conjecture of Zhang 
on the topological K1-group of any unital C∗-algebra with real rank zero (see [40] and references therein). 
Moreover, it is known [9, Proposition 1.3] that every von Neumann algebra has real rank zero. Consequently, 
every von Neumann algebra is an exchange ring. It is interesting to know which C∗-algebras with real rank 
zero are clean rings. In 2005, at the Conference on Algebra and Its Applications held at Ohio University, 
Athens, OH, T.Y. Lam, as recorded by [36, Introduction], proposed the following more specific question.

Question 1.1. Which von Neumann algebras are clean as rings?

It follows immediately from the theory of Jordan canonical forms that all finite-dimensional von Neumann 
algebras are clean, since every finite-dimensional von Neumann algebra is ∗-isomorphic to a finite direct sum 
of full matrix algebra over C. Trying to answer Question 1.1, Vaš [36] pointed out that it is more natural to 
utilize the fact that a von Neumann algebra is a ∗-ring (i.e. a ring with involution) and that the projections 
are ∗-invariant idempotents. Therefore, she introduced the following more specified cleanness for ∗-rings.

Definition 1.2. A ∗-ring R is called a ∗-clean ring if every element of R can be written as the sum of an 
invertible element and a projection.



L. Cui et al. / J. Math. Anal. Appl. 509 (2022) 125969 3
Recall that a ring is called almost clean if its every element can be written as the sum of a non-zero-divisor 
element (neither a left nor a right zero-divisor) and an idempotent (see [27]). Motivated by this definition, 
Vaš also introduced the notion of almost ∗-cleanness: a ∗-ring is almost ∗-clean if its every element can be 
written as the sum of a non-zero-divisor and a projection. Towards Question 1.1, Vaš [36, Corollary 14]
proved that all finite type I von Neumann algebras are almost ∗-clean. Later, Akalan and Vaš [2, Corollary 
3.10] showed that all finite von Neumann algebras are almost clean. Similar to strongly clean ring, a strongly 
∗-clean ring is a ∗-ring such that every element can be written as the sum of an invertible element and a 
projection that commutes. The study of ∗-cleanness of rings has received a lot of attention and has recently 
found applications in coding theory; see [17] and references therein.

It is known that every finite-dimensional von Neumann algebra is ∗-clean [36, Proposition 4]. While, in 
general, an infinite-dimensional von Neumann algebra may not be ∗-clean. In Section 2, we shall show that 
properly infinite von Neumann algebras are neither ∗-clean nor strongly clean. Based on this observation, 
we provide the following characterizations of strongly clean and strongly ∗-clean von Neumann algebras.

Theorem 1.1. Let A be a von Neumann algebra.

(1) A is strongly clean if and only if there exists a finite number of mutually orthogonal central projections 
Pi with sum I such that PiA is of type Ini

, ni < ∞.
(2) A is strongly ∗-clean if and only if A is abelian.

Meanwhile, we continue the study of Question 1.1 and a large class of von Neumann algebras is shown 
to be clean. Firstly, we prove that all finite von Neumann algebras are clean. More precisely, we prove the 
following theorem.

Theorem 1.2. Let T be an operator in a finite von Neumann algebra A. Then there exists an idempotent 
P ∈ A such that T − P is invertible and ‖(T − P )−1‖ ≤ 4. In particular, A is clean.

We also prove that a von Neumann algebra is almost ∗-clean if and only if it is finite (see Remark 4.1) 
and that every properly infinite von Neumann algebra is not *-clean. Furthermore we point out that all 
operators with closed ranges in finite von Neumann algebras are ∗-clean (see Remark 6.1). Next, we consider 
infinite von Neumann algebras and obtain the following theorem.

Theorem 1.3. Every separable infinite factor is clean.

We hope that these results can shed more light on Question 1.1. The following sections are organized 
as follows. In Section 2, we consider strong cleanness of von Neumann algebras and prove Theorem 1.1. 
In Section 3, we provide some auxiliary results to be used in later proofs. Next, in Section 4, we consider 
finite von Neumann algebras and prove Theorem 1.2. In Section 5, we deal with infinite factors (type I∞, 
II∞ or III factor) acting on a separable Hilbert space and prove Theorem 1.3. We end this paper with some 
remarks and questions in Section 6. We refer the reader to [20,35] for the general theory of von Neumann 
algebras.

2. Strongly clean von Neumann algebras

In this section, we characterize strongly clean von Neumann algebras. The proof of Theorem 1.1 is divided 
into several lemmas. The first lemma is an observation which motivates us to prove Theorem 1.1.

Lemma 2.1. Let A be a properly infinite von Neumann algebra acting on a Hilbert space H. Then A is neither 
∗-clean nor strongly clean.
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Proof. By Lemma 6.3.3 in [20], we can construct a countably infinite orthogonal family {En}∞n=1 of projec-
tions with sum I such that En ∼ I. Let S =

∑∞
n=1 Vn, where Vn is a partial isometry such that V ∗

n Vn = En

and VnV
∗
n = En+1. It is clear that S is an isometry such that SS∗ = I − E1. In particular, S is a semi-

Fredholm operator with the Fredholm index Ind(S) := dim ker(S) − dim ran(S)⊥ 
= 0. By Theorem 5.22 in 
Chapter 4 in [21], 3S − P is a semi-Fredholm operator with Ind(3S − P ) = Ind(S) 
= 0 for every projection 
P ∈ A (see also [7,8]). Therefore 3S can not be written as the sum of an invertible operator and a projection. 
Consequently A is not ∗-clean.

Let Q be an idempotent in A such that QS = SQ. Note that E1S = 0 and Ei+1S = SEi for every i ≥ 1. 
We have E1QEj+1 = E1QSEjS

∗ = E1SQEjS
∗ = 0 and

Ei+1QEj+1 = Ei+1Q(I − E1)Ej+1 = Ei+1SQS∗Ej+1 = SEiQEjS
∗ ∀i, j ≥ 1.

In particular, EiQEj = 0 if j > i. This implies that (E1QE1)2 = E1QE1 and (E1 − E1QE1)(S − Q) = 0. 
Thus S − Q is not invertible if E1QE1 
= E1. If E1QE1 = E1, then EiQEi = SEi−1QEi−1S

∗ = · · · =
Si−1E1QE1(Si−1)∗ = Ei for every i > 1. Recall that Q2 = Q and EiQEj = 0 for every j > i. We have 
Q = I. Since S is a unilateral shift, S − I is not invertible. Therefore A is not strongly clean. �
Lemma 2.2. Let H := ⊕∞

n=1C
n. We use {en,i}ni=1 to denote the canonical orthogonal basis of Cn. Let 

V := ⊕∞
n=1Vn, where Vn is the upper shift matrix in Mn(C), i.e., Vnen,i = en,i−1 (en,0 = 0). Then for every 

Hilbert space K, the operator I ⊗ V is not strongly clean in B(K ⊗H).

Proof. Let W : l2(N) ⊗ l2(N) → H be a unitary operator defined as follows

W (ek ⊗ ei) = ei+k−1,i,

where {ek}∞k=1 is the canonical orthogonal basis of l2(N) and k, i ≥ 1. Note that

W ∗VW (ek ⊗ ei) = W ∗V ei+k−1,i = W ∗ei+k−1,i−1 =
{

0 i = 1,
ek+1 ⊗ ei−1 i > 1.

We have W ∗VW = S⊗S∗, where S : l2(N) → l2(N) the unilateral shift, i.e., Sei = ei+1. Therefore, we only 
need to show that there exists no idempotent P ∈ B(K⊗l2(N) ⊗l2(N)) such that P (I⊗S⊗S∗) = (I⊗S⊗S∗)P
and I ⊗ S ⊗ S∗ − P is invertible.

Let P ∈ B(K ⊗ l2(N) ⊗ l2(N)) be an idempotent such that P (I ⊗ S ⊗ S∗) = (I ⊗ S ⊗ S∗)P . We use 
{Eij} to denote the canonical matrix units of B(l2(N)). An argument similar to the one used in the proof 
of Lemma 2.1 shows that (I ⊗ I ⊗Ejj)P (I ⊗ I ⊗Eii) = 0 for every j > i and

(I ⊗ I ⊗ Enn)P (I ⊗ I ⊗ Enn) =
(
I ⊗ Sn−1 ⊗ E1n

)∗
P
(
I ⊗ Sn−1 ⊗E1n

)
. (1)

In particular, (I ⊗ I ⊗ E11)P (I ⊗ I ⊗E11) = P (I ⊗ I ⊗E11). Since P 2 = P , we have

(I ⊗ S ⊗ S∗ − P ) (I ⊗ I ⊗E11) (I ⊗ I ⊗ I − P ) (I ⊗ I ⊗E11) = 0.

Therefore, I ⊗ S ⊗ S∗ − P is not invertible if (I ⊗ I ⊗ E11)P (I ⊗ I ⊗ E11) 
= I ⊗ I ⊗ E11. Assume that 
(I ⊗ I ⊗ E11)P (I ⊗ I ⊗ E11) = I ⊗ I ⊗ E11. By eq. (1), (I ⊗ I ⊗ Enn)P (I ⊗ I ⊗ Enn) = I ⊗ I ⊗ Enn for 
every n. This implies that P = I ⊗ I ⊗ I. Note that

∥∥∥∥∥ 1√
n

(Vn − In)
(

n∑
i=1

en,i

)∥∥∥∥∥ = 1√
n
,
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we have 
∥∥∥(Vn − In)−1

∥∥∥ ≥ √
n. Therefore V − I is not invertible. This implies that I ⊗ S ⊗ S∗ − I ⊗ I ⊗ I is 

not invertible. �
Lemma 2.3. Let A be a type II1 von Neumann subalgebra of B(H). Then A is not strongly clean.

Proof. Let H1 := ⊕∞
n=1C

n and V := ⊕∞
n=1Vn, where Vn is the upper shift matrix in Mn(C), i.e., Vnen,i =

en,i−1 (en,0 = 0), where {en,i}ni=1 is the canonical orthogonal basis of Cn.
By Lemma 6.5.6 in [20], there exists a projection E1,1 such that Δ(E1,1) = Δ(I−E1,1) = 1

2I, where Δ is 
the center-valued dimension function of A (see, for example, Theorem 8.4.3 in [20]). Invoke Lemma 6.5.6 in 
[20] again, we can find two mutually equivalent orthogonal subprojections E2,1, E2,2 of I − E1,1 such that

Δ(E2,1) = Δ(E2,2) = Δ(I − E1,1 −E2,1 − E2,2) = 1
3!I.

Proceed as above, we can show that there exists a family of mutually equivalent orthogonal projections 
{En,1, . . . , En,n} in A such that En,i < I −

∑n−1
k=1
∑k

j=1 Ek,j , and

Δ(En,1) = · · · = Δ(En,n) = Δ

⎛
⎝I −

n∑
k=1

k∑
j=1

Ek,j

⎞
⎠ = 1

(n + 1)!I

for each n ≥ 1. In particular, I =
∑∞

n=1
∑n

i=1 En,i since 1 =
∑∞

k=1
k

(k+1)! .
For every n ≥ 2, let Un :=

∑n
i=2 Un,i, where Un,i is a partial isometry in A such that U∗

n,iUn,i = En,i and 
Un,iU

∗
n,i = En,i−1. Let U :=

∑∞
n=2 Un. Note that for any i ≤ n and j ≤ k we have dimEn,iH = dimEk,jH, 

since H is an infinite dimensional Hilbert space. Let H0 be a Hilbert space such that dimH0 = dimE1,1

and Wn : H0 → En,nH be a unitary operator for every n ≥ 1. If W : H0 ⊗H1 = ⊕∞
n=1H0 ⊗Cn → H is the 

unitary operator defined as follows

W (ξ ⊗ en,i) := Un−i
n Wnξ, ξ ∈ H0,

then W ∗UW = I0 ⊗ V , where I0 is the unit of B(H0). By Lemma 2.2, I0 ⊗ V is not strongly clean. �
The following simple fact together with Schur’s unitary triangularization theorem will be used in the 

proofs of Lemma 2.5 and Lemma 2.6 to estimate the norms of inverses of matrices.

Lemma 2.4. Let A, B ∈ Mn(C). If A is invertible and 
(
A−1B

)n = 0, then A −B is invertible and

∥∥(A−B)−1∥∥ ≤ ∥∥A−1∥∥(n−1∑
k=0

∥∥A−1B
∥∥k) .

Proof. Note that (A −B)−1 =
[∑n−1

k=0
(
A−1B

)k]
A−1. Then 

∥∥(A−B)−1
∥∥ ≤ ∥∥A−1

∥∥(∑n−1
k=0
∥∥A−1B

∥∥k). �
Lemma 2.5. Given A = (aij) ∈ Mn(C), n ≥ 2. Let C1 = 3n 

∑n−1
k=0(8n ‖A‖)k and C2 = 4 

∑n−1
k=0 [8 ‖A‖+4C1]k. 

If there exist a, b ∈ σ(A) such that |a| < 1
4 and |b| > 3

4 , then there exists r ∈ [ 14 , 
3
4 ] satisfying

(1) {z : |z| = r} ∩ σ(A) = ∅,
(2)

∥∥(zI −A)−1
∥∥ ≤ 4n 

∑n−1(8n ‖A‖)k for every |z| = r.
k=0
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Therefore P := 1
2πi
∫
Γ(zI − A)−1dz is an idempotent such that AP = PA, A − P is invertible, ‖P‖ ≤ C1

and 
∥∥(A− P )−1

∥∥ ≤ C2, where Γ is the circle, oriented counterclockwise, forming the boundary of the disk 
{z : |z| ≤ r}.

Proof. By Schur’s unitary triangularization theorem, we may assume that aij = 0 for every i > j and 
|a11| ≥ |a22| ≥ · · · ≥ |ann|. Since |a11| > 3

4 and |ann| < 1
4 , the set 

{
all : 1

4 < |all| < 3
4
}

contains at most 
n − 2 elements. Then there exists m such that one of the following conditions holds:

• |am+1m+1| ≤ 1
4 and |amm| − 1

4 ≥ 1
2n ,

• am−1m−1 ≥ 3
4 and 3

4 − |amm| ≥ 1
2n ,

• |amm|, |am+1m+1| ∈ [ 14 , 
3
4 ] and |amm| − |am+1m+1| ≥ 1

2n .

Therefore, there exists r ∈
[1

4 ,
3
4
]

such that |r − |aii|| ≥ 1
4n for every i.

Let A0 be the diagonal matrix (aijδij) ∈ Mn(C), and A1 := A −A0. Since ‖A1‖ ≤ 2‖A‖ and |r−aii| ≥ 1
4n , 

we have

∥∥(zI −A)−1∥∥ ≤ ∥∥(zI −A0)−1∥∥(n−1∑
k=0

∥∥(zI −A0)−1A1
∥∥k) ≤ 4n

n−1∑
k=0

(8n ‖A‖)k

for every z ∈ Γ, i.e., |z| = r, by Lemma 2.4. Assume that |aj+1j+1| < r < |ajj |. Recall that |r| ≤ 3
4 . We 

have P = (pij) := 1
2πi
∫
Γ(zI − A)−1dz is an idempotent such that ‖P‖ ≤ C1, PA = AP , pij = 0 for every 

i > j, p11 = · · · = pjj = 0, pj+1j+1 = · · · = pnn = 1 (see Proposition 4.11 in Chapter VII in [13]). Let 
P0 := (pijδij) and P1 := P −P0. Note that ‖(A0−P0)−1‖ ≤ 4 and ‖P1−A1‖ ≤ ‖P‖ +2‖A‖. By Lemma 2.4, 
we have

∥∥(A− P )−1∥∥ =
∥∥(A0 − P0)−1∥∥ n−1∑

k=0

∥∥(A0 − P0)−1(P1 −A1)
∥∥k ≤ 4

n−1∑
k=0

[8‖A‖ + 4C1]k . �

Lemma 2.6. Let A be a type In von Neumann algebra, where n < ∞. Then A is strongly clean.

Proof. We may assume A = Mn(L∞(X, μ)), where X is a locally compact space with the positive Radon 
measure (see Theorem 6.6.5 in [20] and Theorem 1.18 in Chapter III in [35]). Let A = (aij)n×n ∈ A, 
where aij ∈ L∞(X). In the following, we use A(x) to denote (aij(x))n×n for a fixed element x ∈ X, In to 
denote the unit matrix in Mn(C). We may assume that ‖A(x)‖ ≤ ‖A‖ for every x ∈ X. Let {X1, . . . , Xm}
be a partition of X such that ‖A(x) −A(y)‖ ≤ 1

2C2
for every x, y ∈ Xk, k = 1, . . . , m, where C2 =

4 
∑n−1

k=0 [8‖A‖ + 4C1]k and C1 = 3n 
∑n−1

k=0(8n‖A‖)k. Note that Mn(L∞(X)) ∼= ⊕m
k=1Mn(L∞(Xk)). By 

considering (aij(x)|Xk
)n×n ∈ Mn(L∞(Xk)), we may assume that ‖A(x) −A(y)‖ ≤ 1

2C2
for every x, y ∈ X.

Assume that there exists x ∈ X such that σ(A(x)) ⊂
{
z : |z| ≤ 3

4
}
. By Schur’s unitary triangularization 

theorem and Lemma 2.4, we have

∥∥(A(x) − In)−1∥∥ ≤ 4
n−1∑
k=0

(8‖A‖)k ≤ C2.

Since 
∥∥(A(x) − In)−1(A(x) −A(y)

∥∥ ≤ 1
2 , A(y) − In = (A(x) − In)[In − (A(x) − In)−1(A(x) − A(y))] is 

invertible and ‖(A(y) −In)−1‖ ≤ 2C2. Therefore A −I is invertible. Similarly, if there exists x ∈ X such that 
σ(A(x)) ⊂ {z : |z| ≥ 1

4}, then A(y) = A(x) 
[
In −A(x)−1(A(x) −A(y))

]
is invertible and 

∥∥A(y)−1
∥∥ ≤ 2C2. 

Consequently, A is invertible.
Assume that σ(A(y)) ∩

{
z : |z| < 1

4
}

= ∅ and σ(A(y)) ∩

{
z : |z| > 3

4
}

= ∅ for every y ∈ X. Let x ∈ X. 

By Lemma 2.5, there exists r ∈
[1 , 3] such that 

∥∥(zIn −A(x))−1
∥∥ ≤ C2 for every |z| = r. Therefore 
4 4
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zIn − A(y) = (zIn − A(x)) 
[
In − (zIn −A(x))−1(A(y) −A(x))

]
is invertible and 

∥∥(zIn −A(y))−1
∥∥ ≤ 2C2

for every y ∈ X and |z| = r. Recall that (zIn − A(y))−1 equals 1
det(zIn−A(y)) times the cofactor matrix of 

zIn−A(y). We have (zI−A)−1(y) = (zIn−A(y))−1 is in Mn(L∞(X)) for every |z| = r. In particular, zI−A

is invertible and 
∥∥(zI −A)−1

∥∥ ≤ 2C2. By Proposition 4.11 in Chapter VII in [13], P (y) := 1
2πi
∫
|z|=r

(zIn −
A(y))−1dz is an idempotent in Mn(L∞(X)) such that PA = AP . Since r ≤ 3

4 , ‖P (y)‖ ≤ 3C2
2 . By Schur’s 

unitary triangularization theorem and Lemma 2.4, we have 
∥∥(A(y) − P (y))−1

∥∥ ≤ 4 
∑n−1

k=0 [8‖A‖ + 6C2]k. 
Thus A − P is invertible. �

We are now ready to prove Theorem 1.1. The second part of Theorem 1.1 is an immediate corollary from 
Theorem 2.2 in [25]. We provide a proof for the convenience of the reader.

Theorem 1.1. Let A be a von Neumann algebra.

(1) A is strongly clean if and only if there exists a finite number of mutually orthogonal central projections 
Pi with sum I such that PiA is of type Ini

, ni < ∞.
(2) A is strongly ∗-clean if and only if A is abelian.

Proof. By Theorem 6.5.2 in [20], Lemmas 2.1, 2.2, 2.3, and 2.6, we have A is strongly clean if and only if 
there exists a finite number of mutually orthogonal central projections Pi with sum I such that PiA is of 
type Ini

, ni < ∞.
We assume that A is a non-abelian strongly clean von Neumann algebra. Since A is non-commutative, 

there exist two non-zero mutually orthogonal projections E1 and E2 such that E1 ∼ E2 in A. Let T = E1+V , 
where V is a partial isometry such that V ∗V = E2 and V V ∗ = E1. If P is an projection such that 
PT = TP , then there exists a subprojection P1 of E1 and a subprojection P2 of I − E1 − E2 such that 
P = P1 + V ∗P1V + P2. It is clear that T − P is not invertible. Thus A is not strongly ∗-clean. �
Remark 2.1. A unital ring R is called directly finite if ab = 1 in R implies ba = 1. In [30, Question 2], 
Nicholson proposed a question: Is every strongly clean ring directly finite? Let A be a finite von Neumann 
algebra and T, S ∈ A such that TS = I. Then we have ker(S) = {0} and S is lower bounded. Thus S
is invertible and ST = I. It follows that every finite von Neumann algebra is directly finite. Combining 
this result with Theorem 1.1.(1), we know that strongly clean von Neumann algebras are directly finite. 
Therefore, for von Neumann algebras, the answer to Nicholson’s question is yes.

3. Auxiliary results

This section contains some auxiliary results to be used in later proofs. Some of them are known to experts, 
we sketch the proofs for the sake of completeness. For every T ∈ B(H), we use K(T ) and R(T ) to denote 
the projections onto ker(T ) := {ξ ∈ H : Tξ = 0} and the closure of the range ran(T ) := {Tξ : ξ ∈ H} of T
(note that ran(T ) is not necessarily closed), respectively.

Recall that an operator T in a von Neumann algebra A is called finite relative to A if there exists a finite 
projection E ∈ A such that T ∈ EAE. And T ∈ A is called a compact operator relative to A (abbreviated 
as compact operator in A) if there exists a sequence of operators Tn which are finite relative to A such that 
limn→∞ ‖T − Tn‖ = 0. It is well known that the set of compact operators in A is the smallest closed two 
sided ideal of A containing the finite projections of A (see [7]). In the following proposition, we characterize 
the operators which can be written as the sum of a scalar and a compact operator in an infinite factor.

Proposition 3.1. Let A be an infinite factor and T ∈ A. The following statements are equivalent:

(1) There exists c ∈ C such that T − cI is compact relative to A.
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(2) T −W ∗TW is compact relative to A for every unitary W ∈ A.
(3) (I − E)TE is compact relative to A for every infinite projection E such that E ∼ I − E.

Proof. It is clear that (1) implies (2) and (3). By considering the real and imaginary parts of T , we only 
need to show that both (2) and (3) imply (1) under the assumption that T is self-adjoint. Let H be a 
self-adjoint operator in A.

(2) ⇒ (1): Assume that H −W ∗HW is compact relative to A for every unitary W ∈ A. We claim that 
for every c1 ∈ [0, ‖H‖] and c2 < c1, the spectral projection P1 of H associated with [c1, ‖H‖] and the 
spectral projection P2 of H associated with [−‖H‖, c2] can not both be infinite. Indeed, if P1 and P2 are 
both infinite, then there exist infinite subprojections E1 ≤ P1 and E2 ≤ P2 such that E1 ∼ E2. Let W be a 
unitary in A such that W ∗E2W = E1. Note that

〈ξ|(H −W ∗HW )ξ〉 ≥ c1 − c2

for every unit vector ξ ∈ E1H. We obtain a contradiction with the fact that H−W ∗HW is compact relative 
to A. And the claim is proved.

We are now ready to show that there exists c ∈ R such that H − cI is compact relative to A. If H is 
compact relative to A, then there is nothing to prove. Assume now that H is not compact relative to A. 
Without loss of generality, we may assume that the spectral projection of H associated with [0, ‖H‖] is 
infinite.

Let c = sup {a ∈ R : the spectral projection of H associated with [−‖H‖, a] is finite}. Let K = H − cI. 
If K = 0, we are done. If K 
= 0, then the spectral projection of K associated with [−‖K‖,−ε] is finite and 
the spectral projection of K associated with [−ε, ε] is infinite for every 0 < ε < ‖K‖. Since K −W ∗KW

is compact for every unitary W ∈ A, the claim above implies that the spectral projection associated with 
[ε, ‖K‖] is finite. Therefore K is compact relative to A.

(3) ⇒ (1): Assume that (I − E)HE is compact relative to A for every infinite projection E such that 
E ∼ I − E. Let E0 be a projection such that E0 ∼ I − E0. We can identify A with E0AE0 ⊗M2(C) and 
write H as a matrix of operators

H =
(
H1 0
0 H2

)
+ K1

where Hi ∈ E0AE0 and K1 is a compact operator in A. Note that

1
2

(
I I
I −I

)(
H1 0
0 W ∗H2W

)(
I I
I −I

)
= 1

2

(
H1 + W ∗H2W H1 −W ∗H2W
H1 −W ∗H2W H1 + W ∗H2W

)

for every unitary W ∈ E0AE0. We have H1−W ∗H2W is compact relative to E0AE0. In particular H1−H2
is compact relative to A. Therefore, H1 −W ∗H1W is compact relative to E0AE0. Then the equivalence of 
(1) and (2) implies that there exists c ∈ R such that H − cI is compact relative to A. �

Next, we give some conditions to ensure the finiteness of projections.

Proposition 3.2. Let T ∈ B(H) and a, c ∈ (0, ∞). If E is an idempotent in B(H) such that ‖TE‖ ≤ a and 
c‖ξ‖ ≤ ‖T (I−E)ξ‖ for every ξ ∈ (I−E)H, then the projection F = I−R(T (I−E)) satisfies the following 
conditions:

(1) ‖T ∗F‖ ≤ a,
(2) c‖β‖ ≤ ‖T ∗(I − F )β‖ for every β ∈ (I − F )H.
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In particular, if E is the spectral projection of |T | associated with the interval [0, c], then F is the spectral 
projection of |T ∗| associated with the interval [0, c] and I −E = R(T ∗(I − F )).

Proof. For every ζ ∈ FH,

‖T ∗Fζ‖ = sup
‖ξ‖=1

|〈ξ|T ∗ζ〉| = sup
‖ξ‖=1

|〈TEξ|ζ〉| ≤ sup
‖ξ‖=1

‖TEξ‖‖ζ‖ ≤ a‖ζ‖.

We have ‖T ∗F‖ ≤ a. Since c‖ξ‖ ≤ ‖T (I − E)ξ‖ for every ξ ∈ (I − E)H, there exists a unique vector 
η ∈ (I −E)H such that β = Tη for every β ∈ (I − F )H. Note that

‖β‖2 = 〈η|T ∗β〉 ≤ ‖η‖‖T ∗β‖ ≤ 1
c
‖β‖‖T ∗β‖.

We have c‖β‖ ≤ ‖T ∗(I − F )β‖. The second part of this proposition can be derived easily from the polar 
decomposition of bounded operators. �

In the following, Halmos’ two projections theorem will be used repeatedly. We refer the reader to [6]
for a detailed treatment of Halmos’ two projections theorem. With Halmos’ two projections theorem, we 
immediately get the following lemma (see also Theorem 1.41 in Chapter V in [35]).

Lemma 3.1. Let E, F be two projections in a von Neumann algebra A. If F ∧ (I − E) = 0, then F � E in 
A. In particular F is a finite projection if so is E.

Corollary 3.1. Let T be an operator in a von Neumann subalgebra A of B(H) and E be the spectral projection 
of |T | associated with the interval [0, c]. Then the following statements hold.

(1) Let A ∈ A be an operator such that ‖A‖ < c. If F is a projection in A such that ‖(T +A)F‖ < c −‖A‖, 
then F � E.

(2) If c ∈ (0, 1) and I − E is a finite projection, then for every b ∈ [0, 1 − c), the spectral projection F of 
|I − T | associated with [0, b] is finite.

Proof. (1). Let ξ ∈ (F ∧ (I − E))H. We claim that ξ = 0. Note that ‖Tξ‖ ≥ c‖ξ‖ since E is the spectral 
projection of |T | associated with the interval [0, c]. If ξ 
= 0, we have

(c− ‖A‖)‖ξ‖ ≤ ‖Tξ‖ − ‖Aξ‖ ≤ ‖(T + A)ξ‖ < (c− ‖A‖)‖ξ‖.

Therefore ξ = 0 and F ∧ (I −E) = 0. Then Lemma 3.1 implies that F � E.
(2). Let ξ ∈ (F ∧ E)H. Note that ‖Tξ‖ ≤ c‖ξ‖ since E is the spectral projection of |T | associated with 

the interval [0, c]. Therefore,

(1 − c)‖ξ‖ ≤ ‖ξ‖ − ‖Tξ‖ ≤ ‖(I − T )ξ‖ ≤ b‖ξ‖.

This implies that ξ = 0 and F ∧ E = 0. By Lemma 3.1, we have F � I −E. In particular, F is finite. �
Corollary 3.2. Let T be an operator in a von Neumann algebra A (⊆ B(H)). There exists c > 0 such that 
the spectral projection of |T ∗| associated with [0, c] is a finite projection if and only if there exists a finite 
projection E ∈ A such that (I −E)H ⊆ ran(T ).

Proof. If there exists c > 0 such that the spectral projection E of |T ∗| associated with [0, c] is finite, then 
(I − E)H ⊆ ran(T ) by Proposition 3.2.
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Conversely, assume that E is a finite projection such that ran((I − E)T ) = (I − E)H. By the inverse 
mapping theorem (see Theorem 12.5 in [13]), T induces an invertible operator in B((I−K((I−E)T ))H, (I−
E)H). By Proposition 3.2, there exists c > 0 such that ‖T ∗ξ‖ ≥ 2c‖ξ‖ for every ξ ∈ (I − E)H. Let F be 
the spectral projection of |T ∗| associated with [0, c]. Note that

2c‖ξ‖ ≤ ‖T ∗ξ‖ ≤ c‖ξ‖, ∀ξ ∈ (F ∧ (I − E))H.

By Lemma 3.1, F � E and F is a finite projection. �
Corollary 3.3. Let T ∈ A. Assume that there exists an infinite projection E in A such that ET is compact 
relative to A. Then (I − F )H � ran(T ) for every finite projection F ∈ A.

Proof. Since E is an infinite projection and T ∗E is compact, the spectral projection of |T ∗| associated with 
[0, c] is infinite for every c > 0 by Corollary 3.1. Then Corollary 3.2 implies the result. �

We now provide a criterion for determining when an operator is invertible.

Lemma 3.2. Let E, F be two projections in B(H). Then the following are equivalent:

(1) E ∧ F = {0} and (E ∨ F )H = {ξ + β : ξ ∈ EH, β ∈ FH}.
(2) E − F is an invertible operator in B((E ∨ F )H).
(3) (E ∨ F − F )E is an invertible operator in B(EH, (E ∨ F − F )H).

If the above conditions are satisfied, we have

∥∥((E − F )|E∨F )−1∥∥ =
(
1 − ‖EF‖2)−1/2 =

∥∥[(E ∨ F − F )E]−1∥∥ .
Proof. Without loss of generality, we may assume that E ∨ F = I. If (2) or (3) holds, we have E ∧ F = 0. 
By Halmos’ two projections theorem, we may assume that

E =
(
I1 0
0 0

)
⊕
(
I3 0
0 0

)
, F =

(
0 0
0 I2

)
⊕
(

H
√
H(I3 −H)√

H(I3 −H) I3 −H

)
,

where H is a positive contraction such that ker(H) = ker(I3 − H) = {0}. Then it is clear that (1), (2) 
or (3) holds if and only if I3 − H is invertible. Note that ‖EF‖ =

∥∥∥√H
∥∥∥. We have 

∥∥(E − F )−1
∥∥ =(

1 − ‖EF‖2)−1/2 =
∥∥[(E ∨ F − F )E]−1

∥∥. �
Example 3.1. Let

E =
(

H
√

H(I −H)√
H(I −H) I −H

)
, F = 1

2

(
I −iI
iI I

)

be two projections in B(H) ⊗M2(C), where H is a positive contraction such that ker(H) = ker(I−H) = {0}. 
It is not hard to check that E ∨ F = I ⊗ I2, ‖EF‖ = 1√

2 and 
∥∥(E − F )−1

∥∥ =
√

2.

Theorem 3.1. Let T ∈ B(H). Then T induces an invertible operator in B(H, R(T )H) if and only if there 
exists a projection E in B(H) such that the following conditions hold:

(1) there exist a1, a2 ∈ (0, ∞) such that ‖TEξ‖ ≥ a1‖Eξ‖, ‖T (I − E)ξ‖ ≥ a2‖(I −E)ξ‖ for every ξ ∈ H,
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(2) R(TE) −R(T (I −E)) is invertible in B(R(T )H).

If the conditions (1) and (2) are satisfied, we have

1
‖T‖ ≤

√
(1 − ‖R(TE)R(T (I − E))‖)

∥∥T−1∥∥ ≤ 1
min(a1, a2)

.

Proof. By the inverse mapping theorem and Lemma 3.2, the operator T induces an invertible operator in 
B(H, R(T )H) if and only if conditions (1), (2) are satisfied. Let ξ be a unit vector in H. Note that

‖Tξ‖2 ≥ ‖TEξ‖2 + ‖T (I −E)ξ‖2 − 2‖R(T (I −E))R(TE)‖‖TEξ‖‖T (I − E)ξ‖
≥ inf

t

(
‖TEξ‖2 + ‖T (I −E)ξ‖2) (1 − ‖R(T (I − E))R(TE)‖ sin(2t))

≥ min
(
a2
1, a

2
2
)
(1 − ‖R(T (I − E))R(TE)‖) .

Therefore 
√

(1 − ‖R(TE)R(T (I − E))‖)
∥∥T−1

∥∥ ≤ 1
min(a1,a2) .

Without loss of generality, we may assume that

R(TE) =
(
I1 0
0 0

)
⊕
(
I3 0
0 0

)
⊕ 0,

R(T (I − E)) =
(

0 0
0 I2

)
⊕
(

H
√
H(I3 −H)√

H(I3 −H) I3 −H

)
⊕ 0,

where H is a positive contraction such that ‖H‖ < 1 and ker(H) = {0}. For every unit vector ξ :=
(0, 0, ξ1, ξ2, 0)t ∈ R(T (I −E))H, there exist vectors β ∈ EH and η ∈ (I −E)H such that

Tβ =
(

0, 0, ξ1
‖ξ1‖

, 0, 0
)t

, Tη = ξ.

Note that

1
‖T−1‖2 ≤

∥∥∥∥T
(

cos tβ
‖β‖ + sin tη

‖η‖

)∥∥∥∥
2

= cos2 t
‖β‖2 + sin2 t

‖η‖2 + 2 cos t sin t‖ξ1‖
‖β‖‖η‖

=
(

cos t
‖β‖ + sin t

‖η‖

)2

+ 2 cos t sin t (‖ξ1‖ − 1)
‖β‖‖η‖ , ∀t ∈ R.

Choose t such that cos t = ‖β‖√
‖β‖2+‖η‖2 and sin t = −‖η‖√

‖β‖2+‖η‖2 . Since ‖β‖ ≥ 1
‖T‖ and ‖η‖ ≥ 1

‖T‖ , we have

(1 − ‖ξ1‖) ≥
1

‖T‖2 ‖T−1‖2 .

This implies that 
√

1 − ‖R(TE)R(T (I −E))‖
∥∥T−1

∥∥ ≥ 1
‖T‖ . �

Proposition 3.3. Let T ∈ A ⊆ B(H). Assume that E is a projection in A such that ETE−E is an invertible 
operator in EAE. For every A ∈ (I − E)AE, there exists an idempotent P ∈ A such that

(1) K(P ) = I − E,
(2) ‖P‖ ≤ 1 + ‖TE‖ + ‖A‖ (‖TE‖ + 1),
(3) ran((T − P )E) = {ξ + Aξ : ξ ∈ EH}.
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Proof. Let P = E+(I−E)TE−A(ETE−E). Since ETE−E is invertible in EAE, we have K(P ) = I−E, 
‖P‖ ≤ 1 + ‖TE‖ + ‖A‖(‖TE‖ + 1), and

ran ((T − P )E) = {(ETE −E)ξ + A(ETE − E)ξ : ξ ∈ EH} = {ξ + Aξ : ξ ∈ EH} .

This completes the proof. �
4. Finite von Neumann algebras are clean

In this section, we prove that all finite von Neumann algebras are clean.

Lemma 4.1. Let T be an operator in a von Neumann algebra A. Assume that there exist c > 0 and a 
projection E such that

(1) ETE − E is invertible in EAE and ‖Tξ‖ ≥ c‖ξ‖ for every ξ ∈ (I −E)H,
(2) E ∧R(T (I − E)) ∼ (I − E) ∧ (I −R(T (I − E))) in A.

Then there exists an idempotent P in A such that ‖P‖ ≤ 2 + 2‖TE‖, T − P is invertible, and

∥∥(T − P )−1∥∥ ≤ 2
min

(
‖(ETE − E)−1‖−1

, c
) .

Proof. Let F := I −R(T (I − E)). If E = 0, then F = 0 and T is invertible and 
∥∥T−1

∥∥ ≤ 1
c . Assume that 

E 
= 0 and

E = I1 ⊕
(
I2 0
0 0

)
⊕
(
I3 0
0 0

)
⊕ 0, F = I1 ⊕

(
0 0
0 I2

)
⊕
(

H
√
H(I3 −H)√

H(I3 −H) I3 −H

)
⊕ 0,

where H is a positive contraction such that ker(H) = ker(I3 −H) = {0}. By Proposition 3.3, there exists 
an idempotent P such that K(P ) = I − E and

R((T − P )E) = I1 ⊕
( 1

2I2
1
2I21

2I2
1
2I2

)
⊕
( 1

2I3
−i
2 I3

i
2I3

1
2I3

)
⊕ 0.

By Example 3.1, it is easy to check that ‖R(T (I − E))R((T − P )E)R(T (I −E))‖ = 1
2 and R(T (I −E)) ∨

R((T − P )E) = I. By Lemma 3.2, R(T (I − E)) − R((T − P )E) is invertible. Note that ‖(T − P )ξ‖ ≥
‖ξ‖

‖(ETE−E)−1‖ for every ξ ∈ EH. By Theorem 3.1, we have

∥∥(T − P )−1∥∥ ≤ 1√(
1 − 1√

2

)
min (‖(ETE − E)−1‖−2, c2)

≤ 2
min

(
‖(ETE − E)−1‖−1

, c
) .

This completes the proof. �
Example 4.1. Let V ∈ B(H) be an isometry such that V is not unitary. By Wold decomposition (see, for 
example, Theorem 1.1 in Chapter I in [28]), we may assume that H = H0⊕(H1⊗l2(N)) and V = V0⊕(I⊗S), 
where V0 is a unitary on H0 and S is the unilateral shift on l2(N). Let E ∈ B(l2(N)) be the projection 
onto the subspace spanned by {e2i}∞i=1, where {en}∞n=1 is the canonical orthogonal basis of l2(N). Recall 
that Sei = ei+1. Then ESE = 0, E ∧R(S(I −E)) = E, and (I −E) ∧ (I −R(S(I −E))) = I −E since S
induces a unitary from (I −E)l2(N) to El2(N). By Lemma 4.1, S is clean in B(l2(N)). More explicitly, let 
P := E + (I −E)(S + S∗)E, we have S − P is invertible in B(l2(N)). Therefore, V is clean in B(H).
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Theorem 1.2 is an easy corollary of Lemma 4.1.

Theorem 1.2. Let T be an operator in a finite von Neumann algebra A. Then there exists an idempotent 
P ∈ A such that T − P is invertible and 

∥∥(T − P )−1
∥∥ ≤ 4. In particular, A is clean.

Proof. If ‖T‖ ≤ 1/2, then T − I is invertible and 
∥∥(T − I)−1

∥∥ ≤ 2. Assume that ‖T‖ > 1/2. Let E be the 
spectral projection of |T | associated with [0, 1/2]. Since I−E ∼ R(T (I−E)), we have E ∼ I−R(T (I−E))
(see Exercise 6.9.6 in [20]). By Halmos’ two projections theorem and Exercise 6.9.8 in [20], E∧R(T (I−E)) ∼
(I − E) ∧ (I −R(T (I − E))). Note that 

∥∥(ETE − E)−1
∥∥ ≤ 2. By Lemma 4.1, there exists an idempotent 

P ∈ A such that T − P is invertible and 
∥∥(T − P )−1

∥∥ ≤ 4. �
Remark 4.1. Recall that a ∗-ring is almost ∗-clean if its every ring element can be written as the sum of a 
projection and a non-zero-divisor (neither a left zero divisor nor a right zero divisor) [36]. It is proved in [36, 
Corollary 14] that finite type I von Neumann algebras are almost ∗-clean. We claim that a von Neumann 
algebra is almost ∗-clean if and only if it is finite.

Let A be a finite von Neumann algebra. An operator in A is a non-zero-divisor if and only if its kernal 
is {0}. Let T be an operator in A such that ker(T ) 
= {0}. Since K(T ) ∼ K(T ∗), we may assume that

K(T ) = I1 ⊕
(
I2 0
0 0

)
⊕
(
I3 0
0 0

)
⊕ 0,

K(T ∗) = I1 ⊕
(

0 0
0 I2

)
⊕
(

H
√
H(I3 −H)√

H(I3 −H) I3 −H

)
⊕ 0,

where H is a positive contraction such that ker(H) = ker(I3 −H) = {0}. Let

P := I1 ⊕
( 1

2I2
1
2I21

2I2
1
2I2

)
⊕
( 1

2I3
−i
2 I3

i
2I3

1
2I3

)
⊕ 0.

Note that R(T ) = I−K(T ∗). It is not hard to check that P ∧R(T ) = 0 and K(T ) ∧ (I−P ) = 0. Therefore, 
ker(T − P ) = {0}. In particular, every finite von Neumann algebra is almost ∗-clean. By the proof of 
Lemma 2.1, we know that properly infinite von Neumann algebras are not almost ∗-clean. In summary, a 
von Neumann algebra is almost ∗-clean if and only if it is finite.

Corollary 4.1. Let T be a compact operator in a von Neumann algebra A. For every z ∈ C, there exists an 
idempotent P ∈ A such that zI + T − P is invertible and

∥∥(zI + T − P )−1
∥∥ ≤ 8.

Proof. Since T is compact relative to A, there exists a finite projection E ∈ A and an operator A ∈ EAE

such that ‖T − A‖ ≤ 1
8 . By Theorem 1.2, there exists an idempotent P0 ∈ EAE such that zE + A − P0 is 

invertible in EAE and 
∥∥(zE + A− P0)−1

∥∥ ≤ 4. Let

P :=
{
P0, if |z| ≥ 1

2 ,

P0 + I − E, if |z| < 1
2 .

Then zI + A − P is invertible and 
∥∥(zI + A− P )−1

∥∥ ≤ 4. Therefore, we have zI + T − P =
(zI + A− P )

[
I + (zI + A− P )−1(T −A)

]
is invertible and ‖(zI + T − P )−1‖ ≤ 8. �

5. Separable infinite factors are clean

In this section, we prove that all separable infinite factors are clean. From now on, we use A to denote 
an infinite factor (type I∞, II∞ or III factor) acting on a separable Hilbert space H.
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Lemma 5.1. Let T ∈ A. Assume that E is a projection satisfying the following two conditions:

(1) ETE − E is invertible in EAE and there exists c > 0 such that ‖Tξ‖ ≥ c‖ξ‖ for every ξ ∈ (I −E)H.
(2) Let F := I − R(T (I − E)). There exists d ∈ (0, 1) such that the spectral projection of EFE − E ∧ F

associated with the interval [0, d] is an infinite projection.

Then there exists an idempotent P such that T − P is invertible and

∥∥(T − P )−1∥∥ ≤
[(

1 −
√

8
9 − d

)
min

(∥∥(ETE − E)−1∥∥−2
, c2
)]−1/2

.

Proof. This result is proved separately for the following two cases.
Case 1. F ∧ (I −E) � E ∧ (I − F ): We may assume that

E = I1 ⊕
(
I2 0
0 0

)
⊕
(
I3 0 0
0 I4 0
0 0 0

)
⊕
(
I5 0
0 0

)
⊕ 0,

F = I1 ⊕
(

0 0
0 I2

)
⊕

⎛
⎝0 0 0

0 H1
√

H1(I4 −H1)
0
√
H1(I4 −H1) I4 −H1

⎞
⎠⊕

(
H2

√
H2(I5 −H2)√

H2(I5 −H2) I5 −H2

)
⊕ 0,

such that ‖H1‖ ≤ d, 0 ⊕
(

0 0
0 0

)
⊕
(0 0 0

0 I4 0
0 0 0

)
⊕
(

0 0
0 0

)
⊕ 0 is an infinite projection, and ker(H1) =

ker(H2) = ker(I4 −H1) = ker(I5 −H2) = {0}. By Proposition 3.3, there exists an idempotent P such that 
K(P ) = I −E and

R((T − P )E) = R

⎛
⎝I1 ⊕

(
I2 0
I2 0

)
⊕

⎛
⎝ I3 0 0

0 I4 0
2√
1−d

V 2√
1−d

W 0

⎞
⎠⊕

(
I5 0
iI5 0

)
⊕ 0

⎞
⎠ ,

where V and W are partial isometries such that V ∗V = I3, W ∗W = I4 and V V ∗ + WW ∗ = I4. Let 
ξ :=

(
0, 0, 0, V ∗ζ,W ∗ζ, 2√

1−d
ζ, 0, 0, 0

)t
be a unit vector in R((T − P )E). Note that

Fξ =
(
0, 0, 0, 0,

√
H1β,

√
I4 −H1β, 0, 0, 0

)t
,

where β =
√
H1W

∗ζ + 2√
1−d

√
I4 −H1ζ. Since ‖H1‖ ≤ d and ‖ζ‖ =

√
1−d
5−d , we have

∥∥∥∥√H1W
∗ζ + 2√

1 − d

√
I4 −H1ζ

∥∥∥∥ ≥ ‖ζ‖,

and ‖Fξ‖ ≥
√

1−d
5−d . This implies that ran(FR((T −P )E)) = FH and R((T −P )E)) ∨ (I−F ) = I (see also 

Example 3.1). Note that ‖(I − F )R((T − P )E)‖ ≤
√

4
5−d . By Lemma 3.2 and Theorem 3.1, we have

∥∥(T − P )−1∥∥ ≤
[(

1 −
√

4
5 − d

)
min

(∥∥(ETE − E)−1∥∥−2
, c2
)]−1/2

.
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Case 2. E ∧ (I − F ) � F ∧ (I −E): We may assume that

E = I1 ⊕
(
I2 0
0 0

)
⊕
(0 0 0

0 I4 0
0 0 0

)
⊕
(
I5 0
0 0

)
⊕ 0,

F = I1 ⊕
(

0 0
0 I2

)
⊕

⎛
⎝I3 0 0

0 H1
√

H1(I4 −H1)
0
√
H1(I4 −H1) I4 −H1

⎞
⎠⊕

(
H2

√
H2(I5 −H2)√

H2(I5 −H2) I5 −H2

)
⊕ 0,

such that ‖H1‖ ≤ d, 0 ⊕
(

0 0
0 0

)
⊕
(0 0 0

0 I4 0
0 0 0

)
⊕
(

0 0
0 0

)
⊕ 0 is an infinite projection, and ker(H1) =

ker(H2) = ker(I4 −H1) = ker(I5 −H2) = {0}. By Proposition 3.3, there exists an idempotent P such that 
K(P ) = I − E and

R((T − P )E) = R

⎛
⎜⎝I1 ⊕

(
I2 0
I2 0

)
⊕

⎛
⎜⎝0 2

√
2√

1−d
V 0

0 I4 0
0 2

√
2√

1−d
W 0

⎞
⎟⎠⊕

(
I5 0
iI5 0

)
⊕ 0

⎞
⎟⎠ ,

where V and W are partial isometries such that V V ∗ = I3, WW ∗ = I4 and V ∗V + W ∗W = I4. Let 
ξ :=

(
0, 0, 0, 2

√
2√

1−d
V ζ, ζ, 2

√
2√

1−d
Wζ, 0, 0, 0

)t
be a unit vector in R((T − P )E). We have

Fξ =
(

0, 0, 0, 2
√

2√
1 − d

V ζ,
√

H1β,
√

I4 −H1β, 0, 0, 0
)t

,

where β =
√
H1ζ + 2

√
2√

1−d

√
I4 −H1Wζ. Since ‖ζ‖2 = ‖V ζ‖2 + ‖Wζ‖2, we have ‖ζ‖ =

√
1−d
9−d and

‖Fξ‖2 ≥

⎧⎪⎨
⎪⎩
∥∥∥ 2

√
2√

1−d
V ζ
∥∥∥2 ≥ ‖ζ‖2, if ‖V ζ‖2 ≥ 1

2‖ζ‖2,∥∥∥√H1ζ + 2
√

2√
1−d

√
I4 −H1Wζ

∥∥∥2 ≥ ‖ζ‖2, if ‖Wζ‖2 ≥ 1
2‖ζ‖2.

Then it is not hard to see that (I − F ) ∨ R((T − P )E) = I and ‖(I − F )R((T − P )E)‖ ≤
√

8
9−d . By 

Lemma 3.2 and Theorem 3.1, we have

∥∥(T − P )−1∥∥ ≤
[(

1 −
√

8
9 − d

)
min

(∥∥(ETE −E)−1∥∥−2
, c2
)]−1/2

.

This completes the proof. �
Remark 5.1. Let T ∈ A and E be a projection in A. The condition (2) in Lemma 5.1 holds if and only 
if ER(T (I − E))E − E ∧ R(T (I − E)) is not compact relative to A. In particular, the condition (2) in 
Lemma 5.1 holds if A is a type III factor and ER(T (I − E))E −E ∧R(T (I −E)) 
= 0.

Combining Lemma 4.1 and Lemma 5.1, we obtain the following result.

Lemma 5.2. Let T ∈ A. Assume that there exist c > 0 and a projection E ∈ A such that:

(1) ETE − E is invertible in EAE and ‖Tξ‖ ≥ c‖ξ‖ for every ξ ∈ (I − E)H,
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(2) E ∧R(T (I −E)) ∼ (I −E) ∧ (I −R(T (I −E))) or ER(T (I −E))E−E ∧R(T (I −E)) is not compact 
relative to A.

Then every operator T1 similar to T in A, i.e., T1 = V −1TV for an invertible operator V ∈ A, is clean.

Lemma 5.3. Let T ∈ A. If E is a projection in A such that ER(T (I −E))E −E ∧R(T (I −E)) is compact 
relative to A, then [E −E ∧R(T (I −E))]T (I −E) is compact relative to A.

Proof. By Halmos’ two projections theorem,

ran ([E −E ∧R(T (I −E))]T (I −E)) ⊂ ran
(√

ER(T (I − E))E −E ∧R(T (I −E))
)
.

Since ER(T (I −E))E−E ∧R(T (I −E)) is compact relative to A, [E − E ∧R(T (I − E))]T (I −E) is also 
compact relative to A. �
Lemma 5.4. Let T ∈ A and E be a projection in A satisfying the following conditions:

(1) E ∼ I −E,
(2) there exists c > 0 such that ‖Tξ‖ ≥ c‖ξ‖ for every ξ ∈ (I − E)H,
(3) E ∧R(T (I − E)) � (I − E) ∧ (I −R(T (I − E))),
(4) ER(T (I −E))E − E ∧R(T (I − E)) is compact relative to A.

If ET (I − E) is not compact relative to A, then E ∧R(T (I − E)) is an infinite projection and there exists 
a finite subprojection F of I − E such that (I − E − F )H ⊂ ran((I − E)T (I − E)). Furthermore, if there 
exists a finite subprojection E0 of E such that (E − E0)H ⊆ ran(ET (I − E)), then there exists a > 0 such 
that the spectral projection of |T ∗| associated with [0, a] is finite and the spectral projection of |T | associated 
with [0, ε] is infinite for every ε > 0.

Proof. By Lemma 5.3, [E − E ∧ R(T (I − E))]T (I − E) is compact relative to A. Since ET (I − E) is not 
compact relative to A, we have E ∧ R(T (I − E)) is infinite. Thus (I − E) ∧ (I −R(T (I − E))) is a finite 
projection by condition (3) and Corollary 6.3.5 in [20]. Let P be the subprojection of I − E such that 
ran(TP ) = [R(T (I −E)) −E ∧R(T (I −E))]H. Since [E −E ∧R(T (I −E))]TP is compact relative to A, 
there exists a finite subprojection P1 of P such that

‖(I − E)Tβ‖ ≥ c

2‖β‖, ∀β ∈ (P − P1)H.

In particular, ran((I −E)T (P − P1)) is closed. Let F = (I −E) −R((I −E)T (P − P1)). Since P1 and

I − E −R((I − E)T (I − E)) = (I −E) ∧ (I −R(T (I −E)))

= (I −E) ∧ (I −R(TP )) = (I −E) −R((I −E)TP )

are finite projections, F is a finite projection.
Assume that there exists a finite subprojection E0 of E such that (E − E0)H ⊆ ran(ET (I − E)). 

By Corollary 3.3, we have E − E ∧ R(T (I − E)) is a finite projection. Then it is not hard to see that 
(I −E) − (I −E) ∧R(T (I − E)) is a finite projection. Thus

I − [E ∧R(T (I − E)) + (I −E) ∧R(T (I −E))]
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is a finite projection. Since [E ∧R(T (I −E)) + (I −E) ∧R(T (I −E))]H ⊂ ran(T ), there exists a > 0 such 
that the spectral projection of |T ∗| associated with [0, a] is finite by Corollary 3.2.

To prove that the spectral projection of |T | associated with [0, ε] is infinite for every ε > 0, we only need 
to show that there exists an infinite projection Q such that ‖TQ‖ < ε. If TE is compact relative to A, then 
there exists an infinite projection Q ≤ E such that ‖TQ‖ < ε. Assume that TE is not compact relative to 
A. Then there exists an infinite projection Q0 such that Q0H ⊆ ran(TE). Since I − [E ∧ R(T (I − E)) +
(I − E) ∧ R(T (I − E)] is a finite projection, Q0 ∧ R(T (I − E)) is an infinite projection. This implies that 
K(T ) is an infinite projection and the lemma is proved. �
Lemma 5.5. Let T ∈ A. Assume that T − cI is not compact relative to A for every c ∈ C and there exists 
a ∈ (0, 1) such that the spectral projection of |T | associated with [0, a] is finite, then there exists an invertible 
operator V and a projection E in A satisfying the following conditions:

(1) E ∼ I − E,
(2)

∥∥EV −1TV E
∥∥ < 1,

(3) there exists c > 0 such that 
∥∥V −1TV ξ

∥∥ ≥ c ‖ξ‖ for every ξ ∈ (I − E)H,
(4) there exists a finite subprojection F of E such that (E − F )H ⊂ ran

(
EV −1TV (I − E)

)
.

Proof. By Proposition 3.1, there exists a projection E0 such that E0 ∼ I − E0 and (I − E0)T ∗E0 is not 
compact relative to A. Since (I − E0)T ∗E0 is not compact relative to A, there exists b > 0 such that the 
spectral projection E1 of |(I −E0)T ∗E0| associated with [b, ‖(I − E0)T ∗E0‖] is an infinite subprojection of 
E0. Note that there exists an operator A in E0A(I −E0) such that A(I − E0)T ∗E0 = E0T

∗E1. Let

V := (I −A∗) [E1 + 2‖(I + A∗)T (I −A∗)‖(I − E1)] .

It is not hard to see that E1V
−1TV E1 = 0, 

∥∥(I − E1)V −1TV E1
∥∥ ≤ 1

2 , and
∥∥(I − E1)V ∗T ∗(V ∗)−1E1ξ

∥∥ ≥ 2b ‖(I + A∗)T (I −A∗)‖ ‖ξ‖

for every ξ ∈ E1H. In particular, we have ran
(
E1V

−1TV (I −E1)
)

= E1H.
By Corollary 3.2, there exists c ∈ (0, 12 ) such that the spectral projection of |V −1TV | associated with 

[0, 2c] is finite. Let E be the spectral projection of |V −1TV (I−E1)| associated with [0, c]. Note that E ≥ E1. 
Since 

∥∥V −1TV (E − E1)
∥∥ ≤ c < 2c, E−E1 is a finite subprojection of I−E1 by Corollary 3.1. By Corollary 

6.3.5 in [20], E ∼ I −E. Note that
∥∥EV −1TV E

∥∥ ≤ ∥∥(E −E1)V −1TV E1
∥∥+

∥∥EV −1TV (E − E1)
∥∥ < 1,

and 
∥∥V −1TV (I −E)ξ

∥∥ ≥ c‖ξ‖ for every ξ ∈ (I−E)H. Since EV −1TV (I−E) −E1V
−1TV (I−E1) is finite 

relative to A, there exists a finite subprojection F of E such that (E − F )H ⊂ ran
(
EV −1TV (I −E)

)
. �

Lemma 5.6. Let T ∈ A. Assume that the spectral projection of |T | associated with [0, c] and its complement 
are both infinite for every c ∈ (0, 1). For every a > 0, there exist an invertible operator V and a projection 
E in A satisfying the following conditions:

(1) E ∼ I − E,
(2)

∥∥EV −1TV E
∥∥ ≤ 3

4 ,
(3) For every ε > 0, there exists an infinite subprojection E0 of E such that E0 ∼ E−E0 and 

∥∥V −1TV ξ
∥∥ ≤

ε‖ξ‖ for every ξ ∈ E0H,
(4)

∥∥V −1TV ξ
∥∥ ≥ 1‖ξ‖ for every ξ ∈ (I −E)H,
4
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(5) EV −1TV (I − E) is not compact relative to A,
(6) ‖V − I‖ ≤ a.

Proof. Let E be the spectral projection of |T | associated with 
[
0, 1

2
]
. If ET (I −E) is not compact relative 

to A, then we are done.
Assume that ET (I − E) is compact relative to A. Let W ∈ EA(I − E) be a partial isometry such that 

WW ∗ = E and W ∗W = I − E. Since ‖Tξ‖ ≥ 1
2‖ξ‖ for every ξ ∈ (I − E)H, there exists a finite projection 

E1 of I−E such that ‖(I−E)Tβ‖ ≥ 1
4‖β‖ for every β ∈ (I−E−E1)H. Let E2 be an infinite subprojection 

of E such that ‖TE2‖ ≤ 1
8 . Note that W ∗E2W ∧ (I −E −E1) is an infinite projection and

‖[WT (I −E) − ETW ] ζ‖ ≥ 1
8‖ζ‖, ∀ζ ∈ [W ∗E2W ∧ (I − E − E1)]H.

In particular, WT (I − E) −ETW is not compact relative to A.
For every t > 0, I − tW is invertible. Note that

E(I − tW )T (I + tW )(I − E) = ET (I − E) − t (WT (I − E) − ETW ) − t2WTW

is compact relative to A if and only if (WT (I − E) − ETW ) + tWTW is compact relative to A. Since 

WT (I − E) − ETW is not compact relative to A, there exists t0 ∈
(
0,min

(
a, 1

16‖T‖

))
such that E(I −

t0W )T (I + t0W )(I −E) is not compact relative to A. It is not hard to see that I + t0W and E satisfy the 
conditions (1)-(6). �

We are now ready to prove Theorem 1.3.

Theorem 1.3. Every separable infinite factor is clean.

Proof. Let T ∈ A. In order to show that T is clean, we only need to consider the following two cases:

1 There exists c ∈ (0, 1) such that either the spectral projection Ec of |T | associated with [0, c] is finite 
or its complement I −Ec is finite.

2 For every c ∈ (0, 1), the spectral projections of |T | and |T ∗| associated with [0, c] and their complements 
are infinite.

Case 1: Note that T is clean if and only if I−T is clean. By Corollary 3.1, we may assume that there exists 
c ∈ (0, 1) such that the spectral projection of |T | associated with [0, c] is finite. If there exists z ∈ C such that 
T −zI is compact relative to A, then T is clean by Corollary 4.1. Assume that T −zI is not compact relative 
to A for every z ∈ C. There exist an invertible operator V and a projection E in A satisfying conditions (1)-
(4) in Lemma 5.5. By condition (4) in Lemma 5.5 and Lemma 5.4, we have either E∧R 

(
V −1TV (I −E)

)
∼

(I − E) ∧
(
I −R

(
V −1TV (I − E)

))
or ER 

(
V −1TV (I − E)

)
E − E ∧ R 

(
V −1TV (I −E)

)
is not compact. 

Then T is clean by Lemma 5.2.
Case 2: Let {Eij} be the canonical matrix units of M2(C). By Lemma 5.6, we can assume that H =

H1 ⊗C2, A = A1 ⊗M2(C), and

T =
(
T11 T12
T21 T22

)

such that

(1) ‖(I ⊗ E11)T (I ⊗E11)‖ ≤ 3 ,
4
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(2) for every ε > 0, there exists a projection F ∈ A1 such that F ∼ I−F in A1 and ‖T11F‖ ≤ ε, ‖T21F‖ ≤ ε,
(3) ‖Tξ‖ ≥ 1

4‖ξ‖ for every ξ ∈ (I ⊗E22)H,
(4) T12 is not compact relative to A1.

By Lemma 5.2, we only need to show that T is clean under the assumption that

(I ⊗ E11) ∧R (T (I ⊗ E22)) � I ⊗ E22 ∧ (I ⊗ I2 −R(T (I ⊗ E22)))

and (I ⊗ E11)R(T (I ⊗E22))(I ⊗ E11) − (I ⊗E11) ∧R(T (I ⊗ E22)) is compact relative to A.
Let E1 and F1 be projections in A1 such that

E1 ⊗ E11 = (I ⊗ E11) ∧R(T (I ⊗E22)), R(T (F1 ⊗ E22)) = R(T (I ⊗ E22)) − E1 ⊗ E11.

By Lemma 5.4, F1 ∼ I −F1 and there exists a finite projection F2 ∈ A1 such that I −F2 ⊂ ran(T22F1). By 
Corollary 3.2, there exists c > 0 such that the spectral projection of |F1T

∗
22| associated with [0, c] is finite.

By condition (2), there exists a unitary operator W ∈ A1 such that

‖T11WF1‖ ≤ c

4 , ‖T21WF1‖ ≤ c

4 .

Let t ∈
(
0, 1

32‖T‖

)
and V := I ⊗ I2 + tW ⊗ E12. Note that

V −1TV =
(
T11 − tWT21 T12 − t[WT22 − T11W + tWT21W ]

T21 T22 + tT21W

)
.

By Corollary 3.1, the spectral projection of |(WT22F1 − T11WF1 + tWT21WF1)∗| associated with [0, c4 ] is a 
finite projection. Note that T12F1 = (I−E1)T12F1 is compact relative to A1. There exists a finite projection 
E2 in A1 such that (I − E2)H1 ⊂ ran(T12 − t(WT22 − T11W + tWT21W )). It is not hard to check that 
‖T11 − tWT21‖ ≤ 7

8 and 
∥∥V −1TV ξ

∥∥ ≥ 1
8‖ξ‖ for every ξ ∈ (I ⊗ E22)H. Then T is clean by Lemma 5.2 and 

Lemma 5.4. �
The following corollary is an immediate consequence of Theorem 1.3 since the homomorphic image of a 

clean ring is clean.

Corollary 5.1. The Calkin algebra on a separable infinite-dimensional Hilbert space H, i.e., the quotient of 
B(H) by the ideal of compact operators, is clean.

6. Questions and remarks

We proved in Section 4 that all finite von Neumann algebras are clean. It is natural to consider ∗-cleanness 
of finite von Neumann algebras. It claimed in [36, Proposition 15] that ⊕∞

n=1Mn(C) is ∗-clean. However, in 
the proof of [36, Proposition 15], the author used the fact that the direct sum ⊕∞

n=1An of a family of finite 
dimensional C∗-algebras {An}∞n=1 is ∗-isomorphic to the direct product 

∏∞
n=1 An. The proof is invalid since ∏∞

n=1 An is not even a C∗-algebra in general. Therefore, we can not use [36, Proposition 15] to deduce that 
⊕∞

n=1Mn(C) is ∗-clean. Based on this fact, we propose the following question.

Question 6.1. Is the finite von Neumann algebra ⊕∞
n=1Mn(C) ∗-clean? More generally, are all finite von 

Neumann algebras ∗-clean?
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Remark 6.1. It has been proved in [18] that if a ring R is ∗-clean, then Mn(R) is also ∗-clean. Since every 
von Neumann algebra of type In has the form A ⊗Mn(C), where A is an abelian von Neumann algebra, 
we know that finite direct sums of type In von Neumann algebras are ∗-clean.

It is also not hard to show that every operator T with closed range in a finite von Neumann algebra 
acting on a Hilbert space H is ∗-clean. Indeed, let E = I − K(T ) and F = R(T ). Since E ∼ F , we may 
assume that

E = I1 ⊕
(
I2

0

)
⊕
(
I3

0

)
⊕ 0, F = I1 ⊕

(
0

I2

)
⊕
(

H
√
H(I3 −H)√

H(I3 −H) I3 −H

)
⊕ 0.

Let

P = 0 ⊕
( 1

2I2
1
2I21

2I2
1
2I2

)
⊕
( 1

2I3
i
2I3

− i
2I3

1
2I3

)
⊕ I4.

Note that ran(P (I−E)) = ran(P ). By Example 3.1, it is not hard to see that ran(T −P ) = H. This implies 
that T − P is invertible.

Question 6.2. Given a von Neumann algebra A, let

S := {c ≥ 1 : ∀T ∈ A, there exists an idempotent P such that T − P is invertible and ‖(T − P )−1‖ ≤ c}.

Is the set S non-empty? By Theorem 1.2, we know that 4 ∈ S if A is a finite von Neumann algebra. Then 
we can ask what is the infimum of the set S, providing it is not empty.

Question 6.3. Does Theorem 1.3 remain true for arbitrary infinite factors? More generally, are all von 
Neumann algebras clean?

Question 6.4. Does there exist a clean C∗-algebra A such that the C∗-algebra A ⊗ l∞(N) is not clean?

Remark 6.2. Let An = {zIn +A : z ∈ C, A is a strictly upper triangular matrix in Mn(C)}. It is clear that 
An is a strongly clean Banach algebra. By the proof of Lemma 2.2, the element ⊕∞

n=1Vn in ⊕∞
n=1An is not 

clean, where Vn is the upper shift matrix in Mn(C). Thus the Banach algebra ⊕∞
n=1An is not clean. This 

simple example seems to indicate that the answer to Question 6.4 should be yes.
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