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Open quantum walks (OQWs) (also known as open quantum random walks) are quan-
tum analogs of classical Markov chains in probability theory, and have potential appli-
cation in quantum information and quantum computation. Quantum Bernoulli noises
(QBNs) are annihilation and creation operators acting on Bernoulli functionals, and can
be used as the environment of an open quantum system. In this paper, by using QBNs
as the environment, we introduce an OQW on a general higher-dimensional integer lat-
tice. We obtain a quantum channel representation of the walk, which shows that the
walk is indeed an OQW. We prove that all the states of the walk are separable provided
its initial state is separable. We also prove that, for some initial states, the walk has a
limit probability distribution of higher-dimensional Gauss type. Finally, we show links
between the walk and a unitary quantum walk recently introduced in terms of QBNs.
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AMS Subject Classification: 81S25; 81S22

1. Introduction

Random walks have been widely used as a fundamental mathematical tool for
modeling various physical processes and for the development of stochastic algorithm
[10]. Recent years have seen great attention paid to quantum walks [7, 16], which
are also known as quantum random walks [1, 6]. As quantum extensions of random
walks, quantum walks have found wide application in quantum information and
quantum computation [12]. Due to the quantum interference effects, quantum walks
greatly outperform random walks at certain computational tasks, and moreover
it has turned out that quantum walks constitute universal models of quantum
computation [12].
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From a perspective of mathematical physics, quantum walks can be divided into
two categories: unitary quantum walks and nonunitary quantum walks. Unitary
quantum walks do not interact with the environments and their time evolutions
are described mainly by unitary operators. The past two decades have witnessed a
considerable amount of research on unitary quantum walks and their application
(see, e.g., [6, 7, 12, 16] and references therein). In 2012, Attal et al. introduced a
class of nonunitary quantum walks, called open quantum walks (OQWs) [4].

OQWs are also known as open quantum random walks [3], which can be viewed
as quantum analogs of classical Markov chains in probability theory. As a new type
of quantum walks, OQWs are finding application in the generalizations of the theory
of quantum probability, and have potential application in quantum state engineer-
ing, dissipative quantum computation and transport in mesoscopic systems [15].

Much attention has been paid to OQWs. Attal et al. [2] established the central
limit theorem (CLT) for a class of homogeneous OQWs with a unique invariant
state. Konno and Yoo [8] applied the CLT to the study of limit probability distri-
butions for various OQWs. Sadowski and Pawela [13] considered a generalization
of the CLT for the case of nonhomogeneous OQWs. Carbone and Pautrat [5], from
a perspective of classical Markov chain, introduced notions of irreducibility, period,
communicating classes for OQWs. Lardizabal [9] defined a notion of hitting time
for OQWs and obtained some useful formulas for certain cases. There are other
researches on OQWs (see [15] and references therein).

From a physical point of view, OQWs interact with their environments. More
specifically, for an OQW, the transitions between the sites (or vertices) are driven
by the interaction with the environment. Thus, the effects of environment can play
an important role in the time evolution of OQWs. On the other hand, being anni-
hilation and creation operators acting on Bernoulli functionals, quantum Bernoulli
noises (QBNs) have turned out to be an alternative approach to the environment
of an open quantum system (see, e.g., [17, 19]). It is then natural to apply QBNs
to the study of OQWs.

In 2018, by using QBNs, Wang et al. [21] introduced a model of OQW on the
1-dimensional integer lattice Z, which we call the 1-dimensional open QBN walk
below. In this paper, we would like to extend the 1-dimensional open QBN walk
to a higher-dimensional case. More specifically, with QBNs as the environment, we
will introduce a model of OQW on the d-dimensional integer lattice Zd with d ≥ 2,
and examine its dynamical behavior from a perspective of probability distribution.
Our main work is as follows.

• We introduce a notion of d-dimensional nucleus on the space H of square inte-
grable Bernoulli functionals.

• With QBNs as the fundamental tool, we construct a sequence of transforms J
(d)
n ,

n ≥ 0, on the d-dimensional nucleuses, and then we use these transforms to
establish our model of OQW on Zd, which we call the d-dimensional open QBN
walk.
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• We obtain a quantum channel representation of the d-dimensional open QBN
walk, which shows that the d-dimensional open QBN walk is indeed an OQW.

• We find that all the states of the d-dimensional open QBN walk are separable
provided its initial state is separable, and moreover we prove that, for some initial
states, the d-dimensional open QBN walk has a limit probability distribution of
d-dimensional Gauss type.

• We show links between the d-dimensional open QBN walk and a unitary quantum
walk recently introduced in [20].

Some other results are also proven of the d-dimensional open QBN walk.
The paper is organized as follows. In Sec. 2.1, we briefly recall some necessary

notions and facts about QBNs. Sections 2.2–2.4 are one part of our main work,
which includes the technical theorems we prove, the definition of our model (namely
the d-dimensional open QBN walk) and the quantum channel representation of the
walk. The other part of our main work lies in Secs. 3 and 4, where we examine
the separability of the walk’s states, calculate its limit probability distribution and
show its links with a unitary quantum walk recently introduced in [20].

Throughout this paper, Z always denotes the set of all integers, while N means
the set of all nonnegative integers. We denote by Γ the finite power set of N, namely

Γ = {σ |σ ⊂ N and #σ < ∞}, (1.1)

where #σ means the cardinality of σ. Unless otherwise stated, letters like j, k and
n stand for nonnegative integers, namely elements of N. If X is a Hilbert space,
then B(X ) denotes the set of all bounded linear operators on X . As usual, a density
operator on a Hilbert space means a positive operator of trace class with unit trace
on that space. By convention, TrA denotes the trace of an operator A of trace
class.

2. Definition of Walk and Its Basic Properties

In this section, we mainly introduce our model of OQW, which we will call the
d-dimensional open QBN walk, and examine its basic properties.

2.1. Quantum Bernoulli noises

We first briefly recall some necessary notions and facts about QBNs. We refer to
[17] for details about QBNs.

Let Ω be the set of all functions f : N �→ {−1, 1}, and (ζn)n≥0 the sequence of
canonical projections on Ω given by

ζn(f) = f(n), f ∈ Ω. (2.1)

Let F be the σ-field on Ω generated by the sequence (ζn)n≥0, and (pn)n≥0 a given
sequence of positive numbers with the property that 0 < pn < 1 for all n ≥ 0. Then
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there exists a unique probability measure P on F such that

P ◦ (ζn1 , ζn2 , . . . , ζnk
)−1
{
(ε1, ε2, . . . , εk)

}
=

k∏
j=1

p
1+εj

2
nj (1 − pnj )

1−εj
2 (2.2)

for nj ∈ N, εj ∈ {−1, 1} (1 ≤ j ≤ k) with ni 
= nj when i 
= j and k ∈ N with
k ≥ 1. Thus one has a probability measure space (Ω, F , P), which is referred to as
the Bernoulli space and random variables on it are known as Bernoulli functionals.

Let Z = (Zn)n≥0 be the sequence of Bernoulli functionals generated by sequence
(ζn)n≥0, namely

Zn =
ζn + qn − pn

2
√

pnqn
, n ≥ 0, (2.3)

where qn = 1 − pn. Clearly, Z = (Zn)n≥0 is an independent sequence of random
variables on the probability measure space (Ω, F , P). Let H be the space of square
integrable complex-valued Bernoulli functionals, namely

H = L2(Ω, F , P). (2.4)

We denote by 〈·, ·〉 the usual inner product of the space H, and by ‖ · ‖ the corre-
sponding norm. It is known that Z has the chaotic representation property. Thus,
Z = {Zσ |σ ∈ Γ} form an orthonormal basis (ONB) of H, which is known as the
canonical ONB of H. Here, Z∅ = 1 and

Zσ =
∏
j∈σ

Zj , σ ∈ Γ, σ 
= ∅. (2.5)

Clearly H is infinite-dimensional as a complex Hilbert space.
It can be shown that [17], for each k ∈ N, there exists a bounded operator ∂k

on H such that

∂kZσ = 1σ(k)Zσ\k, ∂∗
kZσ = [1 − 1σ(k)]Zσ∪k σ ∈ Γ, (2.6)

where ∂∗
k denotes the adjoint of ∂k, σ\k = σ\{k}, σ ∪ k = σ ∪ {k} and 1σ(k) the

indicator of σ as a subset of N.
The operators ∂k and ∂∗

k are usually known as the annihilation and creation
operators acting on Bernoulli functionals, respectively. And the family {∂k, ∂∗

k}k≥0

is referred to as QBNs.
A typical property of QBNs is that they satisfy the canonical anti-commutation

relations (CAR) in equal-time [17]. More specifically, for k, l ∈ N, it holds true that

∂k∂l = ∂l∂k, ∂∗
k∂∗

l = ∂∗
l ∂∗

k, ∂∗
k∂l = ∂l∂

∗
k (k 
= l) (2.7)

and

∂k∂k = ∂∗
k∂∗

k = 0, ∂k∂∗
k + ∂∗

k∂k = I, (2.8)

where I is the identity operator on H.
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For a nonnegative integer n ≥ 0, one can use QBNs to define two operators Ln

and Rn on H in the following manner:

Ln =
1
2
(
∂∗

n + ∂n − I
)
, Rn =

1
2
(
∂∗

n + ∂n + I
)
. (2.9)

It then follows from the properties of QBNs that the operators Ln, Rn, n ≥ 0, form
a commutative family, namely

LkLl = LlLk, RkLl = LlRk, RkRl = RlRk, k, l ≥ 0. (2.10)

Lemma 2.1 ([21]). For all n ≥ 0, operators Ln and Rn admit the following
operational properties :

L2
n = −Ln, LnRn = RnLn = 0, R2

n = Rn, L2
n + R2

n = I. (2.11)

2.2. Technical theorems

In this subsection, we prove some technical theorems, which will be used in defining
our model of OQW and examining its properties.

In what follows, we always assume that d ≥ 2 is a given positive integer and
Λ = {−1, +1}. We denote by Λd the d-fold Cartesian product of Λ, and by H⊗d

the d-fold tensor product space of H. In addition, we assume that K : H⊗d → H is
a fixed unitary isomorphism. Such a unitary isomorphism does exist because H is
infinite-dimensional and separable.

To facilitate our discussions, we further write S(H) for the space of all operators
of trace class on H with the trace norm and S+(H) for the cone of all positive
elements of S(H). Similarly, we use symbol S

(H⊗d
)

and S+

(H⊗d
)
.

Definition 2.1. For n ≥ 0 and ε = (ε1, ε2, . . . , εd) ∈ Λd, we define

C(ε)
n = K

⎛⎝ d⊗
j=1

B(εj)
n

⎞⎠K−1, (2.12)

where K−1 is the inverse of the unitary isomorphism K : H⊗d → H, and B
(εj)
n is

given by

B(εj)
n =

{
Ln, εj = −1,

Rn, εj = +1,
(2.13)

for i = 1, 2, . . . , d.

It can be shown that, for all n ≥ 0,
{
C

(ε)
n | ε ∈ Λd

}
are self-adjoint operators on

H. And moreover, they admit the following useful properties: C
(ε)
n C

(ε′)
n = 0 for ε,

ε′ ∈ Λd with ε 
= ε′; and their sum
∑

ε∈Λd C
(ε)
n is a unitary operator on H (see [20]

for details).

Theorem 2.1. Let n ≥ 0. Then
∑

ε∈Λd C
(ε)
n C

(ε)
n = I, where I denotes the identity

operator on H.
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Proof. By the definition of B−1
n and B

(+1)
n and Lemma 2.1, we have∑

εj∈Λ

B(εj)
n B(εj)

n = B(−1)
n B(−1)

n + B(+1)
n B(+1)

n = L2
n + R2

n = I

for j = 1, 2, . . . , d, where I denotes the identity operator on H. Making tensor
products gives

∑
ε∈Λd

⎛⎝ d⊗
j=1

B(εj)
n

⎞⎠⎛⎝ d⊗
j=1

B(εj)
n

⎞⎠
=
∑
ε∈Λd

⎛⎝ d⊗
j=1

B(εj)
n B(εj)

n

⎞⎠ =
d⊗

j=1

∑
εj∈Λ

B(εj)
n B(εj)

n =
d⊗

j=1

I.

This, together with the definition of C
(ε)
n as well as properties of the unitary iso-

morphism K, yields

∑
ε∈Λd

C(ε)
n C(ε)

n = K

⎡⎣∑
ε∈Λd

⎛⎝ d⊗
j=1

B(εj)
n

⎞⎠⎛⎝ d⊗
j=1

B(εj)
n

⎞⎠⎤⎦K−1 = K

⎡⎣ d⊗
j=1

I

⎤⎦K−1 = I.

Here, we note that
⊗d

j=1 I is just the identity operator on H⊗d.

Theorem 2.2. For all � ∈ S+(H) and n ≥ 0, the sum operator
∑

ε∈Λd C
(ε)
n � C

(ε)
n

belongs to S+(H), and moreover it holds true that

Tr

⎡⎣∑
ε∈Λd

C(ε)
n � C(ε)

n

⎤⎦ = Tr �. (2.14)

Proof. For each ε ∈ Λd, C
(ε)
n � C

(ε)
n is a positive operator of trace class on H since

� is such an operator and C
(ε)
n is self-adjoint. Thus,

∑
ε∈Λd C

(ε)
n � C

(ε)
n is also a

positive operator of trace class on H, namely it belongs to S+(H). Now, by using
Theorem 2.1, we find

Tr

⎡⎣∑
ε∈Λd

C(ε)
n � C(ε)

n

⎤⎦ =
∑
ε∈Λd

Tr
[
� C(ε)

n C(ε)
n

]
= Tr

⎡⎣�
∑
ε∈Λd

C(ε)
n C(ε)

n

⎤⎦ = Tr �.

This completes the proof.

Definition 2.2. A d-dimensional nucleus ω on H is a mapping ω : Zd → S+(H)
satisfying that ∑

x∈Zd

Tr[ω(x)] = 1. (2.15)

The set of all d-dimensional nucleuses on H is denoted as T (d)(H).
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It can be seen that, for each d-dimensional nucleus ω ∈ T (d)(H), the corre-
sponding function x �→ Tr[ω(x)] defines a probability distribution on Zd.

Theorem 2.3. For each n ≥ 0, there exists a mapping J
(d)
n : T (d)(H) → T (d)(H)

such that [
J(d)

n ω
]
(x) =

∑
ε∈Λd

C(ε)
n ω(x − ε)C(ε)

n , x ∈ Zd, ω ∈ T (d)(H), (2.16)

where
∑

ε∈Λd means to sum over Λd.

Proof. Let n ≥ 0. For each ω ∈ T (d)(H), there is naturally a mapping ω′ on Zd

associated with ω in the following way:

ω′(x) =
∑
ε∈Λd

C(ε)
n ω(x − ε)C(ε)

n , x ∈ Zd.

We observe that C
(ε)
n ω(x − ε)C(ε)

n ∈ S+(H) for all x ∈ Zd and all ε ∈ Λd, which
implies that ω′(x) ∈ S+(H) for all x ∈ Zd, hence ω′ is a mapping from Zd to
S+(H).

Next, we show that
∑

x∈Zd Tr[ω′(x)] = 1. In fact, for each x ∈ Zd, by Theo-
rem 2.2 we have ∑

ε∈Λd

Tr
[
C(ε)

n ω(x)C(ε)
n

]
= Tr[ω(x)].

Thus, in view of the fact that all the series involved have positive terms, we get∑
x∈Zd

Tr[ω′(x)] =
∑
x∈Zd

∑
ε∈Λd

Tr
[
C(ε)

n ω(x − ε)C(ε)
n

]
=
∑
x∈Zd

∑
ε∈Λd

Tr
[
C(ε)

n ω(x)C(ε)
n

]
=
∑
x∈Zd

Tr[ω(x)],

which together with ω ∈ T (d)(H) implies that
∑

x∈Zd Tr[ω′(x)] = 1. Now, accord-
ing to Definition 2.2, we know that ω′ ∈ T (d)(H). Finally, we define a mapping
J

(d)
n : T (d)(H) → T (d)(H) as

J(d)
n ω = ω′, ω ∈ T (d)(H).

Then J
(d)
n is the desired.

2.3. Definition of walk

This subsection gives the definition of our model of OQW on the d-dimensional
integer lattice Zd.

As mentioned above, we call a positive operator of trace class (on a Hilbert
space) a density operator if it has unit trace. Recall that d ≥ 2 is a given posi-
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tive integer. We denote by l2(Zd) the space of square summable complex-valued
functions on the d-dimensional integer lattice Zd. As a Hilbert space, l2(Zd) has
a countable ONB

{
δx | x ∈ Zd

}
, which is known as the canonical ONB of l2(Zd),

where δx is the function on Zd given by

δx(z) =

{
1, z = x, z ∈ Zd,

0, z 
= x, z ∈ Zd.

By convention, we use |δx〉〈δx| to mean the Dirac operator associated with δx, which
is a density operator on l2(Zd).

By the general theory of trace class operators on a Hilbert space [14], one can
easily come to the next lemma, which provides a way to construct a density operator
on the tensor space l2(Zd) ⊗H from the canonical ONB of l2(Zd) and elements of
T (d)(H).

Lemma 2.2. Let ω ∈ T (d)(H). Then, for each x ∈ Zd, |δx〉〈δx|⊗ω(x) is a positive
operator of trace class on l2(Zd) ⊗H. Moreover, the operator series∑

x∈Zd

|δx〉〈δx| ⊗ ω(x) (2.17)

is convergent in the trace operator norm and its sum operator is a density operator
on l2(Zd) ⊗H.

With help of this lemma, we are now ready to introduce our model of OQW as
follows.

Definition 2.3. The d-dimensional open QBN walk is an OQW on the d-
dimensional integer lattice Zd that admits the following features:

• Its states are represented by density operators on the tensor space l2(Zd) ⊗H.
• Let ω̃(n) be the state of the walk at time n ≥ 0. Then ω̃(n) takes the form

ω̃(n) =
∑
x∈Zd

|δx〉〈δx| ⊗ ω(n)(x), (2.18)

where ω(n) ∈ T (d)(H), which is called the nucleus of the state ω̃(n).
• The time evolution of the walk is governed by equation

ω(n+1) = J(d)
n ω(n), n ≥ 0, (2.19)

where ω(n+1) and ω(n) are the nucleuses of the states ω̃(n+1) and ω̃(n), respec-
tively, and J

(d)
n is the mapping described in Theorem 2.3.

In that case, the function x �→ Tr[ω(n)(x)] on Zd is called the probability distri-
bution of the walk at time n ≥ 0, while the quantity Tr[ω(n)(x)] is the probability
to find out the walker at position x ∈ Zd and time n ≥ 0. By convention, the state
ω̃(0) of the walk at time n = 0 is usually known as its initial state.
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Higher-dimensional open quantum walk

Physically, l2(Zd) describes the position of the walk, while H describes the
internal degrees of freedom of the walk. As shown above, H is infinitely dimensional,
which means that the d-dimensional open QBN walk has infinitely many internal
degrees of freedom.

Remark 2.1. It is not hard to see that the d-dimensional open QBN walk is
completely determined by the nucleus sequence of its states. Let

(
ω(n)

)
n≥0

be
the nucleus sequence of states of the d-dimensional open QBN walk. Then, by
Theorem 2.3, one has the following evolution relations:

ω(n+1)(x) =
∑
ε∈Λd

C(ε)
n ω(n)(x − ε)C(ε)

n , x ∈ Zd, n ≥ 0, (2.20)

which actually give an alternative description of the evolution of the d-dimensional
open QBN walk.

2.4. Quantum channel representation

In this subsection, we establish a quantum channel representation of the d-
dimensional open QBN walk, which shows that the d-dimensional open QBN walk
is indeed an OQW.

For n ≥ 0 and x, y ∈ Zd, we define an operator M (n)(x, y) on the tensor space
l2(Zd) ⊗H as

M (n)
x,y =

⎧⎨⎩|δx〉〈δy| ⊗ C
(x−y)
n , x − y ∈ Λd;

0, x − y /∈ Λd.
(2.21)

Clearly, for each n ≥ 0, the operator family
{
M

(n)
x,y | x, y ∈ Zd

}
is infinite and

countable.

Theorem 2.4. For each n ≥ 0, the countable family
{
M

(n)
x,y | x, y ∈ Zd

}
of operators

satisfies the following relation:∑
x,y∈Zd

M (n)
x,y

∗
M (n)

x,y = I, (2.22)

where M
(n)
x,y

∗
means the adjoint of M

(n)
x,y , I denotes the identity operator on l2(Zd)⊗

H and the operator series converges strongly.

Proof. First, for each y ∈ Zd, we find that there are at most finitely many x ∈ Zd

such that M
(n)
x,y 
= 0, which implies that the series

∑
x∈Zd M

(n)
x,y

∗
M

(n)
x,y is actually a

sum of finitely many summands. On the other hand, for each y ∈ Zd, by a direct
calculation we have∑

x∈Zd

M (n)
x,y

∗
M (n)

x,y =
∑

x−y∈Λd

(|δx〉〈δy| ⊗ C(x−y)
n

)∗(|δx〉〈δy| ⊗ C(x−y)
n

)
=

∑
x−y∈Λd

(|δy〉〈δx| ⊗ C(x−y)
n

)(|δx〉〈δy| ⊗ C(x−y)
n

)
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C. Wang

=
∑

x−y∈Λd

|δy〉〈δy| ⊗
(
C(x−y)

n C(x−y)
n

)
= |δy〉〈δy| ⊗

∑
x−y∈Λd

C(x−y)
n C(x−y)

n

= |δy〉〈δy| ⊗ IH.

Therefore, using the fact that the series
∑

y∈Zd |δy〉〈δy| strongly converges to Il2(Zd),
we finally come to∑

x,y∈Zd

M (n)
x,y

∗
M (n)

x,y

=
∑
y∈Zd

∑
x∈Zd

M (n)
x,y

∗
M (n)

x,y =
∑
y∈Zd

|δy〉〈δy| ⊗ IH = Il2(Zd) ⊗ IH = I.

Here, Il2(Zd) and IH mean the identity operators on l2(Zd) and H, respectively.

As above, we denote by S
(
l2(Zd) ⊗ H) the space of trace class operators on

l2(Zd)⊗H. Then, by the general theory of trace class operators [14], for each n ≥ 0
and each ω̃ ∈ S

(
l2(Zd) ⊗H), the operator series∑

x,y∈Zd

M (n)
x,y ω̃M (n)

x,y

∗

converges in the trace norm, and moreover its sum still belongs to S
(
l2(Zd) ⊗H).

Definition 2.4. For n ≥ 0, we define a mapping M(n) : S
(
l2(Zd) ⊗ H) →

S
(
l2(Zd) ⊗H) as

M(n)(ω̃) =
∑

x,y∈Zd

M (n)
x,y ω̃M (n)

x,y

∗
, ω̃ ∈ S

(
l2(Zd) ⊗H), (2.23)

where
∑

x,y∈Zd means to sum for all x, y ∈ Zd.

From a point of quantum information theory [11], the mapping M(n) is actually
a quantum channel of Krauss type. The next result then gives a quantum channel
representation of the d-dimensional open QBN walk.

Theorem 2.5. Let
(
ω̃(n)

)
n≥0

be the state sequence of the d-dimensional open QBN
walk. Then it satisfies the following evolution equation:

ω̃(n+1) = M(n)
(
ω̃(n)

)
, n ≥ 0. (2.24)

Proof. Let n ≥ 0. By Definition 2.3, ω̃(n) has a representation of the following
form:

ω̃(n) =
∑
z∈Zd

|δz〉〈δz| ⊗ ω(n)(z),
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Higher-dimensional open quantum walk

where the series converges strongly. For x, y ∈ Zd with x − y ∈ Λd, in view of the
fact

|δx〉〈δy| |δz〉〈δz| =

{|δx〉〈δy|, z = y;

0, z = y, z ∈ Zd,

we have

M (n)
x,y ω̃(n)M (n)

x,y

∗
=
[|δx〉〈δy| ⊗ C(x−y)

n

]⎡⎣∑
z∈Zd

|δz〉〈δz| ⊗ ω(n)(z)

⎤⎦[|δx〉〈δy| ⊗ C(x−y)
n

]∗
=
[|δx〉〈δy| ⊗

(
C(x−y)

n ω(n)(y)
)][|δx〉〈δy| ⊗ C(x−y)

n

]∗
=
[|δx〉〈δy| ⊗

(
C(x−y)

n ω(n)(y)
)][|δy〉〈δx| ⊗ C(x−y)

n

]
= |δx〉〈δx| ⊗

(
C(x−y)

n ω(n)(y)C(x−y)
n

)
.

For x, y ∈ Zd with x − y ∈ Λd, in view of M
(n)
x,y = 0, we simply have

M
(n)
x,y ω̃(n)M

(n)
x,y

∗
= 0. Thus, for each y ∈ Zd, as a sum actually with a finite number

of summands∑
x∈Zd

M (n)
x,y ω̃(n)M (n)

x,y

∗
=

∑
x−y∈Λd

M (n)
x,y ω̃(n)M (n)

x,y

∗

=
∑

x−y∈Λd

|δx〉〈δx| ⊗
(
C(x−y)

n ω(n)(y)C(x−y)
n

)
=
∑
ε∈Λd

|δy+ε〉〈δy+ε| ⊗
(
C(ε)

n ω(n)(y)C(ε)
n

)
.

Therefore

M(n)
(
ω̃(n)

)
=
∑
y∈Zd

∑
x∈Zd

M (n)
x,y ω̃(n)M (n)

x,y

∗

=
∑
y∈Zd

∑
ε∈Λd

|δy+ε〉〈δy+ε| ⊗
(
C(ε)

n ω(n)(y)C(ε)
n

)
=
∑
x∈Zd

|δx〉〈δx| ⊗
∑
ε∈Λd

C(ε)
n ω(n)(x − ε)C(ε)

n

=
∑
x∈Zd

|δx〉〈δx| ⊗ ω(n+1)(x)

= ω̃(n+1).

Here, we make use of the strong convergence of the involved series.

3. Probability Distribution of Walk

In this section, we consider the d-dimensional open QBN walk from a perspective of
probability distribution. We first show that all the states of the walk are separable
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provided its initial state is separable, and then, based on this property, we calculate
explicitly the limit probability distribution of the walk.

3.1. Separability of state

Let T (H) be the 1-dimensional counterpart of the d-dimensional nucleus set
T (d)(H), namely

T (H) =

{
ρ : Z → S+(H)

∣∣∣∣∣
∞∑

x=−∞
Tr[ρ(x)] = 1

}
. (3.1)

Elements of T (H) are called 1-dimensional nucleuses on H.

Lemma 3.1 ([21]). For each n ≥ 0, there exists a mapping Jn : T (H) → T (H)
such that

[Jnρ](x) = Lnρ(x + 1)Ln + Rnρ(x − 1)Rn, x ∈ Z, ρ ∈ T (H). (3.2)

By this lemma, we find that
(∏n

k=0Jk

)
ρ ∈ T (H) for all n ≥ 0 whenever ρ ∈

T (H), where
∏n

k=0 Jk means the composition of mappings J0, J1, . . . , Jn.

Theorem 3.1. Let ρ1, ρ2, . . . , ρd ∈ T (H) be 1-dimensional nucleuses on H. Define

ω(x) = K

⎛⎝ d⊗
j=1

ρj(xj)

⎞⎠K−1, x = (x1, x2, . . . , xd) ∈ Zd. (3.3)

Then ω ∈ T (d)(H), namely ω is a d-dimensional nucleus on H.

Proof. ∑
x∈Zd

Tr[ω(x)] =
∑
x∈Zd

Tr

⎡⎣ d⊗
j=1

ρj(xj)

⎤⎦ =
∑
x∈Zd

d∏
j=1

Tr[ρj(xj)]

=
d∏

j=1

∑
xj∈Z

Tr[ρj(xj)] = 1.

Definition 3.1. A d-dimensional nucleus ω ∈ T (d)(H) is said to to be separable
if there exist 1-dimensional nucleuses ρ1, ρ2, . . . , ρd ∈ T (H) such that

ω(x) = K

⎛⎝ d⊗
j=1

ρj(xj)

⎞⎠K−1, x = (x1, x2, . . . , xd) ∈ Zd. (3.4)

A state ω̃(n) of the d-dimensional open QBN walk is said to be separable if its
nucleus ω(n) is separable.

The next theorem actually shows that all the states of the d-dimensional open
QBN walk are separable provided its initial state is separable. In other words, the
d-dimensional open QBN walk has the “separability-preserving” property.
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Higher-dimensional open quantum walk

Theorem 3.2. Let
(
ω(n)

)
n≥0

be the nucleus sequence of the states of the d-
dimensional open QBN walk. Suppose that

ω(0)(x) = K

⎛⎝ d⊗
j=1

ρ
(0)
j (xj)

⎞⎠K−1, x = (x1, x2, . . . , xd) ∈ Zd, (3.5)

where ρ
(0)
1 , ρ

(0)
2 , . . . , ρ

(0)
d ∈ T (H). Then, for all n ≥ 1, ω(n) has a representation of

the following form:

ω(n)(x) = K

⎛⎝ d⊗
j=1

ρ
(n)
j (xj)

⎞⎠K−1, x = (x1, x2, . . . , xd) ∈ Zd, (3.6)

where

ρ
(n)
j =

(
n−1∏
k=0

Jk

)
ρ
(0)
j (3.7)

for j = 1, 2, . . . , d.

Proof. According to Lemma 3.1, ρ
(n)
j ∈ T (H) for each j with 1 ≤ j ≤ d and each

n ≥ 0. Thus, by Theorem 3.1, there exists a sequence
(
ω′(n)

)
n≥0

in T (d)(H) such
that

ω′(n)(x) = K

⎛⎝ d⊗
j=1

ρ
(n)
j (xj)

⎞⎠K−1, x = (x1, x2, . . . , xd) ∈ Zd, n ≥ 0. (3.8)

In particular, we have

ω′(0)(x) = K

⎛⎝ d⊗
j=1

ρ
(0)
j (xj)

⎞⎠K−1, x = (x1, x2, . . . , xd) ∈ Zd,

which, together with the assumption given in (3.5), implies that ω(0) = ω′(0).
On the other hand, for n ≥ 1, by (3.7) we have ρ

(n)
j = Jn−1ρ

(n−1)
j , 1 ≤ j ≤ d,

which together with Lemma 3.1 implies that

ρ
(n)
j (xj) =

∑
εj∈Λ

B
(εj)
n−1ρ

(n−1)
j (xj − εj)B

(εj)
n−1, xj ∈ Z, 1 ≤ j ≤ d.

Here, B
(−1)
n−1 = Ln−1 and B

(+1)
n−1 = Rn−1 as indicated in Definition 2.1. Taking tensor

product gives

d⊗
j=1

ρ
(n)
j (xj) =

∑
ε∈Λd

⎛⎝ d⊗
j=1

B
(εj)
n−1

⎞⎠⎛⎝ d⊗
j=1

ρ
(n−1)
j (xj − εj)

⎞⎠⎛⎝ d⊗
j=1

B
(εj)
n−1

⎞⎠,

x = (x1, x2, . . . , xd) ∈ Zd, n ≥ 1, where ε = (ε1, ε2, . . . , εd). This, together with
(3.8) and Definition 2.1, yields

ω′(n)(x) =
∑
ε∈Λd

C
(ε)
n−1ω

′(n−1)(x − ε)C(ε)
n−1, x = (x1, x2, . . . , xd) ∈ Zd, n ≥ 1,
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namely

ω′(n) = J
(d)
n−1ω

′(n−1), n ≥ 1,

which together with (2.19) and ω(0) = ω′(0) implies that ω(n) = ω′(n) for all n ≥ 0,
which together with (3.8) gives (3.6).

As an immediate consequence of the previous theorem, we have the following
corollary, which gives a formula for calculating the probability distributions of the
d-dimensional open QBN walk.

Corollary 3.1. Let the nucleus ω(0) of the initial state of the d-dimensional open
QBN walk take the following form:

ω(0)(x) = K

⎛⎝ d⊗
j=1

ρ
(0)
j (xj)

⎞⎠K−1, x = (x1, x2, . . . , xd) ∈ Zd, (3.9)

where ρ
(0)
1 , ρ

(0)
2 , . . . , ρ

(0)
d ∈ T (H). Then, at time n ≥ 1, the walk has a probability

distribution of the following form:

Tr
[
ω(n)(x)

]
=

d∏
j=1

Tr
[
ρ
(n)
j (xj)

]
, x = (x1, x2, . . . , xd) ∈ Zd, (3.10)

where

ρ
(n)
j =

(
n−1∏
k=0

Jk

)
ρ
(0)
j (3.11)

for j = 1, 2, . . . , d.

3.2. Limit probability distribution

Let ρ be a 1-dimensional nucleus on H, namely ρ ∈ T (H). A sequence
(
ρ(n)
)
n≥0

of
1-dimensional nucleuses on H is said to be generated by ρ and

(
Jn

)
n≥0

if ρ(0) = ρ

and

ρ(n+1) = Jnρ(n), n ≥ 0.

We note that if a sequence
(
ρ(n)
)
n≥0

is generated by ρ and
(
Jn

)
n≥0

, then ρ(0) = ρ

and

ρ(n) =

(
n−1∏
k=0

Jk

)
ρ(0), n ≥ 1,

where
∏n−1

k=0 Jk means the composition of mappings {Jk | 0 ≤ k ≤ n − 1}.
Definition 3.2. A 1-dimensional nucleus ρ on H is said to be regular if the sequence(
ρ(n)
)
n≥0

generated by ρ and
(
Jn

)
n≥0

satisfies that

lim
n→∞

∑
x∈Z

e
itx√

n Tr
[
ρ(n)(x)

]
= e−

t2
2 , t ∈ R.
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Higher-dimensional open quantum walk

The next example shows that there exist infinitely many 1-dimensional nucleuses
on H that are regular.

Example 3.1. Let σ ∈ Γ and Zσ the corresponding basis vector of the canonical
ONB of H. Define

ρσ(x) =

{|Zσ〉〈Zσ|, x = 0;

0, x 
= 0, x ∈ Z,
(3.12)

where |Zσ〉〈Zσ| is the Dirac operator associated with the basis vector Zσ. Then ρσ

is a regular 1-dimensional nucleus on H.

Proof. Clearly, ρσ is a 1-dimensional nucleus on H. Next, we show that it is also
regular. To this end, we consider the space l2(Z,H) of square summable H-valued
functions defined on Z, which is endowed the usual inner product and norm. It
can be verified (see [18] and references therein) that for each n ≥ 0, there exists a
unitary operator Un on l2(Z,H) such that

(UnΦ)(x) = RnΦ(x − 1) + LnΦ(x + 1), x ∈ Z, Φ ∈ l2(Z,H). (3.13)

Now, define Φn =
(∏n−1

k=0 Uk

)
Φ0, n ≥ 1, where Φ0 ∈ l2(Z,H) is taken as

Φ0(x) =

{
Zσ, x = 0;

0, x 
= 0, x ∈ Z.

Then, by a result recently proven by Wang et al. (see [18] for details), we have

‖Φn(x)‖2 =

⎧⎪⎨⎪⎩
1
2n

(
n

j

)
, x = n − 2j, 0 ≤ j ≤ n;

0, otherwise,

(3.14)

for all n ≥ 1. On the other hand, let
(
ρ(n)
)
n≥0

be the 1-dimensional nucleus
sequence on H generated by ρσ and

(
Jn

)
n≥0

. Then, by a careful check, we find
that

ρ(0)(x) = ρσ(x) = |Φ0(x)〉〈Φ0(x)|, x ∈ Z.

This, together with [21, Theorem 4.2], as well as (3.14), implies that

Tr[ρ(n)(x)] =

⎧⎪⎨⎪⎩
1
2n

(
n

j

)
, x = n − 2j, 0 ≤ j ≤ n;

0, otherwise.

(3.15)

Consequently, by a careful calculation, we finally come to

lim
n→∞

∑
x∈Z

e
itx√

n Tr
[
ρ(n)(x)

]
= lim

n→∞ cosn t√
n

= e−
t2
2 , t ∈ R,

which means that ρσ is regular.
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The next theorem shows that, for a wide range of choices of its initial state, the
d-dimensional open QBN walk has a limit probability distribution of d-dimensional
Gauss type.

Theorem 3.3. Let
(
ω̃(n)

)
n≥0

be the state sequence of the d-dimensional open QBN

walk and ω(n) the nucleus of ω̃(n), n ≥ 0. Suppose that the nucleus ω(0) of the initial
state ω̃(0) takes the following form:

ω(0)(x) = K

⎛⎝ d⊗
j=1

ρ
(0)
j (xj)

⎞⎠K−1, x = (x1, x2, . . . , xd) ∈ Zd, (3.16)

where
{
ρ
(0)
j | 1 ≤ j ≤ d

}
are regular 1-dimensional nucleuses on H. For n ≥ 0, let

Xn be a d-dimensional random vector with probability distribution

P{Xn = x} = Tr
[
ω(n)(x)

]
, x ∈ Zd. (3.17)

Then
Xn√

n
⇒ N(0, Id×d),

namely Xn√
n

converges in law to the d-dimensional standard Gauss distribution as
n → ∞.

Proof. Let n ≥ 1. Consider the characteristic function CXn√
n
(t) of the random

vector Xn√
n
. By definition, we have

CXn√
n
(t) =

∑
x∈Zd

e
i√
n

Pd
j=1 tjxj Tr

[
ω(n)(x)

]
, t = (t1, t2, . . . , td) ∈ Rd, (3.18)

where x = (x1, x2, . . . , xd). Using Corollary 3.1 gives

CXn√
n
(t) =

d∏
j=1

⎛⎝∑
xj∈Z

e
itjxj√

n Tr
[
ρ
(n)
j (xj)

]⎞⎠, t = (t1, t2, . . . , td) ∈ Rd,

where

ρ
(n)
j =

(
n−1∏
k=0

Jk

)
ρ
(0)
j , 1 ≤ j ≤ d.

Now, consider limn→∞ CXn√
n
(t). For each j, since ρ

(0)
j is regular and

(
ρ
(n)
j

)
n≥0

is

generated by ρ
(0)
j and (Jn)n≥0, we have

lim
n→∞

∑
xj∈Z

e
itjxj√

n Tr
[
ρ
(n)
j (xj)

]
= e−

t2j
2 , tj ∈ R,

which implies that

lim
n→∞CXn√

n
(t) =

d∏
j=1

⎛⎝ lim
n→∞

∑
xj∈Z

e
itjxj√

n Tr
[
ρ
(n)
j (xj)

]⎞⎠ =
d∏

j=1

e−
t2j
2 = e−

1
2

Pd
j=1 t2j ,
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t = (t1, t2, . . . , td) ∈ Rd. Thus, Xn√
n

converges in law to the d-dimensional standard
Gauss distribution as n → ∞.

4. Links with Unitary Quantum Walk

In this section, we show links between the d-dimensional open QBN walk and a
unitary quantum walk recently introduced in [20].

As before, d ≥ 2 is a given positive integer. We denote by l2
(
Zd,H) the space

of square summable functions defined on Zd and valued in H, namely

l2
(
Zd,H) =

⎧⎨⎩W : Zd → H
∣∣∣∣∣ ∑
x∈Zd

‖W (x)‖2 < ∞
⎫⎬⎭ , (4.1)

where ‖ · ‖ is the norm in H. It is known that l2
(
Zd,H) forms a separable Hilbert

space with the inner product induced by the that in H.
Recall that, for each n ≥ 0,

{
C

(ε)
n | ε ∈ Λd

}
are self-adjoint operators on H with

properties that: C
(ε)
n C

(ε′)
n = 0 for ε, ε′ ∈ Λd with ε 
= ε′; and their sum

∑
ε∈Λd C

(ε)
n

is a unitary operator on H (see Sec. 2.2 for details). Using these facts, we can prove
that there exists a sequence of unitary operators

(U (d)
n

)
n≥0

on l2
(
Zd,H) such that(U (d)

n W
)
(x) =

∑
ε∈Λd

C(ε)
n W (x − ε), x ∈ Zd, W ∈ l2

(
Zd,H), n ≥ 0. (4.2)

With these unitary operators as the evolution operators, the authors of [20] intro-
duced a unitary quantum walk on the d-dimensional integer lattice Zd in the fol-
lowing manner.

Definition 4.1 ([20]). The d-dimensional QBN walk is a discrete-time unitary
quantum walk on the d-dimensional integer lattice Zd that satisfies the following
requirements:

• Its states are represented by unit vectors in space l2
(
Zd,H).

• The time evolution of the walk is governed by equation

Wn+1 = U (d)
n Wn, n ≥ 0, (4.3)

where Wn ∈ l2
(
Zd,H) denotes the state of the walk at time n ≥ 0, in particular

W0 is the initial state and U (d)
n is the unitary operator indicated in (4.2).

In that case, the function x �→ ‖Wn(x)‖2 on Zd is called the probability distri-
bution of the walk at time n ≥ 0, while the quantity ‖Wn(x)‖2 is the probability
to find out the walker at position x ∈ Zd and time n ≥ 0.

Remark 4.1. According to (4.2), which describes the definition of unitary oper-
ators U (d)

n , the evolution equation of the d-dimensional QBN walk can also be
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represented as

Wn+1(x) =
∑
ε∈Λd

C(ε)
n Wn(x − ε), x ∈ Zd, n ≥ 0, (4.4)

which is more convenient to use.

As is seen, the d-dimensional QBN walk is driven by the sequence
(U (d)

n

)
n≥0

of unitary operators. Hence, it belongs to the category of unitary quantum walks.
In other words, it is indeed a unitary quantum walk. The next result shows links
between the d-dimensional open QBN walk and the d-dimensional QBN walk.

Theorem 4.1. Let
(
ω̃(n)

)
n≥0

be the state sequence of the d-dimensional open QBN

walk, where ω(n) is the nucleus of ω̃(n). Let
(
Wn

)
n≥0

be the state sequence of the
d-dimensional QBN walk. Suppose that

ω(0)(x) = |W0(x)〉〈W0(x)|, x ∈ Zd, (4.5)

where |W0(x)〉〈W0(x)| is the Dirac operator associated with W0(x). Then, for all
n ≥ 0, it holds that

Tr
[
ω(n)(x)

]
= ‖Wn(x)‖2, x ∈ Zd. (4.6)

Proof. We first recall some algebraic and analytical properties of operators C
(ε)
n .

As is indicated above, for each n ≥ 0,
{
C

(ε)
n | ε ∈ Λd

}
are self-adjoint operators on

H with the property that C
(ε)
n C

(ε′)
n = 0 for ε, ε′ ∈ Λd with ε 
= ε′, which implies

that ∥∥∥∥∥∥
∑
ε∈Λd

C(ε)
n ξε

∥∥∥∥∥∥
2

=
∑
ε∈Λd

∥∥C(ε)
n ξε

∥∥2 (4.7)

whenever
{
ξε | ε ∈ Λd

} ⊂ H. And moreover, it follows from (2.10) and Definition 2.1
that all the operators

{
C

(ε)
n | ε ∈ Λd, n ≥ 0

}
form a commutative family.

Now, we consider (4.6). Clearly, it holds for n = 0. In the following, we let n ≥ 1
and x ∈ Zd. Using (4.4) and (4.7) gives

‖Wn(x)‖2 =
∑

ε(n−1)∈Λd

∥∥C(ε(n−1))
n−1 Wn−1

(
x − ε(n−1)

)∥∥2,
where, by using the commutativity of the family

{
C

(ε)
k | ε ∈ Λd, k ≥ 0

}
and (4.7),

we have ∥∥C(ε(n−1))
n−1 Wn−1

(
x − ε(n−1)

)∥∥2
=

∑
ε(n−2)∈Λd

∥∥C(ε(n−1))
n−1 C

(ε(n−2))
n−2 Wn−2

(
x − ε(n−1) − ε(n−2)

)∥∥2.
Thus

‖Wn(x)‖2 =
∑

ε(n−1)∈Λd

∑
ε(n−2)∈Λd

∥∥C(ε(n−1))
n−1 C

(ε(n−2))
n−2 Wn−2

(
x − ε(n−1) − ε(n−2)

)∥∥2.
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It then follows by the induction that

‖Wn(x)‖2 =
∑

ε(n−1)∈Λd

· · ·
∑

ε(0)∈Λd

× ∥∥C(ε(n−1))
n−1 · · ·C(ε(0))

0 W0

(
x − ε(n−1) − · · · − ε(0)

)∥∥2. (4.8)

Similarly, repeatedly using the evolution relation (2.20) of the d-dimensional open
QBN walk yields that

ω(n)(x) =
∑

ε(n−1)∈Λd

· · ·
∑

ε(0)∈Λd

×
n−1∏
j=0

C
(ε(n−1−j))
n−1−j ω(0)

(
x − ε(n−1) − · · · − ε(0)

) n−1∏
j=0

C
(ε(j))
j .

Taking the trace gives

Tr
[
ω(n)(x)

]
=

∑
ε(n−1)∈Λd

· · ·
∑

ε(0)∈Λd

×Tr

⎡⎣n−1∏
j=0

C
(ε(n−1−j))
n−1−j ω(0)

(
x − ε(n−1) − · · · − ε(0)

)n−1∏
j=0

C
(ε(j))
j

⎤⎦. (4.9)

On the other hand, for ε(n−1) ∈ Λd, . . . , ε(0) ∈ Λd, by using the assumption (4.5)
we find ∥∥C(ε(n−1))

n−1 · · ·C(ε(0))
0 W0

(
x − ε(n−1) − · · · − ε(0)

)∥∥2
= Tr

⎡⎣n−1∏
j=0

C
(ε(n−1−j))
n−1−j ω(0)

(
x − ε(n−1) − · · · − ε(0)

) n−1∏
j=0

C
(ε(j))
j

⎤⎦,

which, together with (4.8) and (4.9), implies that Tr
[
ω(n)(x)

]
= ‖Wn(x)‖2.

Remark 4.2. It should be mentioned that under the conditions given in Theo-
rem 4.1, one has, in general, that

ω(n)(x) 
= |Wn(x)〉〈Wn(x)|, x ∈ Zd, n ≥ 1. (4.10)

This suggests that the d-dimensional open QBN walk is mathematically different
from the d-dimensional QBN walk.

However, from a perspective of physical realization, transition may happen
between these two walks. As an immediate consequence of Theorem 4.1, the next
corollary describes the limit case when such transition happens.

Corollary 4.1. Let the initial state ω̃(0) of the d-dimensional open QBN walk be
such that

ω̃(0) =
∑
x∈Zd

|δx〉〈δx| ⊗ |W0(x)〉〈W0(x)|, (4.11)
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where W0 is the initial state of the d-dimensional QBN walk. Then, the d-
dimensional open QBN walk has a limit probability distribution if and only if the
d-dimensional QBN walk has a limit probability distribution. In that case, their limit
probability distributions are identical.
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Schürmann, Lecture Notes in Mathematics, Vol. 1954 (Springer, 2008), pp. 309–
452.

8. N. Konno and H. J. Yoo, Limit theorems for open quantum random walks, J. Stat.
Phys. 150 (2013) 299–319.

9. C. F. Lardizabal, Open quantum random walks and the mean hitting time formula,
Quantum Inf. Comput. 17 (2017) 79–105.

10. R. Motwani and P. Raghavan, Randomized Algorithms (Cambridge Univ. Press, 1995).
11. D. Petz, Quantum Information Theory and Quantum Statistics (Springer, 2008).
12. R. Portugal, Quantum Walks and Search Algorithms, 2nd edn. (Springer Nature,

2018).
13. P. Sadowski and L. Pawela, Central limit theorem for reducible and irreducible open

quantum walks, Quantum Inf. Process. 15 (2016) 2725–2743.
14. B. Simon, Operator Theory : A Comprehensive Course in Analysis, Part 4 (Amer.

Math. Soc., 2015).
15. I. Sinayskiy and F. Petruccione, Open quantum walks: A mini review of the field and

recent developments, Eur. Phys. J. Special Top. 227 (2019) 1869–1883.
16. S. E. Venegas-Andraca, Quantum walks: A comprehensive review, Quantum Inf. Pro-

cess. 11 (2012) 1015–1106.
17. C. S. Wang, H. F Chai and Y. C. Lu, Discrete-time quantum Bernoulli noises,

J. Math. Phys. 51 (2010) 053528.
18. C. S. Wang, S. L. Ren and Y. L. Tang, A new limit theorem for quantum walk in

terms of quantum Bernoulli noises, Entropy 22 (2020) 486.

2250001-20

St
oc

h.
 D

yn
. 2

02
2.

22
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 T

SI
N

G
H

U
A

 U
N

IV
E

R
SI

T
Y

 o
n 

05
/1

6/
22

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



January 14, 2022 11:44 WSPC/S0219-4937 168-SD 2250001

Higher-dimensional open quantum walk

19. C. S. Wang, Y. L. Tang and S. L. Ren, Weighted number operators on Bernoulli
functionals and quantum exclusion semigroups, J. Math. Phys. 60 (2019) 113506.

20. C. Wang and C. S. Wang, Higher-dimensional quantum walk in terms of quantum
Bernoulli noises, Entropy 22 (2020) 504.

21. C. S. Wang, C. Wang, S. L. Ren and Y. L. Tang, Open quantum random walk in
terms of quantum Bernoulli noise, Quantum Inf. Process. 17 (2018) 46.

2250001-21

St
oc

h.
 D

yn
. 2

02
2.

22
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 T

SI
N

G
H

U
A

 U
N

IV
E

R
SI

T
Y

 o
n 

05
/1

6/
22

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.


	Introduction
	Definition of Walk and Its Basic Properties
	Quantum Bernoulli noises
	Technical theorems
	Definition of walk
	Quantum channel representation

	Probability Distribution of Walk
	Separability of state
	Limit probability distribution

	Links with Unitary Quantum Walk


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ENU ([Based on 'Press'] [Based on '[Press Quality]'] Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks true
      /AddPageInfo true
      /AddRegMarks true
      /BleedOffset [
        30
        30
        30
        30
      ]
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 14.177000
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


