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Abstract: As a discrete-time quantum walk model on the one-dimensional integer lattice Z,
the quantum walk recently constructed by Wang and Ye [Caishi Wang and Xiaojuan Ye, Quantum
walk in terms of quantum Bernoulli noises, Quantum Information Processing 15 (2016), 1897–1908]
exhibits quite different features. In this paper, we extend this walk to a higher dimensional case.
More precisely, for a general positive integer d ≥ 2, by using quantum Bernoulli noises we introduce
a model of discrete-time quantum walk on the d-dimensional integer lattice Zd, which we call
the d-dimensional QBN walk. The d-dimensional QBN walk shares the same coin space with the
quantum walk constructed by Wang and Ye, although it is a higher dimensional extension of the
latter. Moreover we prove that, for a range of choices of its initial state, the d-dimensional QBN walk
has a limit probability distribution of d-dimensional standard Gauss type, which is in sharp contrast
with the case of the usual higher dimensional quantum walks. Some other results are also obtained.
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1. Introduction

As quantum analogs of classical random walks, quantum walks [1] have found wide application
in quantum information, quantum computing and many other fields [2,3]. In the past two decades,
quantum walks with a finite number of internal degrees of freedom have been intensively studied
and many deep results have been obtained (see [2–6] and references therein). For example, Konno [5]
found that a one-dimensional quantum walk with two internal degrees of freedom usually has a limit
probability distribution with scaling speed n, instead of

√
n, which is far from being Gaussian.

Quantum Bernoulli noises refer to the family of annihilation and creation operators acting on
Bernoulli functionals, which satisfy a canonical anti-commutation relation (CAR) in equal time, and can
provide an approach to the effects of environment on an open quantum system [7,8]. In 2016, by using
quantum Bernoulli noises, Wang and Ye [9] introduced a discrete-time quantum walk model on the
one-dimensional integer lattice Z, which we call the one-dimensional QBN walk below.

Belonging to the category of unitary quantum walks, the one-dimensional QBN walk, however,
exhibits quite different features. It takes the space H of square integrable Bernoulli functionals as
its coin space, hence has infinitely many internal degrees of freedom sinceH is infinite-dimensional.
Moreover, for some special choices of the initial state, it has the same limit probability distribution as the
classical random walk [9], which is in marked contrast to the case of the usual unitary quantum walks
(e.g., the Hadamard walk [5]). From a physical point of view [10], this behavior of the one-dimensional
QBN walk might help understand the effects of decoherence in quantum walks.
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Recent years have seen much attention paid to quantum walks on higher dimensional integer
lattices. Mackay et al. [11] extended the Hadamard walk to a higher dimensional case and examined
the time dependence of the standard deviation. Segawa and Konno [12] considered a quantum walk
driven by many coins and found that the number of coins can have an important effect on the behavior
of the walk. More recently, Komatsu and Konno [4] investigated stationary amplitudes of quantum
walks on the higher-dimensional integer lattice. There are other works about quantum walks on higher
dimensional integer lattices (see e.g., [13–15]).

In this paper, we would like to extend the one-dimensional QBN walk to a higher dimensional
case. More precisely, for a general positive integer d ≥ 2, we will use quantum Bernoulli noises to
introduce a model of discrete-time quantum walk on the d-dimensional integer lattice Zd. Our main
work is as follows.

• For each n ≥ 0, by using quantum Bernoulli noises, we construct 2d self-adjoint operators C(ε)
n ,

ε ∈ {−1,+1}d, which act on the space H of square integrable Bernoulli functionals. We prove
that C(ε)

n , ε ∈ {−1,+1}d are pairwise orthogonal and moreover their sum is unitary.
• By taking the operators C(ε)

n , ε ∈ {−1,+1}d, n ≥ 0 as coin operators, we establish a model of
discrete-time quantum walk on Zd, which we call the d-dimensional QBN walk. Of this walk,
we obtain a unitary representation in the function space l2(Zd,H

)
and a characterization in the

tensor space l2(Zd)⊗H.
• Under some mild conditions, we obtain a link between amplitudes of the d-dimensional QBN

walk and those of the one-dimensional QBN walk. And based on this link, we find that, for a range
of choices of its initial state, the d-dimensional QBN walk has a limit probability distribution of
d-dimensional standard Gauss type.

As is seen, the coin space of the d-dimensional QBN walk is just the spaceH of square integrable
Bernoulli functionals, which is infinite-dimensional. Thus the d-dimensional QBN walk has infinitely
many internal degrees of freedom. It should be also mentioned that the d-dimensional QBN walk
shares the same coin space with the one-dimensional QBN walk, although it is a higher dimensional
extension of the latter.

This paper consists of five sections. In Section 2, we briefly recall some necessary notions and facts
about quantum Bernoulli noises. Our main work then lies in Sections 3 and 4. Here, among others,
we prove several supporting theorems, define our quantum walk model and examine its fundamental
properties. Finally in Section 5, we make some conclusion remarks.

2. Preliminaries

In this section, we briefly recall some necessary notions and facts about quantum Bernoulli noises.
We refer to [7] for details about quantum Bernoulli noises.

Throughout this paper, Z always denotes the set of all integers, while N means the set of all
nonnegative integers. We denote by Γ the finite power set of N, namely

Γ = { σ | σ ⊂ N and # σ < ∞ }, (1)

where #σ means the cardinality of σ. Unless otherwise stated, letters like j, k and n stand for
nonnegative integers, namely elements of N.

Let Ω be the set of all mappings ω : N 7→ {−1, 1}, and (ζn)n≥0 the sequence of canonical
projections on Ω given by

ζn(ω) = ω(n), ω ∈ Ω. (2)
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Let F be the σ-field on Ω generated by the sequence (ζn)n≥0, and (pn)n≥0 a given sequence of
positive numbers with the property that 0 < pn < 1 for all n ≥ 0. Then there exists a unique probability
measure P on F such that

P ◦ (ζn1 , ζn2 , · · · , ζnk )
−1{(ε1, ε2, · · · , εk)

}
=

k

∏
j=1

p
1+εj

2
j (1− pj)

1−εj
2 (3)

for nj ∈ N, εj ∈ {−1, 1} (1 ≤ j ≤ k) with ni 6= nj when i 6= j and k ∈ N with k ≥ 1. Thus one
has a probability measure space (Ω, F ,P), which is referred to as the Bernoulli space and random
variables on it are known as Bernoulli functionals.

Let Z = (Zn)n≥0 be the sequence of Bernoulli functionals generated by sequence (ζn)n≥0, namely

Zn =
ζn + qn − pn

2
√

pnqn
, n ≥ 0, (4)

where qn = 1− pn. Clearly Z = (Zn)n≥0 is an independent sequence of random variables on the
probability measure space (Ω, F ,P). LetH be the space of square integrable complex-valued Bernoulli
functionals, namely

H = L2(Ω, F ,P). (5)

We denote by 〈·, ·〉 the usual inner product of the spaceH, and by ‖ · ‖ the corresponding norm. It is
known that Z has the chaotic representation property. Thus Z = {Zσ | σ ∈ Γ} form an orthonormal
basis (ONB) ofH, which is known as the canonical ONB ofH. Here Z∅ = 1 and

Zσ = ∏
j∈σ

Zj, σ ∈ Γ, σ 6= ∅. (6)

ClearlyH is infinite-dimensional as a complex Hilbert space.

Lemma 1 ([7]). For each k ∈ N, there exists a bounded operator ∂k onH such that

∂kZσ = 1σ(k)Zσ\k, ∂∗k Zσ = [1− 1σ(k)]Zσ∪k σ ∈ Γ, σ ∈ Γ, (7)

where ∂∗k denotes the adjoint of ∂k, σ \ k = σ \ {k}, σ ∪ k = σ ∪ {k} and 1σ(k) the indicator of σ as a subset
of N.

The operators ∂k and ∂∗k are usually known as the annihilation and creation operators acting on
Bernoulli functionals, respectively. And the family {∂k, ∂∗k}k≥0 is referred to as quantum Bernoulli
noises. The next lemma shows that quantum Bernoulli noises satisfy the canonical anti-commutation
relations (CAR) in equal-time.

Lemma 2 ([7]). Let k, l ∈ N. Then it holds true that

∂k∂l = ∂l∂k, ∂∗k ∂∗l = ∂∗l ∂∗k , ∂∗k ∂l = ∂l∂
∗
k (k 6= l) (8)

and
∂k∂k = ∂∗k ∂∗k = 0, ∂k∂∗k + ∂∗k ∂k = I, (9)

where I is the identity operator onH.

For a nonnegative integer n ≥ 0, one can define, respectively, two self-adjoint operators Ln and
Rn onH in the following manner

Ln =
1
2
(∂∗n + ∂n − I), Rn =

1
2
(∂∗n + ∂n + I), (10)
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where I is the identity operator onH. It then follows from Lemma 2 that the operators Ln, Rn, n ≥ 0,
form a commutative family, namely

LkLl = Ll Lk, RkLl = Ll Rk, RkRl = Rl Rk, k, l ≥ 0. (11)

Lemma 3 ([9]). For all n ≥ 0, Rn + Ln is a unitary operator onH and moreover it holds that

R2
n = Rn, RnLn = LnRn = 0, L2

n = −Ln. (12)

In view of the commutativity of family {Ln, Rn | n ≥ 0}, we can naturally introduce the
following symbols

Lσ = ∏
k∈σ

Lk, σ 6= ∅, σ ∈ Γ (13)

and L∅ = I, the identity operator on H. Similarly we can define Rσ for any σ ∈ Γ. It can be verified
that Lσ, Rσ, σ ∈ Γ also form a commutative family of self-adjoint operators onH. Additionally, it can
be shown that LσRτ = 0 whenever σ, τ ∈ Γ with σ ∩ τ 6= ∅.

3. Definition and Fundamental Properties

In this section, we prove some supporting theorems, present the definition of our quantum walk
and examine its fundamental properties.

In what follows, we always assume that d ≥ 2 is a given positive integer and Λ = {−1, +1}.
We denote by Λd the d-fold cartesian product of Λ, and byH⊗d the d-fold tensor product space ofH.
In addition, we assume that K : H⊗d → H is a fixed unitary isomorphism. Such a unitary isomorphism
exists becauseH is infinite-dimensional and separable.

3.1. Coin Operators

This subsection constructs our coin operators, which will play a fundamental role in defining our
quantum walk.

Recall that Ln = 1
2 (∂
∗
n + ∂n − I), Rn = 1

2 (∂
∗
n + ∂n + I) for n ≥ 0. In what follows, for notational

convenience we rewrite B(−1)
n = Ln, B(+1)

n = Rn. And for ε = (ε1, ε2, · · · , εd) ∈ Λd, we use the symbol

d⊗
i=1

B(εi)
n = B(ε1)

n ⊗ B(ε2)
n ⊗ · · · ⊗ B(εd)

n (14)

to mean the tensor product of B(ε1)
n , B(ε2)

n , · · · , B(εd)
n . Clearly,

⊗d
i=1 B(εi)

n is a bounded operator onH⊗d

for each ε = (ε1, ε2, · · · , εd) ∈ Λd.

Definition 1. For n ≥ 0 and ε = (ε1, ε2, · · · , εd) ∈ Λd, we define an operator C(ε)
n onH as

C(ε)
n = K

( d⊗
i=1

B(εi)
n

)
K−1, (15)

where, as indicated above, K is the unitary isomorphism fromH⊗d toH and K−1 is the inverse of K.

Theorem 1. Let n ≥ 0. Then C(ε)
n , ε ∈ Λd are self-adjoint operators on H. And moreover they admit the

following operation properties:

(i) C(ε)
n C(ε′)

n = 0, ε 6= ε′, ε, ε′ ∈ Λd;
(ii) ∑ε∈Λd C(ε)

n is a unitary operator onH.
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Proof. For each ε = (ε1, ε2, · · · , εd) ∈ Λd, it follows from the fact of B(εi)
n being self-adjoint for all

i ∈ {1, 2, · · · , d} that
⊗d

i=1 B(εi)
n is a self-adjoint operator on H⊗d, which, together with the fact of K

being unitary, implies that the operator defined by (15), namely C(ε)
n , is self-adjoint as an operator

onH.
Let ε, ε′ ∈ Λd with ε 6= ε′. Then there is some j ∈ {1, 2, · · · , d} such that ε j 6= ε′j, where ε j and

ε′j are the jth components of ε and ε′, respectively. By Lemma 3, B
(ε j)
n B

(ε′j)
n = 0, which implies that⊗d

i=1
(

B(εi)
n B(ε′i)

n
)
= 0. Thus, we have

C(ε)
n C(ε′)

n = K
( d⊗

i=1

(
B(εi)

n B(ε′i)
n
))

K−1 = 0.

This completes the proof of property (i).
Next, we verify property (ii). In fact, for each i ∈ {1, 2, · · · , d}, it follows from Lemma 3 that

∑
εi∈Λ

B(εi)
n = B(+1)

n + B(−1)
n = Rn + Ln

is a unitary operator onH. Thus, by the property of operator tensor product, we know that

∑
ε∈Λd

( d⊗
i=1

B(εi)
n

)
=

d⊗
i=1

(
∑

εi∈Λ
B(εi)

n

)
is a unitary operator onH⊗d, which, together with fact that K : H⊗d → H is a unitary isomorphism,
implies that

∑
ε∈Λd

C(ε)
n = ∑

ε∈Λd

K
( d⊗

i=1

B(εi)
n

)
K−1 = K

[
∑

ε∈Λd

( d⊗
i=1

B(εi)
n

)]
K−1

is a unitary operator onH.

3.2. Definition and Unitary Representation

In this subsection, we present the definition of our quantum walk and find out its unitary
representation. As usual, we set Zd to be the d-fold cartesian product of Z, and we denote by l2(Zd,H

)
the space of square summable functions defined on Zd and valued inH, namely

l2(Zd,H
)
=
{

W : Zd → H
∣∣∣ ∑

x∈Zd

‖W(x)‖2 < ∞
}

, (16)

where ‖ · ‖means the norm inH. As is known, l2(Zd,H
)

is a separable Hilbert space with the inner
product given by 〈

U, V
〉

l2(Zd ,H)
= ∑

x∈Zd

〈
U(x), V(x)

〉
, U, V ∈ l2(Zd,H

)
, (17)

where 〈·, ·〉 is the inner product in H. By convention, elements of l2(Zd,H
)

are usually known as
vectors. A vector W ∈ l2(Zd,H

)
is called a unit vector if ‖W‖l2(Zd ,H) = 1, where ‖ · ‖l2(Zd ,H) stands

for the norm in l2(Zd,H
)
. Note that each unit vector W ∈ l2(Zd,H

)
makes a probability distribution

x 7→ ‖W(x)‖2 on Zd.

Theorem 2. Let n ≥ 0. Then, for each W ∈ l2(Zd,H
)
, both the function W ′ : Zd → H defined by

W ′(x) = ∑
ε∈Λd

C(ε)
n W(x− ε), x ∈ Zd (18)
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and the function W ′′ : Zd → H defined by

W ′′(x) = ∑
ε∈Λd

C(ε)
n W(x + ε), x ∈ Zd (19)

all belong to l2(Zd,H
)
, and moreover ‖W ′‖l2(Zd ,H) = ‖W ′′‖l2(Zd ,H) = ‖W‖l2(Zd ,H).

Proof. By using Theorem 1, we have

∑
x∈Zd

‖W ′(x)‖2 = ∑
x∈Zd

∥∥∥ ∑
ε∈Λd

C(ε)
n W(x− ε)

∥∥∥2
= ∑

x∈Zd
∑

ε∈Λd

∥∥C(ε)
n W(x− ε)

∥∥2,

which together with the invariance

∑
x∈Zd

∑
ε∈Λd

∥∥C(ε)
n W(x− ε)

∥∥2
= ∑

x∈Zd
∑

ε∈Λd

∥∥C(ε)
n W(x)

∥∥2

gives

∑
x∈Zd

‖W ′(x)‖2 = ∑
x∈Zd

∑
ε∈Λd

∥∥C(ε)
n W(x)

∥∥2
= ∑

x∈Zd

∥∥∥ ∑
ε∈Λd

C(ε)
n W(x)

∥∥∥2
,

which, together with the fact that ∑ε∈Λd C(ε)
n is a unitary operator onH, implies that

∑
x∈Zd

‖W ′(x)‖2 = ∑
x∈Zd

‖W(x)‖2.

Therefore W ′ ∈ l2(Zd,H
)

and ‖W ′‖l2(Zd ,H) = ‖W‖l2(Zd ,H). Similarly, we can show that
W ′′ ∈ l2(Zd,H

)
and ‖W ′′‖l2(Zd ,H) = ‖W‖l2(Zd ,H).

Based on Theorem 2, we can now present the definition of our quantum walk on Zd as follows.

Definition 2. The d-dimensional QBN walk is a discrete-time quantum walk on the d-dimensional integer
latice Zd that satisfies the following requirements.

• The walk takes l2(Zd,H
)

as its state space, and its states are represented by unit vectors in l2(Zd,H
)
.

• The time evolution of the walk is governed by equation

Wn+1(x) = ∑
ε∈Λd

C(ε)
n Wn(x− ε), x ∈ Zd, n ≥ 0, (20)

where Wn denotes the state of the walk at time n ≥ 0, and in particular W0 is the initial state of the walk.

In that case, the function x 7→ ‖Wn(x)‖2 on Zd is called the probability distribution of the walk at time
n ≥ 0, while the quantity ‖Wn(x)‖2 is the probability to find out the walker at position x ∈ Zd and time n ≥ 0.

It is well known that l2(Zd,H
) ∼= l2(Zd)⊗H. This just means that l2(Zd) describes the position

of the d-dimensional QBN walk, while H describes its internal degrees of freedom. As usual, H is
called the coin space of the walk. Clearly, the d-dimensional QBN walk has infinitely many internal
degrees of freedom because its coin spaceH is infinite-dimensional.



Entropy 2020, 22, 504 7 of 17

Theorem 3. For each n ≥ 0, there exists a unitary operator U (d)
n on l2(Zd,H

)
such that

(
U (d)

n W
)
(x) = ∑

ε∈Λd

C(ε)
n W(x− ε), x ∈ Zd, W ∈ l2(Zd,H

)
(21)

and [(
U (d)

n
)∗W](x) = ∑

ε∈Λd

C(ε)
n W(x + ε), x ∈ Zd, W ∈ l2(Zd,H

)
, (22)

where
(
U (d)

n
)∗ denotes the adjoint of U (d)

n .

Proof. For each W ∈ l2(Zd,H
)
, denote by W ′ the function given by

W ′(x) = ∑
ε∈Λd

C(ε)
n W(x− ε), x ∈ Zd,

which, by Theorem 2, belongs to l2(Zd,H
)
. Thus, we can define an operator U (d)

n on l2(Zd,H
)

in the
following manner

U (d)
n W = W ′, W ∈ l2(Zd,H

)
. (23)

It is easy to see that U (d)
n is linear. And moreover, by Theorem 2, we know that U (d)

n is even
an isometry, which means that U (d)

n has an adjoint
(
U (d)

n
)∗.

Let U, V ∈ l2(Zd,H
)
. Then, by general properties of the adjoint of an operator, we have

〈(
U (d)

n
)∗U, V

〉
l2(Zd ,H)

=
〈
U,U (d)

n V
〉

l2(Zd ,H)
= ∑

x∈Zd
∑

ε∈Λd

〈
U(x), C(ε)

n V(x− ε)
〉
,

which, together with the fact of C(ε)
n being self-adjoint, gives〈(

U (d)
n
)∗U, V

〉
l2(Zd ,H)

= ∑
x∈Zd

∑
ε∈Λd

〈
C(ε)

n U(x), V(x− ε)
〉

= ∑
x∈Zd

∑
ε∈Λd

〈
C(ε)

n U(x + ε), V(x)
〉

= ∑
x∈Zd

〈
U′′(x), V(x)

〉
=
〈
U′′, V

〉
l2(Zd ,H)

,

where U′′ is the function given by

U′′(x) = ∑
ε∈Λd

C(ε)
n U(x + ε), x ∈ Zd.

It then follows from the arbitrariness of V ∈ l2(Zd,H
)

that (U (d)
n
)∗U = U′′, namely

[(
U (d)

n
)∗U](x) = ∑

ε∈Λd

C(ε)
n U(x + ε), x ∈ Zd.

This shows that (22) holds. A direct calculation yields that(
U (d)

n
)∗U (d)

n = U (d)
n
(
U (d)

n
)∗

= I ,

where I means the identity operator on l2(Zd,H
)
. Therefore, U (d)

n is a unitary operator satisfying (21)
and (22).
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Applying Theorem 3 to Definition 2, we come to the next theorem, which shows that the
d-dimensional QBN walk belongs to the category of unitary quantum walks.

Theorem 4. Let Wn be the state of the d-dimensional QBN walk at time n ≥ 0. Then

Wn =
( n−1

∏
k=0
U (d)

k

)
W0, n ≥ 1, (24)

where W0 is the initial state of the walk.

3.3. Characterization in Tensor Space

As is seen, the d-dimensional QBN walk is formulated in the function space l2(Zd,H). In the
present subsection, we reformulate it in the tensor space l2(Zd)⊗H, which is isomorphic to l2(Zd,H)

in the sense of unitary isomorphism.
Let J : l2(Zd,H)→ l2(Zd)⊗H be the canonical unitary isomorphism. Then, J satisfies that

JW f ,ξ = f ⊗ ξ, f ∈ l2(Zd), ξ ∈ H, (25)

where W f ,ξ is the function defined by W f ,ξ(x) = f (x)ξ, x ∈ Zd. As is indicated in Theorem 4,

unitary operator sequence
(
U (d)

n
)

n≥0 plays an important role in describing the d-dimensional
QBN walk.

In the following, for each n ≥ 0, we denote by V (d)n the counterpart of U (d)
n in tensor space

l2(Zd)⊗H, namely
V (d)n = JU (d)

n J−1. (26)

Then
(
V (d)n

)
n≥0 is a sequence of unitary operators on l2(Zd)⊗H. Thus, from a physical point of view,

we naturally come to the next observation.

Remark 1. The d-dimensional QBN walk can be viewed as a unitary evolution determined by the unitary
operator sequence

(
V (d)n

)
n≥0 on the tensor space l2(Zd)⊗H.

We now consider the structure of unitary operators V (d)n , n ≥ 0. Let f ∈ l2(Zd) and ξ ∈ H. Then,
for ε ∈ Λd, by letting g(ε)(x) = f (x− ε), x ∈ Zd, we have

g(ε) = ∑
x∈Zd

|δx〉〈δx−ε| f , (27)

where the series on the righthand side converges in the norm of l2(Zd). By Theorem 3, we have

[U (d)
n W f ,ξ ](x) = ∑

ε∈Λd

C(ε)
n W f ,ξ(x− ε) = ∑

ε∈Λd

C(ε)
n
[
g(ε)(x)ξ

]
= ∑

ε∈Λd

g(ε)(x)C(ε)
n ξ, x ∈ Zd,

which implies that
[U (d)

n W f ,ξ ](x) = ∑
ε∈Λd

W
g(ε),C(ε)

n ξ
(x), x ∈ Zd.

Thus, as vectors in l2(Zd,H), we have

U (d)
n W f ,ξ = ∑

ε∈Λd

W
g(ε),C(ε)

n ξ
,
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which, together with J and J−1, yields

V (d)n ( f ⊗ ξ) =
[
JU (d)

n J−1]( f ⊗ ξ) =
[
JU (d)

n
]
W f ,ξ = J ∑

ε∈Λd

W
g(ε),C(ε)

n ξ
= ∑

ε∈Λd

g(ε) ⊗ C(ε)
n ξ,

which together with (27) implies that

V (d)n ( f ⊗ ξ) =
[

∑
x∈Zd

∑
ε∈Λd

|δx〉〈δx−ε| ⊗ C(ε)
n

]
( f ⊗ ξ).

Therefore, by the arbitrariness of choosing f ∈ l2(Zd) and ξ ∈ H, we come to the next result,
which actually offers a characterization of the d-dimensional QBN walk in tensor space.

Theorem 5. Let n ≥ 0. Then, the unitary operator V (d)n has a structure of the following form

V (d)n = ∑
x∈Zd

∑
ε∈Λd

|δx〉〈δx−ε| ⊗ C(ε)
n , (28)

where
{

δx | x ∈ Zd} is the canonical ONB of l2(Zd) and |δx〉〈δx−ε| is the Dirac operator.

4. Limit Probability Distribution

In the present section, we focus on exploring limit probability distribution of the d-dimensional
QBN walk. To be convenient, we additionally denote by l2(Z,H) the space of square summable
functions defined on Z and valued inH.

4.1. Amplitude Formula

Lemma 4 ([9]). For each n ≥ 0, there exists a unitary operator Un on l2(Z,H) such that

(UnΦ)(z) = RnΦ(z− 1) + LnΦ(z + 1), z ∈ Z, Φ ∈ l2(Z,H) (29)

and
(U ∗n Φ)(z) = RnΦ(z + 1) + LnΦ(z− 1), z ∈ Z, Φ ∈ l2(Z,H), (30)

where U ∗n stands for the adjoint of Un.

For vectors ϕ(1), ϕ(2), · · · , ϕ(d) ∈ l2(Z,H), it can be verified that the function defined by

x = (x1, x2, · · · , xd) 7−→ K
( d⊗

i=1

ϕ(i)(xi)
)

belongs to l2(Zd,H). Moreover, this function even becomes a unit vector in l2(Zd,H) whenever ϕ(1),
ϕ(2), · · · , ϕ(d) are unit vectors in l2(Z,H).

As is shown above, Un, n ≥ 0 are unitary operators on l2(Z,H). Thus, for all unit vector
ϕ ∈ l2(Z,H), vectors ( n

∏
k=0
Uk
)

ϕ, n ≥ 0

obviously make a sequence of unit vectors in l2(Z,H).
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Theorem 6. Let ϕ(1), ϕ(2), · · · , ϕ(d) ∈ l2(Z,H) be unit vectors in l2(Z,H). Suppose that the initial state
W0 of the d-dimensional QBN walk takes the following form

W0(x) = K
( d⊗

i=1

ϕ(i)(xi)
)

, x = (x1, x2, · · · , xd) ∈ Zd. (31)

Then, for all n ≥ 1, the state Wn of the d-dimensional QBN walk at time n satisfies the following relation

Wn(x) = K
( d⊗

i=1

Φ(i)
n (xi)

)
, x = (x1, x2, · · · , xd) ∈ Zd, (32)

where

Φ(i)
n =

( n−1

∏
k=0
Uk

)
Φ(i)

0 (33)

with Φ(i)
0 = ϕ(i) for all index i ∈ {1, 2, · · · , d}.

Proof. By Lemma 4, for all n ≥ 0 and i ∈ {1, 2, · · · , d}, Φ(i)
n is a unit vector in l2(Z,H). Now, for each

nonnegative integer n ≥ 0, we define a function W ′n : Zd → H as

W ′n(x) = K
( d⊗

i=1

Φ(i)
n (xi)

)
, x = (x1, x2, · · · , xd) ∈ Zd. (34)

Then, as indicated above, W ′n, n ≥ 0, are unit vectors in l2(Zd,H
)
, and in particular

W ′0(x) = K
( d⊗

i=1

Φ(i)
0 (xi)

)
= K

( d⊗
i=1

ϕ(i)(xi)
)
= W0(x), x = (x1, x2, · · · , xd) ∈ Zd,

which implies that W ′0 = W0.
On the other hand, for all n ≥ 1 and i ∈ {1, 2, · · · , d}, by using (33) and Lemma 4, we find that

Φ(i)
n (xi) = Rn−1Φ(i)

n−1(xi − 1) + Ln−1Φ(i)
n−1(xi + 1), xi ∈ Z,

which, together with the notation B(+1)
n−1 = Rn−1 and B(−1)

n−1 = Ln−1 (see Section 3.1 for details), gives

Φ(i)
n (xi) = B(+1)

n−1 Φ(i)
n−1(xi − 1) + B(−1)

n−1 Φ(i)
n−1(xi + 1) = ∑

εi∈Λ
B(εi)

n−1Φ(i)
n−1(xi − εi), xi ∈ Z,

where Λ = {−1,+1} as specified in Section 3. Thus, by taking tensor product, we get

d⊗
i=1

Φ(i)
n (xi) = ∑

ε∈Λd

( d⊗
i=1

B(εi)
n−1

)( d⊗
i=1

Φ(i)
n−1(xi − εi)

)
, x = (x1, x2, · · · , xd) ∈ Zd, n ≥ 1,

where ε = (ε1, ε2, · · · , εd). Taking the action of operator K on both sides and then using (15) yields

K
( d⊗

i=1

Φ(i)
n (xi)

)
= ∑

ε∈Λd

K
( d⊗

i=1

B(εi)
n−1

)( d⊗
i=1

Φ(i)
n−1(xi − εi)

)
= ∑

ε∈Λd

C(ε)
n−1K

( d⊗
i=1

Φ(i)
n−1(xi − εi)

)
,
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x = (x1, x2, · · · , xd) ∈ Zd, n ≥ 1, which together with (34) and Theorem 3 implies that

W ′n(x) = ∑
ε∈Λd

C(ε)
n−1W ′n−1(x− ε) =

(
U (d)

n−1W ′n−1
)
(x), (35)

x = (x1, x2, · · · , xd) ∈ Zd, n ≥ 1. Thus

W ′n = U (d)
n−1W ′n−1 =

( n−1

∏
k=0
U (d)

k

)
W ′0, n ≥ 1,

which, together with the fact W ′0 = W0 and Theorem 4, implies that W ′n = Wn, which together with (34)
gives (32). This compete the proof.

Remark 2. According to [9], the unitary operators Un, n ≥ 0 described in Lemma 4 serve as the evolution
operators of the quantum walk introduced in [9], namely the one-dimensional QBN walk. Thus, the sequence(
Φ(i)

n
)

n≥0 in Theorem 6 is exactly the state sequence of the one-dimensional QBN walk corresponding to the

initial state Φ(i)
0 = ϕ(i). Formula (32) then gives a link between amplitudes of the d-dimensional QBN walk and

those of the one-dimensional QBN walk.

As an immediate consequence of Theorem 6, we have the following useful corollary, which offers
a formula for calculating the probability to find out the walker at a position in Zd.

Corollary 1. Let ϕ(1), ϕ(2), · · · , ϕ(d) ∈ l2(Z,H) be unit vectors in l2(Z,H). Suppose that the initial state
W0 of the d-dimensional QBN walk takes the following form

W0(x) = K
( d⊗

i=1

ϕ(i)(xi)
)

, x = (x1, x2, · · · , xd) ∈ Zd. (36)

Then, for all n ≥ 1, the state Wn of the d-dimensional QBN walk at time n satisfies that

∥∥Wn(x)
∥∥2

=
d

∏
i=1

∥∥Φ(i)
n (xi)

∥∥2, x = (x1, x2, · · · , xd) ∈ Zd, (37)

where

Φ(i)
n =

( n−1

∏
k=0
Uk

)
Φ(i)

0 (38)

with Φ(i)
0 = ϕ(i) for all index i ∈ {1, 2, · · · , d}.

4.2. Limit Probability Distribution

For k ≥ 0, we write Ξk = ∂∗k + ∂k, where ∂∗k and ∂k are the creation and annihilation operators
onH, see Section 2 for details. By Lemma 2, Ξk, k ≥ 0 make a commutative sequence of self-adjoint
operators onH. Moreover, by the CAR in equal time, one has

Ξ2
k = (∂∗k + ∂k)

2 = ∂∗k ∂k + ∂k∂∗k = I, k ≥ 0,

where I denotes the identity operator onH. In the following, we write Ξ∅ = I and

Ξτ = ∏
k∈τ

Ξk, τ 6= ∅, τ ∈ Γ. (39)
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It can be verified that {Ξτ | τ ∈ Γ} form a commutative family of self-adjoint unitary operators
onH.

For n ≥ 0, we write Nn = {0, 1, · · · , n}. Additionally, for n ≥ 1 and j ∈ Nn, we define a functional
fnj onH in the following manner

fnj(ξ) = ∑
σ∈4n−1

j

∥∥∥ ∑
τ⊂Nn−1

(−1)#(σ\τ)Ξτξ
∥∥∥2
− 2n

(
n
j

)
, ξ ∈ H, (40)

where4n−1
j = {σ | #σ = j, σ ⊂ Nn−1} and #σ means the cardinality of σ as a set.

Theorem 7. Let
(
Φn
)

n≥0 be a sequence of unit vectors in l2(Z,H) satisfying

Φn =
( n−1

∏
k=0
Uk

)
Φ0, n ≥ 1. (41)

Suppose that Φ0 is localized, namely Φ0 satisfies the following requirement

Φ0(x) =

{
ξ, x = 0;
0, x 6= 0, x ∈ Z,

(42)

where ξ ∈ H is a unit vector. Then, for all n ≥ 1, it holds that

‖Φn(x)‖2 =

{
1

4n fnj(ξ) +
1

2n (
n
j), x = n− 2j, j ∈ Nn;

0, otherwise.
(43)

Proof. For each n ≥ 1, by using the method of Fourier transform for vector-valued functions, we can
get an expression of Φn of the following form

Φn(x) =

{
∑σ∈4n−1

j
LσRNn−1\σξ, x = n− 2j, j ∈ Nn;

0, otherwise.
(44)

Let n ≥ 1 and σ ⊂ Nn−1. Then, with the notation ε(k) = 1− 21σ(k), we have

LσRNn−1\σ = ∏
k∈σ

[1
2
(Ξk − I)

]
∏

k∈Nn−1\σ

[1
2
(Ξk + I)

]
=

1
2n ∏

k∈σ

(Ξk + ε(k)I) ∏
k∈Nn−1\σ

(Ξk + ε(k)I)

=
1
2n

n−1

∏
k=0

(Ξk + ε(k)I)

=
1
2n ∑

τ⊂Nn−1

[
∏

k∈Nn−1\τ
ε(k)

]
Ξτ .

On the other hand, for each τ ⊂ Nn−1, it follows easily that

∏
k∈Nn−1\τ

ε(k) = ∏
k∈(Nn−1\τ)∩σ

(−1) = (−1)#(σ\τ).

Thus
LσRNn−1\σ =

1
2n ∑

τ⊂Nn−1

[
∏

k∈Nm\τ
ε(k)

]
Ξτ =

1
2n ∑

τ⊂Nn−1

(−1)#(σ\τ) Ξτ ,
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which implies that

‖LσRNn−1\σξ‖2 =
1
4n

∥∥∥ ∑
τ⊂Nn−1

(−1)#(σ\τ) Ξτξ
∥∥∥2

. (45)

Note that vectors LσRNn−1\σξ and Lτ RNn−1\τξ are orthogonal for σ, τ ∈ 4n−1
j with σ 6= τ. Thus,

by (44) and (45), we have

‖Φn(x)‖2 =

 1
4n ∑σ∈4n−1

j

∥∥∥∑τ⊂Nn−1
(−1)#(σ\τ) Ξτξ

∥∥∥2
, x = n− 2j, j ∈ Nn;

0, otherwise,
(46)

which together with the definition of functional fnj gives (43).

Definition 3. A vector ξ ∈ H is said to have the ABD property if there exist constants c ≥ 0 and r > 1
such that

| fnj(ξ)| ≤
c4n

(n + j)r , ∀ j ∈ Nn, ∀ n ≥ 1. (47)

Example 1. Every basis vector in the canonical OBN Z = {Zσ | σ ∈ Γ} ofH has the ABD property.

Proof. Let σ ∈ Γ. Then, for all τ ∈ Γ , we have ΞτZσ = Zσ4τ . On the other hand, we can verify that
{Zσ4τ | τ ∈ Γ}make an orthonormal system inH. Thus, for any n ≥ 1 and j ∈ Nn, we have

fnj(Zσ) = ∑
γ∈4n−1

j

∥∥∥ ∑
τ⊂Nn−1

(−1)#(γ\τ)Zσ4τ

∥∥∥2
− 2n

(
n
j

)

= ∑
γ∈4n−1

j

∑
τ⊂Nn−1

1− 2n
(

n
j

)

= ∑
γ∈4n−1

j

2n − 2n
(

n
j

)
= 0,

which implies that Zσ has the ABD property.

Theorem 8. Let ξ ∈ H be a unit vector having the ABD property and
(
Φn
)

n≥0 a sequence of unit vectors in
l2(Z,H) satisfying

Φn =
( n−1

∏
k=0
Uk

)
Φ0, n ≥ 1. (48)

Suppose that Φ0 satisfies the requirement below

Φ0(x) =

{
ξ, x = 0;
0, x 6= 0, x ∈ Z.

(49)

Then it holds that
lim

n→∞ ∑
x∈Z

e
itx√

n ‖Φn(x)‖2 = e−
t2
2 , t ∈ R. (50)

Proof. Let t ∈ R. Then, by Theorem 7, we have

∑
x∈Z

e
itx√

n ‖Φn(x)‖2 =
1
4n

n

∑
j=0

e
it(n−2j)√

n fnj(ξ) + cosn t√
n

, n ≥ 1.
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On the other hand, since ξ has the ABD property, there exist constant c ≥ 0 and r > 1 such that

| fnj(ξ)| ≤
c4n

(n + j)r , ∀ j ∈ Nn, ∀ n ≥ 1,

which implies that

∣∣∣ 1
4n

n

∑
j=0

e
it(n−2j)√

n fnj(ξ)
∣∣∣ ≤ c

n

∑
j=0

1
(n + j)r ≤ c

∞

∑
j=0

1
(n + j)r , n ≥ 1,

which, together with limn→∞ ∑∞
j=0

1
(n+j)r = 0, yields that

lim
n→∞

1
4n

n

∑
j=0

e
it(n−2j)√

n fnj(ξ) = 0.

Therefore

lim
n→∞ ∑

x∈Z
e

itx√
n ‖Φn(x)‖2 = lim

n→∞

1
4n

n

∑
j=0

e
it(n−2j)√

n fnj(ξ) + lim
n→∞

cosn t√
n
= e−

t2
2 .

This completes the proof.

The next result establishes a limit theorem for the d-dimensional QBN walk, which shows that for
a range of choices of its initial state the d-dimensional QBN walk has a limit probability distribution of
d-dimensional standard Gauss type.

Theorem 9. Let the initial state W0 of the d-dimensional QBN walk take the following form

W0(x) =

{
K
(⊗d

i=1 ξ(i)
)

, x = (0, 0, · · · , 0);

0, x 6= (0, 0, · · · , 0), x ∈ Zd,
(51)

where ξ(1), ξ(2), · · · , ξ(d) ∈ H are unit vectors. For n ≥ 1, let Xn be a d-dimensional random vector with the
probability distribution given by

P{Xn = x} = ‖Wn(x)‖2, x = (x1, x2, · · · , xd) ∈ Zd, (52)

where Wn is the state of the d-dimensional QBN walk at time n. Suppose that all the above vectors ξ(1), ξ(2),
· · · , ξ(d) have the ABD property. Then

Xn√
n
=⇒ N(0, Id×d), (53)

namely Xn√
n converges in law to the d-dimensional standard Gaussian distribution N(0, Id×d) as n→ ∞.

Proof. For each i ∈ {1, 2, · · · , d}, we can define a function ϕ(i) : Z→ H in the following manner:

ϕ(i)(x) =

{
ξ(i), x = 0;
0, x 6= 0, x ∈ Z.

Clearly, ϕ(1), ϕ(2), · · · , ϕ(d) are unit vectors in l2(Z,H), and moreover they admit the
following relations

W0(x) = K
( d⊗

i=1

ϕ(i)(xi)
)

, x = (x1, x2, · · · , xd) ∈ Zd.
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Thus, by Corollary 1, we have

∥∥Wn(x)
∥∥2

=
d

∏
i=1

∥∥Φ(i)
n (xi)

∥∥2, x = (x1, x2, · · · , xd) ∈ Zd, (54)

where

Φ(i)
n =

( n−1

∏
k=0
Uk

)
Φ(i)

0 (55)

with Φ(i)
0 = ϕ(i) for all index i ∈ {1, 2, · · · , d}.

Now, let us consider the characteristic function C Xn√
n
(t) of random vector Xn√

n . By definition,

we have
C Xn√

n
(t) = ∑

x∈Zd

e
i√
n ∑d

i=1 tixi
∥∥Wn(x)

∥∥2, t = (t1, t2, · · · , td) ∈ Rd, (56)

where x = (x1, x2, · · · , xd). Using (54) gives

C Xn√
n
(t) = ∑

x∈Zd

d

∏
i=0

e
iti xi√

n
∥∥Φ(i)

n (xi)
∥∥2

=
d

∏
i=0

∑
xi∈Z

e
iti xi√

n
∥∥Φ(i)

n (xi)
∥∥2, (57)

t = (t1, t2, · · · , td) ∈ Rd. For each i ∈ {1, 2, · · · , d}, by using Theorem 8, we find

lim
n→∞ ∑

xi∈Z
e

iti xi√
n
∥∥Φ(i)

n (xi)
∥∥2

= e−
t2i
2 , ti ∈ R.

Therefore

lim
n→∞

C Xn√
n
(t) =

d

∏
i=0

e−
t2i
2 = e−

1
2 ∑d

i=1 t2
i , t = (t1, t2, · · · , td) ∈ Rd,

which implies that Xn√
n converges in law to the d-dimensional standard Gaussian distribution.

5. Conclusions Remarks

As is well known, the Hadamard walk is a one-dimensional quantum walk, whose coin space
is a two-dimensional space (typically C2). In 2002, by extending the Hadamard walk to a higher
dimensional case, Mackay et al. [11] actually introduced a d-dimensional quantum walk for a general
d ≥ 2. However, their d-dimensional quantum walk takes a 2d-dimensional space as its coin space,
hence has a finite number of internal degrees of freedom. In other words, as a higher dimensional
extension of the Hadamard walk, the d-dimensional quantum walk introduced by Mackay et al. [11]
does not share the same coin space with the Hadamard walk.

As is seen, in this paper we introduce a d-dimensional quantum walk in terms of quantum
Bernoulli noises, which is called the d-dimensional QBN walk. The coin space of the d-dimensional
QBN walk is the space H of square integrable Bernoulli functionals, which is infinite-dimensional.
Thus the d-dimensional QBN walk has infinitely many internal degrees of freedom. Moreover,
the d-dimensional QBN walk shares the same coin space H with the one-dimensional QBN walk
(namely the one recently introduced in [9]), although it is a higher dimensional extension of the latter.

It should be noted that the existence of a unitary isomorphism K : H⊗d → H plays a key role
in constructing the d-dimensional QBN walk. For a finite dimensional space, say C2, there exists no
unitary isomorphism from (C2)⊗d to C2 unless d = 1. This just means that our approach in this paper
differs from that used by Mackay et al. in [11].
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Decoherence is one of important topics in the study of quantum walks. Physically, decoherence
means a deviation from pure quantum behavior. If a quantum walk shows some classical asymptotic
behavior, then it contains an amount of decoherence. Kendon and Tregenna [16] showed for
the first time that decoherence can be useful in quantum walks. Brun et al. [17] investigated
quantum walks with decoherent coins. Chisaki et al. [18] analyzed a class of quantum walks with
position measurements and found that those walks have limit probability distributions of Gauss type
under some situations, which means that quantum walks with position measurements can produce
decoherence. There are other works addressing decoherence in quantum walks (see [10] and references
therein). As is seen, as a model of higher-dimensional quantum walk constructed in terms of quantum
Bernoulli noises, the d-dimensional QBN walk has a limit probability distribution of d-dimensional
standard Gauss type for some choices of its initial state, which together with the work of [9] implies that
quantum Bernoulli noises can provide an alternative way to produce decoherence in quantum walks.
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