# O-Systems and Extensions of Completely Unitary Vertex Operator Algebras 

## Bin Gui*

Department of Mathematics, Rutgers University, USA.
*Correspondence to be sent to: e-mail: binguimath@gmail.com

Complete unitarity is a natural condition on a CFT-type regular vertex operator algebra (VOA), which ensures that its modular tensor category (MTC) is unitary. In this paper we show that any CFT-type unitary (conformal) extension $U$ of a completely unitary VOA $V$ is completely unitary. Our method is to relate $U$ with a Q-system $A_{U}$ in the $C^{*}$ tensor category $\operatorname{Rep}^{\mathrm{u}}(V)$ of unitary $V$-modules. We also update the main result of [30] to the unitary cases by showing that the tensor category $\operatorname{Rep}^{\mathrm{u}}(U)$ of unitary $U$-modules is equivalent to the tensor category $\operatorname{Rep}^{\mathrm{u}}\left(A_{U}\right)$ of unitary $A_{U}$-modules as unitary MTCs. As an application, we obtain infinitely many new (regular and) completely unitary VOAs including all CFT-type $c<1$ unitary VOAs. We also show that the latter are in one-toone correspondence with the (irreducible) conformal nets of the same central charge $c$, the classification of which is given by [29].

## Introduction

This is the 1st part in a series of papers to study the relations between unitary vertex operator algebra (VOA) extensions and conformal net extensions. We will always focus on rational conformal field theories, so our VOAs are assumed to be CFT type, selfdual, and regular, so that the categories of VOA modules are modular tensor categories (MTCs).

Although both unitary VOAs and conformal nets are mathematical formulations of unitary chiral CFTs, they are defined and studied in rather different ways, with the

[^0]© The Author(s) 2021. Published by Oxford University Press. All rights reserved.
For permissions, please e-mail: journals.permission@oup.com.
former being more algebraic and geometric, and the latter mainly functional analytic. A systematic study to relate these two approaches was initiated by Carpi-Kawahigashi-Longo-Weiner [7] and followed by [9, 10, 21, 43-45], etc. In these works the methods of relating the two approaches are transcendental and have a lot of analytic subtleties. Due to these subtleties, certain models (such as unitary Virasoro VOAs, and unitary affine VOAs especially of type A) are easier to analyze than the others. On the other hand, when studying the extensions and conformal inclusions of chiral CFTs, the main tools in the two approaches are quite similar: both are (commutative) associative algebras in a tensor category $\mathcal{C}$ (called $\mathcal{C}$-algebras); see [8, 23, 30] for VOA extensions, and [5, 29, 31] for conformal net extensions; see also [16,17] for the general notion of algebra objects inside a tensor category. In this and the following papers, we will see that $\mathcal{C}$-algebras are also powerful tools for relating unitary VOA extensions and conformal net extensions in the above-mentioned systematic and transcendental settings.

There is, however, one important difference between the $\mathcal{C}$-algebras used in the two approaches: for conformal net extensions the $\mathcal{C}$-algebras are unitary. Unitarity is an essential property for conformal nets and operator algebras but not quite necessary for VOAs. However, it is impossible to relate VOAs and conformal nets without adding unitary structures on VOAs (and their representation categories). This point is already clear in [21], where we have seen that to relate the tensor categories of VOAs and conformal nets, one has to first make the VOA tensor categories unitary.

In this paper our main goal is to relate the $C^{*}$-tensor categories of unitary VOA extensions with those of unitary $\mathcal{C}$-algebras (also called $C^{*}$-Frobenius algebras or (under slightly stronger condition) $Q$-systems [33]). As applications, we prove many important unitary properties of VOA extensions, the most important of which are the complete unitarity of VOAs as defined below.

## Complete unitarity of unitary VOA extensions

A CFT-type regular VOA $V$ is called completely unitary if the following conditions are satisfied.

- $V$ is unitary [11], which means roughly that $V$ is equipped with an inner product and an antiunitary antiautomorphism $\Theta$, which relates the vertex operators of $V$ to their adjoints.
- Any $V$-module admits a unitary structure. Since $V$-modules are semisimple, it suffices to assume the unitarizability of irreducible $V$-modules.
- For any irreducible unitary $V$-modules $W_{i}, W_{j}, W_{k}$, the non-degenerate invariant sesquilinear form $\Lambda$ introduced in [19] and defined on the dual vector space of type $\binom{k}{i}$ intertwining operators of $V$ is positive.

The importance of complete unitarity lies in the following theorem.

Theorem 0.1 ([19] theorem 7.9). If $V$ is a CFT-type, regular, and completely unitary VOA, then the unitary $V$-modules form a unitary MTC.

However, compared to unitarity, complete unitarity is much harder to prove since not only vertex operators but also intertwining operators need to be taken care of. In this paper, our main result as follows provides a powerful tool for proving the complete unitarity.

Theorem 0.2. Suppose that $V$ is a CFT-type, regular, and completely unitary VOA, and $U$ is a CFT-type unitary VOA extension of $V$. Then $U$ is also completely unitary.

Roughly speaking, if we know that a unitary VOA $U$ is an extension of a completely unitary VOA $V$, then $U$ is also completely unitary. As applications, since the complete unitarity has been established for unitary affine VOAs and $c<1$ unitary Virasoro VOAs (minimal models) as well as their tensor products (proposition 3.31), we know that all their unitary extensions are completely unitary. In particular, these extensions have unitary MTCs. We also show that these tensor categories are equivalent to the unitary MTCs associated to the corresponding $Q$-system. To be more precise, we prove the following:

Theorem 0.3. Let $V$ be a CFT-type, regular, and completely unitary VOA, and let $U$ be a CFT-type unitary extension of $V$ whose Q-system is $A_{U}$. If $\operatorname{Rep}^{u}(U)$ is the category of unitary $U$-modules, and $\operatorname{Rep}^{\mathrm{u}}\left(A_{U}\right)$ is the category of unitary $A_{U}$-modules, then $\operatorname{Rep}^{\mathrm{u}}(U)$ is naturally equivalent to $\operatorname{Rep}^{\mathrm{u}}\left(A_{U}\right)$ as unitary MTCs.

A non-unitary version of the above theorem has already been proved in [8]: $\operatorname{Rep}^{\mathrm{u}}(U)$ is known to be equivalent to $\operatorname{Rep}^{\mathrm{u}}\left(A_{U}\right)$ as MTCs. The above theorem says that the unitary structures of the two MTCs are also equivalent in a natural way. We remark that the unitary tensor structures compatible with the $*$-structure of $\operatorname{Rep}^{\mathrm{u}}(U)$ are unique by [6, 41]. Thus [6, 41] provide a different method of proving the above theorem.

We would like to point out that our results on the relation between unitary VOA extensions and O -systems also provide a new method of proving the unitarity
of VOAs. For instance, the irreducible $c<1$ conformal nets are classified as (finite index) extensions of Virasoro nets by Kawahigashi-Longo in [29] (table 3), and their VOA counterparts are given by Dong-Lin in [12]. However, Dong-Lin were not able to prove the unitarity of two exceptional cases: the types $\left(A_{10}, E_{6}\right)$ and $\left(A_{28}, E_{8}\right)$ (see remark 4.16 of [12]). But since these two types are realized as commutative Q-systems in [29], we can now show that the corresponding VOAs are actually unitary. This proves that the $c<1$ CFT-type unitary VOAs are in one-to-one correspondence with the irreducible conformal nets with the same central charge $c$.

We have left several important questions unanswered in this paper. We see that Q-systems can relate unitary VOA extensions and conformal net extensions. But [7] also provides a uniform way of relating unitary VOAs and conformal nets using smeared vertex operators. Are these two relations compatible? Moreover, do the VOA extensions and the corresponding conformal net extensions have the same tensor categories? Answers to these questions are out of scope in this paper, so we leave them to future works.

## Outline of the paper

In chapter 1 we review the construction and basis properties of VOA tensor categories due to Huang-Lepowsky. We also review various methods of constructing new intertwining operators from old ones and translate them into tensor categorical language. The translation of adjoint and conjugate intertwining operators is the most important result of this chapter. Unitary VOAs, unitary representations, and the unitary structure on VOA tensor categories are also reviewed.

In chapter 2 we relate unitary VOA extensions and 0 -systems as well as their (unitary) representations. The 1st two sections serve as background materials. In section 2.1 we review the relation between VOA extensions and commutative $\mathcal{C}$-algebras as in [23]. Their results are adapted to our unitary setting. In section 2.2 we review various notions concerning dualizable objects in $C^{*}$-tensor categories. Most importantly, we review the construction of standard evaluations and coevaluations in $C^{*}$-tensor categories necessary for defining quantum traces and quantum dimensions. Standard reference for this topic is [32]. We also explain why the naturally defined evaluations and coevaluations in the tensor categories associated to completely unitary VOAs are standard. In section 2.3 we define a notion of unitary $\mathcal{C}$-algebras, which is a direct translation of unitary VOA extensions in categorical language. This notion is related to $C^{*}$-Frobenius algebras and Q -systems in section 2.4. The equivalence of $c<1$ unitary VOAs and conformal nets is also proved in that section. A VOA $U$ is called strongly
unitary if it satisfies the 1st two of the three conditions defining complete unitarity. Therefore, strong unitarity means the unitarity of $U$ and the unitarizability of all $U$ modules. In section 2.5, we give two proofs that any unitary extension $U$ of a completely unitary VOA $V$ is strongly unitary. The 1 st proof uses induced representations, and the 2nd one uses a result of standard representations of O-systems in [5].

In chapter 3 we use the $C^{*}$-tensor categories of the bimodules of Q-systems to prove the complete unitarity of unitary VOA extensions. We review the construction and basic properties of these $C^{*}$-tensor categories in the 1st four sections. Although these results are known to experts (cf. [37] chapter 6 or [39] section 4.1), we provide detailed and self-contained proofs of all the relevant facts, which we hope are helpful to the readers who are not familiar with tensor categories. We present the theory in such a way that it can be directly compared with the (Hermitian) tensor categories of unitary VOA modules. So in some sense our approach is closer in spirit to [8, 30]. In section 3.5 we prove the main results of this paper: theorems 0.2 and 0.3 (which are theorem 3.30 of that section). Finally, applications are given in section 3.6.

## 1 Intertwining Operators and Tensor Categories of Unitary VOAs

### 1.1 Braiding, fusion, and contragredient intertwining operators

Let $V$ be a self-dual VOA with vacuum vector $\Omega$ and conformal vector $v$. For any $V \in V$, its vertex operator is written as $Y(v, z)=\sum_{n \in \mathbb{Z}} Y(V)_{n} z^{-n-1}$. Then $\left\{L_{n}=Y(\nu)_{n+1}: n \in \mathbb{Z}\right\}$ are the Virasoro operators. Throughout this paper, we assume that the grading of $V$ satisfies $V=\mathbb{C} \Omega \oplus\left(\bigoplus_{n \in \mathbb{Z}_{>0}} V(n)\right)$ where $V(n)$ is the eigenspace of $L_{0}$ with eigenvalue $n$, that is, $V$ is of CFT type. We assume also that $V$ is regular, which is equivalent to that $V$ is rational and $C_{2}$-cofinite. (See [13] for the definition of these terminologies as well as the equivalence theorem.) Such condition guarantees that the intertwining operators of $V$ satisfy the braiding and fusion relations $[25,26]$ and the modular invariance [27, 48] and that the category $\operatorname{Rep}(V)$ of (automatically semisimple) $V$-modules is indeed an MTC [28].

We refer the reader to $[4,14,46]$ for the general theory of tensor categories, and [28] for the construction of the tensor category $\operatorname{Rep}(V)$ of $V$-modules. A brief review of this construction can also be found in [18] section 2.4 or [21] section 4.1. Here we outline some of the key properties of $\operatorname{Rep}(V)$, which will be used in the future.

Representations of $V$ are written as $W_{i}, W_{j}, W_{k}$, etc. If a $V$-module $W_{i}$ is given, its contragredient module (cf. [15] section 5.2) is written as $W_{\bar{i}} . W_{\overline{\bar{i}}^{\prime}}$ the contragredient module of $W_{\bar{i}}$, can naturally be identified with $W_{i}$. So we write $\overline{\bar{i}}=i$. Note that the
symbol $i$ is now reserved for representations. So we write the imaginary unit $\sqrt{-1}$ as $\mathbf{i}$. Let $W_{0}$ be the vacuum $V$-module, which is also the identity object in $\operatorname{Rep}(V)$. The product of $V$-modules is constructed in such a way that for any $W_{i}, W_{j}, W_{k}$ there is a canonical isomorphism of linear spaces

$$
\begin{equation*}
\mathcal{Y}: \operatorname{Hom}\left(W_{i} \boxtimes W_{j}, W_{k}\right) \xrightarrow{\simeq} \mathcal{V}\binom{k}{i j}, \quad \alpha \mapsto \mathcal{Y}_{\alpha} \tag{1.1}
\end{equation*}
$$

where $\mathcal{V}\binom{k}{i j}=\mathcal{V}\binom{W_{k}}{W_{i} W_{j}}$ is the (finite-dimensional) vector space of intertwining operators of $V$. For any $w^{(i)} \in W_{i}$, we write $\mathcal{Y}_{\alpha}\left(w^{(i)}, z\right)=\sum_{s \in \mathbb{C}} \mathcal{Y}_{\alpha}\left(w^{(i)}\right)_{s} z^{-s-1}$ where $z$ is a complex variable defined in $\mathbb{C}^{\times}:=\mathbb{C} \backslash\{0\}$ and $\mathcal{Y}_{\alpha}\left(W^{(i)}\right)_{s}: W_{j} \rightarrow W_{k}$ is the $s$-th mode of the intertwining operator. We say that $W_{i}, W_{j}, W_{k}$ are respectively the charge space, the source space, and the target space of the intertwining operator $\mathcal{Y}_{\alpha}$. Tensor products of morphisms are defined such that the following condition is satisfied: if $F \in \operatorname{Hom}\left(W_{i^{\prime}}, W_{i}\right), G \in \operatorname{Hom}\left(W_{j^{\prime}}, W_{j}\right), K \in \operatorname{Hom}\left(W_{k}, W_{k^{\prime}}\right)$, then for any $W^{\left(i^{\prime}\right)} \in W_{i^{\prime}}$,

$$
\begin{equation*}
\mathcal{Y}_{K \alpha(F \otimes G)}\left(w^{\left(i^{\prime}\right)}, z\right)=K \mathcal{Y}_{\alpha}\left(F W^{\left(i^{\prime}\right)}, z\right) G \tag{1.2}
\end{equation*}
$$

One way to realize the above properties is as follows: notice first of all that $V$ has finitely many equivalence classes of irreducible unitary $V$-modules. Fix, for each equivalence class, a representing element, and let them form a finite set $\mathcal{E}$. We assume that the vacuum unitary module $V=W_{0}$ is in $\mathcal{E}$. If $W_{t} \in \mathcal{E}$, we will use the notation $t \in \mathcal{E}$ to simplify formulas. We then define $W_{i} \boxtimes W_{j}$ to be $\bigoplus_{t \in \mathcal{E}} \mathcal{V}\binom{t}{i}^{*} \otimes W_{t}$ [24] (here $\mathcal{V}\binom{t}{i}$ ) is the dual vector space of $\mathcal{V}\binom{t}{i j}$ ). Then for each $t \in \mathcal{E}$ there is a natural identification between $\operatorname{Hom}\left(W_{i} \boxtimes W_{j}, W_{t}\right)$ and $\mathcal{V}\binom{t}{i}$, which can be extended to the general case $\operatorname{Hom}\left(W_{i} \boxtimes W_{j}, W_{k}\right) \simeq \mathcal{V}\binom{k}{i j}$ via the canonical isomorphisms

$$
\begin{align*}
\operatorname{Hom}\left(W_{i} \boxtimes W_{j}, W_{k}\right) & \simeq \bigoplus_{t \in \mathcal{E}} \operatorname{Hom}\left(W_{i} \boxtimes W_{j}, W_{t}\right) \otimes \operatorname{Hom}\left(W_{t}, W_{k}\right),  \tag{1.3}\\
\mathcal{V}\binom{k}{i j} & \simeq \bigoplus_{t \in \mathcal{E}} \mathcal{V}\binom{t}{i j} \otimes \operatorname{Hom}\left(W_{t}, W_{k}\right) . \tag{1.4}
\end{align*}
$$

The tensor structure of $\operatorname{Rep}(V)$ is defined in such a way that it is related to the fusion relations of the intertwining operators of $V$ as follows. Choose non-zero $z, \zeta$ with the same arguments (notation: $\arg z=\arg \zeta$ ) satisfying $0<|z-\zeta|<|\zeta|<|z|$. In particular, we assume that $z, \zeta$ are on a common ray stemming from the origin. We also $\operatorname{choose} \arg (z-\zeta)=\arg \zeta=\arg z$. Suppose that we have $W_{i}, W_{j}, W_{k}, W_{l}, W_{p}, W_{q} \operatorname{in} \operatorname{Rep}(V)$, and intertwining operators $\mathcal{Y}_{\alpha} \in \mathcal{V}\binom{l}{i}, \mathcal{Y}_{\beta} \in \mathcal{V}\binom{p}{j}, \mathcal{Y}_{\gamma} \in \mathcal{V}\binom{q}{i}, \mathcal{Y}_{\delta} \in \mathcal{V}\binom{l}{q}$, such that for
any $w^{(i)} \in W_{i}, W^{(j)} \in W_{j}$, the following fusion relation holds when acting on $W_{k}$ :

$$
\begin{equation*}
\mathcal{Y}_{\alpha}\left(w^{(i)}, z\right) \mathcal{Y}_{\beta}\left(w^{(j)}, \zeta\right)=\mathcal{Y}_{\delta}\left(\mathcal{Y}_{\gamma}\left(w^{(i)}, z-\zeta\right) w^{(j)}, \zeta\right) \tag{1.5}
\end{equation*}
$$

Then, under the identification of $W_{i} \boxtimes\left(W_{j} \boxtimes W_{k}\right)$ and $\left(W_{i} \boxtimes W_{j}\right) \boxtimes W_{k}$ (which we denote by $\left.W_{i} \boxtimes W_{j} \boxtimes W_{k}\right)$ via the associativity isomorphism, we have the identity $\alpha\left(\mathbf{l}_{i} \otimes \beta\right)=\delta\left(\gamma \otimes \mathbf{l}_{k}\right)$, which can be expressed graphically as


Here we take the convention that morphisms go from top to bottom.

Convention 1.1. When we consider fusion relations in the form (1.5), we always assume $0<|z-\zeta|<|\zeta|<|z|$ and $\arg (z-\zeta)=\arg \zeta=\arg z$.

The braided and the contragredient intertwining operators are two major ways of constructing new intertwining operators from old ones [15]. As we shall see, they can all be translated into operations on morphisms. We first discuss braiding. Given $\mathcal{Y}_{\alpha} \in \mathcal{V}\binom{k}{i j}$, we can define braided intertwining operators $B_{+} \mathcal{Y}_{\alpha}, B_{-} \mathcal{Y}_{\alpha}$ of type $\mathcal{V}\binom{k}{j}$ in the following way: choose any $w^{(i)} \in W_{i}, w^{(j)} \in W_{j}$. Then

$$
\begin{equation*}
\left(B_{ \pm} \mathcal{Y}_{\alpha}\right)\left(w^{(j)}, z\right) w^{(i)}=e^{z L_{-1}} \mathcal{Y}_{\alpha}\left(w^{(i)}, e^{ \pm \mathbf{i} \pi} z\right) w^{(j)} \tag{1.7}
\end{equation*}
$$

Then the braid isomorphism $\Omega=\Omega_{i, j}: W_{i} \boxtimes W_{j} \rightarrow W_{j} \boxtimes W_{i}$ is constructed in such a way that $B_{ \pm} \mathcal{Y}_{\alpha}=\mathcal{Y}_{\alpha \circ \beta^{ \pm 1}}$. Write $B_{+} \mathcal{Y}_{\alpha}=\mathcal{Y}_{B_{+} \alpha}$ and $B_{-} \mathcal{Y}_{\alpha}=\mathcal{Y}_{B_{-} \alpha}$. Then $B_{ \pm} \alpha=\alpha \circ \Omega^{ \pm 1}$. Using and to denote $\Omega$ and $\Omega^{-1}$, respectively, this formula can be pictured as


Let $Y_{i}=Y_{i}(V, z)$ be the vertex operator associated to the module $W_{i}$. Then $Y_{i}$ is also a type $\binom{i}{0}$ intertwining operator. It's easy to verify that $B_{+} Y_{i}=B_{-} Y_{i}$ as type $\mathcal{V}\binom{i}{i}$ intertwining operators, which we denote by $\mathcal{Y}_{\kappa(i)}$ and call the creation operator of $W_{i}$. Then the canonical isomorphism of the left multiplication by identity $W_{0} \boxtimes W_{i} \xrightarrow{\simeq} W_{i}$ is defined to be the one corresponding to $Y_{i}$. Similarly the right multiplication by identity $W_{i} \boxtimes W_{0} \xrightarrow{\sim} W_{i}$ is chosen to be $\kappa(i)$.

One can also construct contragredient intertwining operators $C_{+} \mathcal{Y}_{\alpha} \equiv$ $\mathcal{Y}_{C_{+} \alpha} C_{-} \mathcal{Y}_{\alpha} \equiv \mathcal{Y}_{C_{-} \alpha}$ of $\mathcal{Y}_{\alpha}$, which are of type $\binom{\bar{j}}{i \bar{k}}$, such that for any $w^{(i)} \in W_{i}, w^{(j)} \in$ $W_{j}, W^{(\bar{k})} \in W_{\bar{k}^{\prime}}$

$$
\begin{equation*}
\left\langle\mathcal{Y}_{C_{ \pm} \alpha}\left(w^{(i)}, z\right) w^{(\bar{k})}, w^{(j)}\right\rangle=\left\langle w^{(\bar{k})}, \mathcal{Y}_{\alpha}\left(e^{z L_{1}}\left(e^{\mp \mathbf{i} \pi} z^{-2}\right)^{L_{0}} W^{(i)}, z^{-1}\right) w^{(j)}\right\rangle \tag{1.9}
\end{equation*}
$$

Here, and also throughout this paper, we follow the convention $\arg z^{r}=r \arg z(r \in \mathbb{R})$ unless otherwise stated. To express contragredient intertwining operators graphically, we first introduce, for any $V$-module $W_{i}$ (together with its contragredient module $\left.W_{\bar{i}}\right)$, two important intertwining operators $\mathcal{Y}_{\mathrm{ev}_{i, \bar{i}}} \in \mathcal{V}\binom{0}{i \bar{i}}$ and $\mathcal{Y}_{\mathrm{ev}_{\bar{i}, i}} \in \mathcal{V}\binom{0}{i}$, called the annihilation operators of $W_{\bar{i}}$ and $W_{i}$, respectively. Recall that $V$ is self-dual. Fix an isomorphism $V=W_{0} \simeq W_{\overline{0}}$ and identify $W_{0}$ and $W_{\overline{0}}$ through this isomorphism. We now define

$$
\begin{equation*}
\mathcal{Y}_{\mathrm{ev}_{i, \bar{i}}}=C_{-} \mathcal{Y}_{\kappa(i)}=C_{-} B_{ \pm} Y_{i} . \tag{1.10}
\end{equation*}
$$

The type of $\mathcal{Y}_{\mathrm{ev}_{i, \bar{i}}}$ shows that $\mathrm{ev}_{i, \bar{i}} \in \operatorname{Hom}\left(W_{i} \boxtimes W_{\bar{i}^{\prime}} V\right)$, which plays the role of the evaluation map of $W_{\bar{i}}$. $\mathrm{ev}_{\bar{i}, i} \in \operatorname{Hom}\left(W_{\bar{i}} \boxtimes W_{i}, V\right)$ can be defined in a similar way. We write $\mathrm{ev}_{i, \bar{i}}=$ and $\mathrm{ev}_{\bar{i}, i}=\psi_{i} \downarrow=\psi_{\bar{i}} \downarrow=k_{i} \ngtr$, following the convention that a vertical line with label $i$ but upward-pointing arrow means (the identity morphism of) $W_{\bar{i}}$. We can now give a categorical description of $C_{-} \alpha$ with the help of the following fusion relation (cf. [19] remark 5.4)

$$
\begin{equation*}
\mathcal{Y}_{\mathrm{ev}_{j, \bar{j}}}\left(w^{(j)}, z\right) \mathcal{Y}_{C_{-} \alpha}\left(w^{(i)}, \zeta\right)=\mathcal{Y}_{\mathrm{ev}_{k, \bar{k}}}\left(\mathcal{Y}_{B_{-\alpha}}\left(w^{(j)}, z-\zeta\right) w^{(i)}, \zeta\right), \tag{1.11}
\end{equation*}
$$

which can be translated to


By [28] section 3, there exist coevaluation maps $\operatorname{coev}_{i, \bar{i}}=\digamma_{i} \uparrow \in \operatorname{Hom}\left(V, W_{i} \boxtimes W_{\bar{i}}\right)$ and $\operatorname{coev}_{\bar{i}, i}=\overparen{\digamma_{i}} \uparrow=\overparen{\jmath_{i} \quad} \quad \mathrm{Hom}\left(V, W_{\bar{i}} \boxtimes W_{i}\right)$ satisfying

$$
\begin{align*}
& \left(\mathrm{ev}_{i, \bar{i}} \otimes \mathbf{l}_{i}\right)\left(\mathbf{l}_{i} \otimes \operatorname{coev}_{\bar{i}, i}\right)=\mathbf{l}_{i}=\left(\mathbf{l}_{i} \otimes \mathrm{ev}_{\bar{i}, i}\right)\left(\operatorname{coev}_{i, \bar{i}} \otimes \mathbf{l}_{i}\right),  \tag{1.13}\\
& \left(\mathrm{ev}_{\bar{i}, i} \otimes \mathbf{l}_{\bar{i}}\right)\left(\mathbf{l}_{\bar{i}} \otimes \operatorname{coev}_{i, \bar{i}}\right)=\mathbf{l}_{\bar{i}}=\left(\mathbf{l}_{\bar{i}} \otimes \mathrm{ev}_{i, \bar{i}}\right)\left(\operatorname{coev}_{\bar{i}, i} \otimes \mathbf{l}_{\bar{i}}\right) . \tag{1.14}
\end{align*}
$$

Thus, let $W_{\bar{j}}$ tensor both sides of equation (1.12) from the left, and then apply $\operatorname{coev}_{\bar{j}, j} \otimes$ $\mathbf{l}_{i} \otimes \mathbf{l}_{k}$ to the tops, we obtain the following:

Proposition 1.2. For any $V$-modules $W_{i}, W_{j}, W_{k}$, and any $\mathcal{Y}_{\alpha} \in \mathcal{V}\binom{k}{i}$,


Finally, we remark that the ribbon structure on $\operatorname{Rep}(V)$ is defined by the twist $\vartheta=\vartheta_{i}:=e^{2 \mathrm{i} \pi L_{0}} \in \operatorname{End}\left(W_{i}\right)$ for any $V$-module $W_{i}$.

### 1.2 Unitary VOAs and unitary representations

In this section, we only assume that $V$ is of CFT type and discuss the unitary conditions on $V$ and its tensor category. We do not assume, at the beginning, that $V$ is self-dual. In particular, we do not identify $W_{0}$ with $W_{\overline{0}}$. As we shall see, the unitary structure on $V$ is closely related to certain $V$-module isomorphism $\epsilon: W_{0} \rightarrow W_{\overline{0}}$.

Suppose $V$ is equipped with a normalized inner product $\langle\cdot \mid \cdot\rangle$ ("normalized" means $\langle\Omega \mid \Omega\rangle=1$ ). We say that ( $V,\langle\cdot \mid \cdot\rangle$ ) (simply $V$ in the future) is unitary [7, 11], if there exists an anti-unitary anti-automorphism $\Theta$ of $V$ (called PCT operator) satisfying that

$$
\begin{equation*}
\left\langle Y(V, z) V_{1} \mid V_{2}\right\rangle=\left\langle V_{1} \mid Y\left(e^{\bar{z} L_{1}}\left(-\overline{z^{-2}}\right)^{L_{0}} \Theta V, \overline{z^{-1}}\right) V_{2}\right\rangle . \tag{1.16}
\end{equation*}
$$

We abbreviate the above relation to

$$
\begin{equation*}
Y(V, z)=Y\left(e^{\bar{z} L_{1}}\left(-\overline{z^{-2}}\right)^{L_{0}} \Theta V, \overline{z^{-1}}\right)^{\dagger} \tag{1.17}
\end{equation*}
$$

with $\dagger$ understood as formal adjoint.
By our definition, $\Theta: V \rightarrow V$ is an antilinear (i.e., conjugate linear) bijective map satisfying

$$
\begin{gather*}
\langle u \mid v\rangle=\langle\Theta v \mid \Theta u\rangle  \tag{1.18}\\
\Theta Y(u, z) v=Y(\Theta u, \bar{z}) \Theta v \tag{1.19}
\end{gather*}
$$

for all $u, v \in V$. Such $\Theta$ is unique by [7] proposition 5.1. Note that $\Theta v=\Theta Y(\Omega, z) v=$ $Y(\Theta \Omega, \bar{z}) \Theta v$, which implies $\Theta \Omega=\Omega$. Also $\Theta v=v$ by [7] corollary 4.11. Indeed, by that corollary, under the assumption of anti-automorphism, anti-unitarity is equivalent to $\Theta v=v$, and also equivalent to that $\Theta$ preserves the grading of $V$. Note also that $\Theta$ is uniquely determined by $V$ and its inner product $\langle\cdot \mid \cdot\rangle$, and that $\Theta^{2}=\mathbf{l}_{V}$ ([7] proposition 5.1).

Later we will discuss the unitarity of VOA extensions using tensor-categorical methods. For that purpose the map $\Theta$ is difficult to deal with due to its anti-linearity. So let us give an equivalent description of unitarity using linear maps. Let $V^{*}$ be the dual vector space of $V$. The inner product $\langle\cdot \mid \cdot\rangle$ on $V$ induces naturally an antilinear injective $\operatorname{map} \complement: V \rightarrow V^{*}, V \mapsto\langle\cdot \mid V\rangle$. We set $\bar{V}=\complement V$, and define an inner product on $\bar{V}$, also denoted by $\langle\cdot \mid \cdot\rangle$, under which $\complement$ becomes anti-unitary. Equivalently, we require $\langle u \mid v\rangle=\left\langle\complement_{V} \mid \complement u\right\rangle$ for all $u, v \in V$. The adjoint (which is also the inverse) of $\complement: V \rightarrow \bar{V}$ is denoted by $\complement: \bar{V} \rightarrow V$. The reason we use the same symbol for the two conjugation maps is to regard $C$ as an involution. We also adopt the notation $\bar{v}=\complement_{v}$ and $\overline{\bar{v}}=v$. We will use both $\bar{v}$ and $C$ for conjugation very frequently, but the latter is used more often when no specific vectors are mentioned.

Proposition 1.3. $(V,\langle\cdot \mid \cdot\rangle)$ is unitary if and only if there exists a (unique) unitary map $\epsilon: V \rightarrow \bar{V}$, called the reflection operator of $V$, such that the following two relations hold for all $V \in V$ :

$$
\begin{gather*}
Y(V, z)=Y\left(e^{\bar{z} L_{1}}\left(-\overline{z^{-2}}\right)^{L_{0}} \overline{\epsilon V}, \overline{z^{-1}}\right)^{\dagger},  \tag{1.20}\\
\epsilon Y\left(\epsilon^{*} \bar{V}, z\right) \epsilon^{*}=\complement Y(V, \bar{z}) \subset . \tag{1.21}
\end{gather*}
$$

When $V$ is unitary, we have

$$
\begin{equation*}
\complement \epsilon=\epsilon^{*} \complement \tag{1.22}
\end{equation*}
$$

Note that the 1st and the 3rd equations are acting on $V$, while the 2nd one on $\bar{V}$.

Proof. $\quad \epsilon$ and $\Theta$ are related by $\epsilon=\complement \Theta$. Then $\overline{\epsilon V}=\Theta V, \epsilon^{*} \bar{V}=\Theta^{-1} V$. It is easy to see that (1.20) and (1.21) are equivalent to (1.17) and (1.19), respectively. The uniqueness of $\epsilon$ follows from that of $\Theta$. When $V$ is unitary, $C \epsilon=\Theta=\Theta^{-1}=\epsilon^{*} C$.

In the following we always assume $V$ to be unitary. Let $W_{i}$ be a $V$-module, and assume that the vector space $W_{i}$ is equipped with an inner product $\langle\cdot \mid \cdot\rangle$. We say that $\left(W_{i},\langle\cdot \mid \cdot\rangle\right)$ (or just $W_{i}$ ) is a unitary $V$-module, if for any $V \in V$ we have $Y_{i}(V, z)=$ $Y_{i}\left(e^{\overline{L_{1}}}\left(-\overline{z^{-2}}\right)^{L_{0}} \Theta V, \overline{z^{-1}}\right)^{\dagger}$ when acting on $W_{i}$. Equivalently,

$$
\begin{equation*}
Y_{i}(V, z)=Y_{i}\left(e^{\bar{z} L_{1}}\left(-\overline{z^{-2}}\right)^{L_{0}} \overline{\epsilon V}, \overline{z^{-1}}\right)^{\dagger} . \tag{1.23}
\end{equation*}
$$

A $V$-module is called unitarizable if it can be equipped with an inner product under which it becomes a unitary $V$-module. An intertwining operator $\mathcal{Y}_{\alpha}$ of $V$ is called unitary if it is among unitary $V$-modules.

Note that just as the conjugations between $V$ and $\bar{V}$, given a unitary $V$-module $W_{i}$, we have a natural conjugation $\complement: W_{i} \rightarrow W_{\bar{i}}$ whose inverse is also written as $\complement: W_{\bar{i}} \rightarrow$ $W_{i}$. (Indeed, we first have an injective antilinear map $\complement: W_{i} \rightarrow W_{i}^{*}$. That $\complement W_{i}=W_{\bar{i}}$, that is, that vectors in $C W_{i}$ are precisely those with finite conformal weights, follows from the fact that $\left\langle L_{0} \cdot \mid \cdot\right\rangle=\left\langle\cdot \mid L_{0} \cdot\right\rangle$, which is a consequence of (1.23) and the fact that $\overline{\epsilon \nu}=\Theta v=\nu$. .) Fix an inner product on $W_{\bar{i}}$ under which $C$ becomes anti-unitary. Then $W_{\bar{i}}$ is also a unitary $V$-module. For any $w^{(i)} \in W_{i}$, write $\overline{W^{(i)}}=C w^{(i)}, \overline{\overline{W^{(i)}}}=\left\lceil\overline{w^{(i)}}=W^{(i)}\right.$. Recall by our notation that $Y_{i}$ and $Y_{\bar{i}}$ are the vertex operators of $W_{i}$ and $W_{\bar{i}}$, respectively. The relation between these two operators is pretty simple: $Y_{\bar{i}}(\Theta V, z)=\complement Y_{i}(V, \bar{z}) \complement$, acting on $W_{\bar{i}}$. (See [18] formula (1.19).) Equivalently,

$$
\begin{equation*}
Y_{\bar{i}}(\overline{\epsilon V}, z)=\complement Y_{i}(V, \bar{z}) \complement . \tag{1.24}
\end{equation*}
$$

This equation (applied to $i=0$ ), together with (1.21) and (1.22), shows for any $V \in V$ that $\epsilon Y_{0}(V, z) \epsilon^{*}=Y_{\overline{0}}(V, z)$, where $Y_{0}=Y$ is the vertex operator of the vacuum module $V$, and $Y_{\overline{0}}$ is that of its contragredient module. We conclude the following:

Proposition 1.4. If $V$ is a unitary CFT-type VOA, then $V$ is self-dual. The vacuum module $V=W_{0}$ is unitarily equivalent to its contragredient module $\bar{V}=W_{\overline{0}}$ via the reflection operator $\epsilon$.

Convention 1.5. Unless otherwise stated, if $V$ is unitary and CFT type, the isomorphism $W_{0} \xrightarrow{\simeq} W_{\overline{0}}$ is always chosen to be the reflection operator $\epsilon$, and the identification of $V=W_{0}$ and $\bar{V}=W_{\overline{0}}$ is always assumed to be through $\epsilon$.

### 1.3 Adjoint and conjugate intertwining operators

We have seen in section 1.1 two ways of producing new intertwining operators from old ones: the braided and the contragredient intertwining operators. In the unitary case there are two extra methods: the conjugate and the adjoint intertwining operators. In this section, our main goal is to derive tensor-categorical descriptions of these two constructions of intertwining operators.

First we review the definition of these two constructions; see [20] section 1.3 for more details and basic properties. Let $V$ be unitary and CFT type. Choose unitary $V$-modules $W_{i}, W_{j}, W_{k}$. For any $\mathcal{Y}_{\alpha} \in \mathcal{V}\binom{k}{i}$, its conjugate intertwining operator $\complement \mathcal{Y}_{\alpha} \equiv$ $\mathcal{Y}_{\mathrm{C}_{\alpha}} \equiv \mathcal{Y}_{\bar{\alpha}}$ is of type $\mathcal{V}\left(\frac{\bar{k}}{\bar{i} \bar{j}}\right)$ defined by

$$
\begin{equation*}
\left.\mathcal{Y}_{\bar{\alpha}} \overline{w^{(i)}}, z\right)=\complement \mathcal{Y}_{\alpha}\left(w^{(i)}, \bar{z}\right) \complement \tag{1.25}
\end{equation*}
$$

for any $W^{(i)} \in W_{i}$. Despite its simple form, one cannot directly translate this definition into tensor categorical language, again due to the anti-linearity of $C$. Therefore we need to first consider the adjoint intertwining operator $\mathcal{Y}_{\alpha}^{\dagger} \equiv \mathcal{Y}_{\alpha^{\dagger}} \in \mathcal{V}\binom{j}{i k}$, defined by

$$
\begin{equation*}
\alpha^{\dagger}=\overline{C_{+} \alpha}=C_{-} \bar{\alpha} \tag{1.26}
\end{equation*}
$$

which will be closely related to the $*$-structures of the $C^{*}$-tensor categories. Then for any $w^{(i)} \in W_{i}$,

$$
\begin{equation*}
\mathcal{Y}_{\alpha^{\dagger}}\left(\overline{W^{(i)}}, z\right)=\mathcal{Y}_{\alpha}\left(e^{\bar{z} L_{1}}\left(e^{-\mathbf{i} \pi} \overline{z^{-2}}\right)^{L_{0}} \overline{W^{(i)}}, \overline{z^{-1}}\right)^{\dagger} \tag{1.27}
\end{equation*}
$$

Note that $\dagger$ is an involution: $\alpha^{\dagger \dagger}=\alpha$. Moreover, by unitarity, up to equivalence of the charge spaces $\epsilon: V \xrightarrow{\simeq} \bar{V}, Y_{i}$ is equal to its adjoint intertwining operator, and obviously also equal to the conjugate intertwining operator of $Y_{\bar{i}}$. Another important relation is

$$
\begin{equation*}
\mathrm{ev}_{\bar{i}, i}=\kappa(i)^{\dagger} \tag{1.28}
\end{equation*}
$$

by [18] formula (1.44). Recall from section 1.1 that, up to the isomorphism $W_{0} \simeq W_{\overline{0}}$, $\mathrm{ev}_{\bar{i}, i}$ is defined to be $C_{-} \kappa(\bar{i})$. Due to convention 1.5, the more precise definition is $\mathrm{ev}_{\bar{i}, i}=$ $\epsilon^{-1} \circ C_{-} \kappa(\bar{i})$. We will use (1.28) more often than this definition in our paper.

We shall now relate $\alpha^{\dagger}$ with the unitarity structure of the tensor category of unitary $V$-modules. Let $V$ be a CFT-type VOA. Assume that $V$ is strongly unitary [42], which means that $V$ is unitary, and any $V$-module is unitarizable. Then $\operatorname{Rep}^{\mathrm{u}}(V)$, the
category of unitary $V$-modules, is a $C^{*}$-category, whose $*$ structure is defined as follows: if $W_{i}, W_{j}$ are unitary and $T \in \operatorname{Hom}\left(W_{i}, W_{j}\right)$, then $T^{*} \in \operatorname{Hom}\left(W_{j}, W_{i}\right)$ is simply the adjoint of $T$, defined with respect to the inner products of $W_{i}$ and $W_{j}$.

Assume also that $V$ is regular. To make $\operatorname{Rep}^{\mathrm{u}}(V)$ a $C^{*}$-tensor category, we have to choose, for any unitary $V$-modules $W_{i}, W_{j}$, a suitable unitary structure on $W_{i} \boxtimes W_{j}$. Note that it is already known that $W_{i} \boxtimes W_{j}$ is unitarizable by the strong unitary of $V$. But here the unitary structure has to be chosen such that the structural isomorphisms become unitary. So, for instance, if $W_{k}$ is also unitary, the associativity isomorphism $\left(W_{i} \boxtimes W_{j}\right) \boxtimes W_{k} \xrightarrow{\simeq} W_{i} \boxtimes\left(W_{j} \boxtimes W_{k}\right)$ and the braid isomorphism $ß: W_{i} \boxtimes W_{j} \xrightarrow{\simeq} W_{j} \boxtimes W_{i}$ have to be unitary. Then we can identify $\left(W_{i} \boxtimes W_{j}\right) \boxtimes W_{k}$ and $W_{i} \boxtimes\left(W_{j} \boxtimes W_{k}\right)$ as the same unitary $V$-module called $W_{i} \boxtimes W_{j} \boxtimes W_{k}$.

To fulfill these purposes, recall that $W_{i} \boxtimes W_{j}$ is defined to be $\bigoplus_{t \in \mathcal{E}} \mathcal{V}\left({ }_{i}^{t}\right)^{*} \otimes W_{t}$. Since every $W_{t}$ already has a unitary structure, it suffices to assume that the direct sum is orthogonal, and define a suitable inner product $\Lambda$ (called invariant inner product) on each $\mathcal{V}\binom{t}{i}^{*}$.

Let us first assume that we can always find $\Lambda$, which make $\operatorname{Rep}^{\mathrm{u}}(V)$ a braided $C^{*}$-tensor category. Then we can define an inner product on $\mathcal{V}\binom{t}{i}$, also denoted by $\Lambda$, under which the anti-linear map $\mathcal{V}\binom{t}{i j} \rightarrow \mathcal{V}\binom{t}{i j}^{*}, \mathcal{Y}_{\alpha} \mapsto \Lambda\left(\cdot \mid \mathcal{Y}_{\alpha}\right)$ becomes anti-unitary. Here we assume $\Lambda(\cdot \mid)$ to be linear on the 1st variable and anti-linear on the 2nd one. Let $\left\langle\mathcal{Y}_{\alpha}: \alpha \in \Xi_{i, j}^{t}\right\rangle$ be a basis of $\mathcal{V}\binom{t}{i j}$, and let $\left\langle\check{\mathcal{Y}}^{\alpha}: \alpha \in \Xi_{i, j}^{t}\right\rangle$ be its dual basis in $\mathcal{V}\left({ }_{i}^{t}\right)^{*}$. In other words we assume for any $\alpha, \beta \in \Xi_{i, j}^{t}$ that $\left\langle\mathcal{Y}_{\alpha}, \check{\mathcal{Y}}^{\beta}\right\rangle=\delta_{\alpha, \beta}$. The following proposition relates $\Lambda$ with the categorical inner product.

Proposition 1.6. For any $\mathcal{Y}_{\alpha}, \mathcal{Y}_{\beta} \in \mathcal{V}\binom{t}{i j}$ we have

$$
\begin{equation*}
\alpha \beta^{*}=\Lambda\left(\mathcal{Y}_{\alpha} \mid \mathcal{Y}_{\beta}\right) \mathbf{l}_{t} . \tag{1.29}
\end{equation*}
$$

Proof. Assume that $\Xi_{i, j}^{t}$ is orthonormal under $\Lambda$. Then so is $\left\langle\check{\mathcal{Y}}^{\alpha}: \alpha \in \Xi_{i, j}^{t}\right\rangle$. For any $\alpha \in \Xi_{i, j^{\prime}}^{t}$ let $P_{\alpha}$ be the projection mapping $W_{i} \boxtimes W_{j}=\bigoplus_{t \in \mathcal{E}}^{\perp} \mathcal{V}\binom{t}{i j}^{*} \otimes W_{t}$ onto $\check{\mathcal{Y}}^{\alpha} \otimes W_{t}$, and let $U_{\alpha}$ be the unitary map $\check{\mathcal{Y}}^{\alpha} \otimes W_{t} \rightarrow W_{t}, \check{\mathcal{Y}}^{\alpha} \otimes w^{(t)} \mapsto W^{(t)}$. Then we clearly have $\alpha=U_{\alpha} P_{\alpha}$. So $\alpha \alpha^{*}=\mathbf{l}_{t}$. If $\beta \in \Xi_{i, j}^{t}$ and $\beta \neq \alpha$, then clearly $P_{\beta} P_{\alpha}=0$, and hence $\alpha \beta^{*}=0$. Thus (1.28) holds for basis vectors, and hence holds in general.

We warn the reader the difference of the two notations $\alpha^{\dagger}$ and $\alpha^{*}$. If $\mathcal{Y}_{\alpha} \in \mathcal{V}\binom{t}{i j}$ then $\alpha^{\dagger} \in \operatorname{Hom}\left(W_{\bar{i}} \boxtimes W_{t}, W_{j}\right)$, while $\alpha^{*}$, defined using the $*$-structure of $\operatorname{Rep}^{\mathrm{u}}(V)$, is in $\operatorname{Hom}\left(W_{t}, W_{i} \boxtimes W_{j}\right)$. Thus, $\mathcal{Y}_{\alpha^{\dagger}}$ is the adjoint intertwining operator while $\mathcal{Y}_{\alpha^{*}}$ makes no
sense. This is different from the notations used in [18, 19], where $\alpha^{\dagger}$ is not defined but $\mathcal{Y}_{\alpha^{*}}$ (also written as $\mathcal{Y}_{\alpha}^{\dagger}$ ) denotes the adjoint intertwining operator. Despite such difference, $\alpha^{\dagger}$ and $\alpha^{*}$, the VOA adjoint and the categorical adjoint, should be related in a natural way. And it is time to review the construction of invariant $\Lambda$ introduced in [19].

Definition 1.7. Let $W_{i}, W_{j}$ be unitary $V$-modules. Then the invariant sesquilinear form $\Lambda$ on $\mathcal{V}\binom{t}{i j}^{*}$ for any $t \in \mathcal{E}$ is defined such that the fusion relation holds for any $w_{1}^{(i)}, w_{2}^{(i)} \in W_{i}:$

$$
\begin{equation*}
\left.Y_{j}\left(\mathcal{Y}_{\mathrm{ev}_{\bar{i}, i}} \overline{\left(w_{2}^{(i)}\right.}, z-\zeta\right) w_{1}^{(i)}, \zeta\right)=\sum_{t \in \mathcal{E}} \sum_{\alpha, \beta \in \Xi_{i, j}^{t}} \Lambda\left(\check{\mathcal{Y}}^{\alpha} \mid \check{\mathcal{Y}}^{\beta}\right) \cdot \mathcal{Y}_{\beta^{\dagger}}\left(\overline{w_{2}^{(i)}}, z\right) \mathcal{Y}_{\alpha}\left(w_{1}^{(i)}, \zeta\right) \tag{1.30}
\end{equation*}
$$

Equation (1.30) can equivalently be presented as


It is not too hard to show that $\Lambda$ is Hermitian (i.e., $\Lambda\left(\check{\mathcal{Y}}^{\alpha} \mid \check{\mathcal{Y}}^{\beta}\right)=\overline{\left.\Lambda\left(\check{\mathcal{Y}}^{\beta} \mid \check{\mathcal{Y}}^{\alpha}\right)\right)}$. Indeed, one can prove this by applying [19] formula (5.34) to the adjoint of (1.30). (The intertwining operator $\mathcal{Y}_{\tilde{\sigma}}$ in that formula could be determined from the proofs of [19] corollary 5.7 and theorem 5.5.) Moreover, from the rigidity of $\operatorname{Rep}(V)$, one can deduce that $\Lambda$ is non-degenerate; see [22] theorem 3.4 (The relation between the bilinear form in [22] theorem 3.4 and the sesquilinear form $\Lambda$ is explained in [19] section 8.3.), or step 3 of the proof of [19] theorem 6.7. However, to make $\Lambda$ an inner product, one has to prove that $\Lambda$ is positive. In $[18,20]$ we have proved the positivity of $\Lambda$ for many examples of VOAs. As mentioned in the introduction, one of our main goal of this paper is to prove that all unitary extensions of these examples have positive $\Lambda$. We first introduce the following definition.

Definition 1.8. Let $V$ be a regular and CFT-type VOA. We say that $V$ is completely unitary, if $V$ is strongly unitary (i.e., $V$ is unitary and any $V$-module is unitarizable), and if for any unitary $V$-modules $W_{i}, W_{j}$ and any $t \in \mathcal{E}$, the invariant sesquilinear form $\Lambda$ defined on $\mathcal{V}\binom{t}{i}$ is positive. In this case we call $\Lambda$ the invariant inner product of $V$.

As we have said, since $\Lambda$ is non-degenerate, when $V$ is completely unitary $\Lambda$ becomes an inner product on $\mathcal{V}\binom{t}{i j}^{*}$ (and hence also on $\mathcal{V}\binom{t}{i j}$ ), which can be extended to an inner product on $W_{i} \boxtimes W_{j}$, also denoted by $\Lambda$. Then $W_{i} \boxtimes W_{j}$ becomes a unitary (but not just unitarizable) $V$-module. In other words it is an object not just in $\operatorname{Rep}(V)$ but also in $\operatorname{Rep}^{\mathrm{u}}(V)$. Moreover, as shown in [19], $\Lambda$ is the right inner product, which makes all structural isomorphisms unitary. More precisely:

Theorem 1.9 (cf. [19] theorem 7.9). If $V$ is regular, CFT type, and completely unitary, then $\operatorname{Rep}^{\mathrm{u}}(V)$ is a unitary MTC.

In the remaining part of this paper, we assume, unless otherwise stated, that $V$ is regular, CFT type, and completely unitary. The following relation is worth noting; see [19] section 7.3.

Proposition 1.10. If $W_{i}$ is unitary then $\operatorname{coev}_{i, \bar{i}}=\mathrm{ev}_{i, \bar{i}}^{*}$.
We are now ready to state the main results of this section.
Theorem 1.11. For any unitary $V$-modules $W_{i}, W_{j}, W_{k}$ and any $\mathcal{Y}_{\alpha} \in \mathcal{V}\binom{k}{i j}$, we have $\alpha^{\dagger}=\left(\mathrm{ev}_{\bar{i}, i} \otimes \mathbf{l}_{j}\right)\left(\mathbf{l}_{\bar{i}} \otimes \alpha^{*}\right)$. In other words,


Proof. It suffices to assume $W_{k}$ to be irreducible. So let us prove (1.32) for all $k=t \in \mathcal{E}$ and any basis vector $\alpha \in \Xi_{i, j}^{t}$. Here we assume $\Xi_{i, j}^{t}$ to be orthonormal under $\Lambda$. Choose $\widetilde{\alpha} \in \operatorname{Hom}\left(W_{i} \boxtimes W_{j}, W_{t}\right)$ such that $\tilde{\alpha}^{\dagger}$ equals $\left(\mathrm{ev}_{\bar{i}, i} \otimes \mathbf{l}_{j}\right)\left(\mathbf{l}_{i} \otimes \alpha^{*}\right)$. We want to show $\widetilde{\alpha}=\alpha$.

By proposition 1.6 we have $\alpha \beta^{*}=\delta_{\alpha, \beta} \mathbf{l}_{t}$ for any $\alpha, \beta \in \Xi_{i, j}^{t}$. This implies


Tensor $\mathbf{l}_{\bar{i}}$ from the left and apply $\mathrm{ev}_{\bar{i}, i} \otimes \mathbf{l}_{j}$ to the bottom, we obtain

which, together with equation (1.31), implies

$$
\widetilde{\alpha}^{\dagger}=\sum_{\beta \in \Xi_{i, j}^{t}} \Lambda\left(\check{\mathcal{Y}}^{\alpha} \mid \check{\mathcal{Y}}^{\beta}\right) \beta^{\dagger}=\sum_{\beta \in \Xi_{i, j}^{t}} \delta_{\alpha, \beta} \beta^{\dagger}=\alpha^{\dagger}
$$

Thus $\widetilde{\alpha}=\alpha$.

Corollary 1.12. For any unitary $V$-modules $W_{i}, W_{j}, W_{k}$ and any $\mathcal{Y}_{\alpha} \in \mathcal{V}\binom{k}{i}$,


Proof. We have $\bar{\alpha}=\overline{C_{+} C_{-} \alpha}=\left(C_{-} \alpha\right)^{\dagger}$. By propositions 1.2, 1.10, and the unitarity of $\Omega$, $\left(C_{-} \alpha\right)^{*}$ equals


By theorem 1.11, one obtains $\left(C_{-} \alpha\right)^{\dagger}$ from $\left(C_{-} \alpha\right)^{*}$ by bending the leg $i$ to the top. Thus (1.36) becomes the right hand side of (1.35).

## 2 Unitary VOA Extensions, $C^{*}$-Frobenius Algebras, and Their Representations

### 2.1 Preunitary VOA extensions and commutative $\mathcal{C}$-algebras

In this chapter, we fix a regular, CFT-type, and completely unitary VOA $V . W_{\overline{0}}=\bar{V}$ is identified with $W_{0}=V$ via the reflection operator $\epsilon$. Thus $\epsilon=1$. Let $U$ be a (VOA) extension of $V$, whose vertex operator is denoted by $\mathcal{Y}_{\mu}$. By definition, $U$ and $V$ share the same conformal vector $v$ and vacuum vector $\Omega$, and $V$ is a vertex operator subalgebra of $U$. As in the previous chapter, the symbol $Y$ is reserved for the vertex operator of $V$. Then $Y$ is the restriction of the action $\mathcal{Y}_{\mu}: U \curvearrowright U$ to $V \curvearrowright V$. More generally, let $Y_{a}$ be the restriction of $\mathcal{Y}_{\mu}$ to $V \curvearrowright U$. Then $\left(U, Y_{a}\right)$ becomes a representation of $V$. We write this $V$-module as ( $W_{a}, Y_{a}$ ), or $W_{a}$ for short. (So by our notation, $U$ equals $W_{a}$ as a vector space.) Since all $V$-modules are unitarizable, we fix a unitary structure (i.e., an inner product) $\langle\cdot \mid \cdot\rangle$ on the $V$-module $W_{a}$ whose restriction to $V$ is the one $\langle\cdot \mid \cdot\rangle$ of the unitary VOA $V$. Such $(U,\langle\cdot \mid \cdot\rangle)$, or $U$ for short, is called a preunitary (VOA) extension of $V$. It is clear that any extension of $V$ is preunitarizable. Finally, we notice that $\mathcal{Y}_{\mu}$ is a type $\binom{a}{a}=\binom{W_{a}}{W_{a} W_{a}}$ unitary intertwining operator of $V$.

The above discussion can be summarized as follows: the preunitary VOA extension $U$ is a unitary $V$ module $\left(W_{a}, Y_{a}\right)$; its vertex operator $\mathcal{Y}_{\mu}$ is in $\mathcal{V}\binom{a}{a}$. Thus $\in \operatorname{Hom}\left(W_{a} \boxtimes W_{a}, W_{a}\right)$ by our notation in the last chapter. Let $\iota: W_{0} \rightarrow W_{a}$ denote the embedding of $V$ into $U$. Then clearly $\iota \in \operatorname{Hom}\left(W_{0}, W_{a}\right)$. We write $\iota=$ Set $A_{U}=\left(W_{a}, \mu, \iota\right)$. Then $A_{U}$ is a commutative associative algebra in $\operatorname{Rep}^{\mathbf{u}}(V)$ (or commutative $\operatorname{Rep}^{\mathbf{u}}(V)$-algebra for short) [30, 40], which means

- (Associativity) $\mu\left(\mu \otimes \mathbf{l}_{a}\right)=\mu\left(\mathbf{l}_{a} \otimes \mu\right)$.
- (Commutativity) $\mu \circ \Omega=\mu$.
- (Unit) $\mu\left(\iota \otimes \mathbf{l}_{a}\right)=\mathbf{l}_{a}$.

Note that the associators and the unitors of $\operatorname{Rep}^{u}(V)$ have been suppressed to simplify discussions. We will also do so in the remaining part of this article.

Recall that $ß$ is the braid isomorphism $\Omega_{a, a}: W_{a} \boxtimes W_{a} \rightarrow W_{a} \boxtimes W_{a}$. These three conditions can respectively be pictured as

$=$




Indeed, associativity and commutativity are equivalent to the Jacobi identity for $\mathcal{Y}_{\mu}$. The unit property follows from the fact that $\mathcal{Y}_{\mu}$ restricts to $Y_{a}$. See [23] for more details. Note that we also have

$$
\begin{equation*}
\mu \circ \Omega^{n}=\mu, \quad \mu\left(\mathbf{l}_{a} \otimes \iota\right)=\mathbf{l}_{a} \tag{2.1}
\end{equation*}
$$

for any $n \in \mathbb{Z}$. The 1st equation follows from induction and that $\mu=\mu ß \Omega^{-1}=\mu \Omega^{-1}$. The 2nd equation holds because $\mu\left(\mathbf{l}_{a} \otimes \iota\right)=\mu \Omega_{a, a}\left(\mathbf{l}_{a} \otimes \iota\right)=\mu\left(\iota \otimes \mathbf{l}_{a}\right) \Omega_{a, 0}=\mathbf{l}_{a} \beta_{a, 0}=\mathbf{l}_{a}$.

Recall that the twist is defined by $e^{2 \mathrm{i} \pi L_{0}}$. Since $L_{0}$ has only integral eigenvalues on $W_{a}$, the unitary $V$-module $W_{a}$ has trivial twist: $\vartheta_{a}=l_{a}$. We also notice that $A$ is normalized (i.e., $\iota^{*} \iota=l_{0}$ ) since the inner product on $U$ restricts to that of $V$. We thus conclude: if $U$ is a preunitary extension of $V$ then $A_{U}$ is a normalized commutative Rep $^{u}(V)$-algebra with trivial twist. Conversely, any such commutative Rep ${ }^{u}(V)$-algebra arises from a preunitary CFT-type extension. Moreover, if $U$ is of CFT type, then $A_{U}$ is haploid, which means that $\operatorname{dim} \operatorname{Hom}\left(W_{0}, W_{a}\right)=1$. Indeed, if $W_{i}$ is a unitary $V$ submodule of $W_{a}$ equivalent to $W_{0}$, then the lowest conformal weight of $W_{i}$ is 0 , which implies that $\Omega \in W_{i}$ and hence that $W_{i}=W_{0}$. Therefore $\operatorname{dim} \operatorname{Hom}\left(W_{0}, W_{a}\right)=$ $\operatorname{dim} \operatorname{Hom}\left(W_{0}, W_{0}\right)=1$ by the simpleness of $V$. Conversely, if $A_{U}$ is haploid, then $U$ is of CFT type provided that any irreducible $V$-module not equivalent to $W_{0}$ has no homogeneous vectors with conformal weight 0 . This converse statement will not be used in this paper (except in corollary 2.22). We thus content ourselves with the following result.

Proposition 2.1 (cf. [23] theorem 3.2). If $U$ is a preunitary CFT-type VOA extension of $V$, then $A_{U}$ is a normalized haploid commutative $\operatorname{Rep}^{\mathrm{u}}(V)$-algebra with trivial twist.

A detailed discussion of unitary VOA extensions will be given in the following sections. For now we first give the definition:

Definition 2.2. Let $U$ be a CFT-type VOA extension of $V$, and assume that the vector space $U$ is equipped with a normalized inner product $\langle\cdot \mid \cdot\rangle$. We say that the extension $V \subset U$ is unitary (equivalently, that $U$ is a unitary (VOA) extension of $V$ ), if $\langle\cdot \mid \cdot\rangle$ restricts to the normalized inner product of $V$, and $(U,\langle\cdot \mid \cdot\rangle)$ is a unitary VOA.

A unitary VOA extension is clearly preunitary. Another useful fact is the following:

Proposition 2.3. If $U$ is a CFT-type unitary VOA extension of $V$, then the PCT operator $\Theta_{U}$ of $U$ restricts to the one $\Theta_{V}$ of $V$. In particular, $V$ is a $\Theta_{U}$-invariant subspace of $U$.

Thus we can let $\Theta$ denote unambiguously both the PCT operators of $U$ and of $V$.

Proof. By relation (1.17) and the fact that $\Theta_{U}^{2}=\mathbf{l}_{U}, \Theta_{V}^{2}=\mathbf{l}_{V}$, for any $V \in V \subset U$ we have

$$
Y\left(\Theta_{U} V, z\right)=Y\left(e^{\bar{z} L_{1}}\left(-\overline{z^{-2}}\right)^{L_{0}} V, \overline{z^{-1}}\right)^{\dagger}=Y\left(\Theta_{V}, z\right)
$$

when evaluating between vectors in $V$. It should be clear to the reader how the condition that the normalized inner product of $U$ restricts to that of $V$ is used in the above equations. Thus $\left.\Theta_{U}\right|_{V}=\Theta_{V}$.

### 2.2 Duals and standard evaluations in $C^{*}$-tensor categories

## Dualizable objects

Let $\mathcal{C}$ be a $C^{*}$-tensor category (cf. [47]) whose identity object $W_{0}$ is simple. We assume tacitly that $\mathcal{C}$ is closed under finite orthogonal direct sums and orthogonal subobjects, which means that for a finite collection $\left\{W_{s}: s \in \mathfrak{S}\right\}$ of objects in $\mathcal{C}$ there exists an object $W_{i}$ and partial isometries $\left\{u_{s} \in \operatorname{Hom}\left(W_{i}, W_{s}\right): s \in \mathfrak{S}\right\}$ satisfying $u_{t} u_{s}^{*}=\delta_{s, t} \mathbf{l}_{s}(\forall s, t \in \mathfrak{S})$ and $\sum_{s \in \mathfrak{S}} u_{s}^{*} u_{s}=\mathbf{l}_{i}$, and that for any object $W_{i}$ and a projection $p \in \operatorname{End}\left(W_{i}\right)$ there exists an object $W_{j}$ and a partial isometry $u \in \operatorname{Hom}\left(W_{i}, W_{j}\right)$ such that $u u^{*}=\mathbf{l}_{j}, u^{*} u=p$ (A morphism $u \in \operatorname{Hom}\left(W_{i}, W_{j}\right)$ is called a partial isometry if $u^{*} u$ and $u u^{*}$ are projections. A morphism $e \in \operatorname{End}\left(W_{i}\right)$ is called a projection if $e^{2}=e=e^{*}$.).

Assume that an object $W_{i}$ in $\mathcal{C}$ has a right dual $W_{\bar{i}^{\prime}}$, which means that there exist evaluation $\mathrm{ev}_{i} \in \operatorname{Hom}\left(W_{\bar{i}} \boxtimes W_{i}, W_{0}\right)$ and coevaluation $\operatorname{coev}_{i} \in \operatorname{Hom}\left(W_{0}, W_{i} \boxtimes W_{\bar{i}}\right)$ satisfying $\left(\mathbf{l}_{i} \otimes \operatorname{ev}_{i}\right)\left(\operatorname{coev}_{i} \otimes \mathbf{l}_{i}\right)=\mathbf{l}_{i}$ and $\left(\mathrm{ev}_{i} \otimes \mathbf{l}_{\bar{i}}\right)\left(\mathbf{l}_{\bar{i}} \otimes \operatorname{coev}_{i}\right)=\mathbf{l}_{\bar{i}}$. Set ev $\bar{i}_{\bar{i}, i}=\mathrm{ev}_{i}, \operatorname{coev}_{i, \bar{i}}=\operatorname{coev}_{i}$, and set also $\mathrm{ev}_{i, \bar{i}}=\left(\operatorname{coev}_{i, \bar{i}}\right)^{*}, \operatorname{coev}_{\bar{i}, i}=\left(\mathrm{ev}_{\bar{i}, i}\right)^{*}$. Then equations (1.13) and (1.14) are satisfied, which shows that $W_{\bar{i}}$ is also a left dual of $W_{i}$. In this case we say that $W_{i}$ is dualizable. Note that $\mathrm{ev}_{i, \bar{i}}$ determines the remaining three ev and coev. In general, we say that $\mathrm{ev}_{i, \bar{i}} \in$ $\operatorname{Hom}\left(W_{i} \boxtimes W_{\bar{i}}, W_{0}\right), \mathrm{ev}_{\bar{i}, i} \in \operatorname{Hom}\left(W_{\bar{i}} \boxtimes W_{i}, W_{0}\right)$ are evaluations (or simply ev) of $W_{i}$ and $W_{\bar{i}}$ if equations (1.13) and (1.14) are satisfied when setting $\operatorname{coev}_{i, \bar{i}}=\operatorname{ev}_{i, \bar{i}^{\prime}}^{*} \operatorname{coev}_{\bar{i}, i}=\operatorname{ev}_{\bar{i}, i}^{*}$. In the case that $W_{i}$ is self-dual, we say that $\mathrm{ev}_{i, i}$ is an evaluation (ev) of $W_{i}$, if, by setting $\operatorname{coev}_{i, i}=\operatorname{ev}_{i, i}^{*}$, we have $\left(\mathrm{ev}_{i, i} \otimes \mathbf{l}_{i}\right)\left(\mathbf{l}_{i} \otimes \operatorname{coev}_{i, i}\right)=\mathbf{l}_{i}$. Taking adjoint, we also have $\left(\mathbf{l}_{i} \otimes\right.$ $\left.\mathrm{ev}_{i, i}\right)\left(\operatorname{coev}_{i, i} \otimes \mathbf{l}_{i}\right)=\mathbf{l}_{i}$.

Assume that $W_{i}, W_{j}$ are dualizable with duals $W_{\bar{i}}, W_{\bar{j}}$, respectively. Choose evaluations $\mathrm{ev}_{i, \bar{i}}, \mathrm{ev}_{\bar{i}, i}, \mathrm{ev}_{j, \bar{j}}, \mathrm{ev}_{\bar{j}, j}$. Then $W_{i \boxtimes j}:=W_{i} \boxtimes W_{j}$ is also dualizable with a dual $W_{\bar{j} \boxtimes \bar{i}}:=W_{\bar{j}} \boxtimes W_{\bar{i}}$ and evaluations

$$
\begin{equation*}
\mathrm{ev}_{i \boxtimes j, \bar{j} \boxtimes \bar{i}}=\mathrm{ev}_{i, \bar{i}}\left(\mathbf{l}_{i} \otimes \mathrm{ev}_{j, \bar{j}} \otimes \mathbf{l}_{\bar{i}}\right), \quad \mathrm{ev}_{\bar{j} \boxtimes \bar{i}, i \boxtimes j}=\operatorname{ev}_{\bar{j}, j}\left(\mathbf{l}_{\bar{j}} \otimes \mathrm{ev}_{\bar{i}, i} \otimes \mathbf{l}_{j}\right) . \tag{2.2}
\end{equation*}
$$

Convention 2.4. Unless otherwise stated, if the ev for $W_{i}, W_{\bar{i}}$ and $W_{j}, W_{\bar{j}}$ are chosen, then we always define the ev for $W_{i \boxtimes j}, W_{\bar{j} \boxtimes \bar{i}}$ using equations (2.2).

Using ev and coev for $W_{i}, W_{j}$ and their duals $W_{\bar{i}}, W_{\bar{j}}$, one can define for any $F \in$ $\operatorname{Hom}\left(W_{i}, W_{j}\right)$ a pair of transposes $F^{\vee},{ }^{\vee} F$ by

$$
\begin{aligned}
& F^{\vee}=\left(\mathrm{ev}_{\bar{j}, j} \otimes \mathbf{l}_{\bar{i}}\right)\left(\mathbf{l}_{\bar{j}} \otimes F \otimes \mathbf{l}_{\bar{i}}\right)\left(\mathbf{l}_{\bar{j}} \otimes \operatorname{coev}_{i, \bar{i}}\right), \\
& { }^{\vee} F=\left(\mathbf{l}_{\bar{i}} \otimes \mathrm{ev}_{j, \bar{j}}\right)\left(\mathbf{l}_{\bar{i}} \otimes F \otimes \mathbf{l}_{\bar{j}}\right)\left(\operatorname{coev}_{\bar{i}, i} \otimes \mathbf{l}_{\bar{j}}\right) .
\end{aligned}
$$

Pictorially,


One easily checks that ${ }^{\vee}\left(F^{\vee}\right)=F=\left({ }^{\vee} F\right)^{\vee},(F G)^{\vee}=G^{\vee} F^{\vee},{ }^{\vee}(F G)=\left({ }^{\vee} G\right)\left({ }^{\vee} F\right),\left(F^{\vee}\right)^{*}={ }^{\vee}\left(F^{*}\right)$.

## Standard evaluations

The evaluations defined above are not unique even up to unitaries. For any $\mathrm{ev}_{i, \bar{i}}, \mathrm{ev}_{\bar{i}, i}$ of $W_{i}, W_{\bar{i}}$, and any invertible $K \in \operatorname{End}\left(W_{i}\right), \widetilde{\mathrm{ev}}_{i, \bar{i}}:=\mathrm{ev}_{i, \bar{i}}\left(K \otimes \mathbf{l}_{\bar{i}}\right)$ and $\widetilde{\mathrm{ev}}_{\bar{i}, i}:=\mathrm{ev}_{\bar{i}, i}\left(\mathbf{l}_{\bar{i}} \otimes\left(K^{*}\right)^{-1}\right)$ are also evaluations. Thus one can normalize evaluations to satisfy certain nice conditions. In $C^{*}$-tensor categories, the ev that attract most interest are the so called standard evaluations. It is known that for dualizable objects, standard ev always exist and are unique up to unitaries, and that the two transposes defined by standard ev are equal. We refer the reader to [3, 32, 47] for these results. In the following, we review an explicit method of constructing standard evaluations following [47]. Since the evaluations for VOA tensor categories defined in the previous chapter can be realized by this construction, these evaluations are standard (see proposition 2.5).

Define scalars $\operatorname{Tr}_{L}(F)$ and $\operatorname{Tr}_{R}(F)$ for each $F \in \operatorname{End}\left(W_{i}\right)$ such that $\mathrm{ev}_{i, \bar{i}}(F \otimes$ $\left.\mathbf{l}_{\bar{i}}\right) \operatorname{coev}_{i, \bar{i}}=\operatorname{Tr}_{L}(F) \mathbf{l}_{0}$ and $\operatorname{ev}_{\bar{i}, i}\left(\mathbf{l}_{\bar{i}} \otimes F\right) \operatorname{coev}_{\bar{i}, i}=\operatorname{Tr}_{R}(F) \mathbf{l}_{0}$. Then $\operatorname{Tr}_{L}$ is a positive linear functional on $\operatorname{End}\left(W_{i}\right)$. Moreover, $\operatorname{Tr}_{L}$ is faithful: if $\operatorname{Tr}_{L}\left(F^{*} F\right)=0$, then $\mathrm{ev}_{i, \bar{i}} \circ\left(F \otimes \mathbf{l}_{\bar{i}}\right)$ is zero (since its absolute value is zero). So $F=0$. Similar things can be said about $\operatorname{Tr}_{R}$. We say that $\mathrm{ev}_{i, \bar{i}}$ is a standard evaluation if $\operatorname{Tr}_{L}(F)=\operatorname{Tr}_{R}(F)$ for all $F \in \operatorname{End}\left(W_{i}\right)$. Since $\operatorname{Tr}_{L}\left(F^{\vee}\right)=\operatorname{Tr}_{R}(F)=\operatorname{Tr}_{L}\left(F^{\vee}\right)$ by easy graphical calculus, it is easy to see that $\mathrm{ev}_{i, \bar{i}}$ is standard if and only if $\mathrm{ev}_{\bar{i}, i}$ is so. Standard ev are unique up to unitaries: If
$W_{i^{\prime}} \simeq W_{\bar{i}^{\prime}}, T \in \operatorname{Hom}\left(W_{i^{\prime}}, W_{\bar{i}}\right)$ is unitary, and $\widetilde{\mathrm{ev}}_{i, i^{\prime}}, \widetilde{\mathrm{ev}}_{i^{\prime}, i}$ are also standard, then we may find a unitary $K \in \operatorname{End}\left(W_{i}\right)$ satisfying $\widetilde{\mathrm{ev}}_{i, i^{\prime}}=\mathrm{ev}_{i, \bar{i}}(K \otimes T), \widetilde{\mathrm{ev}}_{i^{\prime}, i}=\mathrm{ev}_{\bar{i}, i}(T \otimes K)$. (See [47] lemma 3.9-(iii).)

If $W_{i}$ is simple, a standard evaluation is easy to construct by multiplying $\mathrm{ev}_{i, \bar{i}}$ by some nonzero constant $\lambda$ (and hence multiplying $\mathrm{ev}_{\bar{i}, i}$ by $\overline{\lambda^{-1}}$ ) such that $\operatorname{Tr}_{L}\left(\mathbf{l}_{i}\right)=\operatorname{Tr}_{R}\left(\mathbf{l}_{i}\right)$. In general, if $W_{i}$ is dualizable and hence semisimple, we have orthogonal irreducible decomposition $W_{i} \simeq \bigoplus_{s \in \mathfrak{S}}^{\perp} W_{s}$ where each irreducible subobject $W_{s}$ is dualizable (with a dual $W_{\bar{s}}$. Choose partial isometries $\left\{u_{s} \in \operatorname{Hom}\left(W_{i}, W_{s}\right): s \in \mathfrak{S}\right\}$ and $\left\{V_{\bar{s}} \in \operatorname{Hom}\left(W_{\bar{i}}, W_{\bar{s}}\right)\right.$ : $s \in \mathfrak{S}\}$ satisfying $u_{t} u_{s}^{*}=\delta_{s, t} \mathbf{l}_{s}, v_{\bar{t}} v_{\bar{s}}^{*}=\delta_{s, t} \mathbf{l}_{\bar{s}}$ and $\sum_{s} u_{s}^{*} u_{s}=\mathbf{l}_{i}, \sum_{s} v_{\bar{s}}^{*} v_{\bar{s}}=\mathbf{l}_{\bar{i}}$. Then we define

$$
\begin{equation*}
\mathrm{ev}_{i, \bar{i}}=\sum_{s \in \mathfrak{S}} \mathrm{ev}_{s, \bar{s}}\left(u_{s} \otimes v_{\bar{s}}\right), \quad \mathrm{ev}_{\bar{i}, i}=\sum_{s \in \mathfrak{S}} \mathrm{ev}_{\bar{s}, s}\left(v_{\bar{s}} \otimes u_{s}\right) \tag{2.4}
\end{equation*}
$$

(where $\mathrm{ev}_{s, \bar{s}}$ and $\mathrm{ev}_{\overline{\bar{s}}, s}$ are standard for all $s$ ), define coev using adjoint. Then $\mathrm{ev}_{i, \bar{i}}$ and $\mathrm{ev}_{\bar{i}, i}$ are standard. (See [47] lemma 3.9 for details.) (In [47] the categories are assumed to be rigid. Thus any orthogonal subobject of $W_{i}$, that is, any object $W_{s}$, which is associated with a partial isometry $u: W_{i} \rightarrow W_{s}$ satisfying $u u^{*}=l_{s}$, is dualizable. This fact is also true without assuming $\mathcal{C}$ to be rigid. (Cf. [1] lemma 4.20.) Here is one way to see this. Notice that we may assume $\operatorname{Tr}_{L}$ is tracial by multiplying ev ${ }_{i, \bar{i}}$ by $K \otimes \mathrm{l}_{\bar{i}}$ where $K$ is a positive invertible element of $\operatorname{End}\left(W_{i}\right)$. (Cf. the proof of [1] Thm. 4.12.) Thus, for any $F, G \in \operatorname{End}\left(W_{i}\right)$, we have $\operatorname{Tr}_{L}(G F)=\operatorname{Tr}_{L}\left(F^{\vee \vee} \cdot G\right)$ in general and $\operatorname{Tr}_{L}(F G)=\operatorname{Tr}_{L}(G F)$ by tracialness, which shows $F^{\vee \vee}=F$ and hence $F^{\vee}={ }^{\vee} F$. Thus, $\left(F^{\vee}\right)^{*}=\left(F^{*}\right)^{\vee}$. So $F$ is a projection iff $F^{\vee}$ is so. Let $p=u^{*} u$. Then $p^{\vee} \in \operatorname{End}\left(W_{\bar{i}}\right)$ is a projection. Thus, there exist an object $W_{\bar{s}}$ and $v \in \operatorname{Hom}\left(W_{\bar{i}}, W_{\bar{s}}\right)$ satisfying $V V^{*}=l_{\bar{s}}, V^{*} V=p^{\vee}$. Then $W_{\bar{s}}$ is dual to $W_{s}$ since one can choose evaluations $\mathrm{ev}_{s, \bar{s}}:=\mathrm{ev}_{i, \bar{i}}\left(u^{*} \otimes v^{*}\right), \mathrm{ev}_{\bar{s}, s}:=\mathrm{ev}_{\bar{i}, i}\left(v^{*} \otimes u^{*}\right)$.)

Proposition 2.5. If $V$ is a regular, CFT-type, and completely unitary VOA, then the ev and coev defined in chapter 1 (same as those in $[18,19]$ ) for any object $W_{i}$ in $\operatorname{Rep}^{\mathrm{u}}(V)$ and its contragredient module $W_{\bar{i}}$ are standard.

Proof. First of all, assume $W_{i}$ is irreducible. By [19] proposition 7.7 and the paragraph before that, we have $\operatorname{Tr}_{L}\left(\mathbf{l}_{i}\right)=d_{i}=d_{\bar{i}}=\operatorname{Tr}_{R}\left(\mathbf{l}_{i}\right)$. So ev ${ }_{i, \bar{i}}$ is standard. Now, assume $W_{i}$ is semisimple with finite orthogonal irreducible decomposition $W_{i}=\bigoplus_{s}^{\perp} W_{s}$. For each irreducible summand $W_{s^{\prime}}$, define $u_{s}$ (resp. $v_{\bar{s}}$ ) to be the projection of $W_{i}$ onto $W_{s}$ (resp. $W_{\bar{i}}$ onto $W_{\bar{s}}$ ). (Note that $W_{\bar{i}}$ and $W_{\bar{s}}$ are respectively the contragredient modules of $W_{i}, W_{s}$.) Using (1.10), it is easy to see that $\mathcal{Y}_{\mathrm{ev}_{i, i}}(w, z)=\sum_{s} \mathcal{Y}_{\mathrm{ev}_{s, s}}\left(u_{s} W, z\right) v_{\bar{s}}$ for any $w \in W_{i}$. So the 1 st equation of (2.4) is satisfied. Similarly, the 2nd one of (2.4) holds.

Convention 2.6. Unless otherwise stated, for any object $W_{i}$ in $\operatorname{Rep}^{\mathrm{u}}(V), W_{\bar{i}}$ is always understood as the contragredient module of $W_{i}$, and the standard ev and coev for $W_{i}, W_{\bar{i}}$ are always defined as in chapter 1 .

It is worth noting that standardness is preserved by tensor products: If standard ev are chosen for $W_{i}, W_{j}$ and their dual $W_{\bar{i}}, W_{\bar{j}}$, then the ev of $W_{i \boxtimes j}, W_{\bar{j} \boxtimes \bar{i}}$ defined by (2.2) are also standard.

Standard ev are also characterized by minimizing quantum dimensions. Define constants $d_{i}, d_{\bar{i}}$ satisfying $\mathrm{ev}_{i, \bar{i}} \operatorname{coev}_{i, \bar{i}}=d_{i} \mathrm{l}_{0}, \mathrm{ev}_{\bar{i}, i} \operatorname{coev}_{\bar{i}, i}=d_{\bar{i}} \mathrm{l}_{0}$. Then standard ev are precisely those minimizing $d_{i} d_{\bar{i}}$ and satisfying $d_{i}=d_{\bar{i}}$ (cf. [32]). We will always assume $d_{i}, d_{\bar{i}}$ to be those defined by standard evaluations, and call them the quantum dimensions of $W_{i}, W_{\bar{i}}$.

### 2.3 Unitarity of $\mathcal{C}$-algebras and VOA extensions

Let $W_{a}$ be an object in $\mathcal{C}$, choose $\mu \in \operatorname{Hom}\left(W_{a} \boxtimes W_{a}, W_{a}\right), \iota \in \operatorname{Hom}\left(W_{0}, W_{a}\right)$, and assume that $A=\left(W_{a}, \mu, \iota\right)$ is an associative algebra in $\mathcal{C}$ (also called $\mathcal{C}$-algebra (In [8, 23, 30], commutativity is required in the definition of $\mathcal{C}$-algebras when $\mathcal{C}$ is braided. This is not assumed in our paper.)), which means

- (Associativity) $\mu\left(\mu \otimes \mathbf{l}_{a}\right)=\mu\left(\mathbf{l}_{a} \otimes \mu\right)$.
- (Unit) $\mu\left(\iota \otimes \mathbf{l}_{a}\right)=\mathbf{l}_{a}=\mu\left(\mathbf{l}_{a} \otimes \iota\right)$.

Since $W_{0}$ is simple, we can choose $D_{A}>0$ (called the quantum dimension of $A$ ) satisfying $\iota^{*} \mu \mu^{*} \iota=D_{A} \mathbf{l}_{0}$. We say that $A$ is

- haploid if $\operatorname{dim} \operatorname{Hom}\left(W_{0}, W_{a}\right)=1$;
- normalized if $\iota^{*} \iota=\mathrm{l}_{0}$;
- $\quad$ special if $\mu \mu^{*} \in \mathbb{C l}_{a}$; in this case we set scalar $d_{A}>0$ such that $\mu \mu^{*}=d_{A} \mathbf{l}_{a}$;
- standard if $A$ is special, $W_{a}$ is dualizable (with quantum dimension $d_{a}$ ), and $D_{A}=d_{a}$.

Note that any $\mathcal{C}$-algebra $A$ is clearly equivalent to a normalized one.
Assume that $W_{a}$ has a dual $W_{\bar{a}}$, together with (not necessarily standard) $\mathrm{ev}_{a, \bar{a}}, \mathrm{ev}_{\bar{a}, a}$. Define ev for $W_{a} \boxtimes W_{a}$ and $W_{\bar{a}} \boxtimes W_{\bar{a}}$ using (2.2). Assume also that $W_{a}$ is self-dual, that is, $W_{a} \simeq W_{\bar{a}}$. Choose a unitary morphism $\varepsilon={ }_{a}{ }_{a}^{a^{\prime}}$. $\in \operatorname{Hom}\left(W_{a}, W_{\bar{a}}\right)$, and


Definition 2.7. A unitary $\varepsilon \in \operatorname{Hom}\left(W_{a}, W_{\bar{a}}\right)$ is called a reflection operator of $A$ (with respect to the chosen ev of $\left.W_{a}, W_{\bar{a}}\right)$, if the following two equations are satisfied:

$$
\begin{equation*}
\mu=\left(\mathrm{ev}_{\bar{a}, a} \otimes \mathbf{l}_{a}\right)\left(\varepsilon \otimes \mu^{*}\right), \quad \varepsilon \mu\left(\varepsilon^{*} \otimes \varepsilon^{*}\right)=\left(\mu^{*}\right)^{\vee} . \tag{2.5}
\end{equation*}
$$

Pictorially,



Proposition 2.8. The reflection operator $\varepsilon$ is uniquely determined by the dual $W_{\bar{a}}$ and the ev of $W_{a}$ and $W_{\bar{a}}$.

Proof. Apply $\iota^{*}$ to the bottom of (2.6), and then apply the unit property, we have $\operatorname{ev}_{\bar{a}, a}\left(\varepsilon \otimes \mathbf{l}_{a}\right)=\iota^{*} \mu$, which, by rigidity, implies

$$
\begin{equation*}
\varepsilon=\left(\iota^{*} \mu \otimes \mathbf{l}_{\bar{a}}\right)\left(\mathbf{l}_{a} \otimes \operatorname{coev}_{a, \bar{a}}\right) \tag{2.8}
\end{equation*}
$$

Definition 2.9. Let $\mathcal{C}$ be a $C^{*}$-tensor category with simple $W_{0}$. A $\mathcal{C}$-algebra $A=\left(W_{a}, \mu, \iota\right)$ in $\mathcal{C}$ is called unitary, if $W_{a}$ is dualizable, and for a choice of $W_{\bar{a}}$ dual to $W_{a}$ and ev of $W_{a}, W_{\bar{a}}$, there exists a reflection operator $\varepsilon \in \operatorname{Hom}\left(W_{a}, W_{\bar{a}}\right)$. If, moreover, the ev of $W_{a}, W_{\bar{a}}$ are standard, we say that $A$ is s-unitary (The letter "s" stands for several closely related notions: standard evaluations, spherical tensor categories, symmetric Frobenius algebras [16]. ${ }^{5}$.

The definition of s-unitary $\mathcal{C}$-algebras is independent of the choice of duals and standard ev, as shown below:

Proposition 2.10. If $A$ is s-unitary, then for any $W_{a^{\prime}}$ dual to $W_{a}$, and any standard $\widetilde{\mathrm{ev}}$ of $W_{a}, W_{a^{\prime}}$, there exists a reflection operator $\widetilde{\varepsilon}: W_{a} \rightarrow W_{a^{\prime}}$

Proof. Since $A$ is s-unitary, we can choose $W_{\bar{a}}$ dual to $W_{a}$ and standard ev of $W_{a}, W_{\bar{a}}$ such that there exists a reflection operator $\varepsilon: W_{a} \rightarrow W_{\bar{a}}$. Let us define $\widetilde{\varepsilon}=\left(\iota^{*} \mu \otimes\right.$ $\left.l_{\bar{a}}\right)\left(\mathbf{l}_{a} \otimes \widetilde{\operatorname{coev}}_{a, a^{\prime}}\right)$ and show that $\widetilde{\varepsilon}$ is a reflection operator. We first show that $\widetilde{\varepsilon}$ is unitary. Choose a unitary $T \in \operatorname{Hom}\left(W_{a^{\prime}}, W_{\bar{a}}\right)$. Then by the up to unitary uniqueness of standard ev , there exists a unitary $K \in \operatorname{Hom}\left(W_{a}, W_{a}\right)$ such that $\widetilde{\mathrm{ev}}_{a, a^{\prime}}=\mathrm{ev}_{a, \bar{a}}(K \otimes T), \widetilde{\mathrm{ev}}_{a^{\prime}, a}=$ $\mathrm{ev}_{\bar{a}, a}(T \otimes K)$. By (2.3), $\mathrm{ev}_{a, \bar{a}}\left(K \otimes \mathbf{l}_{\bar{a}}\right)=\mathrm{ev}_{a, \bar{a}}\left(\mathbf{l}_{a} \otimes K^{\vee}\right)$. Therefore $\widetilde{\mathrm{ev}}_{a, a^{\prime}}=\mathrm{ev}_{a, \bar{a}}\left(\mathbf{l}_{a} \otimes\left(K^{\vee}\right) T\right)$. Thus $\widetilde{\varepsilon}=\left(\iota^{*} \mu \otimes \mathbf{l}_{\bar{a}}\right)\left(\mathbf{l}_{a} \otimes T^{*}\left(K^{\vee}\right)^{*}\right)\left(\mathbf{l}_{a} \otimes \operatorname{coev}_{a, \bar{a}}\right)=\left(l_{0} \otimes T^{*}\left(K^{\vee}\right)^{*}\right)\left(\iota^{*} \mu \otimes l_{\bar{a}}\right)\left(\mathbf{l}_{a} \otimes \operatorname{coev}_{a, \bar{a}}\right)$, which, together with (2.8), implies $\widetilde{\varepsilon}=T^{*}\left(K^{\vee}\right)^{*} \varepsilon$. Thus $\widetilde{\varepsilon}$ is unitary since $\varepsilon, K^{\vee}, T$ are unitary.

Now, from the definition of $\widetilde{\varepsilon}$, we see that $\widetilde{\mathrm{ev}}_{a^{\prime}, a}\left(\widetilde{\varepsilon} \otimes \mathbf{l}_{a}\right)=\iota^{*} \mu$. Therefore $\widetilde{\mathrm{ev}}_{a^{\prime}, a}(\widetilde{\varepsilon} \otimes$ $\left.\mathbf{l}_{a}\right)=\operatorname{ev}_{\bar{a}, a}\left(\varepsilon \otimes \mathbf{l}_{a}\right)$. Using this fact, one can now easily check that (2.6) and (2.7) hold for $\widetilde{\varepsilon}$ and the standard $\tilde{\mathrm{ev}}$ of $W_{a}, W_{a^{\prime}}$.

We now relate s-unitary $\mathcal{C}$-algebras with unitary VOA extensions. First we need a lemma.

Lemma 2.11. Let $U$ be a preunitary CFT-type extension of $V, A_{U}=\left(W_{a}, \mu, \iota\right)$ the associated $\operatorname{Rep}^{\mathrm{u}}(V)$-algebra, and $W_{\bar{a}}$ the contragredient module of $W_{a}$. Then $U$ is a unitary VOA if and only if there exists a unitary $\varepsilon \in \operatorname{Hom}\left(W_{a}, W_{\bar{a}}\right)$ satisfying for all $w^{(a)} \in W_{a}$ that

$$
\begin{gather*}
\mathcal{Y}_{\mu}\left(W^{(a)}, z\right)=\mathcal{Y}_{\mu^{\dagger}}\left(\varepsilon W^{(a)}, z\right),  \tag{2.9}\\
\varepsilon \mathcal{Y}_{\mu}\left(\varepsilon^{*} \overline{W^{(a)}}, z\right) \varepsilon^{*}=\mathcal{Y}_{\bar{\mu}}\left(\overline{W^{(a)}}, z\right) . \tag{2.10}
\end{gather*}
$$

Proof. Suppose that such $\varepsilon$ exists, then by proposition 1.3 and the definition of adjoint and conjugate intertwining operators, $U$ is unitary. Conversely, if $U$ is unitary, then by proposition 1.3 there exists a unitary map $\varepsilon: W_{a} \rightarrow W_{\bar{a}}$ such that (2.9) and (2.10) are true. Moreover, by proposition $1.4, \varepsilon$ is a homomorphism of $U$-modules. So it is also a homomorphism of $V$-modules. This proves $\varepsilon \in \operatorname{Hom}\left(W_{a}, W_{\bar{a}}\right)$.

The following is the main result of this section.

Theorem 2.12. Let $V$ be a regular, CFT-type, and completely unitary VOA. Let $U$ be a CFT-type preunitary extension of $V$, and let $A_{U}=\left(W_{a}, \mu, \iota\right)$ be the haploid commutative $\operatorname{Rep}^{\mathrm{u}}(V)$-algebra associated to $U$. Then $U$ is unitary if and only if $A_{U}$ is s-unitary.

Proof. Following convention 2.6, we let $W_{\bar{a}}$ be the contragredient $V$-module of $W_{a}$, and choose standard ev for $W_{a}, W_{\bar{a}}$ as in chapter 1 . By lemma 2.11 and relation (1.2), the unitarity of $U$ is equivalent to the existence of a unitary $\varepsilon \in \operatorname{Hom}\left(W_{a}, W_{\bar{a}}\right)$ satisfying

$$
\begin{equation*}
\mu=\mu^{\dagger}\left(\varepsilon \otimes \mathbf{l}_{a}\right), \quad \varepsilon \mu\left(\varepsilon^{*} \otimes \varepsilon^{*}\right)=\bar{\mu} \tag{2.11}
\end{equation*}
$$

Now, by theorem 1.11, $\mu^{\dagger}=\left(\operatorname{ev}_{\bar{a}, a} \otimes \mathbf{l}_{a}\right)\left(\mathbf{l}_{\bar{a}} \otimes \mu^{*}\right)$. Thus $\mu^{\dagger}\left(\varepsilon \otimes \mathbf{l}_{a}\right)=\left(\mathrm{ev}_{\bar{a}, a} \otimes \mathbf{l}_{a}\right)\left(\varepsilon \otimes \mu^{*}\right)$. Therefore the 1st equation of (2.11) is equivalent to the 1st one of (2.5). By corollary 1.12, $\bar{\mu}=\left(\Omega_{a, a} \mu^{*}\right)^{\vee}=\left(\left(\mu ß_{a, a}^{-1}\right)^{*}\right)^{\vee}$, which equals $\left(\mu^{*}\right)^{\vee}$ by the commutativity of $A_{U}$. Therefore the 2 nd equation of (2.11) is also equivalent to that of (2.5). We conclude that $\varepsilon$ satisfies (2.11) if and only if $\varepsilon$ is a reflection operator. Thus the unitarity of $U$ is equivalent to the existence of a reflection operator under the standard ev, which is precisely the s-unitarity of $A_{U}$.

### 2.4 Unitary $\mathcal{C}$-algebras and $C^{*}$-Frobenius algebras

Let $A=\left(W_{a}, \mu, \iota\right)$ be a $\mathcal{C}$-algebra. $A$ is called a $C^{*}$-Frobenius algebra in $\mathcal{C}$ if $\left(\mathbf{l}_{a} \otimes \mu\right)\left(\mu^{*} \otimes\right.$ $\left.\mathbf{l}_{a}\right)=\mu^{*} \mu$. By taking adjoint we have the equivalent condition $\mu^{*} \mu=\left(\mu \otimes \mathbf{l}_{a}\right)\left(\mathbf{l}_{a} \otimes \mu^{*}\right)$. Assume in this section that all line segments in the pictures are labeled by $a$. Then these two equations read


A special (i.e., $\mu \mu^{*} \in \mathbb{C l}_{a}$ ) $C^{*}$-Frobenius algebra is called a $\mathbf{Q}$-system (We warn the reader that in the literature there is no agreement on whether standardness is required in the definition of Q -systems. For example, the Q -systems in [5] are in fact standard Q-systems in our paper. $)^{5}$. We remark that the $\mathcal{C}$-algebra $A$ is a Q -system if and only if it is special. In other words, the Frobenius relations (2.12) are consequences of the unit property, the associativity, and the specialness of $A$; see [32] or [5] lemma 3.7.

The main goal of this section is to relate (s-)unitarity to Frobenius property. More precisely, we shall show

$$
\begin{align*}
\text { Unitary } \mathcal{C} \text {-algebras } & =C^{*} \text {-Frobenius algebras } \\
& \cup \\
\text { Special unitary } \mathcal{C} \text {-algebras } & =\text { Q-systems } \\
& \cup  \tag{2.13}\\
\text { Special s-unitary } \mathcal{C} \text {-algebras } & =\text { standard Q-systems. }
\end{align*}
$$

Moreover, under the assumption of haploid condition, all these notions are equivalent. In the process of the proof we shall also see that (2.7) is a consequence of (2.6). Thus the definition of reflection operator can be simplified to assume only (2.6).

To begin with, let us fix a dual $W_{\bar{a}}$ of $W_{a}$ together with evaluations $\mathrm{ev}_{a, \bar{a}}, \mathrm{ev}_{\bar{a}, a}$ of $W_{a}, W_{\bar{a}}$. Choose a unitary $\varepsilon \in \operatorname{Hom}\left(W_{a}, W_{\bar{a}}\right)$.

Proposition 2.13. If $\varepsilon$ satisfies (2.6), then $\operatorname{ev}_{\bar{a}, a}\left(\varepsilon \otimes \mathbf{l}_{a}\right)=\operatorname{ev}_{a, \bar{a}}\left(\mathbf{l}_{a} \otimes \varepsilon\right)$; equivalently,

$$
\begin{equation*}
\psi<\psi \tag{2.14}
\end{equation*}
$$

Proof. Take the adjoint of (2.6) and apply $\left(\varepsilon \otimes \mathbf{l}_{a}\right)$ to the bottom, we have


Bending the left legs to the top proves that $\mu$ equals


We thus see that the right hand side of (2.6) equals (2.15). Finally, we apply $\iota^{*}$ to their bottoms and use the unit property. This proves equation (2.14).

Corollary 2.14. If $\varepsilon$ and the evaluations $\mathrm{ev}_{a, \bar{a}}, \mathrm{ev}_{\bar{a}, a}$ of $W_{a}, W_{\bar{a}}$ satisfy (2.6), then there exists an evaluation $\widetilde{\mathrm{ev}}_{a, a}$ for the self-dual object $W_{a}$ such that $\widetilde{\varepsilon}:=\mathbf{1}_{a} \in \operatorname{End}\left(W_{a}\right)$ and
$\widetilde{\mathrm{ev}}_{a, a}$ also satisfy (2.6). Moreover, if $\mathrm{ev}_{a, \bar{a}}, \mathrm{ev}_{\bar{a}, a}$ are standard, then one can also choose $\widetilde{\mathrm{ev}}_{a, a}$ to be standard.

Proof. We remind the reader that the definition of the evaluations of a self-dual object is given at the beginning of section 2.2. Assuming that $\varepsilon: W_{a} \rightarrow W_{\bar{a}}$ satisfies (2.6), we simply define $\widetilde{\mathrm{ev}}_{a, a} \in \operatorname{Hom}\left(W_{a} \boxtimes W_{a}, W_{0}\right)$ to be the left and also the right hand side of (2.14), that is,

$$
\begin{equation*}
\mathrm{ev}_{a, a}:=\operatorname{ev}_{\bar{a}, a}\left(\varepsilon \otimes \mathbf{l}_{a}\right)=\operatorname{ev}_{a, \bar{a}}\left(\mathbf{l}_{a} \otimes \varepsilon\right) \tag{2.16}
\end{equation*}
$$

Then one easily checks that $\left(\widetilde{\mathrm{ev}}_{a, a} \otimes \mathbf{l}_{a}\right)\left(\mathbf{l}_{a} \otimes{\widetilde{\operatorname{coev}_{a, a}}}\right)=\mathbf{l}_{a}$ where ${\widetilde{\operatorname{coev}^{2}}}_{a, a}:=\left(\widetilde{\mathrm{ev}}_{a, a}\right)^{*}$, and that $\mathbf{l}_{a}$ and $\widetilde{\mathrm{ev}}_{a, a}$ also satisfy (2.6). If the ev for $W_{a}, W_{\bar{a}}$ are standard, then $\widetilde{\mathrm{ev}}_{a, a}$ is also standard by the unitarity of $\varepsilon$.

We shall write $\widetilde{\mathrm{ev}}_{a, a}$ as $\mathrm{ev}_{a, a}$ instead. Then the above corollary says that when (2.6) holds, we may well assume that $\bar{a}=a, \mathrm{ev}_{a, \bar{a}}=\operatorname{ev}_{\bar{a}, a}$ (which is written as $\mathrm{ev}_{a, a}$ ), and $\varepsilon=\mathbf{l}_{a}$. Pictorially, we may remove the arrows and the $\bullet$ on the strings to simplify calculations. Moreover, by (2.6) and the unit property, one has ev $a, a=\iota^{*} \mu$ :

$$
\begin{equation*}
\checkmark=Y \tag{2.17}
\end{equation*}
$$

We now prove the main results of this section. Recall that $\mathcal{C}$ is a $C^{*}$-tensor category with simple $W_{0}$ and $A=\left(W_{a}, \mu, \iota\right)$ is a $\mathcal{C}$-algebra.

Theorem 2.15. $\quad A$ is a unitary $\mathcal{C}$-algebra if and only if $A$ is a $C^{*}$-Frobenius algebra in $\mathcal{C}$.

Theorem 2.16. If there exists $W_{\bar{a}}$ dual to $W_{a}$, evaluations $\mathrm{ev}_{a, \bar{a}}, \mathrm{ev}_{\bar{a}, a}$ of $W_{a}, W_{\bar{a}}$, and a unitary $\varepsilon \in \operatorname{Hom}\left(W_{a}, W_{\bar{a}}\right)$ satisfying (2.6), then $\varepsilon$ also satisfies (2.7). Consequently, $\varepsilon$ is a reflection operator, and $A$ is unitary.

We prove the two theorems simultaneously.

Proof. Step 1. Suppose there exists a dual object $W_{\bar{a}}$, evaluations of $W_{a}, W_{\bar{a}}$, and a unitary morphism $\varepsilon: W_{a} \rightarrow W_{\bar{a}}$ satisfying (2.6). We assume that $\bar{a}=a, \mathrm{ev}_{a, a}:=\mathrm{ev}_{a, \bar{a}}=$
$\mathrm{ev}_{\bar{a}, a}$ is an evaluation of $W_{a}$, and $\varepsilon=\mathbf{l}_{a}$. Then

where we have used successively equation (2.6), associativity, and again equation (2.6) in the above equations. This proves the 1 st and hence also the 2 nd equation of (2.12). We conclude that $A$ is a $C^{*}$-Frobenius algebra.

Step 2. Assume that $A$ is a $C^{*}$-Frobenius algebra in $\mathcal{C}$. We shall show that $W_{a}$ is self-dual, and construct a reflection operator. Define $\mathrm{ev}_{a, a} \in \operatorname{Hom}\left(W_{a} \boxtimes W_{a}, W_{0}\right)$ to be $\mathrm{ev}_{a, a}=\iota^{*} \mu$ (see (2.17)). One then easily verifies $\left(\mathrm{ev}_{a, a} \otimes \mathbf{l}_{a}\right)\left(\mathbf{l}_{a} \otimes\left(\mathrm{ev}_{a, a}\right)^{*}\right)=\mathbf{l}_{a}$ by applying respectively $\mathbf{l}_{a} \otimes \iota$ and $\iota^{*} \otimes \mathbf{l}_{a}$ to the top and the bottom of the 2 nd equation of (2.12), and then applying the unit property. This shows that $W_{a}$ is self-dual and $\mathrm{ev}_{a, a}=\iota^{*} \mu$ is an evaluation of $W_{a}$. Therefore we can also omit arrows. Apply $\iota^{*} \otimes \mathbf{1}_{a}$ and $\mathbf{l}_{a} \otimes \iota^{*}$ to the bottoms of the 2 nd and the 1 st equation of (2.12), respectively, and then use the unit property and equation (2.17), we obtain

which proves that $\mathbf{l}_{a}$ and $\mathrm{ev}_{a, a}$ satisfy equation (2.6). Since the 1 st and the 3 rd items of (2.18) are equal, we take the adjoint of them and bend their left or right legs to the top to obtain


In other words, $\mu$ is invariant under clockwise and anticlockwise " 1 -click rotations." Thus $\mu$ equals the clockwise 1 -click rotation of the left hand side of (2.18), which proves (2.7) for $\mathbf{l}_{a}$ and $\mathrm{ev}_{a, a}$. By (2.16), $\varepsilon$ and the original evaluations $\mathrm{ev}_{a, \bar{a}}, \mathrm{ev}_{\bar{a}, a}$ also satisfy equation (2.7). Therefore $\varepsilon$ is a reflection operator of $A$ with respect to $W_{\bar{a}}$ and the given evaluations of $W_{a}, W_{\bar{a}}$. This finishes the proof of the two theorems.

Corollary 2.17. $\quad A$ is a special unitary $\mathcal{C}$-algebra if and only if $A$ is a Q -system.

Proof. Q-systems are by definition special $C^{*}$-Frobenius algebras.

We now relate s-unitarity and standardness. We have seen that if $A$ is unitary then $\mathrm{ev}_{a, a}=\iota^{*} \mu$ is an evaluation of $W_{a}$. Therefore, setting $\operatorname{coev}_{a, a}=\mathrm{ev}_{a, a}^{*}$, we have $\mathrm{ev}_{a, a} \operatorname{coev}_{a, a}=D_{A} \mathrm{l}_{0}$ by the definition of $D_{A}$. By the minimizing property of standard evaluations, we have $D_{A} \geq d_{a}$, with equality holds if and only if $\mathrm{ev}_{a, a}$ is standard. Note that $\mathbf{l}_{a}$ is a reflection operator with respect to $\mathrm{ev}_{a, a}$. Therefore we have the following:

Proposition 2.18. Let $A$ be unitary. Then $\mathrm{ev}_{a, a}:=\iota^{*} \mu$ is an evaluation of the self-dual object $W_{a}$, and $D_{A} \geq d_{a}$. Moreover, we have $D_{A}=d_{a}$ if and only if $A$ is s-unitary.

Corollary 2.19. $\quad A$ is a special s-unitary $\mathcal{C}$-algebra if and only if $A$ is a standard Q system.

Proof. By theorem 2.15 and the definition of Q -systems, $A$ is a standard Q -system if and only if $A$ is a special unitary $\mathcal{C}$-algebra satisfying $D_{A}=d_{a}$. Thus the corollary follows immediately from the above proposition.

Thus we've finished proving the relations (2.13) given at the beginning of this section.

Proposition 2.20. Assuming haploid condition, the six notions in (2.13) are equivalent.

Proof. Let $A$ be a haploid $C^{*}$-Frobenius algebra in $\mathcal{C}$. Then by [5] lemma 3.3, $A$ is special. The standardness follows from [32] section 6 (see also [36] remark 5.6-3, or [38] theorem 2.9). Therefore $A$ is a standard Q -system.

We can now restate the main result of the last section (theorem 2.12) in the following way:

Theorem 2.21. Let $V$ be a regular, CFT-type, and completely unitary VOA. Let $U$ be a CFT-type preunitary extension of $V$, and let $A_{U}=\left(W_{a}, \mu, l\right)$ be the haploid commutative $\operatorname{Rep}^{\mathrm{u}}(V)$-algebra associated to $U$. Then $U$ is a unitary extension of $V$ if and only if $A_{U}$ is a $C^{*}$-Frobenius algebra. If this is true then $A_{U}$ is also a standard Q-system.

Let us give an application of this theorem.

Corollary 2.22. The $c<1$ CFT-type unitary VOAs are in one-to-one correspondence with the irreducible conformal nets with the same central charge $c$. Their classifications are given by [29] table 3 .

Proof. As shown in [29] proposition 3.5, $c<1$ irreducible conformal nets are precisely irreducible finite-index extensions of the Virasoro net $\mathcal{A}_{c}$ with central charge $c$. Thus they are in $1-1$ correspondence with the haploid commutative Q -systems in Rep ${ }^{\text {ss }}\left(\mathcal{A}_{c}\right)$, where $\operatorname{Rep}^{\text {ss }}\left(\mathcal{A}_{c}\right)$ is the unitary MTC of the semisimple representations of $\mathcal{A}_{c}$. By [21] theorem 5.1, $\operatorname{Rep}^{\text {ss }}\left(\mathcal{A}_{c}\right)$ is unitarily equivalent to $\operatorname{Rep}^{\mathrm{u}}(V)$, where $V$ is the unitary Virasoro VOA with central charge $c$. By [23] theorem 3.2, haploid commutative $\operatorname{Rep}^{\mathrm{u}}(V)$-algebras with trivial twist are in 1-1 correspondence with CFT-type extensions of $V$. Thus, by theorem 2.21 and the equivalence of unitary MTCs, CFT-type unitary extensions of $V \Leftrightarrow$ haploid commutative Q -systems in $\operatorname{Rep}^{\text {ss }}\left(\mathcal{A}_{c}\right)$. (The trivial twist condition is redundant; see theorem 3.25.) But also CFT-type unitary extensions of $V$ $\Leftrightarrow$ unitary VOAs with central charge $c$ by [11] theorem 5.1. This proves the desired result.

### 2.5 Strong unitarity of unitary VOA extensions

Starting from this section, $A=\left(W_{a}, \mu, \iota\right)$ is assumed to be a unitary $\mathcal{C}$-algebra, or equivalently, a $C^{*}$-Frobenius algebra in $\mathcal{C}$. We say that $\left(W_{i}, \mu_{L}\right)$ (resp. $\left(W_{i}, \mu_{R}\right)$ ) (Later we will write $\mu_{L}$ and $\mu_{R}$ as $\mu_{L}^{i}$ and $\mu_{R}^{i}$ to emphasize the dependence of $\mu_{L^{\prime}} \mu_{R}$ on the $W_{i}$.) is a left $A$-module (resp. right $A$-module), if $W_{i}$ is an object in $\mathcal{C}$, and $\mu_{L} \in \operatorname{Hom}\left(W_{a} \boxtimes W_{i}, W_{i}\right)$ $\left(\right.$ resp. $\left.\mu_{R} \in \operatorname{Hom}\left(W_{i} \boxtimes W_{a}, W_{i}\right)\right)$ satisfies the unit property

$$
\begin{equation*}
\mu_{L}\left(\iota \otimes \mathbf{l}_{a}\right) \quad \text { resp. } \quad \mu_{R}\left(\mathbf{l}_{a} \otimes \iota\right)=\mathbf{l}_{a} \tag{2.20}
\end{equation*}
$$

and the associativity:

$$
\begin{equation*}
\mu_{L}\left(\mathbf{l}_{a} \otimes \mu_{L}\right)=\mu_{L}\left(\mu \otimes \mathbf{l}_{i}\right) \quad \text { resp. } \quad \mu_{R}\left(\mu_{R} \otimes \mathbf{l}_{a}\right)=\mu_{R}\left(\mathbf{l}_{i} \otimes \mu\right) \tag{2.21}
\end{equation*}
$$

We write $\mu_{L}=\underbrace{a}_{i}, \mu_{L}^{*}=\psi_{a}^{i}, \mu_{R}=\psi_{i}^{i} \psi^{a}, \mu_{R}^{*}=\overbrace{i}^{i}$. If $\left(W_{i}, \mu_{L}\right)$ is a left $A$-module and $\left(W_{i}, \mu_{R}\right)$ is a right $A$-module, we say that ( $W_{i}, \mu_{L}, \mu_{R}$ ) is an A-bimodule if the following bimodule associativity holds:

$$
\begin{equation*}
\mu_{R}\left(\mu_{L} \otimes \mathbf{l}_{a}\right)=\mu_{L}\left(\mathbf{l}_{a} \otimes \mu_{R}\right) \tag{2.22}
\end{equation*}
$$

We leave it to the reader to draw the pictures of associativity and unit property. We abbreviate $\left(W_{i}, \mu_{L}\right),\left(W_{i}, \mu_{R}\right)$, or $\left(W_{i}, \mu_{L}, \mu_{R}\right)$ to $W_{i}$ when no confusion arises.

Set $\mathrm{ev}_{a, a}=\iota^{*} \mu$ as in the last section. A left (resp. right) $A$-module ( $W_{i}, \mu_{L}$ ) (resp. $\left(W_{i}, \mu_{R}\right)$ ) is called unitary, if

$$
\begin{equation*}
\mu_{L}=\left(\mathrm{ev}_{a, a} \otimes \mathbf{l}_{i}\right)\left(\mathbf{l}_{a} \otimes \mu_{L}^{*}\right) \quad \text { resp. } \quad \mu_{R}=\left(\mathbf{l}_{i} \otimes \mathrm{ev}_{a, a}\right)\left(\mu_{R}^{*} \otimes \mathbf{l}_{a}\right) \tag{2.23}
\end{equation*}
$$

An $A$-bimodule ( $W_{a}, \mu_{L}, \mu_{R}$ ) is called unitary if $\left(W_{a}, \mu_{L}\right)$ is a unitary left $A$-module and ( $W_{a}, \mu_{R}$ ) is a unitary right $A$-module. Unitarity can be stated for any evaluations and reflection operators:

Proposition 2.23. Let $W_{\bar{a}}$ be dual to $W_{a}, \mathrm{ev}_{a, \bar{a}}, \mathrm{ev}_{\bar{a}, a}$ evaluations of $W_{a, \bar{a}}, W_{\bar{a}, a}$, and $\varepsilon: W_{a} \rightarrow W_{\bar{a}}$ a reflection operator. Then a left (resp. right) $A$-module ( $W_{a}, \mu_{L}$ ) (resp. $\left(W_{a}, \mu_{R}\right)$ ) is unitary if and only if

$$
\begin{equation*}
\mu_{L}=\left(\operatorname{ev}_{\bar{a}, a} \otimes \mathbf{l}_{i}\right)\left(\varepsilon \otimes \mu_{L}^{*}\right) \quad \text { resp. } \quad \mu_{R}=\left(\mathbf{l}_{i} \otimes \mathrm{ev}_{a, \bar{a}}\right)\left(\mu_{R}^{*} \otimes \varepsilon\right) \tag{2.24}
\end{equation*}
$$

Graphically,


Proof. This is obvious since we have equations (2.16).

If $W_{i}$ and $W_{j}$ are left (resp. right) $A$-modules, then a morphism $F \in \operatorname{Hom}\left(W_{i}, W_{j}\right)$ of $\mathcal{C}$ is called a left (resp. right) $A$-module morphism, if

$$
\begin{equation*}
\mu_{L}\left(\mathbf{l}_{a} \otimes F\right)=F \mu_{L} \quad \text { resp. } \quad \mu_{R}\left(F \otimes \mathbf{l}_{a}\right)=F \mu_{R} \tag{2.26}
\end{equation*}
$$

pictorially,


We let $\operatorname{Hom}_{A,-}\left(W_{i}, W_{j}\right)$ (resp. $\left.\operatorname{Hom}_{-, A}\left(W_{i}, W_{j}\right)\right)$ be the vector space of left (resp. right) A-module morphisms. If $W_{i}, W_{j}$ are $A$-bimodules, then we set $\operatorname{Hom}_{A}\left(W_{i}, W_{j}\right)=$ $\operatorname{Hom}_{A,-}\left(W_{i}, W_{j}\right) \cap \operatorname{Hom}_{-, A}\left(W_{i}, W_{j}\right)$ to be the vector space of A-bimodule morphisms. In the case $W_{i}=W_{j}$, we write these spaces of morphisms as End $A_{A,-}\left(W_{i}\right), \operatorname{End}_{-, A}\left(W_{i}\right)$, $\operatorname{End}_{A}\left(W_{i}\right)$, respectively. $W_{i}$ is called a simple or irreducible left $A$-module (resp. right $A$-module, $A$-bimodule) if $\operatorname{End}_{A,-}\left(W_{i}\right)\left(\right.$ resp. End $\left.{ }_{-, A}\left(W_{i}\right), \operatorname{End}_{A}\left(W_{i}\right)\right)$ is spanned by $\mathbf{l}_{i}$. The following proposition is worth noting:

Proposition 2.24 (cf. [39] section 6.1). The category of unitary left $A$-modules (resp. right $A$-modules, $A$-bimodules) is a $C^{*}$-category whose $*$-structure inherits from that of $\mathcal{C}$. In particular, this category is closed under finite orthogonal direct sums and subobjects.

Proof. If $W_{i}, W_{j}$ are unitary left $A$-modules and $F \in \operatorname{Hom}_{A,-}\left(W_{i}, W_{j}\right)$, one can easily check that $F^{*} \in \operatorname{Hom}_{A,-}\left(W_{j}, W_{i}\right)$ using figures (2.25) and (2.27). Hence, the $C^{*}$-ness of the category of left $A$-modules follows from that of $\mathcal{C}$. Existence of finite orthogonal direct sums follow from that of $\mathcal{C}$. If $p \in \operatorname{End}_{A,-}\left(W_{i}\right)$ is a projection of the unitary left A-module ( $W_{i}, \mu_{L}^{i}$ ), we choose an object $W_{k}$ in $\mathcal{C}$ and a partial isometry $u \in \operatorname{Hom}\left(W_{i}, W_{k}\right)$ such that $u u^{*}=\mathbf{l}_{k}, u^{*} u=p$. Then ( $W_{k}, u \mu_{L}^{i} u^{*}$ ) is easily verified to be a unitary left $A$ module. Note that the fact that $p$ intertwines the left action of $A$ is used to verify the associativity.

The cases of right modules and bimodules are proved in a similar way.

A left $A$-module (resp. right $A$-module, $A$-bimodule) $W_{i}$ is called $\mathcal{C}$-dualizable if $W_{i}$ is a dualizable object in $\mathcal{C} . W_{i}$ is called unitarizable if there exists a unitary left $A$-module (resp. right $A$-module, $A$-bimodule) $W_{j}$ and an invertible $F \in \operatorname{Hom}_{A,-}\left(W_{i}, W_{j}\right)$ $\left(\right.$ resp. $\left.F \in \operatorname{Hom}_{-, A}\left(W_{i}, W_{j}\right), F \in \operatorname{Hom}_{A}\left(W_{i}, W_{j}\right)\right)$.

Corollary 2.25. The category of unitary $\mathcal{C}$-dualizable left $A$-modules (resp. right $A$ modules, $A$-bimodules) is a semisimple $C^{*}$-category whose $*$-structure inherits from that of $\mathcal{C}$.

Proof. Suppose $W_{i}$ is a $\mathcal{C}$-dualizable left $A$-module. Then $\operatorname{End}_{A}\left(W_{i}\right)$ is a $C^{*}$-subalgebra of the finite-dimensional $C^{*}$-algebra $E\left(W_{i}\right)$. Thus $\operatorname{End}_{A}\left(W_{i}\right)$ is a direct sum of matrix algebras, which implies that $W_{i}$ is a finite orthogonal direct sum of irreducible left $A$-modules. The other types of modules are treated in a similar way.

We are now going to prove the 1 st main result of this section, that any $\mathcal{C}$ dualizable module is unitarizable. First we need a lemma.

Lemma 2.26. Let $W_{i}, W_{k}$ be $\mathcal{C}$-dualizable left $A$-modules (resp. right $A$-modules, $A$ bimodules). If $W_{k}$ is unitary, and there exists a surjective $F \in \operatorname{Hom}_{A,-}\left(W_{k}, W_{i}\right)$ (resp. $\left.F \in \operatorname{Hom}_{-, A}\left(W_{k}, W_{i}\right), F \in \operatorname{Hom}_{A}\left(W_{k}, W_{i}\right)\right)$, then $W_{i}$ is unitarizable. In particular, $W_{i}$ is semisimple as a left $A$-module (resp. right $A$-module, $A$-bimodule).

We remark that this lemma is obvious when $W_{i}$ is already known to be semisimple as a left, right, or bi $A$-module, which is enough for our application to representations of VOA extensions. (Indeed, the extension $U$ of $V$ considered in this paper is always regular, hence its modules are semisimple.) Those who are only interested in the application to VOAs can skip the following proof.

Proof. We only prove this for left modules, since the other cases can be proved similarly. Write the two modules as $\left(W_{i}, \mu_{L}^{i}\right),\left(W_{k}, \mu_{L}^{k}\right)$. Note that $F^{*} F$ is a positive element in the finite-dimensional $C^{*}$-algebra $\operatorname{End}\left(W_{k}\right)$. So $\lim _{n \rightarrow \infty}\left(F^{*} F\right)^{1 / n}$ converges under the $C^{*}$-norm to a projection $P \in \operatorname{End}\left(W_{k}\right)$, which is the range projection of $F^{*}$. Set $G=P \mu_{L}^{k}$ and $H=P \mu_{L}^{k}\left(\mathbf{1}_{a} \otimes P\right)$, which are morphisms in $\operatorname{Hom}\left(W_{a} \boxtimes W_{k}, W_{k}\right)$. Then using (2.27) and the fact that $F=F P$, we obtain $F G=F H$, since both equal $F \mu_{L}^{k}$. Therefore $\left(F^{*} F\right)^{n} G=\left(F^{*} F\right)^{n} H$ for any integer $n>0$, and hence $\left(F^{*} F\right)^{1 / n} G=\left(F^{*} F\right)^{1 / n} H$ by polynomial interpolation. Thus $G=P G=P H=H$. We conclude

$$
\begin{equation*}
P \mu_{L}^{k}=P \mu_{L}^{k}\left(\mathbf{1}_{a} \otimes P\right) \tag{2.28}
\end{equation*}
$$

This equation, together with (2.25), shows $\left(\mathbf{l}_{a} \otimes P\right)\left(\mu_{L}^{k}\right)^{*}=\left(\mathbf{1}_{a} \otimes P\right)\left(\mu_{L}^{k}\right)^{*} P$, whose adjoint is

$$
\begin{equation*}
\mu_{L}^{k}\left(1_{a} \otimes P\right)=P \mu_{L}^{k}\left(1_{a} \otimes P\right) . \tag{2.29}
\end{equation*}
$$

We can therefore combine (2.28) and (2.29) to get $P \mu_{L}^{k}=\mu_{L}^{k}\left(\mathbf{l}_{a} \otimes P\right)$. In other words, $P$ is a projection in $\operatorname{End}_{A,-}\left(W_{k}\right)$. Thus, by proposition 2.24 , one can find a unitary left $A$ module $W_{j}$ and a partial isometry $K \in \operatorname{Hom}_{A,-}\left(W_{j}, W_{k}\right)$ satisfying $K^{*} K=\mathbf{l}_{j}$ and $K K^{*}=$ $P$. Therefore the left $A$-module $W_{i}$ is equivalent to $W_{j}$ since $F K \in \operatorname{Hom}_{A,-}\left(W_{j}, W_{i}\right)$ is invertible.

Theorem 2.27. $\mathcal{C}$-dualizable left $A$-modules, right $A$-modules, and $A$-bimodules are unitarizable.

In particular, when $\mathcal{C}$ is rigid, any left $A$-module, right $A$-module, or $A$-bimodule is unitarizable.

Proof. For any $\mathcal{C}$-dualizable object $W_{i}$ in $\mathcal{C}$ the induced left $A$-module ( $W_{a} \boxtimes W_{i}, \mu \otimes$ $\mathbf{l}_{i}$ ), abbreviated to $W_{a} \boxtimes W_{i}$, is clearly $\mathcal{C}$-dualizable. By the unitarity of $A$, one easily checks that $W_{a} \boxtimes W_{i}$ is a unitary left $A$-module. Now assume that ( $W_{i}, \mu_{L}$ ) is a left $A$ module. Then $\mu_{L} \in \operatorname{Hom}_{A,-}\left(W_{a} \boxtimes W_{i}, W_{i}\right)$. Moreover, $\mu_{L}$ is surjective since $\left(\iota \otimes \mathbf{l}_{i}\right) \mu_{L}=\mathbf{l}_{i}$ is surjective. Therefore $W_{i}$ is unitarizable by lemma 2.26. The case of right modules is proved in a similar way. In the case that $\left(W_{i}, \mu_{L}, \mu_{R}\right)$ is a $\mathcal{C}$-dualizable $A$-bimodule, we notice that $\left(W_{a} \boxtimes W_{i} \boxtimes W_{a}, \mu \otimes \mathbf{l}_{i} \otimes \mathbf{l}_{a}, \mathbf{l}_{a} \otimes \mathbf{l}_{i} \otimes \mu\right)$ is a unitary $A$-bimodule, and $\mu_{R}\left(\mu_{L} \otimes \mathbf{l}_{a}\right)=$ $\mu_{L}\left(\mathbf{l}_{a} \otimes \mu_{R}\right) \in \operatorname{Hom}_{A}\left(W_{a} \boxtimes W_{i} \boxtimes W_{a}, W_{i}\right)$ whose surjectivity follows again from the unit property. Thus, again, $W_{i}$ is a unitarizable $A$-bimodule.

In the case that $A$ is special, there is another proof of unitarizability due to [5], which does not require dualizability. To begin with, we say that a left $A$-module ( $W_{i}, \mu_{L}$ ) is standard if $\mu_{L} \mu_{L}^{*} \in \mathbb{C l}_{i}$. We now follow the argument of [5] lemma 3.22. For any left $A$-module $\left(W_{i}, \mu_{L}\right), \Delta:=\left(\mu_{L} \mu_{L}^{*}\right)^{1 / 2}$ is invertible. Therefore $\left(W_{i}, \mu_{L}\right)$ is equivalent to $\left(W_{i}, \widetilde{\mu}_{L}\right)$ where $\widetilde{\mu}_{L}=\Delta^{-1} \mu_{L}\left(\mathbf{l}_{a} \otimes \Delta\right)$. Using associativity and the fact that $\mu \mu^{*}=d_{A} \mathbf{l}_{a}$, one can check that $\left(W_{i}, \widetilde{\mu}_{L}\right)$ is standard and $\tilde{\mu}_{L} \widetilde{\mu}_{L}^{*}=d_{A} \mathbf{l}_{i}$. In particular, if $\left(W_{i}, \mu_{L}\right)$ is standard then $\Delta$ is a constant and hence $\tilde{\mu}_{L}=\mu_{L}$. Thus we must have $\mu_{L} \mu_{L}^{*}=d_{A} \mathbf{l}_{i}$. This proves that any left $A$-module is equivalent to a standard left $A$-module, that any standard left $A$-module must satisfy $\mu_{L} \mu_{L}^{*}=d_{A} \mathbf{l}_{a}$. Moreover, by [5] formula (3.4.5), any standard left $A$-module is unitary. Conversely, if ( $W_{i}, \mu_{L}$ ) is unitary, one can check that $\mu_{L} \mu_{L}^{*} \in \operatorname{End}_{A,-}\left(W_{i}\right)$ and hence $\Delta \in \operatorname{End}_{A,-}\left(W_{i}\right)$. This proves that $\tilde{\mu}_{L}=\mu_{L}$ and hence that $\left(W_{i}, \mu_{L}\right)$ is standard. Right $A$-modules can be proved in a similar way. When $\left(W_{i}, \mu_{L}, \mu_{R}\right)$ is an $A$-bimodule, we define $\mu_{L R}=\mu_{R}\left(\mu_{L} \otimes \mathbf{l}_{a}\right)=\mu_{L}\left(\mathbf{l}_{a} \otimes \mu_{R}\right)$, and say that the $A$-bimodule $W_{i}$ is standard if $\mu_{L R} \mu_{L R}^{*} \in \mathbb{C l}_{i}$ (cf. [5] section 3.6). With the help of $\Delta:=\left(\mu_{L R} \mu_{L R}^{*}\right)^{1 / 2}$ one can prove similar results as of left $A$-modules, with the only exception being that $\mu_{L R} \mu_{L R}^{*}=d_{A}^{2} \mathbf{l}_{i}$. We summarize the discussion in the following theorems:

Theorem 2.28. If $A$ is a Q -system in $\mathcal{C}$, then all left $A$-modules, right $A$-modules, and $A$-bimodules are unitarizable.

Theorem 2.29. Let $A$ be a $Q$-system in $\mathcal{C}$, and $\left(W_{i}, \mu_{L}\right)\left(\operatorname{resp} .\left(W_{i}, \mu_{R}\right),\left(W_{i}, \mu_{L}, \mu_{R}\right)\right)$ a left $A$-module (resp. right $A$-module, $A$-bimodule). Then the following statements are equivalent.

- $W_{i}$ is unitary.
- $W_{i}$ is standard.
- $\mu_{L} \mu_{L}^{*}=d_{A} \mathbf{l}_{i}$ (left $A$-module case), or $\mu_{R} \mu_{R}^{*}=d_{A} \mathbf{l}_{i}$ (right $A$-module case), or $\mu_{L R} \mu_{L R}^{*}=d_{A}^{2} \mathbf{l}_{i}$ where $\mu_{L R}=\mu_{R}\left(\mu_{L} \otimes \mathbf{l}_{a}\right)=\mu_{L}\left(\mathbf{l}_{a} \otimes \mu_{R}\right)(A$-bimodule case $)$.

If $\mathcal{C}$ is braided with braid operator $\Omega$, and if $A$ is commutative, a left $A$ module $\left(W_{i}, \mu_{L}\right)$ is called single-valued if $\mu_{L}=\mu_{L} \beta^{2}$ (more precisely, $\mu_{L}=\mu_{L} \beta_{i, a} ß_{a, i}$ ). If ( $W_{i}, \mu_{L}$ ) is a single-valued left $A$-module, then $\left(W_{i}, \mu_{R}\right)$ is a right $A$-module where $\mu_{R}=\mu_{L} ß_{i, a}=\mu_{L} ß_{a, i}^{-1}$. Moreover, by the associativity of $\left(W_{i}, \mu_{L}\right),\left(W_{i}, \mu_{L}, \mu_{R}\right)$ is an $A$ bimodule. We summarize that when $\mathcal{C}$ is braided and $A$ is commutative, any singlevalued left $A$-module is an $A$-bimodule. Moreover, if $W_{i}$ is a unitary single-valued left $A$-module, the it is also a unitary $A$-bimodule. The category of (unitary) single-valued left $A$-module is naturally a full subcategory of the ( $C^{*}$-) categories of (unitary) left $A$ modules, (unitary) right $A$-modules, and (unitary) $A$-bimodules.

With the results obtained so far, we prove that any CFT-type unitary extension $U$ of $V$ is strongly unitary. Let $A_{U}=\left(W_{a}, \mu, \iota\right)$ be the Q-system associated to $U$. Suppose that $W_{i}$ is a $U$-module with vertex operator $\mathcal{Y}_{\mu_{L}}$. Then $W_{i}$ is also a $V$-module, thus we may fix an inner product $\langle\cdot \mid \cdot\rangle$ on the vector space $W_{i}$ under which $W_{i}$ becomes a unitary $V$-module. We call $W_{i}$, together with $\langle\cdot \mid \cdot\rangle$, a preunitary $U$-module. Moreover, $\mathcal{Y}_{\mu_{L}}$ can be regarded as a unitary intertwining operator of $V$ of type $\binom{i}{a}$. Thus $\mu_{L} \in$ $\operatorname{Hom}\left(W_{a} \boxtimes W_{i}, W_{i}\right)$. One can check that $\left(W_{i}, \mu_{L}\right)$ is a single-valued left $A_{U}$-module. Indeed, unit property is obvious, associativity follows from the Jacobi identity for $\mathcal{Y}_{\mu_{L}}$, and single-valued property follows from the fact that $\mathcal{Y}_{\mu_{L}}(\cdot, z)$ has only integer powers of z. Conversely, any preunitary $U$-module arises from a single-valued $A_{U}$-module. Thus the category of preunitary $U$-modules is naturally equivalent to the category of singlevalued left $A_{U}$-modules. See [23] for more details.

To discuss the unitarizability of $U$-modules, the following is needed:

Theorem 2.30. Assume that $V$ is a CFT-type, regular, and completely unitary VOA, $U$ is a CFT-type unitary extension of $V$, and $W_{i}$ is a preunitary $U$-module. Then $W_{i}$ is a unitary $U$-module if and only if $W_{i}$ is a unitary left $A_{U}$-module. If this is true then $W_{i}$ is also a unitary $A_{U}$-bimodule.

Proof. Let $W_{\bar{a}}$ be the contragredient module of $W_{a}, \mathrm{ev}_{a, \bar{a}}, \mathrm{ev}_{\bar{a}, a}$ the evaluations of $W_{a}, W_{\bar{a}}$ defined in chapter 1 , and $\varepsilon: U=W_{a} \rightarrow \bar{U}=W_{\bar{a}}$ the reflection operator with respect to the chosen dual and evaluations. By equation (1.23) and the definition of adjoint intertwining operators, $W_{i}$ is unitary if and only if $\mathcal{Y}_{\mu_{L}}\left(W^{(a)}, z\right)=\mathcal{Y}_{\mu_{L}^{\dagger}}\left(\varepsilon W^{(a)}, z\right)$ for any $w^{(a)} \in W_{a}=U$. From equation (1.2) we know that $W_{i}$ is unitary if and only if $\mu_{L}=\mu_{L}^{\dagger}\left(\varepsilon \otimes \mathbf{l}_{i}\right)$. With the help of theorem 1.11 , this equation is equivalent to $\mu_{L}=\left(\operatorname{ev}_{\bar{a}, a} \otimes \mathbf{l}_{i}\right)\left(\varepsilon \otimes \mu_{L}^{*}\right)$, which by proposition 2.23 means precisely the unitarity of the left $A_{U}$-module $W_{i}$. If we already have that $W_{i}$ is a unitary left $A_{U}$-module, then, since $W_{i}$ is singlevalued, it is also a unitary $A$-bimodule.

We now prove the strong unitarity of $U$.
Theorem 2.31. If $V$ is a CFT-type, regular, and completely unitary VOA, and $U$ is a CFT-type unitary extension of $V$, then $U$ is strongly unitary, that is, any $U$-module is unitarizable.

Proof. Since $U$-modules are clearly preunitarizable, we choose a preunitary $U$-module $W_{i}$. Then by either theorem 2.27 or theorem $2.28, W_{i}$ is unitarizable as a left $A_{U}$-module. Thus, by equation (1.2) and theorem 2.30, $W_{i}$ is unitarizable as a $U$-module.

## $3 C^{*}$-Tensor Categories Associated to 0-Systems and Unitary VOA Extensions

### 3.1 Unitary tensor products of unitary bimodules of O-systems

In this chapter, $\mathcal{C}$ is a $C^{*}$-tensor category with simple $W_{0}$ as before, and $A=\left(W_{a}, \mu, \iota\right)$ is a Q -system (i.e., special $C^{*}$-Frobenius algebra) in $\mathcal{C}$. Set evaluation $\mathrm{ev}_{a, a}=\iota^{*} \mu$ as usual. We suppress the label $a$ in diagram calculus. Let $\operatorname{BIM}^{\mathrm{u}}(A)$ be the $C^{*}$-category of unitary $A$-bimodules whose morphisms are $A$-bimodule morphisms. In this and the next sections, we review the construction of a $C^{*}$-tensor structure on $\operatorname{BIM}^{\mathrm{u}}(A)$. See $[8$, 30, 37] for reference. Note that our setting is slightly more general than that of [37], since we do not assume $\mathcal{C}$ is rigid or $A$ is standard. Nevertheless, many ideas in [37] still work in our setting. To make our article self-contained, we include detailed proofs for all the relevant results.

Choose unitary $A$-bimodules $\left(W_{i}, \mu_{L}^{i}, \mu_{R}^{i}\right),\left(W_{j}, \mu_{L}^{j}, \mu_{R}^{j}\right)$. Then $W_{i} \boxtimes W_{j}$ is a unitary $A$-bimodule with left action $\mu_{L}^{i} \otimes \mathbf{l}_{j}$ and right action $\mathbf{l}_{i} \otimes \mu_{R}^{j}$. Define $\Psi_{i, j} \in \operatorname{Hom}_{A}\left(W_{i} \boxtimes\right.$ $\left.W_{a} \boxtimes W_{j}, W_{i} \boxtimes W_{j}\right)$ and $\chi_{i, j} \in \operatorname{End}_{A}\left(W_{i} \boxtimes W_{j}\right)$ to be

$$
\begin{gather*}
\Psi_{i, j}=\mu_{R}^{i} \otimes \mathbf{l}_{j}-\mathbf{l}_{i} \otimes \mu_{L^{\prime}}^{j}  \tag{3.1}\\
\chi_{i, j}=\left(\mathbf{l}_{i} \otimes \mu_{L}^{j}\right)\left(\left(\mu_{R}^{i}\right)^{*} \otimes \mathbf{l}_{j}\right)=\left(\mu_{R}^{i} \otimes \mathbf{l}_{j}\right)\left(\mathbf{l}_{i} \otimes\left(\mu_{L}^{j}\right)^{*}\right) \tag{3.2}
\end{gather*}
$$

Definition 3.1. Let $W_{i}, W_{j}$ be unitary $A$-bimodules. We say that ( $W_{i j}, \mu_{i, j}$ ) (abbreviated to $W_{i j}$ when no confusion arises) is a tensor product of $W_{i}, W_{j}$ over $A$ (cf. [8]), if

- $\quad W_{i j}=\left(W_{i j}, \mu_{L}^{i j}, \mu_{R}^{i j}\right)$ is an $A$-bimodule, $\mu_{i, j} \in \operatorname{Hom}_{A}\left(W_{i} \boxtimes W_{j}, W_{i j}\right)$ (One should not confuse $i \boxtimes j$ and $i j$. By our notation, $W_{i \boxtimes j}=W_{i} \boxtimes W_{j}$ is different from $\left.W_{i j}.\right)$, and $\mu_{i, j} \Psi_{i, j}=0$.
- (Universal property) If ( $W_{k^{\prime}} \mu_{L^{\prime}}^{k} \mu_{R}^{k}$ ) is a unitary $A$-bimodule, $\alpha \in \operatorname{Hom}_{A}\left(W_{i} \boxtimes\right.$ $W_{j}, W_{k}$ ), and $\alpha \Psi_{i, j}=0$ (Such $\alpha$ is called a categorical intertwining operator in [8].), then there exists a unique $\widetilde{\alpha} \in \operatorname{Hom}_{A}\left(W_{i j}, W_{k}\right)$ satisfying $\alpha=\widetilde{\alpha} \mu_{i, j}$. In this case, we say that $\widetilde{\alpha}$ is induced by $\alpha$ via the tensor product $W_{i j}$.

The tensor product ( $W_{i j}, \mu_{i, j}$ ) is called unitary if $W_{i j}$ is a unitary $A$-bimodule and $\chi_{i, j}=$ $\mu_{i, j}^{*} \mu_{i, j}$.

We write $\mu_{i, j}=\underbrace{i}_{\psi_{i j}} \mu_{i, j}^{j}=\mu_{i}^{*}$. Then the equation $\chi_{i, j}=\mu_{i, j}^{*} \mu_{i, j}$ reads

which is a special case of the Frobenius relations for unitary tensor products to be proved later (theorem 3.14). (Note that the 1st equality of (3.3) follows from the unitarity of $W_{i}$ and $W_{j}$.)

The existence of a tensor product is clear if one assumes moreover that $\mathcal{C}$ is abelian: Let $W_{i j}$ be a cokernel of $\Psi_{i, j}$, and define the bimodule structure on $W_{i j}$ using that of $W_{i} \boxtimes W_{j}$. Then $W_{i j}$ becomes a tensor product over $A$ of $W_{i}$ and $W_{j}$; see [31] for more details. However, to make the tensor product unitary one has to be more careful when choosing the cokernel. In the following, we proceed in a slightly different way motivated by [5] section 3.7, and we do not require the abelianess of $\mathcal{C}$. To begin with, using $\mu \mu^{*}=d_{A} \mathbf{l}_{a}$, one verifies easily that $\chi_{i, j}^{2}=d_{A} \chi_{i, j}$. Therefore,

Lemma 3.2 ([5] lemma 3.36). $d_{A}^{-1} \chi_{i, j} \in \operatorname{End}_{A}\left(W_{i} \boxtimes W_{j}\right)$ is a projection.

By proposition 2.24, there exists a unitary $A$-bimodule $W_{i j}$ and a partial isometry $u_{i, j} \in \operatorname{Hom}_{A}\left(W_{i} \boxtimes W_{j}, W_{i j}\right)$ satisfying $u_{i, j} u_{i, j}^{*}=\mathbf{1}_{i j}$ and $u_{i, j}^{*} u_{i, j}=d_{A}^{-1} \chi_{i, j}$. Setting $\mu_{i, j}=\sqrt{d_{A}} u_{i, j}$, one obtains $\mu_{i, j}^{*} \mu_{i, j}=\chi_{i, j}$ (equations (3.3)) and $\mu_{i, j} \mu_{i, j}^{*}=d_{A} \mathrm{l}_{i j}$. We now show that ( $W_{i j}, \mu_{i, j}$ ) is a unitary tensor product.

Proposition 3.3. Let $W_{i j}$ be a unitary $A$-bimodule, and $\mu_{i, j} \in \operatorname{Hom}_{A}\left(W_{i} \boxtimes W_{j}, W_{i j}\right)$. Then ( $W_{i j}, \mu_{i, j}$ ) is a unitary tensor product of $W_{i}, W_{j}$ over $A$ if and only if $\mu_{i, j}^{*} \mu_{i, j}=\chi_{i, j}$ and $\mu_{i, j} \mu_{i, j}^{*}=d_{A} \mathbf{l}_{i j}$.

Proof. "If": Since $\mu_{i, j}^{*} \mu_{i, j}=\chi_{i, j}$ and the unitarity of the $A$-bimodule $W_{i j}$ are assumed, it suffices to show that $W_{i j}$ is a tensor product. Since $\chi_{i, j} \Psi_{i, j}$ clearly equals 0 , we compute

$$
\begin{equation*}
\mu_{i, j} \Psi_{i, j}=d_{A}^{-1} \mu_{i, j} \mu_{i, j}^{*} \mu_{i, j} \Psi_{i, j}=d_{A}^{-1} \mu_{i, j} \chi_{i, j} \Psi_{i, j}=0 . \tag{3.4}
\end{equation*}
$$

If $W_{k}$ is a unitary $A$-bimodule, $\alpha \in \operatorname{Hom}_{A}\left(W_{i} \boxtimes W_{j}, W_{k}\right)$, and $\alpha \Psi_{i, j}=0$, then one can set $\widetilde{\alpha}=d_{A}^{-1} \alpha \mu_{i, j}^{*}$ and compute

$$
\widetilde{\alpha} \mu_{i, j}=d_{A}^{-1} \alpha \mu_{i, j}^{*} \mu_{i, j}=d_{A}^{-1} \alpha \chi_{i, j}=d_{A}^{-1} \alpha\left(\mu_{R}^{i}\left(\mu_{R}^{i}\right)^{*} \otimes \mathbf{l}_{j}\right)=\alpha
$$

where we have used $\alpha \Psi_{i, j}=0$ and $\mu_{R}^{i}\left(\mu_{R}^{i}\right)^{*}=d_{A} \mathbf{l}_{i}$ (theorem 2.29) respectively to prove the 3rd and the 4th equalities. If there is another $\widehat{\alpha}$ satisfying also $\alpha=\widehat{\alpha} \mu_{i, j}$, then $\widehat{\alpha}=$ $d_{A}^{-1} \widehat{\alpha} \mu_{i, j} \mu_{i, j}^{*}=d_{A}^{-1} \alpha \mu_{i, j}^{*}=\widetilde{\alpha}$. Thus the universal property is checked.
"Only if": This will be proved after the next theorem.

Theorem 3.4. Let $W_{i}, W_{j}$ be unitary $A$-bimodules. Then unitary tensor products over $A$ of $W_{i}, W_{j}$ exist and are unique up to unitaries. More precisely, uniqueness means that if ( $W_{i j}, \mu_{i, j}$ ) and ( $W_{i \bullet j}, \eta_{i, j}$ ) are unitary tensor products of $W_{i}, W_{j}$ over $A$, then there exists a (unique) unitary $u \in \operatorname{Hom}_{A}\left(W_{i j}, W_{i \bullet j}\right)$ such that $\eta_{i, j}=u \mu_{i, j}$.

Proof. Existence has already been proved. We now prove the uniqueness. Since $\eta_{i, j} \in$ $\operatorname{Hom}_{A}\left(W_{i} \boxtimes W_{j}, W_{i \bullet j}\right)$ is annihilated by $\Psi_{i, j}$, by the universal property for ( $W_{i j}, \mu_{i, j}$ ) there exists a unique $u \in \operatorname{Hom}_{A}\left(W_{i j}, W_{i \bullet j}\right)$ satisfying $\eta_{i, j}=u \mu_{i, j}$. In other words $u$ is the $A$ bimodule morphism induced by $\eta_{i, j}$. It remains to prove that $u$ is unitary.

We first show that $u$ is invertible. By the universal property for $\left(W_{i \bullet j}, \eta_{i, j}\right)$, there exists $v \in \operatorname{Hom}_{A}\left(W_{i \bullet j}, W_{i j}\right)$ such that $\mu_{i, j}=v \eta_{i, j}$. Thus $\eta_{i, j}=u v \eta_{i, j}$. Therefore, $u v$ is
induced by $\eta_{i, j}$ via the tensor product $W_{i \bullet j}$. But $\mathbf{l}_{i \bullet j}$ is clearly also induced by $\eta_{i, j}$ via $W_{i \bullet j}$. Therefore $u v=\mathbf{l}_{i \bullet j}$. Similarly $v u=\mathbf{l}_{i j}$. This proves that $u$ is invertible.

We now calculate

$$
\mu_{i, j}^{*} u^{*} u \mu_{i, j}=\eta_{i, j}^{*} \eta_{i, j}=\chi_{i, j}=\mu_{i, j}^{*} \mu_{i, j}
$$

By the universal property, $\mu_{i, j}^{*} u^{*} u$ and $\mu_{i, j}^{*}$ are equal since they are induced by the same morphism via $W_{i j}$. So $u^{*} u \mu_{i, j}=\mu_{i, j}$. By the universal property again, we have $u^{*} u=\mathbf{l}_{i j}$. Therefore $u$ is unitary.

Proof of the "only if" part of Proposition 3.3. By the "if" part of proposition 3.3 and the paragraph before that, there exists a unitary tensor product ( $W_{i j}, \mu_{i, j}$ ) satisfying $\mu_{i, j} \mu_{i, j}^{*}=d_{A} \mathbf{l}_{i j}$. By uniqueness up to unitaries, this equation holds for any unitary tensor product.

In the remaining part of this section, we generalize the notion of unitary tensor product to more than two unitary $A$-bimodules. For simplicity we only discuss the case of three bimodules. The more general cases can be treated in a similar fashion and are thus left to the reader.

Choose unitary $A$-bimodules $W_{i}, W_{j}, W_{k}$ with left actions $\mu_{L^{\prime}}^{i} \mu_{L}^{j}, \mu_{L}^{k}$ and right actions $\mu_{R}^{i}, \mu_{R}^{j}, \mu_{R}^{k}$, respectively. Then ( $W_{i} \boxtimes W_{j} \boxtimes W_{k}, \mu_{L}^{i} \otimes \mathbf{l}_{j} \otimes \mathbf{l}_{k}, \mathbf{l}_{i} \otimes \mathbf{l}_{j} \otimes \mu_{R}^{k}$ ) is a unitary $A$-bimodule.

Lemma 3.5. $\quad \chi_{i, j} \otimes \mathbf{l}_{k}$ and $\mathbf{l}_{i} \otimes \chi_{j, k}$ commute. Define $\chi_{i, j, k} \in \operatorname{End}_{A}\left(W_{i} \boxtimes W_{j} \boxtimes W_{k}\right)$ to be their product. Then $d_{A}^{-2} \chi_{i, j, k}$ is a projection.

Proof. The commutativity of these two morphisms is verified using the commutativity of the left and right actions of $W_{j}$. Thus $d_{A}^{-1} \chi_{i, j} \otimes \mathbf{l}_{k}$ and $d_{A}^{-1} \mathbf{l}_{i} \otimes \chi_{j, k}$ are commuting projections, whose product is therefore also a projection.

Definition 3.6. ( $W_{i j k}, \mu_{i, j, k}$ ) (or $W_{i j k}$ for short) is called a unitary tensor product of $W_{i}, W_{j}, W_{k}$ over $A$, if

- $W_{i j k}=\left(W_{i j k}, \mu_{L}^{i j k}, \mu_{R}^{i j k}\right)$ is a unitary $A$-bimodule, $\mu_{i, j, k} \in \operatorname{Hom}_{A}\left(W_{i} \boxtimes W_{j} \boxtimes\right.$ $\left.W_{k}, W_{i j k}\right)$, and $\mu_{i, j, k}\left(\Psi_{i, j} \otimes \mathbf{l}_{k}\right)=\mu_{i, j, k}\left(\mathbf{l}_{i} \otimes \Psi_{j, k}\right)=0$.
- (Universal property) If $\left(W_{l}, \mu_{L}^{l}, \mu_{R}^{l}\right)$ is a unitary $A$-bimodule, $\alpha \in \operatorname{Hom}_{A}\left(W_{i} \boxtimes\right.$ $\left.W_{j} \boxtimes W_{k}, W_{l}\right)$, and $\alpha\left(\Psi_{i, j} \otimes \mathbf{l}_{k}\right)=\alpha\left(\mathbf{l}_{i} \otimes \Psi_{j, k}\right)=0$, then there exists a unique $\widetilde{\alpha} \in$
$\operatorname{Hom}_{A}\left(W_{i j k}, W_{l}\right)$ satisfying $\alpha=\widetilde{\alpha} \mu_{i, j, k}$. In this case, we say that $\widetilde{\alpha}$ is induced by $\alpha$ via the tensor product $W_{i j k}$.
- (Unitarity) $\chi_{i, j, k}=\mu_{i, j, k} \mu_{i, j, k}^{*}$.

Proposition 3.7. Let $W_{i j k}$ be a unitary $A$-bimodules, and $\mu_{i, j, k} \in \operatorname{Hom}_{A}\left(W_{i} \boxtimes W_{j} \boxtimes\right.$ $W_{k}, W_{i j k}$ ). Then ( $W_{i j k}, \mu_{i, j, k}$ ) is a unitary tensor product of $W_{i}, W_{j}, W_{k}$ over $A$ if and only if $\mu_{i, j, k}^{*} \mu_{i, j, k}=\chi_{i, j, k}$ and $\mu_{i, j, k} \mu_{i, j, k}^{*}=d_{A}^{2} l_{i j k}$.

Theorem 3.8. Unitary tensor products of $W_{i}, W_{j}, W_{k}$ exist and are unique up to unitaries.

We omit the proofs of these two results since they can be proved in a similar way as proposition 3.3 and theorem 3.4.

## 3.2 $C^{*}$-tensor categories associated to 0 -systems

We are now ready to define the unitary tensor structure on the $C^{*}$-category $\operatorname{BIM}^{\mathrm{u}}(A)$ of unitary $A$-bimodules. The tensor bifunctor $\boxtimes_{A}$ is defined as follows. For any unitary $A$-bimodules $W_{i}, W_{j}$, we choose a unitary tensor product ( $W_{i j}, \mu_{i, j}$ ). Then $W_{i} \boxtimes_{A} W_{j}$ is just the unitary $A$-bimodule $W_{i j}$. To define tensor product of morphisms, we choose another pair of unitary $A$-bimodules $W_{i^{\prime}}, W_{j^{\prime}}$, and choose any $F \in \operatorname{Hom}_{A}\left(W_{i}, W_{i^{\prime}}\right)$ and $G \in \operatorname{Hom}_{A}\left(W_{j}, W_{j^{\prime}}\right)$. Of course, there is also a chosen unitary tensor product ( $W_{i^{\prime} j^{\prime}}, \mu_{i^{\prime}, j^{\prime}}$ ) of $W_{i^{\prime}}, W_{j^{\prime}}$ over $A$. Since $F \otimes G: W_{i} \boxtimes W_{j} \rightarrow W_{i^{\prime}} \boxtimes W_{j^{\prime}}$ is clearly an $A$-bimodule morphism, we have $\mu_{i^{\prime}, j^{\prime}}(F \otimes G) \in \operatorname{Hom}_{A}\left(W_{i} \boxtimes W_{j^{\prime}}, W_{i^{\prime} j^{\prime}}\right)$, and one can easily show that $\mu_{i^{\prime}, j^{\prime}}(F \otimes G) \Psi_{i, j}=0$. Therefore, by universal property, there exists a unique morphism in $\operatorname{Hom}_{A}\left(W_{i j}, W_{i^{\prime} j^{\prime}}\right)$, denoted by $F \otimes_{A} G$, such that

$$
\begin{equation*}
\mu_{i^{\prime}, j^{\prime}}(F \otimes G)=\left(F \otimes_{A} G\right) \mu_{i, j} \tag{3.5}
\end{equation*}
$$

This defines the tensor product of $F$ and $G$ in $\operatorname{BIM}^{\mathrm{u}}(A)$. We now show that $\boxtimes_{A}$ is a $*-$ bifunctor. Notice that $F^{*} \otimes_{A} G^{*}$ is defined by $\mu_{i, j}\left(F^{*} \otimes G^{*}\right)=\left(F^{*} \otimes_{A} G^{*}\right) \mu_{i^{\prime}, j^{\prime}}$. Therefore, using $(F \otimes G)^{*}=F^{*} \otimes G^{*}$ we compute

$$
\begin{aligned}
& \left(F \otimes_{A} G\right)^{*}=d_{A}^{-1} \mu_{i j} \mu_{i j}^{*}\left(F \otimes_{A} G\right)^{*}=d_{A}^{-1} \mu_{i j}(F \otimes G)^{*} \mu_{i^{\prime}, j^{\prime}}^{*}=d_{A}^{-1} \mu_{i j}\left(F^{*} \otimes G^{*}\right) \mu_{i^{\prime}, j^{\prime}}^{*} \\
= & d_{A}^{-1}\left(F^{*} \otimes_{A} G^{*}\right) \mu_{i^{\prime}, j^{\prime}} \mu_{i^{\prime}, j^{\prime}}^{*}=F^{*} \otimes_{A} G^{*} .
\end{aligned}
$$

To construct associativity isomorphisms we need the following:

Proposition 3.9. Let $W_{i}, W_{j}, W_{k}$ be unitary $A$-bimodules. Then $\left(W_{(i j) k}, \mu_{i j, k}\left(\mu_{i, j} \otimes \mathbf{l}_{k}\right)\right)$ and $\left(W_{i(j k)}, \mu_{i, j k}\left(\mathbf{l}_{i} \otimes \mu_{j, k}\right)\right)$ are unitary tensor products of $W_{i}, W_{j}, W_{k}$ over $A$.

Note that here $W_{(i j) k}$ is understood as the unitary tensor product of $W_{i j}$ and $W_{k}$ over $A$, and $W_{i(j k)}$ is understood similarly.

Proof. The two cases can be treated in a similar way. So we only prove the 1 st one. Set $\mu_{i, j, k}=\mu_{i j, k}\left(\mu_{i, j} \otimes \mathbf{l}_{k}\right)$. By proposition 3.7, it suffices to prove $\mu_{i, j, k}^{*} \mu_{i, j, k}=\chi_{i, j, k}$ and $\mu_{i, j, k} \mu_{i, j, k}^{*}=d_{A}^{2} \mathbf{l}_{i j k}$. The 2nd equation follows directly from that $\mu_{i, j} \mu_{i, j}^{*}=d_{A} \mathbf{l}_{i j}$ and $\mu_{i j, k} \mu_{i j, k}^{*}=d_{A} \mathbf{l}_{(i j) k}$. To prove the 1st one, we compute (recalling that we have suppressed the label $a$ )


Corollary 3.10. For any unitary $A$-bimodules $W_{i}, W_{j}, W_{k}$ there exists a (unique) unitary $\mathfrak{A}_{i, j, k} \in \operatorname{Hom}_{A}\left(W_{(i j) k}, W_{i(j k)}\right)$ satisfying

$$
\begin{equation*}
\mu_{i, j k}\left(\mathbf{l}_{i} \otimes \mu_{j, k}\right)=\mathfrak{A}_{i, j, k} \cdot \mu_{i j, k}\left(\mu_{i, j} \otimes \mathbf{l}_{k}\right) \tag{3.6}
\end{equation*}
$$

We define the unitary associativity isomorphism $W_{(i j) k} \rightarrow W_{i(j k)}$ to be $\mathfrak{A}_{i, j, k}$.

Proof. This follows immediately from the above proposition and theorem 3.8.

Proposition 3.11 (Pentagon axiom). Let $W_{i}, W_{j}, W_{k}, W_{l}$ be unitary $A$-bimodules. Then

$$
\begin{equation*}
\left(\mathbf{l}_{i} \otimes_{A} \mathfrak{A}_{j, k, l}\right) \mathfrak{A}_{i, j k, l}\left(\mathfrak{A}_{i, j, k} \otimes_{A} \mathbf{l}_{l}\right)=\mathfrak{A}_{i, j, k l} \mathfrak{A}_{i j, k, l} . \tag{3.7}
\end{equation*}
$$

Proof. One can define unitary tensor products of $W_{i}, W_{j}, W_{k}, W_{l}$ over $A$ in a similar way as those of three unitary $A$-bimodules. Moreover, using the argument of proposition 3.9 one shows that $\left(W_{((i j) k) l}, \mu_{(i j) k, l}\left(\mu_{i j, k}\left(\mu_{i, j} \otimes \mathbf{l}_{k}\right) \otimes \mathbf{l}_{l}\right)\right)$ is a unitary tensor product of $W_{i}, W_{j}, W_{k}, W_{l}$ over $A$. We now compute

$$
\begin{aligned}
& \quad\left(\mathbf{l}_{i} \otimes_{A} \mathfrak{A}_{j, k, l}\right) \mathfrak{A}_{i, j k, l}\left(\mathfrak{A}_{i j, k} \otimes_{A} \mathbf{l}_{l}\right) \cdot \mu_{(i j) k, l}\left(\mu_{i j, k}\left(\mu_{i, j} \otimes \mathbf{l}_{k}\right) \otimes \mathbf{l}_{l}\right) \\
& \xlongequal{(3.5)}\left(\mathbf{l}_{i} \otimes_{A} \mathfrak{A}_{j, k, l}\right) \mathfrak{A}_{i, j k, l} \cdot \mu_{i(j k), l}\left(\mathfrak{A}_{i, j, k} \otimes \mathbf{l}_{l}\right)\left(\mu_{i j, k}\left(\mu_{i, j} \otimes \mathbf{l}_{k}\right) \otimes \mathbf{l}_{l}\right) \\
& =\left(\mathbf{l}_{i} \otimes_{A} \mathfrak{A}_{j, k, l}\right) \mathfrak{A}_{i, j k, l} \cdot \mu_{i(j k), l}\left(\left(\mathfrak{A}_{i, j, k} \cdot \mu_{i j, k}\left(\mu_{i, j} \otimes \mathbf{l}_{k}\right)\right) \otimes \mathbf{l}_{l}\right) \\
& \xlongequal{(3.6)}\left(\mathbf{l}_{i} \otimes_{A} \mathfrak{A}_{j, k, l}\right) \mathfrak{A}_{i, j k, l} \cdot \mu_{i(j k), l}\left(\mu_{i, j k}\left(\mathbf{l}_{i} \otimes \mu_{j, k}\right) \otimes \mathbf{l}_{l}\right) \\
& =\left(\mathbf{l}_{i} \otimes_{A} \mathfrak{A}_{j, k, l}\right) \mathfrak{A}_{i, j k, l} \cdot \mu_{i(j k), l}\left(\mu_{i, j k} \otimes \mathbf{l}_{l}\right)\left(\mathbf{l}_{i} \otimes \mu_{j, k} \otimes \mathbf{l}_{l}\right) \\
& \xlongequal{(3.6)}\left(\mathbf{l}_{i} \otimes_{A} \mathfrak{A}_{j, k, l}\right) \mu_{i, j k) l}\left(\mathbf{l}_{i} \otimes \mu_{j k, l}\right)\left(\mathbf{l}_{i} \otimes \mu_{j, k} \otimes \mathbf{l}_{l}\right) \\
& \xlongequal{(3.5)} \mu_{i, j(k l)}\left(\mathbf{l}_{i} \otimes \mathfrak{A}_{j, k, l}\right)\left(\mathbf{l}_{i} \otimes \mu_{j k, l}\right)\left(\mathbf{l}_{i} \otimes \mu_{j, k} \otimes \mathbf{l}_{l}\right) \\
& = \\
& \mu_{i, j(k l)}\left(\mathbf{l}_{i} \otimes\left(\mathfrak{A}_{j, k, l} \cdot \mu_{j k, l}\left(\mu_{j, k} \otimes \mathbf{l}_{l}\right)\right)\right) \\
& \xlongequal{(3.6)} \mu_{i, j(k l)}\left(\mathbf{l}_{i} \otimes \mu_{j, k l}\left(\mathbf{l}_{j} \otimes \mu_{k, l}\right)\right),
\end{aligned}
$$

and

$$
\begin{aligned}
& \mathfrak{A}_{i, j, k l} \mathfrak{A}_{i j, k, l} \cdot \mu_{(i j) k, l}\left(\mu_{i j, k}\left(\mu_{i, j} \otimes \mathbf{l}_{k}\right) \otimes \mathbf{l}_{l}\right) \\
&= \mathfrak{A}_{i, j, k l} \mathfrak{A}_{i j, k, l} \cdot \mu_{(i j) k, l}\left(\mu_{i j, k} \otimes \mathbf{l}_{l}\right)\left(\mu_{i, j} \otimes \mathbf{l}_{k} \otimes \mathbf{l}_{l}\right) \\
& \xlongequal{(3.6)} \mathfrak{A}_{i, j, k l} \cdot \mu_{i j, k l}\left(\mathbf{l}_{i j} \otimes \mu_{k, l}\right)\left(\mu_{i, j} \otimes \mathbf{l}_{k} \otimes \mathbf{l}_{l}\right) \\
&= \mathfrak{A}_{i, j, k l} \cdot \mu_{i j, k l}\left(\mu_{i, j} \otimes \mathbf{l}_{k l}\right)\left(\mathbf{l}_{i} \otimes \mathbf{l}_{j} \otimes \mu_{k, l}\right) \\
& \xlongequal{(3.6)} \mu_{i, j(k l)}\left(\mathbf{l}_{i} \otimes \mu_{j, k l}\right)\left(\mathbf{l}_{i} \otimes \mathbf{l}_{j} \otimes \mu_{k, l}\right)=\mu_{i, j(k l)}\left(\mathbf{l}_{i} \otimes \mu_{j, k l}\left(\mathbf{l}_{j} \otimes \mu_{k, l}\right)\right) .
\end{aligned}
$$

Thus equation (3.7) holds when both sides are multiplied by $\mu_{(i j) k, l}\left(\mu_{i j, k}\left(\mu_{i, j} \otimes \mathbf{l}_{k}\right) \otimes \mathbf{l}_{l}\right)$. Hence equation (3.7) is true by the universal property for the unitary tensor products of $W_{i}, W_{j}, W_{k}, W_{l}$.

We choose the vacuum bimodule $\left(W_{a}, \mu, \mu\right)$ to be the identity object of $\operatorname{BIM}^{\mathrm{u}}(A)$. Then by proposition 3.3, for any unitary $A$-bimodule ( $W_{i}, \mu_{L^{\prime}}^{i} \mu_{R}^{i}$ ), we have that ( $W_{i}, \mu_{L}^{i}$ ) is a unitary tensor product of $W_{a} \boxtimes W_{i}$ and $\left(W_{i}, \mu_{R}^{i}\right)$ is a unitary tensor product of $W_{i} \boxtimes W_{a}$. By uniqueness up to unitaries, there exist unique unitary $\mathfrak{l}_{i} \in \operatorname{Hom}_{A}\left(W_{a i}, W_{i}\right)$ and $\mathfrak{r}_{i} \in$ $\operatorname{Hom}_{A}\left(W_{i a}, W_{i}\right)$ satisfying

$$
\begin{equation*}
\mu_{L}^{i}=\mathfrak{r}_{i} \mu_{a, i}, \quad \mu_{R}^{i}=\mathfrak{r}_{i} \mu_{i, a} . \tag{3.8}
\end{equation*}
$$

Proposition 3.12 (Triangle axiom). For any unitary $A$-bimodules $W_{i}, W_{j}$ we have

$$
\begin{equation*}
\left(\mathbf{l}_{i} \otimes_{A} \mathfrak{l}_{j}\right) \mathfrak{A}_{i, a, j}=\mathfrak{r}_{i} \otimes_{A} \mathbf{l}_{j} \tag{3.9}
\end{equation*}
$$

Proof. Similar to (and simpler than) the proof of pentagon axiom, we show that

$$
\left(\mathbf{l}_{i} \otimes_{A} \mathfrak{l}_{j}\right) \mathfrak{A}_{i, a, j} \cdot \mu_{i a, j}\left(\mu_{i, a} \otimes \mathbf{l}_{j}\right)=\mu_{i, j}\left(\mathbf{l}_{i} \otimes \mu_{j}^{L}\right)=\mu_{i, j}\left(\mu_{i}^{R} \otimes \mathbf{l}_{j}\right)=\left(\mathfrak{r}_{i} \otimes_{A} \mathbf{l}_{j}\right) \cdot \mu_{i a, j}\left(\mu_{i, a} \otimes \mathbf{l}_{j}\right),
$$

which proves triangle axiom by universal property.

We conclude the following:

Theorem 3.13. With the $*$-bifunctor $\boxtimes_{A}$, the associativity isomorphisms, the unit object, and the left and right multiplications by unit defined above, $\operatorname{BIM}^{\mathrm{u}}(A)$ is a $C^{*}$ tensor category.

In the following, we identify different ways of unitary tensor products via associativity isomorphisms, and identify $W_{a i}$ with $W_{i}$ and $W_{i a}$ with $W_{i}$ via $\mathfrak{l}_{i}$ and $\mathfrak{r}_{i}$ respectively. Then $\operatorname{BIM}^{\mathrm{u}}(A)$ can be treated as if it is a strict $C^{*}$-tensor category. We have $(i j) k=i(j k)$, both denoted by $i j k$, and also $a i=i=i a$. Thus the $\mathfrak{A}_{i, j, k}, \mathfrak{r}_{i}, \mathfrak{r}_{i}$ are all identity morphisms. Therefore $\mu_{L}^{i}=\mu_{a, i}, \mu_{R}^{i}=\mu_{i, a}$, and in particular $\mu=\mu_{a, a}$. Moreover, equation (3.6) now reads

which means that the left action $i \curvearrowright j$ and the right action $j \curvearrowleft k$ commute. These two actions indeed commute adjointly, as indicated below.

Theorem 3.14 (Frobenius relations).



Proof. Let $F$ and $G$ be the 1 st and the 2 nd item of (3.11). One computes


Therefore $F=d_{A}^{-1} F\left(\mu_{i, j} \otimes \mathbf{l}_{k}\right)\left(\mu_{i, j} \otimes \mathbf{l}_{k}\right)^{*}=d_{A}^{-1} G\left(\mu_{i, j} \otimes \mathbf{l}_{k}\right)\left(\mu_{i, j} \otimes \mathbf{l}_{k}\right)^{*}=G$, which proves the 1st equation. The 2nd one is the adjoint of the 1st one.

The above Frobenius relations are the decisive property that makes a tensor product theory unitary. They are indeed closely related to the locality axiom of the categorical extensions of conformal nets [21] where the adjoint commutativity of left and right actions plays a central role. In subsequent works we will relate the $C^{*}$-tensor categories of conformal net extensions and unitary VOA extensions using Frobenius relations.

We close this section by showing that the $C^{*}$-tensor structure of $\mathrm{BIM}^{\mathrm{u}}(A)$ is independent of the choice of unitary tensor products. Suppose that we have two systems of unitary tensor products: for any objects $W_{i}, W_{j}$ in $\operatorname{BIM}^{\mathrm{u}}(A)$ we have unitary tensor products $\left(W_{i \times j}, \mu_{i, j}\right),\left(W_{i \bullet j}, \eta_{i, j}\right)$ of $W_{i}, W_{j}$ over $A$, which define (strict) $C^{*}$-tensor categories $\left(\operatorname{BIM}^{\mathrm{u}}(A), \boxtimes_{A}\right),\left(\operatorname{BIM}^{\mathrm{u}}(A), \boxtimes_{A}\right)$. Tensor products of morphisms are written as $\otimes_{A}, \odot_{A}$, respectively. By uniqueness up to unitaries, there exists a unique unitary $\Phi_{i, j} \in \operatorname{Hom}_{A}\left(W_{i \times j}, W_{i \bullet j}\right)$ such that

$$
\begin{equation*}
\eta_{i, j}=\Phi_{i, j} \mu_{i, j} \tag{3.12}
\end{equation*}
$$

Proposition 3.15. $\Phi$ is functorial: for any unitary $A$-modules $W_{i}, W_{i^{\prime}}, W_{j}, W_{j^{\prime}}$ and any $F \in \operatorname{Hom}_{A}\left(W_{i}, W_{i^{\prime}}\right), G \in \operatorname{Hom}_{A}\left(W_{j}, W_{j^{\prime}}\right)$,

$$
\begin{equation*}
\Phi_{i^{\prime}, j^{\prime}}\left(F \otimes_{A} G\right)=\left(F \odot_{A} G\right) \Phi_{i, j} \tag{3.13}
\end{equation*}
$$

Proof. We compute

$$
\Phi_{i^{\prime}, j^{\prime}}\left(F \otimes_{A} G\right) \mu_{i, j}=\Phi_{i^{\prime}, j^{\prime}} \cdot \mu_{i^{\prime}, j^{\prime}}(F \otimes G)=\eta_{i^{\prime}, j^{\prime}}(F \otimes G)=\left(F \odot_{A} G\right) \eta_{i, j}=\left(F \odot_{A} G\right) \Phi_{i, j} \cdot \mu_{i, j}
$$

Thus the desired equation is proved by universal property.

Theorem 3.16. $\Phi$ induces an equivalence of $C^{*}$-tensor categories $\left(\operatorname{BIM}^{u}(A), \boxtimes_{A}\right) \simeq$ $\left(\operatorname{BIM}^{\mathrm{u}}(A), \square_{A}\right)$. More precisely, for any unitary $A$-bimodules $W_{i}, W_{j}, W_{k}$,

- The following diagram commutes.

- The following two morphisms equal $\mathbf{l}_{i}$.

$$
\begin{align*}
& W_{i}=W_{a \times i} \xrightarrow{\Phi_{a, i}} W_{a \bullet i}=W_{i},  \tag{3.15}\\
& W_{i}=W_{i \times a} \xrightarrow{\Phi_{i, a}} W_{i \bullet a}=W_{i} . \tag{3.16}
\end{align*}
$$

Proof. To prove the 1st condition, we calculate

$$
\begin{aligned}
& \Phi_{i, j \bullet k}\left(\mathbf{l}_{i} \otimes_{A} \Phi_{j, k}\right) \cdot \mu_{i, j \times k}\left(\mathbf{l}_{i} \otimes \mu_{j, k}\right)=\Phi_{i, j \bullet k} \cdot \mu_{i, j \bullet k}\left(\mathbf{l}_{i} \otimes \Phi_{j, k}\right)\left(\mathbf{l}_{i} \otimes \mu_{j, k}\right) \\
= & \Phi_{i, j \bullet k} \cdot \mu_{i, j \bullet k}\left(\mathbf{l}_{i} \otimes \Phi_{j, k} \cdot \mu_{j, k}\right) \xlongequal{(3.12)} \eta_{i, j \bullet k}\left(\mathbf{l}_{i} \otimes \eta_{j, k}\right) \xlongequal{(3.10)} \eta_{i \bullet j, k}\left(\eta_{i, j} \otimes \mathbf{l}_{k}\right),
\end{aligned}
$$

and also

$$
\begin{aligned}
& \Phi_{i \bullet j, k}\left(\Phi_{i, j} \otimes_{A} \mathbf{l}_{k}\right) \cdot \mu_{i, j \times k}\left(\mathbf{l}_{i} \otimes \mu_{j, k}\right) \xlongequal{(3.10)} \Phi_{i \bullet j, k}\left(\Phi_{i, j} \otimes_{A} \mathbf{l}_{k}\right) \cdot \mu_{i \times j, k}\left(\mu_{i, j} \otimes \mathbf{l}_{k}\right) \\
= & \Phi_{i \bullet j, k} \cdot \mu_{i \bullet j, k}\left(\Phi_{i, j} \otimes \mathbf{l}_{k}\right)\left(\mu_{i, j} \otimes \mathbf{l}_{k}\right)=\Phi_{i \bullet j, k} \cdot \mu_{i \bullet j, k}\left(\Phi_{i, j} \mu_{i, j} \otimes \mathbf{l}_{k}\right) \xlongequal{(3.12)} \eta_{i \bullet j, k}\left(\eta_{i, j} \otimes \mathbf{l}_{k}\right) .
\end{aligned}
$$

This proves (3.14) since ( $W_{i \times j \times k}, \mu_{i, j \times k}\left(\mathbf{l}_{i} \otimes \mu_{j, k}\right)$ ) is a unitary tensor product of $W_{i}, W_{j}, W_{k}$ over $A$ by proposition 3.9.

Let $\mu_{L}^{i}, \mu_{R}^{i}$ be the left and right actions of $W_{i}$. Then under the identifications $i=a \times i=i \times a=a \bullet i=i \bullet a$, we know by equations (3.8) that $\mu_{a, i}, \eta_{a, i}$ both equal $\mu_{L^{\prime}}^{i}$ and $\mu_{i, a}, \eta_{i, a}$ both equal $\mu_{R}^{i}$. Thus, by (3.12), $\Phi_{a, i}=\mathbf{l}_{i}=\Phi_{i, a}$.

### 3.3 Dualizable unitary bimodules

Let ( $W_{i}, \mu_{L}^{i}, \mu_{R}^{i}$ ) be a unitary $A$-bimodule as usual. Recall that $W_{i}$ is called $\mathcal{C}$-dualizable if it is dualizable as an object in $\mathcal{C}$. The notion of $\operatorname{BIM}^{\mathbf{u}}(A)$-dualizability is understood in a similar way. In [37] section 6.2, it was shown that if $W_{i}$ is $\mathcal{C}$-dualizable, then it is $\operatorname{BIM}^{\mathrm{u}}(A)$-dualizable. The converse is also true by proposition 6.13 of [37] (Note that although $A$ is assumed in [37] to be standard, the results there also apply to the nonstandard case since any $C^{*}$-Frobenius algebra is isomorphic to a standard Q-system by [38] theorem 2.9.). In this section, we give a slightly different proof of this result; see theorem 3.18.

We first assume that $W_{i}$ is $\mathcal{C}$-dualizable. Our proof of the $\operatorname{BIM}^{\mathrm{u}}(A)$-dualizability is motivated by [30] lemma 1.16 and [8] proposition 2.77. Notice that $W_{a \boxtimes i \boxtimes a}=W_{a} \boxtimes$ $W_{i} \boxtimes W_{a}$ is naturally a unitary $A$-bimodule with left action $\mu \otimes \mathbf{l}_{i} \otimes \mathbf{l}_{a}$ and right action $\mathbf{1}_{a} \otimes \mathbf{l}_{j} \otimes \mu$. Moreover, $\mu_{L R}^{i}:=\mu_{R}^{i}\left(\mu_{L}^{i} \otimes \mathbf{l}_{a}\right)=\mu_{L}^{i}\left(\mathbf{l}_{a} \otimes \mu_{R}^{i}\right): W_{a} \boxtimes W_{i} \boxtimes W_{a} \rightarrow W_{i}$ is an $A$-bimodule morphism, and $d_{A}^{-1} \mu_{L R}^{i}$ is a partial isometry with range $\mathbf{l}_{i}$. Therefore $W_{i}$ is a sub $A$-bimodule of $W_{a} \boxtimes W_{i} \boxtimes W_{a}$, and hence it suffices to show that $W_{a} \boxtimes W_{i} \boxtimes W_{a}$ is $\operatorname{BIM}^{\mathrm{u}}(A)$-dualizable.

Let $W_{\bar{i}}$ be a dual object of $W_{i}$, and choose $\mathrm{ev}_{i, \bar{i}}, \mathrm{ev}_{\bar{i}, i}$ of $W_{i}, W_{\bar{i}}$. Then a natural candidate of dual bimodule of $W_{a} \boxtimes W_{i} \boxtimes W_{a}$ is $W_{a} \boxtimes W_{\bar{i}} \boxtimes W_{a}$. Let us first understand their unitary tensor product over $A$. For this purpose, we choose a general unitary $A$ -
bimodule $\left(W_{j}, \mu_{L}^{j}, \mu_{R}^{j}\right)$, and check easily using proposition 3.3 that ( $W_{a} \boxtimes W_{i} \boxtimes W_{a} \boxtimes W_{j} \boxtimes$ $W_{a}, \mathbf{l}_{a} \otimes \mathbf{l}_{i} \otimes \mu \otimes \mathbf{l}_{i} \otimes \mathbf{l}_{a}$ ) is a unitary tensor product of $W_{a} \boxtimes W_{i} \boxtimes W_{a}$ and $W_{a} \boxtimes W_{j} \boxtimes W_{a}$ over $A$. We thus define the unitary tensor product of $W_{a} \boxtimes W_{i} \boxtimes W_{a}$ and $W_{a} \boxtimes W_{\bar{i}} \boxtimes W_{a}$ over $A$ in this way. Briefly, $(a \boxtimes i \boxtimes a)(a \boxtimes \bar{i} \boxtimes a)=a \boxtimes i \boxtimes a \boxtimes \bar{i} \boxtimes a$, and similarly, $(a \boxtimes \bar{i} \boxtimes a)(a \boxtimes i \boxtimes a)=a \boxtimes \bar{i} \boxtimes a \boxtimes i \boxtimes a$.

We now define $\operatorname{ev}_{a \boxtimes i \boxtimes a, a \boxtimes \bar{i} \boxtimes a}^{A} \in \operatorname{Hom}_{A}\left(W_{a \boxtimes i \boxtimes a \boxtimes i \boxtimes a^{\prime}} W_{a}\right)$ and $\operatorname{ev}_{a \boxtimes \bar{i} \boxtimes a, a \boxtimes i \boxtimes a}^{A} \in$ $\operatorname{Hom}_{A}\left(W_{a \boxtimes \bar{i} \boxtimes a \boxtimes i \boxtimes a}, W_{a}\right)$ by

$$
\begin{aligned}
& \operatorname{ev}_{a \boxtimes i \boxtimes a, a \boxtimes \bar{i} \boxtimes a}^{A}=\mu\left(\mathbf{l}_{a} \otimes\left(\operatorname{ev}_{i, \bar{i}}\left(\mathbf{l}_{i} \otimes \iota^{*} \otimes \mathbf{l}_{\bar{i}}\right)\right) \otimes \mathbf{l}_{a}\right), \\
& \operatorname{ev}_{a \boxtimes \bar{i} \boxtimes a, a \boxtimes i \boxtimes a}^{A}=\mu\left(\mathbf{l}_{a} \otimes\left(\operatorname{ev}_{\bar{i}, i}\left(\mathbf{l}_{\bar{i}} \otimes \iota^{*} \otimes \mathbf{l}_{i}\right)\right) \otimes \mathbf{l}_{a}\right) .
\end{aligned}
$$

Since we also have $(a \boxtimes \bar{i} \boxtimes a)(a \boxtimes i \boxtimes a)(a \boxtimes \bar{i} \boxtimes a)=a \boxtimes \bar{i} \boxtimes a \boxtimes i \boxtimes a \boxtimes \bar{i} \boxtimes a$, we check using (3.5) and the associativity of $A$ that

$$
\begin{aligned}
& \mathbf{l}_{a \boxtimes \bar{i} \boxtimes a} \otimes_{A} \mathrm{ev}_{a \boxtimes i \boxtimes a, a \boxtimes i \boxtimes a}^{A}=\mathbf{l}_{a} \otimes \mathbf{l}_{\bar{i}} \otimes \mathrm{ev}_{a \boxtimes i \boxtimes a, a \boxtimes i \boxtimes a^{\prime}}^{A} \\
& \mathrm{ev}_{a \boxtimes i \boxtimes a, a \boxtimes \bar{i} \boxtimes a}^{A} \otimes_{A} \mathbf{l}_{a \boxtimes i \boxtimes a}=\mathrm{ev}_{a \boxtimes i \boxtimes a, a \boxtimes i \boxtimes a}^{A} \otimes \mathbf{l}_{i} \otimes \mathbf{l}_{a}
\end{aligned}
$$

and that $\mathrm{ev}_{a \boxtimes \bar{i} \boxtimes a, a \boxtimes i \boxtimes a}^{A}$ satisfies similar relations. Using these equations it is straightforward to check that $\operatorname{ev}_{a \boxtimes i \boxtimes a, a \boxtimes i \boxtimes a}^{A}$ and $\mathrm{ev}_{a \boxtimes \bar{i} \boxtimes a, a \boxtimes i \boxtimes a}^{A}$ are evaluations in $\operatorname{BIM}^{\mathrm{u}}(A)$ of $W_{a} \boxtimes W_{i} \boxtimes W_{a}$ and $W_{a} \boxtimes W_{\bar{i}} \boxtimes W_{a}$, which proves that $W_{a} \boxtimes W_{i} \boxtimes W_{a}$ and hence $W_{i}$ are $\operatorname{BIM}^{\mathrm{u}}(A)$-dualizable.

To prove the inverse direction we need the following lemma.

Lemma 3.17. Let $W_{\bar{i}}$ be a unitary $A$-module, not yet known to be dual to $W_{i}$. Suppose that we have morphisms $\operatorname{ev}_{i, \bar{i}}^{A} \in \operatorname{Hom}_{A}\left(W_{\bar{i} \bar{i}}, W_{a}\right)$ and $\operatorname{ev}_{\bar{i}, i}^{A} \in \operatorname{Hom}_{A}\left(W_{\overline{i i},}, W_{a}\right)$. Set

$$
\begin{equation*}
\operatorname{ev}_{i, \bar{i}}=\iota^{*} \operatorname{ev}_{i, \bar{i}}^{A} \cdot \mu_{i, \bar{i}}, \quad \operatorname{ev}_{\bar{i}, i}=\iota^{*} \operatorname{ev}_{\bar{i}, i}^{A} \cdot \mu_{\bar{i}, i} \tag{3.17}
\end{equation*}
$$

and also set $\operatorname{coev}_{i, \bar{i}}^{A}=\left(\operatorname{ev}_{i, \bar{i}}^{A}\right)^{*}, \operatorname{coev}_{\bar{i}, i}^{A}=\left(\operatorname{ev}_{\bar{i}, i}^{A}\right)^{*}, \operatorname{coev}_{i, \bar{i}}=\left(\operatorname{ev}_{i, \bar{i}}\right)^{*}, \operatorname{coev}_{\bar{i}, i}=\left(\operatorname{ev}_{\bar{i}, i}\right)^{*}$. Then

$$
\begin{align*}
& \left(\mathbf{l}_{\bar{i}} \otimes \operatorname{ev}_{i, \bar{i}}\right)\left(\operatorname{coev}_{\bar{i}, i} \otimes \mathbf{l}_{\bar{i}}\right)=\left(\mathbf{l}_{\bar{i}} \otimes_{A} \operatorname{ev}_{i, \bar{i}}^{A}\right)\left(\operatorname{coev}_{\bar{i}, i}^{A} \otimes_{A} \mathbf{l}_{\bar{i}}\right),  \tag{3.18}\\
& \left(\operatorname{ev}_{i, \bar{i}} \otimes \mathbf{l}_{i}\right)\left(\mathbf{l}_{i} \otimes \operatorname{coev}_{\bar{i}, i}\right)=\left(\operatorname{ev}_{i, \bar{i}}^{A} \otimes_{A} \mathbf{l}_{i}\right)\left(\mathbf{l}_{i} \otimes_{A} \operatorname{coev}_{\bar{i}, i}^{A}\right) \tag{3.19}
\end{align*}
$$

We say that $\mathrm{ev}_{i, \bar{i}}$ and $\mathrm{ev}_{i, \bar{i}}^{A} \mathrm{ev}_{\bar{i}, i}$ and $\mathrm{ev}_{\bar{i}, i}^{A}$ are correlated if they satisfy (3.17).

Proof. The two equations can be proved in a similar way, so we only prove the 1 st one. Let $L, R$ be respectively the left and right hand sides of (3.18). Then


Now if $W_{i}$ is $\operatorname{BIM}^{\mathrm{u}}(A)$-dualizable, then we can find a unitary $A$-bimodule $W_{\bar{i}}$ dual to $W_{i,}$, and evaluations $\operatorname{ev}_{i, \bar{i}}^{A}, \operatorname{ev}_{\bar{i}, i}^{A}$ of $W_{i}, W_{\bar{i}}$ in $\operatorname{BIM}^{\mathrm{u}}(A)$. Define $\mathrm{ev}_{i, \bar{i}}, \mathrm{ev}_{\bar{i}, i}$ by equations (3.17). Then equations (3.18) and (3.19) imply that $\mathrm{ev}_{i, \bar{i}}, \mathrm{ev}_{\bar{i}, i}$ are evaluations of $W_{i}, W_{\bar{i}}$ in $\mathcal{C}$. Thus $W_{i}$ is $\mathcal{C}$-dualizable. This finishes the proof of the following theorem.

Theorem 3.18. If $W_{i}$ is a unitary $A$-bimodule, then $W_{i}$ is $\mathcal{C}$-dualizable if and only if $W_{i}$ is $\operatorname{BIM}^{\mathrm{u}}(A)$-dualizable. Moreover, one can choose correlated evaluations ev, $\mathrm{ev}^{A}$ in $\mathcal{C}$ and $\operatorname{BIM}^{\mathrm{u}}(A)$.

By the above theorem, we will no longer distinguish between $\mathcal{C}$ - and $\operatorname{BIM}^{u}(A)$ dualizability. Using the same argument as lemma 3.17 one also proves that under correlated evaluations, the $\mathcal{C}$-transposes and $\operatorname{BIM}^{\mathrm{u}}(A)$-transposes of a unitary $A$-bimodule morphism $F$ are equal. Therefore the symbols ${ }^{\vee} F$ and $F^{\vee}$ are defined unambiguously. Compare [37] lemma 6.10.

Proposition 3.19. Let $W_{i}, W_{j}$ be dualizable unitary $A$-bimodules. Choose dual objects $W_{\bar{i}^{\prime}}, W_{\bar{j}^{\prime}}$, and evaluations ev, $\mathrm{ev}^{A}$ (with suitable subscripts) in $\mathcal{C}$ and $\operatorname{BIM}^{\mathrm{u}}(A)$, respectively. Assume that ev, $\mathrm{ev}^{A}$ are correlated. Then for any $F \in \operatorname{Hom}_{A}\left(W_{i}, W_{j}\right)$, its transposes in $\mathcal{C}$ are the same as those in $\operatorname{BIM}^{\mathrm{u}}(A)$. More precisely, we have

$$
\begin{align*}
& \left(\mathbf{l}_{\bar{i}} \otimes \mathrm{ev}_{j, \bar{j}}\right)\left(\mathbf{l}_{\bar{i}} \otimes F \otimes \mathbf{l}_{\bar{j}}\right)\left(\operatorname{coev}_{\bar{i}, i} \otimes \mathrm{l}_{\bar{j}}\right) \\
= & \left(\mathbf{l}_{\bar{i}} \otimes_{A} \mathrm{ev}_{j, \bar{j}}^{A}\right)\left(\mathbf{l}_{\bar{i}} \otimes_{A} F \otimes_{A} \mathbf{l}_{\bar{j}}\right)\left(\operatorname{coev}_{\bar{i}, i}^{A} \otimes_{A} \mathbf{l}_{\bar{j}}\right), \tag{3.20}
\end{align*}
$$

$$
\begin{align*}
& \left(\mathrm{ev}_{\bar{j}, j} \otimes \mathbf{l}_{\bar{i}}\right)\left(\mathbf{l}_{\bar{j}} \otimes F \otimes \mathbf{l}_{\bar{i}}\right)\left(\mathbf{l}_{\bar{j}} \otimes \operatorname{coev}_{i, \bar{i}}\right) \\
= & \left(\operatorname{ev}_{\bar{j}, j}^{A} \otimes_{A} \mathbf{l}_{\bar{i}}\right)\left(\mathbf{l}_{\bar{j}} \otimes_{A} F \otimes_{A} \mathbf{l}_{\bar{i}}\right)\left(\mathbf{l}_{\bar{j}} \otimes_{A} \operatorname{coev}_{i, \bar{i}}^{A}\right) . \tag{3.21}
\end{align*}
$$

Recall that for any $F \in \operatorname{End}\left(W_{i}\right)$, one can define scalars $\operatorname{Tr}_{L}(F), \operatorname{Tr}_{R}(F)$ such that $\mathrm{ev}_{i, \bar{i}}\left(F \otimes \mathbf{l}_{\bar{i}}\right) \operatorname{coev}_{i, \bar{i}}=\operatorname{Tr}_{L}(F) \mathbf{l}_{0}$ and $\mathrm{ev}_{\bar{i}, i}\left(\mathbf{l}_{\bar{i}} \otimes F\right) \operatorname{coev}_{\bar{i}, i}=\operatorname{Tr}_{R}(F) \mathbf{l}_{0}$. If $A$ is simple in the sense that $\operatorname{End}_{A}\left(W_{a}\right)=\mathbb{C l}_{a}$, and $F \in \operatorname{End}_{A}\left(W_{i}\right)$, one can similarly define scalars $\operatorname{Tr}_{L}^{A}(F), \operatorname{Tr}_{R}^{A}(F)$ such that $\operatorname{ev}_{i, \bar{i}}^{A}\left(F \otimes_{A} \mathbf{l}_{\bar{i}}\right) \operatorname{coev}_{i, \bar{i}}^{A}=\operatorname{Tr}_{L}^{A}(F) \mathbf{1}_{a}$ and $\operatorname{ev}_{\bar{i}, i}^{A}\left(\mathbf{l}_{\bar{i}} \otimes_{A} F\right) \operatorname{coev}_{\bar{i}, i}^{A}=\operatorname{Tr}_{R}(F) \mathbf{1}_{a}$. In the case that $\mathrm{ev}^{A}$ and ev are correlated, these two traces satisfy very simple relations:

Proposition 3.20. If $A$ is a simple $Q$-system, $W_{i}, W_{\bar{i}}$ are mutually dual unitary $A$ bimodules, and the ev and $\mathrm{ev}^{A}$ for $W_{i}$ are correlated, then for any $F \in \operatorname{End}_{A}\left(W_{i}\right)$, we have

$$
\begin{equation*}
\operatorname{Tr}_{L}(F)=D_{A} \operatorname{Tr}_{L}^{A}(F), \quad \operatorname{Tr}_{R}(F)=D_{A} \operatorname{Tr}_{R}^{A}(F) \tag{3.22}
\end{equation*}
$$

As a consequence, $\mathrm{ev}^{A}$ are standard if the correlated ev are so.

Proof. We only prove the relation for left traces.

$$
\begin{aligned}
& \operatorname{Tr}_{L}(F) \mathbf{l}_{0}=\operatorname{ev}_{i, \bar{i}}\left(F \otimes \mathbf{l}_{\bar{i}}\right) \operatorname{coev}_{i, \bar{i}} \xlongequal{(3.17)} \iota^{*} \operatorname{ev}_{i, \bar{i}}^{A} \cdot \mu_{i, \bar{i}}\left(F \otimes \mathbf{l}_{\bar{i}}\right)\left(\mu_{i, \bar{i}} *^{*} \operatorname{coev}_{i, \bar{i}}^{A} \iota\right. \\
= & \iota^{*} \operatorname{ev}_{i, \bar{i}}^{A}\left(F \otimes_{A} \mathbf{l}_{\bar{i}}\right) \cdot \mu_{i, \bar{i}}\left(\mu_{i, \bar{i}}\right)^{*} \operatorname{coev}_{i, \bar{i}}^{A} \iota=d_{A} \iota^{*} \operatorname{ev}_{i, \bar{i}}^{A}\left(F \otimes_{A} \mathbf{l}_{\bar{i}}\right) \cdot \operatorname{coev}_{i, \bar{i}}^{A}{ }^{l} \\
= & d_{A} \operatorname{Tr}_{L}^{A}(F) \iota^{*} \iota=D_{A} \operatorname{Tr}_{L}^{A}(F) \mathbf{l}_{0} .
\end{aligned}
$$

Note that a simple $C^{*}$-Frobenius algebra is always a simple Q-system, since $\mu \mu^{*}$ is in $\operatorname{End}_{A}\left(W_{a}\right)$, which must be a scalar and hence proves the specialness. Examples of simple Q -systems include haploid $C^{*}$-Frobenius algebras, since in general we have $\operatorname{dim} \operatorname{Hom}\left(W_{0}, W_{a}\right)=\operatorname{dim} \operatorname{End}_{A,-}\left(W_{a}\right) \geq \operatorname{dim} \operatorname{End}_{A}\left(W_{a}\right)$ (cf. [38] remark 2.7-(1)). Recall that haploid $C^{*}$-Frobenius algebras are also standard ( $D_{A}=d_{a}$ ) by proposition 2.20. As a consequence, the $\mathcal{C}$-algebra $A_{U}$ associated to a unitary VOA extension $U$ is haploid and hence a simple standard Q -system.

## Construction of dual bimodules and correlated ev ${ }^{A}$

In the remaining part of this section we assume that $A$ is standard. Then for a dualizable unitary $A$-bimodule ( $W_{i}, \mu_{L}^{i}, \mu_{R}^{i}$ ) one can explicitly construct the dual bimodule and $\mathrm{ev}^{A}$
following [30] figures $9-11$ or [39] section 4.1. This construction will be used in the next section to understand the ribbon structure of the unitary representation category of $A$.

Since $A$ is now standard, $\mathrm{ev}_{a, a}:=\iota^{*} \mu$ is a standard evaluation of $W_{a}$. Choose an object $W_{\bar{i}}$ in $\mathcal{C}$ dual to $W_{i}$, and choose standard ev for $W_{i}, W_{\bar{i}}$. Recall convention 2.4. Motivated by corollary 1.12, we define

$$
\begin{equation*}
\mu_{L}^{\bar{i}}=\left(\left(\mu_{R}^{i}\right)^{*}\right)^{\vee}, \quad \mu_{R}^{\bar{i}}=\left(\left(\mu_{L}^{i}\right)^{*}\right)^{\vee} \tag{3.23}
\end{equation*}
$$

Then using graphical calculus it is not hard to verify that ( $W_{\bar{i}}, \mu_{L}^{\bar{i}}, \mu_{R}^{\bar{i}}$ ) is a unitary $A$ bimodule. (Note that the standardness is used to verify the unitarity.) Moreover, using the above definition, and noting that $(\cdot)^{\vee}={ }^{\vee}(\cdot)$, one checks that

and that $\mathfrak{e}_{i, \bar{i}} \Psi_{i, \bar{i}}=0=\mathfrak{e}_{\bar{i}, i} \Psi_{\bar{i}, i}$. Therefore there exist $\operatorname{ev}_{i, \bar{i}}^{A} \in \operatorname{Hom}_{A}\left(W_{i, \bar{i}}, W_{a}\right), \operatorname{ev}_{\bar{i}, i}^{A} \in$ $\operatorname{Hom}_{A}\left(W_{\bar{i}, i}, W_{a}\right)$ satisfying

$$
\begin{equation*}
\mathfrak{e}_{i, \bar{i}}=\mathrm{ev}_{i, \bar{i}}^{A} \mu_{i, \bar{i}}, \quad \mathfrak{e}_{\bar{i}, i}=\operatorname{ev}_{\bar{i}, i}^{A} \mu_{\bar{i}, i} \tag{3.26}
\end{equation*}
$$

By unit property, $\mathrm{ev}_{i, \bar{i}}^{A}$ and $\mathrm{ev}_{i, \bar{i}}, \mathrm{ev}_{\bar{i}, i}^{A}$ and $\mathrm{ev}_{\bar{i}, i}$ are correlated. Therefore, by lemma 3.17, $\mathrm{ev}_{i, \bar{i}}^{A}$ and $\operatorname{ev}_{\bar{i}, i}^{A}$ are evaluations of $W_{i}, W_{\bar{i}}$ in $\operatorname{BIM}^{\mathrm{u}}(A)$. If, moreover, $A$ is simple, then $\mathrm{ev}^{A}$ are standard, and $\operatorname{Tr}_{L}(F)=\operatorname{Tr}_{R}(F)=d_{a} \operatorname{Tr}_{L}^{A}(F)=d_{a} \operatorname{Tr}_{R}^{A}(F)$ for any $F \in \operatorname{End}_{A}\left(W_{i}\right)$ by proposition 3.20. By the uniqueness up to unitaries of standard evaluations, the values of traces are independent of the choice of standard evaluations. Therefore we have (cf. [30] theorem 1.18 and [37] proposition 6.9.):

Theorem 3.21. If $A$ is a simple and standard Q -system, $W_{i}$ is a dualizable unitary $A$ bimodule, and $\operatorname{Tr}:=\operatorname{Tr}_{L}=\operatorname{Tr}_{R}$ and $\operatorname{Tr}^{A}:=\operatorname{Tr}_{L}^{A}=\operatorname{Tr}_{R}^{A}$ are defined using (not necessarily correlated) standard ev and standard $\mathrm{ev}^{A}$, respectively. Then $\operatorname{Tr}(F)=d_{a} \operatorname{Tr}^{A}(F)$, where $d_{a}$ is the $\left(\mathcal{C}\right.$-) quantum dimension of $W_{a}$. In particular, the $\mathcal{C}$-quantum dimension of $W_{i}$ equals $d_{a}$ multiplied by the $\operatorname{BIM}^{\mathrm{u}}(A)$-quantum dimension of $W_{i}$.

### 3.4 Braiding and ribbon structures

In this section, $\mathcal{C}$ is a braided $C^{*}$-tensor category with (unitary) braiding $\Omega$ and simple $W_{0}$, and $A$ is a commutative $Q$-system in $\mathcal{C}$. Let $\operatorname{Rep}^{u}(A)$ be the $C^{*}$-category of single-valued unitary left $A$-modules. As discussed in section 2.5, single-valued unitary left $A$-modules admits a canonical unitary bimodule structure, $\operatorname{Rep}^{\mathrm{u}}(A)$ is a full $C^{*}$ subcategory of $\operatorname{BIM}^{\mathrm{u}}(A)$, and $\operatorname{Hom}_{A,-}, \operatorname{Hom}_{-, A}, \operatorname{Hom}_{A}$ are the same for $\operatorname{Rep}^{\mathrm{u}}(A)$. If $W_{i}, W_{j}$ are in $\operatorname{Rep}^{\mathrm{u}}(A),\left(W_{k}, \mu_{L}^{k}, \mu_{R}^{k}\right)$ is in $\operatorname{BIM}^{\mathrm{u}}(A)$, and $\alpha \in \operatorname{Hom}_{A}\left(W_{i} \boxtimes W_{j}, W_{k}\right)$ satisfies $\alpha \Psi_{i, j}=0$, then one can show easily using graphical calculus that $\mu_{L}^{k} \Omega_{k, a}\left(\alpha \otimes \mathbf{l}_{a}\right)=\mu_{R}^{k}\left(\alpha \otimes \mathbf{l}_{a}\right)$. Now we choose a unitary tensor product $\left(W_{i j}, \mu_{i, j}\right)$ of $W_{i}, W_{j}$ over $A$, where $W_{i j}$ is a unitary A-bimodule with left and right actions $\mu_{L}^{i j}, \mu_{R}^{i j}$. Set $W_{k}=W_{i j}, \alpha=\mu_{i, j}$. Then we have $\mu_{L}^{i j} \beta_{i j, a}=\mu_{R}^{i j}$ since $\left(\alpha \otimes \mathbf{l}_{a}\right)\left(\alpha \otimes \mathbf{l}_{a}\right)^{*}=\left(\mu_{i, j} \otimes \mathbf{l}_{a}\right)\left(\mu_{i, j} \otimes \mathbf{l}_{a}\right)^{*}=d_{A} \mathbf{l}_{i j} \otimes \mathbf{l}_{a}$. Similar argument shows $\mu_{L}^{i j} ß_{a, i j}^{-1}=\mu_{R}^{i j}$. Therefore $W_{i j}$ is single-valued with left and right actions related by $\beta$. We conclude that $\operatorname{Rep}^{u}(A)$ is closed under unitary tensor products. In other words, $\operatorname{Rep}^{\mathrm{u}}(A)$ is a full $C^{*}$-tensor subcategory of $\operatorname{BIM}^{\mathrm{u}}(A)$.

Proposition 3.22 (cf. [30] theorem 1.15). If $A$ is standard, and $W_{i}$ is an object in $\operatorname{Rep}^{\mathrm{u}}(A)$, then $W_{i}$ is $\operatorname{Rep}^{\mathrm{u}}(A)$-dualizable if and only if $W_{i}$ is $\operatorname{BIM}^{\mathrm{u}}(A)$-dualizable (equivalently, $\mathcal{C}$ dualizable).

Proof. We have seen in theorem 3.18 that $\operatorname{BIM}^{\mathrm{u}}(A)$-dualizability and $\mathcal{C}$-dualizability are the same. $\operatorname{Rep}^{\mathrm{u}}(A)$-dualizability clearly implies $\operatorname{BIM}^{\mathrm{u}}(A)$-dualizability. Now assume that $W_{i}$ is $\mathcal{C}$-dualizable. In section 3.3 we have constructed a unitary $A$-bimodule $W_{\bar{i}}$ dual to $W_{i}$. It is easy to check that the left and right actions of $W_{\bar{i}}$ defined by (3.23) are related by the braiding $\Omega$ of $\mathcal{C}$. In particular, $W_{\bar{i}}$ is an object in $\operatorname{Rep}^{u}(A)$. Thus $W_{i}$ is $\operatorname{Rep}^{\mathrm{u}}(A)$-dualizable.

## Braiding

We now define braiding for $\operatorname{Rep}^{\mathrm{u}}(A)$. Let $W_{i}, W_{j}$ be objects in $\operatorname{Rep}^{\mathrm{u}}(A)$, and let ( $W_{i j}, \mu_{i, j}$ ) and ( $W_{j i}, \mu_{j, i}$ ) be respectively the unitary tensor products over $A$ of $W_{i}, W_{j}$ and $W_{j}, W_{i}$ used to define the tensor structure of $\operatorname{BIM}^{\mathrm{u}}(A)$. Since the braiding of $\mathcal{C}$ is unitary, using proposition 3.3 one easily shows that ( $W_{i j}, \mu_{j, i} \Omega_{i, j}$ ) is also a unitary tensor product of $W_{j}, W_{i}$ over $A$. Hence there exists a unique unitary $\Omega_{i, j}^{A} \in \operatorname{End}_{A}\left(W_{i j}, W_{j i}\right)$ such that

$$
\begin{equation*}
\mu_{j, i} ß_{i, j}=\Omega_{i, j}^{A} \mu_{i, j} . \tag{3.27}
\end{equation*}
$$

Theorem 3.23. $\quad\left(\operatorname{Rep}^{u}(A), \boxtimes_{A}, \Omega^{A}\right)$ is a braided $C^{*}$-tensor category.

Proof. The hexagon axioms

$$
\begin{gathered}
\left(\Omega_{i, k}^{A} \otimes_{A} \mathbf{l}_{j}\right)\left(\mathbf{l}_{i} \otimes_{A} \Omega_{j, k}^{A}\right)=\Omega_{i j, k}^{A} \\
\left(\left(\Omega_{k, i}^{A}\right)^{-1} \otimes_{A} \mathbf{l}_{j}\right)\left(\mathbf{l}_{i} \otimes_{A}\left(\Omega_{k, j}^{A}\right)^{-1}\right)=\left(\Omega_{k, i j}^{A}\right)^{-1}
\end{gathered}
$$

(for all $W_{i}, W_{j}, W_{k}$ in $\operatorname{Rep}^{\mathrm{u}}(A)$ ) can be proved in a similar way as pentagon axiom (proposition 3.11): one shows that both sides are equal when multiplied from the right by $\mu_{i, j k}\left(\mathbf{l}_{i} \otimes \mu_{j, k}\right)=\mu_{i j, k}\left(\mu_{i, j} \otimes \mathbf{l}_{k}\right)$.

Now assume that we have two systems of unitary tensor products ( $W_{i \times j}, \mu_{i, j}$ ), $\left(W_{i \bullet j}, \eta_{i, j}\right)$, which define two braided $C^{*}$-tensor categories $\left(\operatorname{Rep}^{u}(A), \boxtimes_{A}, \Omega^{A}\right)$ and ( $\operatorname{Rep}^{\mathrm{u}}(A), \boxtimes_{A}, \sigma^{A}$ ). By theorem 3.16, the functorial unitary $\Phi$ defined by (3.12) induces an equivalence of the $C^{*}$-tensor categories. Indeed, it also preserves the braidings:

Theorem 3.24. The functorial unitary $\Phi$ defined by (3.12) induces an equivalence of the braided $C^{*}$-tensor categories $\left(\operatorname{Rep}^{\mathrm{u}}(A), \boxtimes_{A}, \Omega^{A}\right) \simeq\left(\operatorname{Rep}^{\mathrm{u}}(A), \boxtimes_{A}, \sigma^{A}\right)$, which means that $\Phi$ satisfies the two conditions of theorem 3.16, together with the condition that for any objects $W_{i}, W_{j} \operatorname{in~}^{\operatorname{Rep}}{ }^{\mathrm{u}}(A)$,

$$
\begin{equation*}
\Phi_{j, i} ß_{i, j}^{A}=\sigma_{i, j}^{A} \Phi_{i, j} . \tag{3.28}
\end{equation*}
$$

Proof. One verifies that $\Phi_{j, i} ß_{i, j}^{A} \mu_{i, j}=\sigma_{i, j}^{A} \eta_{i, j}=\sigma_{i, j}^{A} \Phi_{i, j} \mu_{i, j}$.

## Ribbon structures

Let us now assume that $\mathcal{C}$ is rigid, which means that any object of $\mathcal{C}$ is dualizable. By [35] proposition 2.4, there is a canonical twist operator $\vartheta=\vartheta_{i} \in \operatorname{End}\left(W_{i}\right)$ for any object $W_{i}$ in $\mathcal{C}$ : Choose $W_{\bar{i}}$ dual to $W_{i}$, standard $\mathrm{ev}_{i, \bar{i}}, \mathrm{ev}_{\bar{i}, i}$ and corresponding coev for $W_{i}, W_{\bar{i}}$. Then by standardness of ev one can show

$$
\begin{align*}
& \vartheta_{i}:=\left(\mathrm{ev}_{\bar{i}, i} \otimes \mathbf{1}_{i}\right)\left(\mathbf{l}_{\bar{i}} \otimes \Omega_{i, i}\right)\left(\operatorname{coev}_{\bar{i}, i} \otimes \mathbf{l}_{i}\right) \\
= & \left(\mathbf{l}_{i} \otimes \mathrm{ev}_{i, \bar{i}}\right)\left(\Omega_{i, i} \otimes \mathbf{l}_{\bar{i}}\right)\left(\mathbf{l}_{i} \otimes \operatorname{coev}_{i, \bar{i}}\right) . \tag{3.29}
\end{align*}
$$

(Note that by uniqueness up to unitaries of standard ev, $\vartheta_{i}$ is independent of the choice of standard evaluations.) By this relation, $\vartheta$ is unitary. Moreover, $\vartheta$ defines a ribbon structure on $\mathcal{C}$ (i.e., $\vartheta$ commutes with all morphisms, $\vartheta_{i \boxtimes j}=\left(\vartheta_{i} \otimes \vartheta_{j}\right) \Omega_{j, i} \AA_{i, j}$, and $\left.\vartheta_{i}^{\vee}=\vartheta_{\bar{i}}\right)$.

Then $(\mathcal{C}, \boxtimes, ~ ß, \vartheta)$ is a rigid $C^{*}$-ribbon category. Using the definition of $\vartheta_{i}$, one easily shows

$$
\begin{equation*}
\mathrm{ev}_{i, \bar{i}}=\operatorname{ev}_{\bar{i}, i} ß_{i, \bar{i}}\left(\vartheta_{i} \otimes \mathbf{l}_{\bar{i}}\right), \tag{3.30}
\end{equation*}
$$

which completely determines the morphism $\vartheta_{i}$. In the case of $\operatorname{Rep}^{u}(V)$, we have shown in [19] section 7.3 (especially equation (7.30), which relies on [18] formula (1.41)) that $e^{2 \mathrm{i} \pi L_{0}}$ satisfies the above equation. Thus the twist $\vartheta=e^{2 \mathrm{i} \pi L_{0}}$ defined in the end of section 1.1 is the canonical twist of the braided $C^{*}$-fusion category (unitary braided fusion category) $\operatorname{Rep}^{\mathrm{u}}(V)$.

Suppose now that $A$ is haploid. By the commutativity of $A$, haploidness is equivalent to simpleness since $\operatorname{End}_{A,-}\left(W_{a}\right)=\operatorname{End}_{A}\left(W_{a}\right)$. $A$ is also standard by proposition 2.20. Therefore, by theorem 3.22, $\operatorname{Rep}^{\mathrm{u}}(A)$ is rigid. Thus $\operatorname{Rep}^{\mathrm{u}}(A)$ also admits a canonical twist $\vartheta^{A}$ under which $\operatorname{Rep}^{u}(A)$ becomes a $C^{*}$-ribbon category. The twist satisfies

$$
\begin{align*}
& \vartheta_{i}:=\left(\operatorname{ev}_{\bar{i}, i}^{A} \otimes_{A} \mathbf{l}_{i}\right)\left(\mathbf{l}_{\bar{i}} \otimes_{A} ß_{i, i}^{A}\right)\left(\operatorname{coev}_{\bar{i}, i}^{A} \otimes_{A} \mathbf{l}_{i}\right) \\
= & \left(\mathbf{l}_{i} \otimes_{A} \operatorname{ev}_{i, \bar{i}}^{A}\right)\left(\Omega_{i, i}^{A} \otimes_{A} \mathbf{l}_{\bar{i}}\right)\left(\mathbf{l}_{i} \otimes_{A} \operatorname{coev}_{i, \bar{i}}^{A}\right) \tag{3.31}
\end{align*}
$$

where $W_{\bar{i}}$ is an object of $\operatorname{Rep}^{\mathrm{u}}(A)$ dual to $W_{i}$, and $\mathrm{ev}_{i, \bar{i}^{\prime}}^{A} \operatorname{ev}_{\bar{i}, i}^{A}$ are standard evaluations for $W_{i}, W_{\bar{i}}$. We now show that the ribbon structures of $\mathcal{C}$ and $\operatorname{Rep}^{u}(A)$ are compatible.

Theorem 3.25. Suppose that $\mathcal{C}$ is a rigid braided $C^{*}$-tensor category, $A$ is a haploid commutative Q -system in $\mathcal{C}$, and $\vartheta$ and $\vartheta^{A}$ are the canonical unitary twists of $\mathcal{C}$ and $\operatorname{Rep}^{\mathrm{u}}(A)$, respectively. Then $\vartheta_{i}=\vartheta_{i}^{A}$ for any object $W_{i}$ in $\operatorname{Rep}^{\mathrm{u}}(A)$.

As an immediate consequence, $W_{a}$ has trivial $\left(\mathcal{C}\right.$-)twist since $\vartheta_{a}^{A}=\mathbf{l}_{a}$.

Proof. Choose any $W_{i}$ in $\operatorname{Rep}^{\mathrm{u}}(A)$. Using the definition of twist one checks easily that $\vartheta_{i} \in \operatorname{End}_{A}\left(W_{i}\right)$. Let $W_{\bar{i}}$ be a dual object in $\mathcal{C}$, equip $W_{\bar{i}}$ with a unitary $A$-bimodule structure by (3.23), and use equations (3.24), (3.25), and (3.26) to define standard $\operatorname{Rep}^{\mathrm{u}}(A)$-evaluations $\mathrm{ev}^{A}$ correlated to standard $\mathcal{C}$-evaluations ev for $W_{i}, W_{\bar{i}}$. We now prove $\vartheta_{i}=\vartheta_{i}^{A}$ by showing

$$
\begin{equation*}
\operatorname{ev}_{i, \bar{i}}^{A}=\operatorname{ev}_{\bar{i}, i}^{A} 乃_{i, \bar{i}}^{A}\left(\vartheta_{i} \otimes_{A} \mathbf{l}_{\bar{i}}\right) \tag{3.32}
\end{equation*}
$$

We compute


An MTC is called unitary if it is a (rigid) braided $C^{*}$-tensor category, and if its twist is the canonical unitary twist associated to the rigid braided $C^{*}$-tensor structure.

Corollary 3.26. Let $(\mathcal{C}, \boxtimes, \Omega, \vartheta)$ be a unitary MTC. If $A$ is a haploid commutative Qsystem in $\mathcal{C}$, then $\left(\operatorname{Rep}^{\mathrm{u}}(A), \boxtimes_{A}, \Omega^{A}, \vartheta\right)$ is also a unitary MTC.

Proof. We have shown that $A$ has trivial $\mathcal{C}$-twist. Thus by [30] theorem 4.5, $\operatorname{Rep}^{\mathrm{u}}(A)$ is an MTC (Our $\operatorname{Rep}^{\mathrm{u}}(A)$ is written as $\operatorname{Rep}^{0}(A)$ in [30].). By the above theorem, when restricted to $\operatorname{Rep}^{\mathrm{u}}(A), \vartheta$ is the canonical unitary twist $\vartheta^{A}$ of $\operatorname{Rep}^{\mathrm{u}}(A)$. $\operatorname{Thus} \operatorname{Rep}^{\mathrm{u}}(A)$ is a unitary MTC.

### 3.5 Complete unitarity of unitary VOA extensions

Recall that $V$ is a CFT-type, regular, and completely unitary VOA. Let $U$ be a CFTtype unitary extension of $V$, and let $A_{U}=\left(W_{a}, \mu, \iota\right)$ be the corresponding standard commutative Q -system. (Note that the trivial twist condition for $A$ is now redundant by theorem 3.25.) Recall by theorem 2.30 that any unitary $U$-module is naturally a singlevalued unitary left $A_{U}$-module, and any single-valued unitary left $A_{U}$-module can be regarded as a unitary $U$-module. Thus $\operatorname{Rep}^{\mathrm{u}}(U)$ is naturally equivalent to $\operatorname{Rep}^{\mathrm{u}}\left(A_{U}\right)$ as $C^{*}$-categories. Note that $U$ is also regular (equivalently, rational and $C_{2}$-cofinite [1]) by the proof of [34] theorem 4.13 (Although [34] theorem 4.13 only discusses orbifold-type extensions, the argument there is quite general and clearly applies to the general case. Note that the nonzeroness of quantum dimensions required in that theorem is obvious in the unitary case.). Thus, just as $V$, the tensor category of $U$-modules is (rigid and) modular. In the following, we shall show that $U$ is completely unitary, which implies that $\operatorname{Rep}^{\mathrm{u}}(U)$ is a unitary MTC. Moreover, we shall show that the unitary MTCs $\operatorname{Rep}^{\mathrm{u}}(U)$ and $\operatorname{Rep}^{\mathrm{u}}\left(A_{U}\right)$ are naturally equivalent.

Let $W_{i}, W_{j}, W_{k}$ be unitary $U$-modules, which can be regarded respectively as unitary $A_{U}$-bimodules with left actions $\mu_{L^{\prime}}^{i}, \mu_{L^{\prime}}^{j} \mu_{L}^{k}$ and right actions $\mu_{R^{\prime}}^{i}, \mu_{R^{\prime}}^{j}, \mu_{R}^{k}$ related by ß. Recall (1.1). Then $\mathcal{Y}_{\mu_{L}^{i}}, \mathcal{Y}_{\mu_{L}^{j}}, \mathcal{Y}_{\mu_{L}^{k}}$ are the vertex operators of $U$ on $W_{i}, W_{j}, W_{k}$ respectively. We let $\mathcal{V}_{U}\binom{k}{i}$ be the vector space of type $\binom{k}{i}$ intertwining operators of $U$. Again, $\mathcal{V}\binom{k}{i j}$ denotes the vector space of type $\binom{k}{i}$ intertwining operators of $V$. Since any intertwining operator of $U$ is also an intertwining operator of $V, \mathcal{V}_{U}\binom{k}{i j}$ is a subspace of $\mathcal{V}\binom{k}{i j}$. We give a categorical interpretation of $\mathcal{V}_{U}\binom{k}{i}$. Note that $W_{i} \boxtimes W_{j}$ is naturally a unitary $A_{U}$-bimodule, with left and actions defined by the left action of $W_{i}$ and the right action of $W_{j}$.

Lemma 3.27. Any $\alpha \in \operatorname{Hom}_{A_{U}}\left(W_{i} \boxtimes W_{j}, W_{k}\right)$ satisfies $\alpha \Psi_{i, j}=0$.
Proof. This is easy to prove using graphical calculus and the fact that the left actions of $W_{i}, W_{j}, W_{k}$ are related by $\Omega$ to the right ones.

Proposition 3.28 ([8] section 3.4). The map $\mathcal{Y}: \operatorname{Hom}\left(W_{i} \boxtimes W_{j}, W_{k}\right) \xrightarrow{\simeq} \mathcal{V}\binom{k}{i j}, \alpha \mapsto \mathcal{Y}_{\alpha}($ see section 1.1) restricts to an isomorphism $\mathcal{Y}: \operatorname{Hom}_{A_{U}}\left(W_{i} \boxtimes W_{j}, W_{k}\right) \xrightarrow{\simeq} \mathcal{V}_{U}\binom{k}{i}$.

Proof. We sketch the proof here; details can be found in the reference provided. Choose any $\alpha \in \operatorname{Hom}\left(W_{i} \boxtimes W_{j}, W_{k}\right)$. Then $\mathcal{Y}_{\alpha}$ being an intertwining operator of $U$ means precisely that $\mathcal{Y}_{\alpha}$ satisfies the Jacobi identity with the vertex operator of $U$. By contour integrals, the Jacobi identity is well known to be equivalent to the fusion relations

$$
\begin{align*}
& \mathcal{Y}_{\mu_{L}^{k}}(u, z) \mathcal{Y}_{\alpha}\left(w^{(i)}, \zeta\right)=\mathcal{Y}_{\alpha}\left(\mathcal{Y}_{\mu_{L}^{i}}(u, z-\zeta) W^{(i)}, \zeta\right),  \tag{3.33}\\
& \mathcal{Y}_{\alpha}\left(w^{(i)}, \zeta\right) \mathcal{Y}_{\mu_{L}^{k}}(u, z)=\mathcal{Y}_{\alpha}\left(\mathcal{Y}_{\mu_{L}^{i}}(u, z-\zeta) W^{(i)}, \zeta\right) \tag{3.34}
\end{align*}
$$

for any $u \in U=W_{a}, w^{(i)} \in W_{i}$, where $0<|z-\zeta|<|\zeta|<|z|$ and $\arg (z-\zeta)=\arg \zeta=\arg z$ in the 1st equation, and $0<|\zeta-z|<|z|<|\zeta|$ and $\arg z=\arg \zeta=\pi+\arg (z-\zeta)$ in the 2nd one. (See for instance [18] proposition 2.13.) By [18] proposition 2.9, (3.34) is equivalent to the fusion relation

$$
\begin{equation*}
\mathcal{Y}_{\alpha}\left(w^{(i)}, \zeta\right) \mathcal{Y}_{\mu_{L}^{k}}(u, z)=\mathcal{Y}_{\alpha}\left(\mathcal{Y}_{\mu_{R}^{i}}\left(w^{(i)}, \zeta-z\right) u, z\right) \tag{3.35}
\end{equation*}
$$

The categorical interpretations of (3.33) and (3.35) are respectively $\alpha \in \operatorname{Hom}_{A_{U},-}\left(W_{i} \boxtimes\right.$ $\left.W_{j}, W_{k}\right)$ and $\alpha \Psi_{i, j}=0$, which are clearly equivalent to that $\alpha \in \operatorname{Hom}_{A_{U}}\left(W_{i} \boxtimes W_{j}, W_{k}\right)$.

Recall the definition of VOA modules in section 1.1. Recall by theorem 2.31 that any irreducible $U$-module admits a unitary structure. We choose a representative $W_{t}$ for each equivalence class [ $W_{t}$ ] of irreducible unitary $U$-modules (equivalently, irreducible unitary single-valued left $A_{U}$-modules), and let all these $W_{t}$ form a set $\mathcal{E}_{U}$. That $W_{t} \in \mathcal{E}_{U}$ is abbreviated to $t \in \mathcal{E}_{U}$. We also assume that the vacuum $U$-module $W_{a}$ is in $\mathcal{E}_{U}$. Then the tensor product of $U$-modules $W_{i}, W_{j}$ is

$$
\begin{equation*}
W_{i j} \equiv W_{i} \boxtimes_{U} W_{j}=\bigoplus_{t \in \mathcal{E}_{U}} \mathcal{V}_{U}\binom{t}{i j}^{*} \otimes W_{t} \tag{3.36}
\end{equation*}
$$

We choose an inner product $\Lambda_{U}$ for any $\mathcal{V}_{U}\binom{t}{i}^{*}$, and assume that the above direct sum is orthogonal. The vertex operator for $W_{i j}$ is $\bigoplus_{t} \mathbf{l} \otimes \mathcal{Y}_{\mu_{L}^{t}}$, where $\mu_{L}^{t} \in \operatorname{Hom}_{A_{U}}\left(W_{a} \boxtimes W_{t}, W_{t}\right)$ is the left action of the $A_{U}$-bimodule $W_{t}$.

Define a $U$-intertwining operator $\mathcal{Y}_{\mu_{i, j}}$ of type $\binom{i j}{i j}=\binom{W_{i j}}{W_{i} W_{j}}$, such that for any $w^{(i)} \in W_{i}, W^{(j)} \in W_{j}, t \in \mathcal{E}_{U}, \mathcal{Y}_{\alpha} \in \mathcal{V}_{U}\left({ }_{i}^{t}{ }_{j}\right)$, and $w^{(\bar{t})} \in W_{\bar{t}}$ (the contragredient unitary $U$ module of $W_{t}$ ),

$$
\begin{equation*}
\left\langle\mathcal{Y}_{\mu_{i, j}}\left(w^{(i)}, z\right) w^{(j)}, \mathcal{Y}_{\alpha} \otimes w^{(\bar{t})}\right\rangle=\left\langle\mathcal{Y}_{\alpha}\left(w^{(i)}, z\right) w^{(j)}, w^{(\bar{t})}\right\rangle \tag{3.37}
\end{equation*}
$$

To write the above definition more explicitly, we choose a basis $\Upsilon_{i, j}^{t}$ of the vector space $\operatorname{Hom}_{A_{U}}\left(W_{i} \boxtimes W_{j}, W_{t}\right)$. Then $\left\{\mathcal{Y}_{\alpha}: \alpha \in \Upsilon_{i, j}^{k}\right\}$ is a basis of $\mathcal{V}_{U}\binom{t}{i}$ whose dual basis is denoted by $\left\{\tilde{\mathcal{Y}}^{\alpha}: \alpha \in \Upsilon_{i, j}^{k}\right\}$. Then

$$
\begin{equation*}
\mathcal{Y}_{\mu_{i, j}}\left(w^{(i)}, z\right) W^{(j)}=\sum_{t \in \mathcal{E}_{U}} \sum_{\alpha \in \Upsilon_{i, j}^{t}} \check{\mathcal{Y}}^{\alpha} \otimes \mathcal{Y}_{\alpha}\left(w^{(i)}, z\right) w^{(j)} \tag{3.38}
\end{equation*}
$$

Note that $\mu_{i, j} \in \operatorname{Hom}_{A_{U}}\left(W_{i} \boxtimes W_{j}, W_{i j}\right)$. Then the above relation can also be written as

$$
\begin{equation*}
\mu_{i, j}=\sum_{t \in \mathcal{E}_{U}} \sum_{\alpha \in \Upsilon_{i, j}^{t}} \check{\mathcal{Y}}^{\alpha} \otimes \alpha \tag{3.39}
\end{equation*}
$$

By lemma 3.27 we have $\mu_{i, j} \Psi_{i, j}=0$. We claim that $\mathcal{Y}_{\mu_{i, j}}$ satisfies the universal property that for any unitary $U$-module $W_{k}$ and any $\mathcal{Y}_{\alpha}$ in $\mathcal{V}_{U}\binom{k}{i j}$ (equivalently, $\alpha \in$ $\operatorname{Hom}_{A_{U}}\left(W_{i} \boxtimes W_{j}, W_{k}\right)$ ) there exists a unique $U$-module homomorphism $\widetilde{\alpha}: W_{i j} \rightarrow W_{k}$ (equivalently, $\widetilde{\alpha} \in \operatorname{Hom}_{A_{U}}\left(W_{i j}, W_{k}\right)$ ) such that $\mathcal{Y}_{\alpha}=\widetilde{\alpha} \mathcal{Y}_{\mu_{i, j}}$ (equivalently, $\alpha=\widetilde{\alpha} \mu_{i, j}$ by (1.2)). Indeed, since the vector space $\operatorname{Hom}_{U}\left(W_{i j}, W_{k}\right)$ of $U$-module morphisms from $W_{i j}$ to $W_{k}$ is
naturally identified with $\operatorname{Hom}_{A_{U}}\left(W_{i j}, W_{k}\right)$, just as (1.1), we have a natural isomorphism of vector spaces

$$
\begin{equation*}
\widetilde{\mathcal{Y}}: \operatorname{Hom}_{U}\left(W_{i j}, W_{k}\right)=\operatorname{Hom}_{A_{U}}\left(W_{i j}, W_{k}\right) \rightarrow \mathcal{V}_{U}\binom{k}{i j}, \quad \widetilde{\alpha} \mapsto \widetilde{\mathcal{Y}}_{\widetilde{\alpha}} \tag{3.40}
\end{equation*}
$$

It is easy check for any $\widetilde{\alpha} \in \operatorname{Hom}_{A_{U}}\left(W_{i j}, W_{k}\right)$ that

$$
\begin{equation*}
\tilde{\mathcal{Y}}_{\widetilde{\alpha}}=\widetilde{\alpha} \mathcal{Y}_{\mu_{i, j}} \tag{3.41}
\end{equation*}
$$

which by (1.2) also equals $\mathcal{Y}_{\widetilde{\alpha} \mu_{i, j}}$. Now, by proposition 3.28, for any $\alpha \in \operatorname{Hom}_{A_{U}}\left(W_{i} \boxtimes\right.$ $W_{j}, W_{k}$ ), we can find an $\widetilde{\alpha}$ satisfying

$$
\begin{equation*}
\mathcal{Y}_{\alpha}=\tilde{\mathcal{Y}}_{\widetilde{\alpha}} \tag{3.42}
\end{equation*}
$$

Thus we have $\mathcal{Y}_{\alpha}=\widetilde{\mathcal{Y}}_{\widetilde{\alpha}}=\widetilde{\alpha} \mathcal{Y}_{\mu_{i, j}}=\mathcal{Y}_{\widetilde{\alpha} \mu_{i, j},}$, which shows $\alpha=\widetilde{\alpha} \mu_{i, j}$. Recalling definition 3.1, we conclude that ( $W_{i j}, \mu_{i, j}$ ) is a tensor product of the $A_{U}$-bimodules $W_{i}, W_{j}$ over $A_{U}$. Indeed, under suitable choice of $\Lambda_{U}$, the tensor products become unitary:

Theorem 3.29. There exists for each $t \in \mathcal{E}_{U}$ a unique inner product $\Lambda_{U}$ on the vector space $\mathcal{V}_{U}\binom{t}{i}^{*}$ such that $\left(W_{i j}, \mu_{i, j}\right)$ becomes a unitary tensor product of the $A_{U}$-bimodules $W_{i}, W_{j}$ over $A_{U}$. Moreover, $\Lambda_{U}$ is the invariant sesquilinear form of $U$ (cf. section 1.3).

Proof. Let $\left(W_{i \bullet j}, \eta_{i, j}\right)$ be a unitary tensor product of $W_{i}, W_{j}$ over $A_{U}$. By the 1 st half of the proof of theorem 3.4, tensor products of unitary bimodules of a Q -system are unique up to multiplications by invertible morphisms. Thus there exists an invertible $K \in \operatorname{Hom}_{A_{U}}\left(W_{i j}, W_{i \bullet j}\right)$ such that $\eta_{i, j}=K \mu_{i, j}$. Therefore, the decomposition of $W_{i \bullet j}$ into irreducible single-valued left $A_{U}$-modules is the same as that of $W_{i j}$, which takes the form (3.36). Now, using linear algebra, one can easily find an inner product $\Lambda_{U}$ on any $\mathcal{V}_{U}\left({ }_{i}^{t}\right)^{*}$, such that $K$ becomes unitary. Then the tensor product ( $W_{i \bullet j}, \eta_{i, j}$ ) defined by such $\Lambda_{U}$ is clearly unitary. This proves the existence of $\Lambda_{U}$. The uniqueness of $\Lambda_{U}$ follows from the uniqueness up to unitaries of the unitary tensor products of $A_{U}$-bimodules (theorem 3.4).

Now assume that ( $W_{i j}, \mu_{i, j}$ ) is a unitary tensor product. We show that $\Lambda_{U}$ is the invariant sesquilinear form. Assume that for each $t \in \mathcal{E}_{U}, \Upsilon_{i, j}^{t}$ is chosen in such a way
that $\left\{\check{\mathcal{Y}}^{\alpha}: \alpha \in \Upsilon_{i, j}^{k}\right\}$ is an orthonormal basis of $\mathcal{V}_{U}\binom{t}{i j}^{*}$ under $\Lambda_{U}$. Then by $\chi_{i, j}=\mu_{i, j}^{*} \mu_{i, j}$ and equation (3.39), we have

and hence

which by theorem 1.11 implies for any $w_{1}^{(i)}, w_{2}^{(i)} \in W_{i}$ the fusion relation

$$
\begin{equation*}
\left.\left.\mathcal{Y}_{\mu_{L}^{j}}\left(\mathcal{Y}_{\left(\mu_{R}^{i}\right)^{\dagger}} \overline{\left(w_{2}^{(i)}\right.}, z-\zeta\right) w_{1}^{(i)}, \zeta\right)=\sum_{t \in \mathcal{E}_{U}} \sum_{\alpha \in \Upsilon_{i j}^{t}} \mathcal{Y}_{\alpha^{\dagger}} \overline{\left(w_{2}^{(i)}\right.}, z\right) \mathcal{Y}_{\alpha}\left(w_{1}^{(i)}, \zeta\right) \tag{3.45}
\end{equation*}
$$

Recall that $\mathcal{Y}_{\mu_{L}^{j}}$ is the vertex operator of $U$ on $W_{j}$. Since $\mu_{R}^{i}=\mu_{L}^{i} ß_{a, i}$, we have $\mathcal{Y}_{\mu_{R}^{i}}=B_{+} \mathcal{Y}_{\mu_{L}^{i}}$ by (1.8), which shows that $\mathcal{Y}_{\mu_{R}^{i}} \in \mathcal{V}_{U}\left({ }_{i}{ }^{i}{ }_{a}\right)$ is the creation operator of the $U$-module $W_{i}$. (See section (1.1) for the definition of creation and annihilation operators). Thus by (1.28), $\mathcal{Y}_{\left(\mu_{R}^{i}\right)^{\dagger}} \in \mathcal{V}_{U}\binom{a}{i}$ is the annihilation operator of the $U$-module $W_{j}$. Therefore, by definition 1.7, we see that (3.45) is the fusion relation that defines invariant sesquilinear forms for $U$. This shows that $\left\{\check{\mathcal{Y}}^{\alpha}: \alpha \in \Upsilon_{i, j}^{k}\right\}$ is also an orthonormal basis of $\mathcal{V}_{U}\binom{t}{i}^{*}$ under the invariant sesquilinear form, which proves that the latter is positive definite and equals $\Lambda_{U}$.

Theorem 3.30. Let $V$ be a CFT-type, regular, and completely unitary VOA, and let $U$ be a CFT-type unitary VOA extension of $V$. Then:

- $\quad U$ is also (regular and) completely unitary.
- Under the natural identification of $\operatorname{Rep}^{\mathrm{u}}(U)$ and $\operatorname{Rep}^{\mathrm{u}}\left(A_{U}\right)$ as $C^{*}$-categories, the monoidal, braiding, and ribbon structures of $\operatorname{Rep}^{\mathrm{u}}(U)$ agree with those of
( $\operatorname{Rep}^{\mathrm{u}}\left(A_{U}\right), \boxtimes_{A_{U}}, \Omega^{A_{U}}, \vartheta^{A_{U}}$ ) defined by the system of unitary tensor products ( $W_{i j}, \mu_{i, j}$ ) (for any $W_{i}, W_{j}$ in $^{\operatorname{Rep}}{ }^{\mathrm{u}}\left(A_{U}\right)$ ) as constructed in (3.36) and (3.37) under the invariant inner product $\Lambda_{U}$.

By "natural identification," we mean that each unitary $U$-module $W_{i}$ is identified with the corresponding single-valued unitary left $A_{U}$-module $W_{i}$; a homomorphism $F$ : $W_{i} \rightarrow W_{j}$ of unitary $U$-modules is identified with $F$, considered as a homomorphism of $A_{U}$-bimodules.

Proof. As mentioned at the beginning of this section, the regularity of $U$ is proved in [34]. By theorems 2.31 and 3.29, $U$ is completely unitary. Hence $\operatorname{Rep}^{\mathrm{u}}(U)$ is a unitary MTC. That $\operatorname{Rep}^{\mathrm{u}}(U)$ and $\operatorname{Rep}^{\mathrm{u}}\left(A_{U}\right)$ share the same tensor and braiding structures is proved in [8]. In order for this paper to be self-contained, we sketch the proof as follows.

For any objects $W_{i}, W_{j}, W_{k}$, let $\mathcal{A}_{i, j, k}: W_{(i j) k}=\left(W_{i} \boxtimes_{U} W_{j}\right) \boxtimes_{U} W_{k} \rightarrow W_{i(j k)}=W_{i} \boxtimes_{U}$ $\left(W_{j} \boxtimes_{U} W_{k}\right)$ be the associativity isomorphism of $\operatorname{Rep}^{\mathrm{u}}(U)$. It is shown in [21] proposition 4.3 that under the identification of $W_{(i j) k}$ and $W_{i(j k)}$ via $\mathcal{A}_{i, j, k}$, one has the fusion relation

$$
\begin{equation*}
\mathcal{Y}_{\mu_{i, j k}}\left(w^{(i)}, z\right) \mathcal{Y}_{\mu_{j, k}}\left(w^{(j)}, \zeta\right)=\mathcal{Y}_{\mu_{i j, k}}\left(\mathcal{Y}_{\mu_{i, j}}\left(w^{(i)}, z-\zeta\right) w^{(j)}, \zeta\right) \tag{3.46}
\end{equation*}
$$

for any $w^{(i)} \in W_{i}, W^{(j)} \in W_{j}$. This means that relation (3.10) holds under the identification $\operatorname{via} \mathcal{A}_{i, j, k}$. But we know that due to equation (3.6), the same relations also hold under the identification via $\mathfrak{A}_{i, j, k}$, the associativity isomorphism of $\operatorname{Rep}{ }^{\mathrm{u}}\left(A_{U}\right)$. Thus $\mathcal{A}_{i, j, k}=\mathfrak{A}_{i, j, k}$.

Next, we know that in $\operatorname{Rep}^{\mathrm{u}}(U)$, the identification $W_{a i} \simeq W_{i}$ is via the vertex operator $\mathcal{Y}_{\mu_{L}^{i}}$ of $U$ on $W_{i}$, and the identification $W_{i a} \simeq W_{i}$ is via the creation operator of the $U$-module $W_{i}$, which is $\mathcal{Y}_{\mu_{R}^{i}}$, as argued at the end of the proof of theorem 3.29. Define $\mathfrak{l}_{i} \in \operatorname{Hom}_{A_{U}}\left(W_{a i}, W_{i}\right)$ and $\mathfrak{r}_{i} \in \operatorname{Hom}_{A_{U}}\left(W_{i a}, W_{i}\right)$ using equations (3.8). Then, from section 3.2, we know that $\mathfrak{l}_{i}$ and $\mathfrak{r}_{i}$ define respectively the equivalences $W_{a i} \simeq W_{i}$ and $W_{i a} \simeq W_{i}$ in $\operatorname{Rep}^{\mathrm{u}}\left(A_{U}\right)$ (as a full $C^{*}$-tensor subcategory of $\operatorname{BIM}^{\mathrm{u}}\left(A_{U}\right)$ ). On the other hand, by (3.42) we have $\mathcal{Y}_{\mu_{L}^{i}}=\widetilde{\mathcal{Y}}_{\mathfrak{l}_{i}}$. Therefore $\mathfrak{r}_{i}: W_{a i}=W_{a} \boxtimes_{U} W_{i} \rightarrow W_{i}$ is the $U$-module homomorphism corresponding to the vertex operator of the $U$-module $W_{i}$. Thus, by the definition of the monoidal structures of VOA tensor categories (see section 1.1), $\mathfrak{l}_{i}$ also defines the equivalence $W_{a i} \simeq W_{i}$ in $\operatorname{Rep}^{\mathrm{u}}(U)$. Similarly, $\mathfrak{r}_{i}$ is the $U$-module morphism corresponding to the creation operator of $W_{i}$. Hence it defines the equivalence $W_{i a} \simeq W_{i}$ in $\operatorname{Rep}^{\mathrm{u}}(U)$. We have now proved that the $\left(C^{*}-\right)$ monoidal structure of $\operatorname{Rep}^{\mathrm{u}}(U)$ agrees with that of $\operatorname{Rep}^{\mathrm{u}}\left(A_{U}\right)$.

Let $\Omega_{i, j}^{U} \in \operatorname{Hom}_{U}\left(W_{i j}, W_{j i}\right)$ be the braiding of $W_{i} \boxtimes_{U} W_{j}$ in Rep ${ }^{U}$. We want to show that $\Omega^{U}$ equals the braiding $\Omega^{A_{U}}$ of $\operatorname{Rep}^{u}\left(A_{U}\right)$. By (3.27) it suffices to check that for any object $W_{k}$ in $\operatorname{Rep}^{\mathrm{u}}\left(A_{U}\right)$ and any $\widetilde{\alpha} \in \operatorname{Hom}_{A_{U}}\left(W_{i j}, W_{k}\right)$,

$$
\begin{equation*}
\widetilde{\alpha} \mu_{j, i} \Omega_{i, j}=\widetilde{\alpha} \Omega_{i, j}^{U} \mu_{i, j}, \tag{3.47}
\end{equation*}
$$

where $\Omega$ is the braiding of $\operatorname{Rep}^{\mathrm{u}}(V)$. Set $\alpha=\widetilde{\alpha} \mu_{j, i} \in \operatorname{Hom}_{A_{U}}\left(W_{i} \boxtimes W_{j}, W_{k}\right)$. Then by (1.8), $\mathcal{Y}_{\alpha ß_{i, j}}=B_{+} \mathcal{Y}_{\alpha}$, and similarly $\widetilde{\mathcal{Y}}_{\widetilde{\alpha} ß_{i, j}^{U}}=B_{+} \widetilde{\mathcal{Y}}_{\widetilde{\alpha}}$. Note that the braiding $B_{+}$defined for $V$ intertwining operators and for $U$-intertwining operators are the same since $U$ and $V$ have the same Virasoro operators. We now compute

$$
\mathcal{Y}_{\widetilde{\alpha} \Omega_{i, j}^{U} \mu_{i, j}} \stackrel{(1.2)}{=} \widetilde{\alpha} \Omega_{i, j}^{U} \mathcal{Y}_{\mu_{i, j}} \stackrel{(3.41)}{=} \widetilde{\mathcal{Y}}_{\widetilde{\alpha} ß_{i, j}^{U}}=B_{+} \widetilde{\mathcal{Y}}_{\widetilde{\alpha}} \xlongequal{(3.42)} B_{+} \mathcal{Y}_{\alpha}=\mathcal{Y}_{\alpha \beta_{i, j}}=\mathcal{Y}_{\widetilde{\alpha} \mu_{j, i} \beta_{i, j}}
$$

Finally, for both categories, the twists are defined by the rigid braided $C^{*}$-tensor structures. Therefore the ribbon structures agree.

### 3.6 Applications

To use theorem 3.30 in its full power, we first prove the complete unitarity for another type of extensions (which do not preserve conformal vectors).

Proposition 3.31. Let $V$ and $\widetilde{V}$ be CFT-type and regular VOAs. Then $V \otimes \widetilde{V}$ is (regular and) completely unitary if and only if both $V$ and $\widetilde{V}$ are completely unitary. If this is true then $\operatorname{Rep}^{\mathrm{u}}(V \otimes \widetilde{V})$ is the tensor product of $\operatorname{Rep}^{\mathrm{u}}(V)$ and $\operatorname{Rep}^{\mathrm{u}}(\widetilde{V})$.

Proof. Clearly $V \otimes \widetilde{V}$ is CFT type. Note that $V \otimes \widetilde{V}$ is also regular by [13] proposition 3.3. Assume first of all that $V$ and $\widetilde{V}$ are completely unitary. By [11] proposition 2.9, $V \otimes \widetilde{V}$ is unitary. By [15] theorem 4.7.4, any irreducible $V \otimes \widetilde{V}$-module is the tensor product of an irreducible $V$-module and an irreducible $\widetilde{V}$-module, which by the strong unitarity of $V$ and $\widetilde{V}$ are unitarizable. Therefore the $V \otimes \widetilde{V}$-module is also unitarizable, and hence $V \otimes \widetilde{V}$ is strongly unitary.

We now show that $V \otimes \widetilde{V}$ is completely unitary. Choose unitary $V$-modules $W_{i}, W_{j}$ and unitary $\widetilde{V}$-modules $W_{i}, W_{j}$. Choose $W_{t}$ in $\mathcal{E}$. Let also $\widetilde{\mathcal{E}}$ be a complete set of representatives of irreducible $\widetilde{V}$-modules, and choose any $W_{\tilde{t}}$ in $\mathcal{E}$. Choose bases $\Xi_{i, j}^{t}$ of $\mathcal{V}\binom{t}{i j}$ and $\widetilde{\Xi_{i}, \tilde{j}} \widetilde{\tilde{j}}$ of $\widetilde{\mathcal{V}}\left(\begin{array}{c}\tilde{i} \tilde{j}\end{array}\right)$ (the vector space of type $\left(\begin{array}{c}\tilde{i} \tilde{j}\end{array}\right)$ intertwining operators of $\widetilde{V}$ ) so that their dual bases $\left\{\check{\mathcal{Y}}^{\alpha}: \alpha \in \Xi_{i, j}^{t}\right\}$ and $\left\{\check{\mathcal{Y}}^{\widetilde{\alpha}}: \widetilde{\alpha} \in \widetilde{\Xi}_{\tilde{i}, \tilde{j}}^{\tilde{t}}\right\}$ are orthonormal under the
invariant inner products in $\mathcal{V}\binom{t}{i j}^{*}$ and $\widetilde{\mathcal{V}}(\underset{\tilde{i} \tilde{j}}{\tilde{f}})^{*}$, respectively. Then equation (1.30) holds for $V$ with $\Lambda\left(\check{\mathcal{Y}}^{\alpha} \mid \check{\mathcal{Y}}^{\beta}\right)=\delta_{\alpha, \beta}$, and a similar relation holds for $\widetilde{V}$. Let $Y_{j \otimes \tilde{j}}$ be the vertex operator of the $V \otimes \widetilde{V}$-module $W_{j} \otimes W_{j^{\prime}}$, and let $\mathcal{Y}_{\mathrm{ev}_{\overline{i \otimes i}, i}, \tilde{i}}$ be the annihilation operator of $W_{i} \otimes W_{\tilde{i}}$. Then $Y_{j \otimes \tilde{j}}=Y_{j} \otimes Y_{\widetilde{j}}$ and $\mathcal{Y}_{\mathrm{ev}_{\overline{i \otimes i} i, i \otimes \tilde{i}}}=\mathcal{Y}_{\mathrm{ev}_{\bar{i}, i}} \otimes \mathcal{Y}_{\mathrm{ev}_{\tilde{i}, i}}$. Set $\mathcal{Y}_{\alpha \otimes \tilde{\alpha}}=\mathcal{Y}_{\alpha} \otimes \mathcal{Y}_{\widetilde{\alpha}}$, which is a type $\binom{t \otimes \tilde{t}}{i \otimes \tilde{i} j \otimes \tilde{j}}$ intertwining operator of $V \otimes \widetilde{V}$ if $\alpha \in \Xi_{i, j}^{t}, \widetilde{\alpha} \in \widetilde{\Xi}_{\tilde{i}, \tilde{j}}^{\tilde{t}} \widetilde{\alpha}$. Then for any $w_{1}^{(i)}, w_{2}^{(i)} \in W_{i}, w_{3}^{(\tilde{i})}, w_{4}^{(\tilde{i})} \in W_{i}$ we have the fusion relation

$$
\begin{align*}
& Y_{j \otimes \tilde{j}}\left(\mathcal{Y}_{\mathrm{ev}_{\overline{i \otimes i i} i, i \widetilde{i}}}\left(\overline{w_{2}^{(i)}} \otimes \overline{w_{4}^{(\tilde{i})}}, z-\zeta\right)\left(w_{1}^{(i)} \otimes w_{3}^{(\tilde{i})}\right), \zeta\right) \\
= & \left.\sum_{t \in \mathcal{E}, \tilde{t} \in \tilde{\mathcal{E}}} \sum_{\alpha \in \Xi_{i, j^{\prime}}^{t} \widetilde{\alpha} \in \widetilde{\Xi_{i, \tilde{j}}^{\tilde{I}}}} \mathcal{Y}_{(\alpha \otimes \widetilde{\alpha})^{\dagger}} \overline{\left(\overline{w_{2}^{(i)}}\right.} \otimes \overline{w_{4}^{(\tilde{i})}}, z\right) \cdot \mathcal{Y}_{\alpha \otimes \widetilde{\alpha}}\left(w_{1}^{(i)} \otimes w_{3}^{(\widetilde{i})}, \zeta\right) \tag{3.48}
\end{align*}
$$

From this relations, we see that the invariant sesquilinear form $\Lambda$ on $\mathcal{V}\binom{t \otimes \tilde{t}}{i \otimes \tilde{i} j \otimes j}^{*}$ is positive. Moreover, by the non-degeneracy of this $\Lambda, \Xi_{i, j}^{t} \times \widetilde{\Xi}_{i, \tilde{j}}^{\tilde{t}}$ is a basis of $\mathcal{V}\left(\begin{array}{c}i \otimes \tilde{\otimes} j \otimes \tilde{j}\end{array}\right)$ whose dual basis is therefore orthonormal in $\mathcal{V}\binom{t \otimes \tilde{t}}{i \otimes \tilde{i} \otimes \underset{j}{l}}^{*}$. Thus $\mathcal{V}\binom{t \otimes \tilde{t}}{i \otimes \tilde{i} \otimes \tilde{j}}=\mathcal{V}\binom{t}{i j} \otimes \widetilde{\mathcal{V}}\left(\begin{array}{c}\tilde{t} \tilde{j}\end{array}\right)$, and the $\Lambda$ on $\mathcal{V}\binom{t \otimes \tilde{t}}{i \otimes \tilde{i} \otimes \underset{j}{j}}^{*}$ equals $\Lambda \otimes \Lambda$ on $\mathcal{V}\binom{t}{i j}^{*} \otimes \tilde{\mathcal{V}}(\widetilde{\tilde{i} \tilde{j}})^{*}$. That $\operatorname{Rep}^{\mathrm{u}}(V \otimes \widetilde{V})=\operatorname{Rep}{ }^{\mathrm{u}}(V) \otimes$ $\operatorname{Rep}^{\mathrm{u}}(\widetilde{V})$ now follows easily. (It also follows from [2] theorem 2.10.)

We now prove the "only if" part. Assume that $V \otimes \widetilde{V}$ is completely unitary. We want to prove that $V$ (or similarly $\widetilde{V}$ ) is completely unitary. Let $\widetilde{\Omega}$ be the vacuum vector of $\widetilde{V}$. Then $V$ can be regarded as a (non-conformal) vertex subalgebra of $V \otimes \widetilde{V}$. The inner product on $V \otimes \widetilde{V}$ restricts to one on $V$, which makes $V$ unitary. Now let $W_{i}$ be an irreducible $V$-module. Write $\widetilde{V}=W_{\widetilde{0}}$ as the unitary vacuum $\widetilde{V}$-module. Then the $V \otimes \widetilde{V}$-module $W_{i} \otimes W_{\widetilde{0}}$ admits a unitary structure. The restriction of the inner product of $W_{i} \otimes W_{\tilde{0}}$ to $W_{i} \otimes \widetilde{\Omega}$ produces a unitary structure on $W_{i}$ (cf. [43] proposition 2.20).

Now choose unitary $V$-modules $W_{i}, W_{j}$, and choose $W_{t}$ in $\mathcal{E}$ again. Notice the natural isomorphism $\mathcal{V}\binom{t}{i j} \stackrel{\widetilde{ }}{\leftrightarrows} \mathcal{V}\binom{t \otimes \tilde{0} j \otimes \tilde{0}}{i}$ sending $\mathcal{Y}_{\alpha} \in \mathcal{V}\binom{t}{i}$ to $\mathcal{Y}_{\alpha} \otimes Y_{\tilde{0}}$. Here $Y_{\widetilde{0}}$ is the vertex operator of $\widetilde{V}$ (on the vacuum module $W_{\tilde{0}}$ ). Such map is clearly injective. It is also surjective, since any intertwining operator in $\mathcal{V}\left(\begin{array}{c}t \otimes \tilde{0} \tilde{0} j \otimes \tilde{0}\end{array}\right)$ can be restricted to the subspaces $W_{i} \otimes \widetilde{\Omega}, W_{j} \otimes \widetilde{\Omega}, W_{t} \otimes \widetilde{\Omega}$ to produce the desired preimage. Note that the $\Lambda$ on $\mathcal{V}(\underset{i \otimes \tilde{0} j \otimes \tilde{0}}{t \otimes \tilde{0}})^{*}$ is positive definite by the complete unitarity of $V \otimes \widetilde{V}$. Choose a basis in $\mathcal{V}\left(\begin{array}{c}t \otimes \tilde{0} \\ i \otimes 0 \\ j \otimes \tilde{0}\end{array}\right)$ whose dual basis is orthonormal under $\Lambda$. Using a suitable fusion relation, it is straightforward to check that the corresponding basis in $\mathcal{V}\binom{t}{i j}$ also has orthonormal dual basis in $\mathcal{V}\binom{t}{i j}^{*}$ under $\Lambda$. In particular, $\Lambda$ is positive on $\mathcal{V}\binom{t}{i j}^{*}$. This proves the complete unitarity of $V$.

The above proposition implies a strategy of proving the completely unitarity of a non-conformal unitary extension $U$ of $V$. Let $V^{c}$ be the commutant of $V$ in $V^{c}$ (the coset subalgebra), which is unitary by [7]. Then $U$ is a unitary (conformal) extension of $V \otimes V^{c}$ by [44] proposition 2.21 . Now it suffices to show the regularity and complete unitarity of $V$ and $V^{C}$, the proof of which might require a similar trick applied to $V$ and $V^{C}$.

Corollary 3.32. Let $V$ be a (finite) tensor product of $c<1$ unitary Virasoro VOAs, affine unitary VOAs, and even lattice VOAs. Let $U$ be a CFT-type unitary extension of $V$. Then $U$ is regular and completely unitary. Consequently, the category of unitary $U$-modules is a unitary MTC.

Proof. The affine unitary VOAs of these types are regular by [13] and completely unitary by [19] theorem 8.4, [20] theorem 6.1, and [45] theorem 5.5. The $c<1$ unitary Virasoro VOAs (resp. even lattice VOAs) are regular also by [13] and completely unitary by [19] theorem 8.1 (resp. [21] theorem 5.8). Therefore, by theorem 3.30 and proposition 3.31, CFT-type unitary extensions of their tensor products are also regular and completely unitary.

The above corollary is by no means in the most general form. For example, we know that W -algebras in discrete series of type $A$ and $E$ are completely unitary by [45] theorem 5.5. So one can definitely add these examples to the list in that corollary.

Corollary 3.33. Let $U$ be a CFT-type unitary VOA with central charge $c<1$. Then $U$ is completely unitary. Consequently, the category of unitary $U$-modules is a unitary MTC.

Proof. By [11] theorem 5.1, $U$ is a unitary extension of the unitary Virasoro VOA $L(c, 0)$.

## Acknowledgments

I'm grateful to Robert McRae for a helpful discussion of the rationality of VOA extensions; Marcel Bischoff for informing me of certain literature on conformal inclusions; and Sergey Neshveyev and Makoto Yamashita for many discussions and helpful comments.

## References

[1] Abe, T., G. Buhl, and C. Dong. "Rationality, regularity, and C_2-cofiniteness." Trans. Amer. Math. Soc. 356, no. 8 (2004): 3391-402.
[2] Abe, T., C. Dong, and H. Li. "Fusion rules for the vertex operator algebras $M(1)^{+}$and $V_{-} L^{+}$. Comm. Math. Phys. 253 (2005), no. 1, 171-219.
[3] Bartels, A., C. L. Douglas, and A. Henriques. "Dualizability and index of subfactors." Quantum Topol. 5, no. 3 (2014): 289-345.
[4] Bakalov, B. and A. A. Kirillov. Lectures on Tensor Categories and Modular Functors, vol. 21. Providence, RI: American Mathematical Society, 2001.
[5] Bischoff, M., Y. Kawahigashi, R. Longo, and K. H. Rehren. "Tensor Categories and Endomorphisms of von Neumann Algebras: With Applications to Quantum Field Theory." In SpringerBriefs in Mathematical Physics, 3." Springer, Cham, 2015.
[6] Carpi, S., S. Ciamprone, and C. Pinzari. "Weak quasi-Hopf algebras, $C^{*}$-tensor categories and conformal field theory." (in press).
[7] Carpi, S., Y. Kawahigashi, R. Longo, and M. Weiner. "From vertex operator algebras to conformal nets and back." Mem. Amer. Math. Soc. 254, no. 1213 (2018).
[8] Creutzig, T., S. Kanade, and R. McRae. "Tensor categories for vertex operator superalgebra extensions." (2017): preprint arXiv:1705.05017.
[9] Carpi, S. and M. Weiner. "Local energy bounds and representations of conformal nets." (in press).
[10] Carpi, S., M. Weiner, and F. Xu. "From vertex operator algebra modules to representations of conformal nets." (in press).
[11] Dong, C. and X. Lin. "Unitary vertex operator algebras." J. Algebra 397, no. 2014 (2014): 252-77.
[12] Dong, C. and X. Lin. "The extensions of $L \_s l \_2(k, 0)$ and preunitary vertex operator algebras with central charges c < 1." Comm. Math. Phys. 340, no. 2 (2015): 613-37.
[13] Dong, C., H. Li, and G. Mason. "Regularity of rational vertex operator algebras." Adv. Math. 132, no. 1 (1997, 1997): 148-66.
[14] Etingof, P., S. Gelaki, D. Nikshych, and V. Ostrik. "Tensor Categories." Mathematical Surveys and Monographs, 205. Providence, RI: American Mathematical Society, 2015. xvi+343 pp.
[15] Frenkel, I., Y. Z. Huang, and J. Lepowsky. "On axiomatic approaches to vertex operator algebras and modules." Mem. Amer. Math. Soc. 104, no. 494 (1993): viii+64.
[16] Fuchs, J., I. Runkel, and C. Schweigert. "TFT construction of RCFT correlators I: partition functions." Nuclear Phys. B 646, no. 3 (2002): 353-497.
[17] Fuchs, J. and C. Schweigert. "Category Theory for Conformal Boundary Conditions." Fields Inst. Commun., 39. Providence, RI: Amer. Math. Soc., 2003.
[18] Gui, B. "Unitarity of the modular tensor categories associated to unitary vertex operator algebras. I." Comm. Math. Phys. 366, no. 1 (2019): 333-96.
[19] Gui, B. "Unitarity of the modular tensor categories associated to unitary vertex operator algebras, II." Comm. Math. Phys. 372, no. 3 (2019): 893-950.
[20] Gui, B. "Energy bounds condition for intertwining operators of type $B, C$, and $G \_2$ unitary affine vertex operator algebras." Trans. Amer. Math. Soc. 372, no. 10 (2019): 7371-424.
[21] Gui, B. "Categorical extensions of conformal nets." Commun. Math. Phys. (2018): preprintarXiv:1812.04470.
[22] Huang, Y. Z. and L. Kong. "Full field algebras." Comm. Math. Phys. 272, no. 2 (2007): 345-96.
[23] Huang, Y. Z., A. Kirillov, and J. Lepowsky. "Braided tensor categories and extensions of vertex operator algebras." Comm. Math. Phys. 337, no. 3 (2015): 1143-59.
[24] Huang, Y. Z. and J. Lepowsky. "A theory of tensor products for module categories for a vertex operator algebra, I." Selecta Math. (N.S.) 1, no. 4 (1995): 699-756.
[25] Huang, Y. Z. "A theory of tensor products for module categories for a vertex operator algebra, IV." J. Pure Appl. Algebra 100, no. 1-3 (1995): 173-216.
[26] Huang, Y.Z. "Differential equations and intertwining operators." Commun. Contemp. Math. 7, no. 3 (2005): 375-400.
[27] Huang, Y. Z. "Differential equations, duality and modular invariance." Commun. Contemp. Math. 7, no. 5 (2005): 649-706.
[28] Huang, Y.Z. "Rigidity and modularity of vertex tensor categories." Commun. Contemp. Math. 10 suppl. 1 (2008): 871-911.
[29] Kawahigashi, Y. and R. Longo. "Classification of local conformal nets. Case c $<1$." Ann. Math. 160, no. 2 (2004): 493-522.
[30] Kirillov, Jr., A. and V. Ostrik. "On a q-analogue of the McKay correspondence and the $A D E$ classification of $\hat{\mathfrak{s l}} 2$ conformal field theories." Adv. Math. 171, no. 2 (2002): 183-227.
[31] Longo, R. and K. H. Rehren. "Nets of Subfactors." Workshop on Algebraic Quantum Field Theory and Jones Theory (Berlin, 1994). Rev. Math. Phys. 7, no. 4 (1995): 567-97.
[32] Longo, R. and J.E. Roberts. "A theory of dimension." K-Theory 11, no. 2 (1997): 103-59.
[33] Longo, R. "A duality for Hopf algebras and for subfactors. I." Comm. Math. Phys. 159, no. 1 (1994): 133-50.
[34] McRae, R. "On the tensor structure of modules for compact orbifold vertex operator algebras." Math. Z. 296 (2019), no. 1-2, 409-452.
[35] Müger, M. "Galois theory for braided tensor categories and the modular closure." Adv. Math. 150, no. 2 (2000): 151-201.
[36] Müger, M. "From subfactors to categories and topology I: Frobenius algebras in and Morita equivalence of tensor categories." J. Pure Appl. Algebra 180, no. 1-2 (2003): 81-157.
[37] Neshveyev, S. and M. Yamashita. "Drinfeld center and representation theory for monoidal categories." Comm. Math. Phys. 345, no. 1 (2016): 385-434.
[38] Neshveyev, S. and M. Yamashita. "Categorically Morita equivalent compact quantum groups." Doc. Math. 23 (2018): 2165-216.
[39] Neshveyev, S. and M. Yamashita. "A few remarks on the tube algebra of a monoidal category." Proc. Edinb. Math. Soc. 2 61, no. 3 (2018): 735-58.
[40] Pareigis, B. "On braiding and dyslexia." J. Algebra 171, no. 2 (1995): 413.
[41] Reutter, D.J. "On the uniqueness of unitary structure for unitarizable fusion categories." (2020): preprint arXiv:1906.09710.
[42] Tener, J.E. "Positivity and fusion of unitary modules for unitary vertex operator algebras." RIMS Kôkyûroku 2086 (2018): 6-13
[43] Tener, J. E. "Representation theory in chiral conformal field theory: from fields to observables." Selecta Math. (N.S.) 25, no. 5 (2019): Paper No. 76, 82 pp.
[44] Tener, J. E. "Geometric realization of algebraic conformal field theories." Adv. Math. 349 (2019): 488-563.
[45] Tener, J.E. "Fusion and positivity in chiral conformal field theory." (2020): preprint arXiv:1910.08257.
[46] Turaev, V.G. "Quantum Invariants of Knots and 3-Manifolds." De Gruyter Studies in Mathematics, 18. Berlin: De Gruyter, 2016. xii+596
[47] Yamagami, S. "Frobenius duality in C*-tensor categories." J. Operator Theory 52, no. 1 (2004): 3-20.
[48] Zhu, Y. "Modular invariance of characters of vertex operator algebras." J. Amer. Math. Soc. 9, no. 1 (1996): 237-302.


[^0]:    Received November 13, 2019; Revised July 17, 2020; Accepted October 2, 2020
    Communicated by Prof. Dan-Virgil Voiculescu

