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Bisognano–Wichmann Property for Rigid
Categorical Extensions and Non-local
Extensions of Conformal Nets

Bin Gui

Abstract. Given an (irreducible) Möbius covariant net A, we prove a
Bisognano–Wichmann theorem for its categorical extension E d associ-
ated with the braided C∗-tensor category Repd(A) of dualizable (more
precisely, “dualized”) Möbius covariant A-modules. As a closely related
result, we prove a (modified) Bisognano–Wichmann theorem for any (pos-
sibly) non-local extension of A obtained by a C∗-Frobenius algebra Q in
Repd(A). As an application, we discuss the relation between the domains
of modular operators and the preclosedness of certain unbounded opera-
tors in E d.
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0. Introduction

The notion of categorical extensions of conformal nets was introduced in [23] to
understand the relations between the tensor categories of conformal nets and
vertex operator algebras (VOA’s). A categorical extension E of an irreducible
conformal (or Möbius covariant) net A is the Haag–Kastler net of bounded
charged fields (intertwiners) associated with A. E satisfies a list of axioms
similar to those of A, including, most importantly, the locality axiom, which
says that bounded charged fields supported in disjoint open intervals commute
adjointly. One main observation in [23] is that, in order to relate the tensor
category of a unitary VOA V with the one of the corresponding conformal
net AV (assuming AV exists), it suffices to show that the (usually) unbounded
smeared intertwining operators of V give rise to bounded intertwiners satisfying
the axioms of a categorical extension, especially the locality. Similar to the
construction in [13] of AV from V , proving the locality axiom is the most
difficult step, which amounts to proving the strong commutativity of certain
adjointly commuting unbounded closed operators.1

The Bisognano–Wichmann (B-W) Theorem [9] is a powerful tool for prov-
ing the locality of the conformal net AV associated with a unitary VOA V . In
[13], Carpi–Kawahigashi–Longo–Weiner used this theorem to show that very
often, one only needs the strong commutativity of a small amount of smeared
vertex operators (which “generate V ”) to prove the strong commutativity of all
smeared vertex operators supported in disjoint intervals. 2 The main motiva-
tion of our present article is to generalize this result to intertwining operators
(charged fields) of VOA’s.

Let us first recall the B-W theorem in (algebraic) chiral conformal field
theory [7,16,20]. Let A be an (irreducible) Möbius covariant net with vacuum
representation H0 and vacuum vector Ω. The representation of PSU(1, 1) on
H0 is denoted by U . By Reeh–Schlieder property, Ω is a cyclic and separating
vector of A(I) where I is any open (non-dense non-empty) interval on the unit
circle S

1. Thus, one can associate to the pair (A(I),Ω) the modular operator
ΔI and modular conjugation JI satisfying the Tomita–Takesaki theorem. Now,
the B-W theorem for A says that:

• (Geometric modular theorem) Δit
I = δI(−2πt), where δI is the dilation

subgroup of the Möbius group PSU(1, 1) associated with the interval I
(see Sect. 6 for more details).

• (PCT theorem) The antiunitary map Θ := JS1+ (which is an involution
by Tomita–Takesaki theory) is a PCT operator for A, where S

1
+ is the

upper semi-circle. More precisely, if we set r : S
1 → S

1, z �→ z, then we
have ΘA(I)Θ = A(rI) and ΘU(g)Θ = U(rgr) for any g ∈ PSU(1, 1).

1Two closed operators A and B on a Hilbert space H are said to commute adjointly if
[A,B] = [A∗, B] = 0 when acting on suitable vectors; they are said to commute strongly

if the von Neumann algebras generated by A and by B commute. Strong commutativity
implies adjoint commutativity; the converse may not hold by the famous counterexample of
Nelson [36].
2For general quantum field theories, a similar result was proved in [15].
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More generally, one has the B-W theorem for Fermi conformal nets [2,12] and
irreducible finite-index non-local extensions of conformal nets [30].

To derive a B-W theorem for categorical extensions of A, we first need
to define the modular S and F operators for them. Before explaining the
definition, we first recall what are categorical extensions.

Let S
1
− be the lower semi-circle. If Hi,Hj are A-modules, then Hj is

a left A(S1
+) module, and Hi is a right A(S1

+) module defined by the action
x ∈ A(S1

+) �→ Θx∗Θ. Then the fusion product Hi�Hj is the Connes–Sauvageot
relative tensor product of Hi and Hj over A(S1

+). A(S1
+) and A(S1

−) act natu-
rally on Hi � Hj by acting, respectively, on the left and the right components
and can be extended to a representation of A on Hi � Hj using “path contin-
uations.” (See Sect. A or [23] chapter 2 for details.) Now, for each interval I,
one can define a dense vector space Hi(I) = HomA(I′)(H0,Hi)Ω, where I ′ is
the interior of the complement of I. Hj(I) is defined similarly. Then, we know
that Hi �Hj has a dense subspace spanned by vectors of the form ξ ⊗η where
ξ ∈ Hi(S1

+) and η ∈ Hj(S1
−). We then have bounded operators

L(ξ) ∈ HomA(S1−)(Hj ,Hi � Hj), R(η) ∈ HomA(S1+)(Hi,Hi � Hj)

defined by L(ξ)φ = ξ ⊗φ and R(η)ψ = ψ ⊗η for any φ ∈ Hj(S1
−), ψ ∈ Hi(S1

+).
We understand L(ξ), R(η) as operators acting on any possible A-modules. This
means that when χ ∈ Hk, we have L(ξ)χ ∈ Hi � Hk, R(η)χ ∈ Hk � Hj .

The L and R operators defined above should be understood as supported
in S

1
+ and S

1
−, respectively. We would like to have them supported in any

interval I, so that we have nets of sets of L operators and R operators. It turns
out that in general, such nets can be defined not on S

1 but on its universal
cover. So one should consider the L and R operators localized not in intervals,
but in arg-valued intervals. If I is an interval of S

1, then one can choose a
continuous argument function argI . Then, the pair ˜I = (I, argI) is called an
arg-valued interval. We choose ˜

S1
+ and ˜

S1− such that argS1+(eit) = t (0 < t < π)
and that argS1−(eit) = t (−π < t < 0). Then, one can define consistently the

L and R operators localized in any given arg-valued interval ˜I. To be more
precise, for any A-modules Hi,Hk and any ξ ∈ Hi(I), one can define

L(ξ, ˜I) ∈ HomA(I′)(Hk,Hi � Hk), R(ξ, ˜I) ∈ HomA(I′)(Hk,Hk � Hi).

Moreover, when ˜I = ˜

S1
+ we have L(ξ, ˜I) = L(ξ); when ˜I = ˜

S1− we have
R(ξ, ˜I) = R(ξ). These L and R operators form a categorical extension of A.

We now focus on dualizable A-modules Hi,Hj ,Hk, etc. Since Hi is du-
alizable, we have an A-module Hi (the dual object) and evaluations evi,i ∈
HomA(Hi � Hi,H0) and evi,i ∈ HomA(Hi � Hi,H0) satisfying the conjugate
equations

(evi,i ⊗ 1i)(1i ⊗ coevi,i) = 1i = (1i ⊗ evi,i)(coevi,i ⊗ 1i),

(evi,i ⊗ 1i)(1i ⊗ coevi,i) = 1i = (1i ⊗ evi,i)(coevi,i ⊗ 1i),



4020 B. Gui Ann. Henri Poincaré

where we set coevi,i = ev∗
i,i

, coevi,i = ev∗
i,i

. evi,i determines the other ev and
coev. Moreover, we may and do assume that the ev and coev are standard,
which means evi,i(F ⊗1i)coevi,i = evi,i(1i⊗F )coevi,i for each F ∈ EndA(Hi).
(Cf. [4,29,40].) We say that (Hi, evi,i) is a dualizing data and that a dualizable
object Hi equipped with a dualizing data is called dualized. Dualized repre-
sentations with Möbious covariance form a rigid braided C∗-tensor category
Repd(A), and for each dualized Hi, we can choose a canonical dual object Hi,
such that Hi is also the dual object of Hi. (See Sect. 3 for details.)

Now, for any ˜I, we define the categorical S and F operators S
˜I , F˜I . For

any dualizable Hi, we have

S
˜I , F˜I : Hi → Hi

with common domain Hi(I) defined by

S
˜Iξ = L(ξ, ˜I)∗coevi,iΩ, F

˜Iξ = R(ξ, ˜I)∗coevi,iΩ.

These two operators are indeed preclosed. Moreover, they are related by
the (unitary) twist operator ϑ (proposition 5.7):

F
˜I = ϑS

˜I .

We can thus define the modular operator Δ
˜I and modular conjugation J

˜I by
the polar decompositions:

S
˜I = J

˜I · Δ
1
2
˜I
, F

˜I = ϑJ
˜I · Δ

1
2
˜I
,

where, for each Hi, Δ
˜I is a positive closed operator on Hi, and J

˜I : Hi → Hi

is antiunitary. Indeed, J
˜I : Hi → Hi is an involution, i.e., J2

˜I
= 1. It turns

out that J
˜I implements the conjugations of morphisms: for any morphism G ∈

HomA(Hi,Hj) one can define its conjugate G ∈ HomA(Hi,Hi) to be the ad-
joint of the transpose G∨, where G∨ is the unique morphism in HomA(Hj ,Hi)
satisfying

evj,j(G ⊗ 1j) = evi,i(1i ⊗ G∨).

We will prove that

G = J
˜I · G · J

˜I

(see Proposition 5.16), which suggests that J
˜I is the correct modular conjuga-

tion for categorical extensions.
The action of Δ

˜I on any Hi can be interpreted as a Connes spatial de-
rivative (see remark 5.20). Indeed, our definition and treatment of S

˜I and F
˜I

are deeply motivated by the matrix algebra approach to Connes fusion prod-
ucts and Connes spatial derivatives in [19] and [38, Sec. IX.3]. Those matrices
of von Neumann algebras are described in our article by the C∗-Frobenius
algebra Q = (Hk � Hk, μ, ι) in the representation category Repd(A) of dual-
ized Möbius covariant A-modules, where ι ∈ HomA(H0,Hk � Hk) is coevk,k

and μ ∈ HomA(Hk � Hk � Hk � Hk,Hk � Hk) is evk,k(1k ⊗ evk,k ⊗ 1k).
As we will show, S

˜I and F
˜I are closely related to the S and F operators of
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non-local extensions of A constructed from C∗-Frobenius algebras. Thus, us-
ing the Tomita–Takesaki theory for those non-local extensions, we are able to
show that S

˜I and F
˜I are always preclosed and that Δ

˜I and J
˜I satisfy simi-

lar algebraic relations as those in Tomita–Takesaki theory (see, for example,
Proposition 5.18). The idea here is the same as in [19] and [38].

We emphasize that the categorical extensions and the non-local finite
index extensions (by C∗-Frobenius algebras) of a conformal net A are closely
related. So are their modular theories. As we will see, the proof of the B-W
theorem for categorical extensions relies on that for non-local extensions and
vice versa. Let us now point out some key ideas in the proof.

Just like the proof of many other versions of B-W theorem, the starting
point of our proof is the following well-known consequence (cf. [2,30]; see also
Lemma 6.2) of Borchers’ theorem [11]: for a non-local extension B constructed
from the C∗-Frobenius algebra Q, z(t) = Δit

˜I
δ

˜I(2πt) is a one-parameter group

independent of the arg-valued interval ˜I. To show that z(t) = 1 when Q is
standard, we need to first show that the modular operator for B(˜I) is the inverse
of that of B(˜I ′); here, ˜I ′ is the “clockwise complement of ˜I, i.e., it is the interior
of the complement of I in S

1, equipped with the arg-function argI′ satisfying
argI′ < argI < argI′ +2π. This fact is obvious when Q is commutative (i.e.,
when B is local extension, which means B(˜I ′) is the commutant of B(I));
especially, this is true when Q is the identity object, namely B = A.3 But this
is not an obvious fact when the standard Q is in general non-commutative.
It turns out that our Categorical Extensions provide a natural framework for
proving this fact: we prove it using the previously mentioned crucial relation
F

˜I = ϑS
˜I for categorical S and F operators (Proposition 5.7). (In particular,

the property that the categorical S and F operators have the same absolute
value Δ

˜I is remarkable.) We also use the fact that the categorical S
˜I and F

˜I

can be related directly to the S operators for B(˜I) and its commutant B(˜I)′

(cf. Proposition 5.10; see also the non-local Haag duality in Theorem 4.7).
Once we have proved the B-W theorem for standard non-local exten-

sions, it is not difficult to prove categorical B-W theorem by restricting to
A-subrepresentations of Q. Then, using this categorical B-W theorem, one
can also prove easily the (modified) non-local B-W theorem for non-local ex-
tensions of A associated with a non-necessarily standard C∗-Frobenius algebra
Q. These two B-W theorems are the main results of our paper, which are stated
in details in Theorems 6.4 and 6.12. Roughly speaking, the categorical B-W
theorem says:

Theorem 0.1. (Categorical B-W theorem). We have

Δit
˜I

= δI(−2πt) (0.1)

3Note that one does not need the B-W theorem for the conformal net A to prove that z(t)

is a one-parameter group independent of ˜I. It is rather the opposite: that this fact proves
the B-W theorem for A. Thus, it should now be clear to the readers that our proofs of B-W
theorem for non-local extensions and categorical extensions do not rely on the B-W theorem
of A, but rather, it follows the same pattern as the proof of the latter.
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when acting on any dualizable Hi. Moreover, Θ := J
˜

S1+
is a PCT-operator for

the (rigid) categorical extension.

Let Q = (Ha, μ, ι) be a C∗-Frobenius algebra in Repd(A), where ι ∈
HomA(H0,Ha) and μ ∈ HomA(Ha � Ha,Ha). Let Ha and eva,a be the dual
object and the standard evaluation. Let ε be the unique invertible morphism
in HomA(Ha,Ha) satisfying

eva,a(ε ⊗ 1a) = ι∗μ.

(ε will be called reflection operator in our paper.) We remark that ε∗ε is
independent of the choice of Ha and eva,a for Ha. Then, we have:

Theorem 0.2. (Modified non-local B-W theorem). Let B be the non-local ex-
tension of A obtained through Q. For any ˜I ∈ ˜J , Let D

˜I and JQ
˜I

be the modular

operator and conjugation associated with (B(˜I), ιΩ). Then,

Dit
˜I

= (ε∗ε)itδI(−2πt), (0.2)

and ΘQ := JQ
˜

S1+

is a PCT operator for B and its “clockwise dual net” B′.

Some remarks on these two theorems:
• Equivalent forms of equation (0.1) already appeared in [18,26] and in [32].

In [18,26], the S operators are defined for reduced field bundles, which
are an alternative model for charged fields (intertwining operators) of
conformal nets. For our purpose (see the beginning of the introduction),
categorical extensions might be more convenient than reduce field bun-
dles. In [32], Longo showed that the dilation group δI is related to Connes
Radon–Nikodym derivatives, which are in turn related to Connes spatial
derivatives and hence related to our Δ

˜I (see remark 5.20).
• Similar to [21,26], the conformal spin statistics theorem ϑ = e2iπL0 is a

consequence of the PCT theorem for (rigid) categorical extensions (see
Theorem 6.8).

• The C∗-Frobienius algebra Q is standard if and only if ε is unitary. Thus,
by (0.2), for the non-local extension B of A obtained by Q, the standard
geometric modular theorem Dit

˜I
= δI(−2πt) holds if and only if Q is

standard.
• When Q is irreducible (as a left Q-module), Theorem 0.2 was proved by

[30] proposition 3.5-(ii).
This article is organized as follows. The first three sections provide back-

ground materials of this article. In Sect. 1, we review the definitions of Möbius
covariant nets and conformal nets and their representations. In Sect. 2, we re-
view the definition and basic properties of categorical extensions of conformal
nets. In Sect. 3, we review some important facts about dualizable objects, their
duals and standard evaluations. Later on, we will focus on the rigid braided
C∗-tensor category Repd(A) of dualized objects, i.e., dualizable objects with
chosen duals and standard evaluations.
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Construction of non-local extensions of conformal nets via C∗-Frobenius
algebras (or Q-systems) was first studied in [28] using endomorphisms of von
Neumann algebras. A parallel construction using bimodules and Connes fu-
sions was given in [34]. In Sect. 4, we use categorical extensions as a new
method to realize such construction of non-local extensions. Our method em-
phasizes the close relation between the charged field operators of a conformal
net and the field operators of its non-local extensions and explains the slogan
“non-local extensions are subquotients of categorical extensions” proposed in
the Introduction of [23]. In Sect. 5, we define the S and F operators for rigid
categorical extensions and prove many elementary but important properties
for these operators; especially, we relate them with the S and F operators
of non-local extensions. In Sect. 6, we prove the main results of this article,
namely Theorems 0.1 and 0.2. In Sect. 7, we use the modular theory of cat-
egorical extensions to study the preclosedness of certain unbounded charged
fields of conformal nets. Although our main motivation of this article is to
study the functional analytic properties of these charged field operators, here
we do not give a systematic study of this topic but leave it to future works.

Categorical extensions of conformal nets are closely related to Connes
fusion. In section A, we briefly explain this relation for the convenience of the
readers who are not familiar with this topic. We hope that appendix section
would help them understand the axioms in the definition of categorical exten-
sions. In section B, we prove that the rigid categorical extensions of Möbius
covariant nets are Möbius covariant. This result parallels the conformal covari-
ance of the categorical extensions of conformal (covariant) nets proved in [23]
section 2.4 and theorem 3.5. Indeed, our proof of the Möbius covariance in this
article can be adapted to give a simpler proof of the conformal covariance in
[23]; see the end of section B.

1. Backgrounds

Let J be the set of all non-empty non-dense open intervals in the unit circle S
1.

If I ∈ J , then I ′ denotes the interior of the complement of I, which is also an
element in J . The group Diff+(S1) of orientation-preserving diffeomorphisms
of S

1 contains the subgroup PSU(1, 1) of Möbius transforms of S
1. If I ∈ J ,

we let Diff(I) be the subgroup of all g ∈ Diff+(S1) acting as identity on I ′.
In this article, we always let A be an (irreducible) Möbius covariant net,

which means that for each I ∈ J there is a von Neumann algebra A(I) acting
on a fixed separable Hilbert space H0, such that the following conditions hold:

(a) (Isotony) If I1 ⊂ I2 ∈ J , then A(I1) is a von Neumann subalgebra of
A(I2).

(b) (Locality) If I1, I2 ∈ J are disjoint, then A(I1) and A(I2) commute.
(c) (Möbius covariance) We have a strongly continuous unitary representa-

tion U of PSU(1, 1) on H0 such that for any g ∈ PSU(1, 1), I ∈ J ,,

U(g)A(I)U(g)∗ = A(gI).
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(d) (Positivity of energy) The generator L0 of the rotation subgroup � is
positive.

(e) There exists a unique (up to scalar) PSU(1, 1)-invariant unit vector Ω ∈
H0. Moreover, Ω is cyclic under the action of

∨

I∈J M(I) (the von Neu-
mann algebra generated by all M(I)).
A satisfies Haag duality [20, Thm.2.19], i.e., that A(I ′) = A(I)′. This

result plays a crucial role in the construction of categorical extensions and
is thus an input in the proof of Haag duality for non-local extensions (cf.
Proposition 4.5 or Theorem 4.7).

We say that A is a conformal (covariant) net if the representation U of
PSU(1, 1) on H0 can be extended to a strongly continuous projective unitary
representation U of Diff+(S1) on H0, such that for any g ∈ Diff+(S1), I ∈ J ,
and any representing element V ∈ U(H0) of U(g),

V A(I)V ∗ = A(gI).

Moreover, if g ∈ Diff(I) and x ∈ A(I ′), then

V xV ∗ = x.

Let Hi be a separable Hilbert space. Recall that a (normal) representation
(Hi, πi) of A (also called an A-module) associates with each I ∈ J a unital
*-representation πi,I : A(I) → B(Hi), such that for any I1, I2 ∈ J satisfying
I1 ⊂ I2, and any x ∈ A(I1), we have πi,I1(x) = πi,I2(x). We write πi,I(x) as
πi(x) or just x when no confusion arises.

Let G be the universal covering of Diff+(S1). The corresponding projec-
tive representation of G on H0 is also denoted by U . Then, G has a central
extension

1 → U(1) → GA → G → 1

associated with the projective representation of Diff+(S1) on H0. In other
words, we set

GA = {(g, V ) ∈ G × U(H0)|V is a representing element of U(g)}.

GA actually only depends on the central charge of A ; see [23]. This fact will
not be used in the present article.

Then, the projective representation Diff+(S1) � H0 gives rise to an ac-
tual unitary (continuous) representation of GA of H0, also denoted by U . For
each I, we let G (I) be the connected component containing 1 of the preim-
age of Diff(I) under the covering map G → Diff+(S1). Similarly, let GA(I)
be the preimage of G (I) under GA → G . If A is conformal covariant, then
any A-module Hi is conformal covariant, which means that there is a unique
representation Ui of GA on Hi such that for any I ∈ J and g ∈ GA(I),

Ui(g) = πi(U(g)). (1.1)

Moreover, this representation of GA continuous. These facts follow from [1]
(only for irreducible representations) and [25] theorem 11. (See also [23][Thm.
2.2] for a detailed explanation.) Moreover, the generator of the rotation sub-
group acting on Hi is positive by [39] theorem 3.8. From (1.1) and the fact that
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GA is algebraically generated by {GA(I) : I ∈ J } proved in [25] Lemma 17-(ii)
(see also [23] proposition 2.2), it is clear that any homomorphism of conformal
net modules is also a homomorphism of representations of GA. Moreover, for
any g ∈ GA and x ∈ A(I) one has

Ui(g)πi,I(x)Ui(g)∗ = πi,gI(U(g)xU(g)∗). (1.2)

Very often, we will write U(g) and Ui(g) as g for short.
Let ˜PSU(1, 1) be the universal cover of PSU(1, 1), regarded as a subgroup

of G . By [10], the restriction of any strongly continuous projective representa-
tion of G to ˜PSU(1, 1) can be lifted to a unique strongly continuous unitary
representation of ˜PSU(1, 1). Thus, ˜PSU(1, 1) is also a subgroup of GA. Note
that the action of ˜PSU(1, 1) on H0 also preserves Ω. We say that an A-module
Hi is Möbius covariant if there is a strongly continuous unitary representation
Ui of ˜PSU(1, 1) on Hi such that (1.2) holds for any g ∈ ˜PSU(1, 1) and I ∈ J .

In the literature, a Möbius covariant representation is often also assumed
to have positive generator of rotation group (or equivalently, positive generator
of translation group [39, Lemma 3.1]). Since in our article we are mainly in-
terested in dualizable representations (equivalently, representations with finite
indexes), the positive energy condition is automatic by [3, Cor. 4.4].

2. Categorical Extensions

Let Rep(A) be the C∗-category of A-modules whose objects are denoted by
Hi,Hj ,Hk, . . . . Then, one can equip Rep(A) with a structure of braided C∗-
tensor category either via Doplicher–Haag–Roberts (DHR) superselection the-
ory [17,18], or via Connes fusion [5,6,23]. These two constructions are equiva-
lent by [23] chapter 6. The unit of Rep(A) is H0. We write the tensor (fusion)
product of two A-modules Hi,Hj as Hi �Hj . We assume without loss of gen-
erality that Rep(A) is strict, which means that we will not distinguish between
H0,H0 � Hi,Hi � H0, or (Hi � Hj) � Hk and Hi � (Hj � Hk) (abbreviated
to Hi � Hj � Hk). In the following, we review the definition and the basic
properties of closed vector-labeled categorical extensions of A (abbreviated to
“categorical extensions” for short) introduced in [23].

To begin with, if Hi,Hj are A-modules and I ∈ J , then HomA(I′)(Hi,Hj)
denotes the vector space of bounded linear operators T : Hi → Hj such that
Tπi,I′(x) = πj,I′(x)T for any x ∈ A(I ′). We then define Hi(I) = HomA(I′)
(H0,Hi)Ω, which is a dense subspace of Hi. Note that I ⊂ J implies Hi(I) ⊂
Hi(J). Moreover, if G ∈ HomA(Hi,Hj), then

GHi(I) ⊂ Hj(I). (2.1)

If I ∈ J , an arg-function of I is, by definition, a continuous function
argI : I → R such that for any eit ∈ I, argI(eit) − t ∈ 2πZ. ˜I = (I, argI) is
called an arg-valued interval. Equivalently, ˜I is a branch of I in the universal
cover of S

1. We let ˜J be the set of arg-valued intervals. If ˜I = (I, argI) and ˜J =
(J, argJ) are in ˜J , we say that ˜I and ˜J are disjoint if I and J are so. Suppose,
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moreover, that for any z ∈ I, ζ ∈ J we have argJ(ζ) < argI(z) < argJ(ζ)+2π,
then we say that ˜I is anticlockwise to ˜J (equivalently, ˜J is clockwise to ˜I).
We write ˜I ⊂ ˜J if I ⊂ J and argJ |I = argI . Given ˜I ∈ ˜J , we also define
˜I ′ = (I ′, argI′) ∈ ˜J such that ˜I is anticlockwise to ˜I ′. We say that ˜I ′ is the
clockwise complement of ˜I.

Definition 2.1. A (closed and vector-labeled) categorical extension E =
(A,Rep(A),�,H) of A associates, to any Hi,Hk ∈ Obj(Rep(A)) and any
˜I ∈ ˜J , ξ ∈ Hi(I), bounded linear operators

L(ξ, ˜I) ∈ HomA(I′)(Hk,Hi � Hk),

R(ξ, ˜I) ∈ HomA(I′)(Hk,Hk � Hi),

such that the following conditions are satisfied:

(a) (Isotony) If ˜I1 ⊂ ˜I2 ∈ ˜J , and ξ ∈ Hi(I1), then L(ξ, ˜I1) = L(ξ, ˜I2),
R(ξ, ˜I1) = R(ξ, ˜I2) when acting on any Hk ∈ Obj(Rep(A)).

(b) (Functoriality) If Hi,Hk,Hk′ ∈ Obj(Rep(A)), F ∈ HomA(Hk,Hk′), the
following diagrams commute for any ˜I ∈ ˜J , ξ ∈ Hi(I).

Hk
F−−−−→ Hk′

L(ξ,˜I)

⏐

⏐

� L(ξ,˜I)

⏐

⏐

�

Hi � Hk
1i⊗F−−−−→ Hi � Hk′

Hk
R(ξ,˜I)−−−−→ Hk � Hi

F

⏐

⏐

�
F⊗1i

⏐

⏐

�

Hk′
R(ξ,˜I)−−−−→ Hk′ � Hi

. (2.2)

(c) (State-field correspondence4) For any Hi ∈ Obj(Rep(A)), under the iden-
tifications Hi = Hi � H0 = H0 � Hi, the relation

L(ξ, ˜I)Ω = R(ξ, ˜I)Ω = ξ (2.3)

holds for any ˜I ∈ ˜J , ξ ∈ Hi(I). It follows immediately that when acting
on H0, L(ξ, ˜I) equals R(ξ, ˜I) and is independent of argI .

(d) (Density of fusion products) If Hi,Hk ∈ Obj(Rep(A)), ˜I ∈ ˜J , then the
set L(Hi(I), ˜I)Hk spans a dense subspace of Hi �Hk, and R(Hi(I), ˜I)Hk

spans a dense subspace of Hk � Hi. (Indeed, they span the full space
Hi � Hk and Hk � Hi, respectively.)

(e) (Locality) For any Hk ∈ Obj(Rep(A)), disjoint ˜I, ˜J ∈ ˜J with ˜I anti-
clockwise to ˜J , and any ξ ∈ Hi(I), η ∈ Hj(J), the following diagram
(2.4) commutes adjointly.

Hk
R(η, ˜J)−−−−−−−−→ Hk � Hj

L(ξ,˜I)

⏐

⏐

� L(ξ,˜I)

⏐

⏐

�

Hi � Hk
R(η, ˜J)−−−−−−−−→ Hi � Hk � Hj

(2.4)

4For general (i.e., non-necessarily closed or vector-labeled) categorical extensions, this axiom
is replaced by the neutrality and the Reeh–Schlieder property; see [23] section 3.1.
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Here, the adjoint commutativity of diagram (2.4) means that R(η, ˜J)
L(ξ, ˜I) = L(ξ, ˜I)R(η, ˜J) when acting on Hk, and R(η, ˜J)L(ξ, ˜I)∗ =
L(ξ, ˜I)∗R(η, ˜J) when acting on Hi � Hk.

(f) (Braiding) There is a unitary linear map ßi,j : Hi � Hj → Hj � Hi for
any Hi,Hj ∈ Obj(Rep(A)), such that

ßi,jL(ξ, ˜I)η = R(ξ, ˜I)η (2.5)

whenever ˜I ∈ ˜J , ξ ∈ Hi(I), η ∈ Hj .

Note that ßi,j is unique by the density of fusion products. Moreover, ßi,j

commutes with the actions of A, and is the same as the braid operator of
Rep(A); see [23] sections 3.2, 3.3. The existence of E is also proved in [23]
sections 3.2.5

Remark 2.2. We see that L(ξ, ˜I) and R(ξ, ˜I) can act on any object in Rep(A).
If we want to emphasize that they are acting on a specific object Hk, we write
L(ξ, ˜I)|Hk

and R(ξ, ˜I)|Hk
. It is noteworthy that for any x ∈ A(I),

L(xΩ, ˜I)|Hk
= R(xΩ, ˜I)|Hk

= πk,I(x). (2.6)

See the end of [23] section 3.1. By the locality and the state-field correspon-
dence, it is also easy to see that

L(ξ, ˜I)η = R(η, ˜J)ξ (2.7)

whenever ξ ∈ Hi(I), η ∈ Hj(J), and ˜I is anticlockwise to ˜J .

Another useful fact is that if F ∈ HomA(Hi,Hi′), G ∈ HomA(Hj ,Hj′),
ξ ∈ Hi(I), and η ∈ Hj , then

(F ⊗ G)L(ξ, ˜I)η = L(Fξ, ˜I)Gη, (G ⊗ F )R(ξ, ˜I)η = R(Fξ, ˜I)Gη. (2.8)

This was proved in [23] section 3.3 using Connes fusion, but it also follows
directly from the axioms of categorical extensions. To prove the first equation,
it suffices to assume that η ∈ Hj(J) where ˜J is clockwise to ˜I. Then, by the
functoriality and relation (2.7),

(F ⊗ G)L(ξ, ˜I)η = (1 ⊗ G)(F ⊗ 1)L(ξ, ˜I)η = (1 ⊗ G)(F ⊗ 1)R(η, ˜J)ξ

=(1 ⊗ G)R(η, ˜J)Fξ = (1 ⊗ G)L(Fξ, ˜I)η = L(Fξ, ˜I)Gη.

The second relation follows from the first one and (2.7).
We now prove some fusion relations for the L and R operators of E .

Proposition 2.3. Let Hi,Hj ,Hk ∈ Obj(Rep(A)), ˜I ∈ ˜J , and ξ ∈ Hi(I).

5In [23], we assume A to be conformal covariant for the simplicity of discussions. Most
results in that article (for example, the construction of Connes categorical extensions, the
uniqueness of braided C∗-tensor categories, the uniqueness of vector-labeled closed categor-

ical extensions, etc.) do not rely on the conformal covariance and are also true for Möbius
covariant nets. The only exception is the conformal covariance of categorical extensions,
which should be replaced by Möbius covariance when the A is only Möbius covariant; see
Theorem 3.2 and section B.
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(a) If η ∈ Hj(I), then L(ξ, ˜I)η ∈ (Hi �Hj)(I), R(ξ, ˜I)η ∈ (Hj �Hi)(I), and

L(ξ, ˜I)L(η, ˜I)|Hk
= L(L(ξ, ˜I)η, ˜I)|Hk

, (2.9)

R(ξ, ˜I)R(η, ˜I)|Hk
= R(R(ξ, ˜I)η, ˜I)|Hk

. (2.10)

(b) If ψ ∈ (Hi � Hj)(I) and φ ∈ (Hj � Hi)(I), then L(ξ, ˜I)∗ψ ∈ Hj(I),
R(ξ, ˜I)∗φ ∈ Hj(I), and

L(ξ, ˜I)∗L(ψ, ˜I)|Hk
= L(L(ξ, ˜I)∗ψ, ˜I)|Hk

, (2.11)

R(ξ, ˜I)∗R(φ, ˜I)|Hk
= R(R(ξ, ˜I)∗φ, ˜I)|Hk

. (2.12)

As a special case, we see that if ξ ∈ Hi(I) and x ∈ A(I), then xξ ∈ Hi(I),
and

L(xξ, ˜I) = xL(ξ, ˜I), R(xξ, ˜I) = xR(ξ, ˜I). (2.13)

Proof. We only prove the first equation of part (b); the second one follows sim-
ilarly. Part (a) follows either from a similar argument or from [23] proposition
3.6. Since L(ξ, ˜I)∗ψ = L(ξ, ˜I)∗L(ψ, ˜I)Ω, we clearly have L(ξ, ˜I)∗ψ ∈ Hj(I).
Choose any χ ∈ Hk(˜I ′). Then, by the adjoint commutativity of left and right
operators,

L(ξ, ˜I)∗L(ψ, ˜I)χ = L(ξ, ˜I)∗L(ψ, ˜I)R(χ, ˜I ′)Ω = R(χ, ˜I ′)L(ξ, ˜I)∗L(ψ, ˜I)Ω

=R(χ, ˜I ′)L(ξ, ˜I)∗ψ = R(χ, ˜I ′)L(L(ξ, ˜I)∗ψ)Ω = L(L(ξ, ˜I)∗ψ)R(χ, ˜I ′)Ω

=L(L(ξ, ˜I)∗ψ)χ.

�

Next, we discuss the conformal covariance of E . For any ˜I = (I, argI) ∈
˜J and g ∈ GA, we have gI defined by the action of Diff+(S1) on S

1. We
now set g˜I = (gI, arggI), where arggI is defined as follows. Choose any map
γ : [0, 1] → GA satisfying γ(0) = 1, γ(1) = g such that γ descends to a
(continuous) path in G . Then, for any z ∈ I there is a path γz : [0, 1] → S

1

defined by γz(t) = γ(t)z. The argument argI(z) of z changes continuously
along the path γz to an argument of gz, whose value is denoted by arggI(gz).

Theorem 2.4. ([23] theorem 3.13). If A is conformal covariant, then E =
(A,Rep(A),�,H) is conformal covariant, which means that for any g ∈
GA, ˜I ∈ ˜J ,Hi ∈ Obj(Rep(A)), ξ ∈ Hi(I), there exists an element gξg−1 ∈
Hi(gI) such that

L(gξg−1, g˜I) = gL(ξ, ˜I)g−1, R(gξg−1, g˜I) = gR(ξ, ˜I)g−1 (2.14)

when acting on any Hj ∈ Obj(Rep(A)).

It’s clear that we have

gξg−1 = gL(ξ, ˜I)g−1Ω = gR(ξ, ˜I)g−1Ω. (2.15)
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In particular, when g ∈ ˜PSU(1, 1) one has gξg−1 = gξ by the state-field
correspondence and that gΩ = Ω. Therefore,

L(gξ, g˜I) = gL(ξ, ˜I)g−1, R(gξ, g˜I) = gR(ξ, ˜I)g−1 (∀g ∈ ˜PSU(1, 1)).
(2.16)

The above property is called the Möbius covariance of E .

3. Rigid Categorical Extensions and Dualized Objects

Recall that a representation Hi of A is called dualizable if there exists an object
Hi ∈ Obj(Rep(A)) (called dual object) and evaluations evi,i ∈ HomA(Hi �
Hi,H0) and evi,i ∈ HomA(Hi � Hi,H0) satisfying the conjugate equations

(evi,i ⊗ 1i)(1i ⊗ coevi,i) = 1i = (1i ⊗ evi,i)(coevi,i ⊗ 1i), (3.1)

(evi,i ⊗ 1i)(1i ⊗ coevi,i) = 1i = (1i ⊗ evi,i)(coevi,i ⊗ 1i), (3.2)

where we set coevi,i = ev∗
i,i

, coevi,i = ev∗
i,i

. It is clear that Hi is also a dual
object of Hi.

Note that in each of (3.1) and (3.2), the first equation is equivalent to
the second one by taking adjoint. Note also that evi,i is uniquely determined
by evi,i since coevi,i is so. Moreover, one can choose the evaluations to be
standard, which means that besides the conjugate equations, we also have

evi,i(F ⊗ 1i)coevi,i = evi,i(1i ⊗ F )coevi,i (3.3)

for any F ∈ EndA(Hi). Then, there exist positive numbers di = di satisfying
evi,icoevi,i = evi,icoevi,i = di10 = di10, called the quantum dimensions of Hi

and Hi.
Standard evaluations exist and are unique up to unitaries. The uniqueness

means that if H
̂i is also a dual object of Hi, and ẽvi,̂i ∈ HomA(Hi � H

̂i,H0)
is a standard evaluation, then ẽvi,̂i := evi,i(1i ⊗ u) for a (necessarily unique)
unitary u ∈ HomA(H

̂i,Hi). Moreover, we also have ẽv
̂i,i := evi,i(u ⊗ 1i). We

refer the reader to [29] or [40] or [4] for more details.

Definition 3.1. We let Repf(A) be the C∗-tensor category of dualizable Möbius
covariant representations of A.

Recall from Sect. 1 that when A is conformal covariant, the confor-
mal covariance and hence the Möbius covariance of dualizable representa-
tions are automatic. Then, Repf(A) is a rigid braided C∗-tensor category.6

We remark that Hi is also Möbius covariant by [21] theorem 2.11. Therefore,
Hi ∈ Obj(Repf(A)) if Hi is so. That any A-subrepresentation of Hi is Möbius
covariant follows from [21, Prop. 2.2].

We can now restrict E to Repf(A) to obtain a (closed, vector-labeled)
rigid categorical extension E f = (A,Repf(A),�,H), which is also conformal

6That Repf (A) is closed under fusion product � is known to experts. In Sect. B, we give a
proof of this fact.
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covariant when A is so. This means that when A is conformal covariant, defi-
nition 2.1 and Theorem 2.4 hold verbatim for E f , except that Rep(A) should
be replaced by Repf(A). When A is only Möbius covariant, these are also
true except that Theorem 2.4 should be replaced by Möbius covariance. Note
first of all that for any Hi ∈ Obj(Repf(A)), the strongly continuous unitary
representations of ˜PSU(1, 1) making Hi Möbius covariant are unique by [21]
proposition 2.2. As an easy consequence of this fact, any morphism in Repf(A)
intertwines the actions of ˜PSU(1, 1) (cf. Lemma B.1). The following is proved
in Sect. B.

Theorem 3.2. Repf(A) is closed under �. Moreover, E f = (A,Repf(A),�,H)
is Möbius covariant, which means that for any g ∈ ˜PSU(1, 1), ˜I ∈ ˜J ,Hi ∈
Obj(Repf(A)), ξ ∈ Hi(I), we have

L(gξ, g˜I) = gL(ξ, ˜I)g−1, R(gξ, g˜I) = gR(ξ, ˜I)g−1 (3.4)

when acting on any Hj ∈ Obj(Repf(A)).

Since all the ev and coev for Hi are determined by evi,i, we define the
following:

Definition 3.3. For any dualizable Hi, a dualizing data is (Hi, evi,i) where Hi ∈
Obj(Rep(A)) is a dual object of Hi, evi,i ∈ HomA(Hi �Hi,H0) satisfies (3.1),
(3.2), and coevi,i = ev∗

i,i
, coevi,i = ev∗

i,i
, and the evaluations are standard.

A dualizable Hi has infinitely many different dualizing data. However,
for the purpose of this article, we need to choose a canonical dualizing data
satisfying some nice property, such as that the double dual object equals the
original one. For this purpose, we introduce the following definition.

Definition 3.4. A dualizable Möbius covariant representation Hi of A is called
dualized, if Hi is equipped with a dualizing data (Hi, evi,i).

Equivalently, a dualized object is a triple (Hi,Hi, evi,i) where Hi ∈
Obj(Repf(A)) and (Hi, evi,i) is a dualizing data of Hi.

In this article, our main results are stated for the category Repd(A) and
the categorical extension E d modeled on it. They are defined as follows.

Definition 3.5. Repd(A) is the rigid braided C∗-tensor category of dualized
(Möbius covariant) representations of A. Morphisms of Repd(A) are the same
as morphisms of Repf(A) (i.e., homomorphisms of representations of A). If
Hi,Hj are dualized with dualizing data (Hi, evi,i) and (Hj , evj,j), we define
their tensor (fusion) product to be Hi �Hj as a (dualizable Möbius covariant)
representation of A, equipped with dualizing data

(Hj � Hi, evi�j,j�i)

where

evi�j,j�i = evi,i(1i ⊗ evj,j ⊗ 1i).



Vol. 22 (2021) Bisognano–Wichmann Property... 4031

Moreover, for any Hi ∈ Obj(Repd(A)) equipped with dualizing data (Hi, evi,i),
we define its (canonical) dual object to be Hi equipped with dualizing data
(Hi, evi,i), where evi,i is related to evi,i by (3.1), (3.2), and coevi,i = ev∗

i,i
, coevi,i =

ev∗
i,i

.

We let H0 ∈ Obj(Repd(A)) be the vacuum representation of A with
dualizing data (H0, λ0,0) where, in general, λ0,i : H0 � Hi

�−→ Hi is the left
unitor.

The following is easy to see:

Proposition 3.6. Let Hi,Hj be dualized, and let Hi,Hj be their respective dual
objects. Then, the dual object of H0 is H0, the dual object of Hi is Hi, and
the dual object of Hi � Hj is Hj � Hi. If we identify Hi with H0 � Hi (resp.
Hi �H0) using the left (resp. right) unitor, then their dualizing data are auto-
matically identified. If we identify (Hi � Hj) � Hk with Hi � (Hj � Hk) using
the associator, then their dualizing data are also automatically identified.

Definition 3.7. The forgetful functor Repd(A) → Repf(A) defined by forget-
ting the dualizing data is clearly an equivalence of C∗-tensor categories. We
pullback the categorical extension E along the forgetful functor to get a rigid
categorical extension

E d = (A,Repd(A),�,H).

The following theorem follows obviously from Theorem 3.2.

Theorem 3.8. Theorem 3.2 holds verbatim for Repd(A) and E d.

We close this section by recalling some well-known facts about rigid
(braided) C∗-tensor categories. We state these facts only for Repd(A).

Choose Hi,Hj ∈ Obj(Repd(A)) with dualizing date (Hi, evi,i), (Hj , evj,j),
respectively. Suppose that G ∈ HomA(Hi,Hj). Then there exists a unique
G∨ ∈ Hom(Hj ,Hi) satisfying

evj,j(G ⊗ 1j) = evi,i(1i ⊗ G∨), (3.5)

called the transpose of G. We have G∨∨ = G. Thus,

G := (G∨)∗ = (G∗)∨ (3.6)

which is in HomA(Hi,Hj) and called the conjugate of G. See, for example,

[40]. It is easy to see that G = G, that if F is another morphism and FG is
definable then FG = FG, that (G)∗ = G∗, and that G is a projection (resp.
unitary, an isometry, a partial isometry) if and only if G is so.

Since Repd(A) is a rigid braided C∗-tensor category, we can define the
twist operator ϑi on any Hi ∈ Obj(Repd(A)) to be the unique operator in
EndA(Hi) such that

evi,i = evi,ißi,i(ϑi ⊗ 1i), (3.7)

where we recall that ß is the braid operator of Rep(A), and the evaluations are
assumed to be standard. Then, by [35], ϑi is a unitary operator independent
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of the dualizing data of Hi, and the actions of ϑ on all Hi ∈ Obj(Repd(A)) (as
ϑi) define a ribbon structure compatible with the braided C∗-tensor structure
of Repd(A). (Indeed, ϑi is unitary if and only if the evaluations are standard.)
This means, among other things, that ϑ is functorial (i.e., natural, which means
that it commutes with homomorphisms), that for any Hi,Hj ∈ Obj(Repd(A)),

ß2
i,j = ϑi�j(ϑ−1

i ⊗ ϑ−1
j ), (3.8)

ϑ∨
i = ϑi, (3.9)

and (hence) that

(1i ⊗ ϑi)coevi,i = ß−1
i,i

coevi,i. (3.10)

(See also [24] the paragraph containing equation (3.29) for some explanations.)

4. Non-local Extensions

Q-systems were introduced by R.Longo [31] and are powerful tools for studying
local and non-local extensions of conformal and Möbius covariant nets [8,27,
28]. In this section, we give a construction of non-local extensions by Q-systems
under the framework of categorical extensions. We shall work with a general
C∗-Frobenius algebra Q in Repd(A) and construct a non-local extension B of
A via Q. The results in this section hold verbatim for E f ,Repf(A), and their
C∗-Frobenius algebras.

Recall that Q = (Ha, μ, ι) is called a C∗-Frobenius algebra in Repd(A)
if Ha ∈ Obj(Repd(A)), μ ∈ HomA(Ha � Ha,Ha), ι ∈ HomA(H0,Ha), and the
following conditions are satisfied:

• (Unit) μ(ι ⊗ 1a) = 1a = μ(1a ⊗ ι).
• (Associativity) μ(μ ⊗ 1a) = μ(1a ⊗ μ).
• (Frobenius relation) (1a ⊗ μ)(μ∗ ⊗ 1a) = μ∗μ.

Note that the associativity and the Frobenius relation are equivalent to the
adjoint commutativity of the following diagram

Ha � Ha � Ha
1a⊗μ−−−−−−−→ Ha � Ha

μ⊗1a

⏐

⏐

�

μ

⏐

⏐

�

Ha � Ha
μ−−−−−−−−→ Ha

. (4.1)

Let us fix a C∗-Frobenius algebra Q. For any ξ ∈ Ha(I), we define
bounded linear operators on Ha:

A(ξ, ˜I) = μ · L(ξ, ˜I)|Ha
, B(ξ, ˜I) = μ · R(ξ, ˜I)|Ha

.

Definition 4.1. For any ˜I ∈ ˜J , B(˜I) (resp. B′(˜I)) is defined to be the set of all
A(ξ, ˜I) (resp. B(ξ, ˜I)) where ξ ∈ Ha(I).

We shall show that B : ˜I ∈ ˜J �→ B(˜I) and B′ : ˜I ∈ ˜J �→ B′(˜I) are
two nets of von Neumann algebras extending A and that the Haag duality
B(˜I)′ = B′(˜I ′) is satisfied. First, notice that A(I) is also acting on Ha. We
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also denote by A(I) the image of A(I) under πa,I . The following lemma shows
that B and B′ are extensions of A.

Proposition 4.2. We have A(I) ⊂ B(˜I) and A(I) ⊂ B′(˜I).

Proof. Choose any x ∈ A(I). Then, one has

A(ιxΩ, ˜I) = πa,I(x) = B(ιxΩ, ˜I). (4.2)

Indeed, for any η ∈ Ha,

A(ιxΩ, ˜I)η = μ · L(ιxΩ, ˜I)η = μ(ι ⊗ 1a)L(xΩ, ˜I)η = L(xΩ, ˜I)η = xη,

where we have used (2.8), the unit property, and (2.6). The other relation is
proved in a similar manner. �

Proposition 4.3. If ˜I is anticlockwise to ˜J , then for any ξ ∈ Ha(I) and η ∈
Ha(J), A(ξ, ˜I) commutes adjointly with B(η, ˜J), which means that A(ξ, ˜I)
B(η, ˜J) = B(η, ˜J)A(ξ, ˜I) and A(ξ, ˜I)∗B(η, ˜J) = B(η, ˜J)A(ξ, ˜I)∗.

Proof. Consider the following matrix of diagrams.

Ha
R(η, ˜J)−−−−−−−−→ Ha � Ha

μ−−−−→ Ha

L(ξ,˜I)

⏐

⏐

� L(ξ,˜I)

⏐

⏐

� L(ξ,˜I)

⏐

⏐

�

Ha � Ha
R(η, ˜J)−−−−−−−−→ Ha � Ha � Ha

1a⊗μ−−−−−−−→ Ha � Ha

μ

⏐

⏐

�
μ⊗1a

⏐

⏐

�

μ

⏐

⏐

�

Ha
R(η, ˜J)−−−−−−−−→ Ha � Ha

μ−−−−→ Ha

(4.3)

The (1, 1)-diagram commutes adjointly by the locality of E d. The (2, 1)- and
(1, 2)-diagrams commute adjointly by the functoriality of E d. The (2, 2)-diagram
is just (4.1), which we know is commuting adjointly by the associativity and
the Frobenius property of Q. Thus, the largest diagram commutes adjointly,
which is exactly the adjoint commutativity of A(ξ, ˜I) and B(η, ˜J). �

Definition 4.4. If S is a set of bounded linear operators on a Hilbert space
H, its commutant S′ is defined to be the set of bounded linear operators on
H which commute adjointly with the operators in S. Then, S′ is a von Neu-
mann algebra. The double commutant S′′ is called the von Neumann algebra
generated by S.

Proposition 4.5. For any ˜I ∈ ˜J , we have B(˜I)′ = B′(˜I ′) and B′(˜I ′)′ = B(˜I).
As a consequence, B(˜I) and B′(˜I ′) are von Neumann algebras acting on Ha.

We remind the reader that ˜I ′ is the clockwise complement of ˜I.

Proof. We only prove B(˜I)′ = B′(˜I ′) as the other relation can be proved in a
similar way. Note that by the previous proposition, we have B(˜I)′ ⊃ B′(˜I ′).
To prove B(˜I)′ ⊂ B′(˜I ′), we choose any Y ∈ B(˜I)′ and show that Y ∈ B′(˜I ′).
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Set η = Y ιΩ. Since ι ∈ HomA(H0,Ha) and Y ∈ HomA(I)(Ha,Ha)
(by proposition 4.2), one has Y ι ∈ HomA(I)(H0,Ha). Therefore, η ∈ Ha(I ′).
Choose any ξ ∈ Ha(I). Then, by proposition 4.6, we have

Y ξ = Y A(ξ, ˜I)ιΩ = A(ξ, ˜I)Y ιΩ = A(ξ, ˜I)η = A(ξ, ˜I)B(η, ˜I ′)ιΩ

=B(η, ˜I ′)A(ξ, ˜I)ιΩ = B(η, ˜I ′)ξ.

This shows Y = B(η, ˜I ′) and hence that Y ∈ B′(˜I ′). �

Proposition 4.6. For any ˜I ∈ ˜J and ξ ∈ Hi(I),

A(ξ, ˜I)ιΩ = ξ = B(ξ, ˜I)ιΩ. (4.4)

As a consequence, we see that ιΩ is a cyclic separating vector for B(˜I)
and B′(˜I).

Proof. We shall prove the following more general relations:

A(ξ, ˜I)ι = L(ξ, ˜I)|H0 , B(ξ, ˜I)ι = R(ξ, ˜I)|H0 . (4.5)

Again, we only prove the first one as the second one can be argued similarly.
We compute that

A(ξ, ˜I)ι = μ · L(ξ, ˜I) · ι = μ(1a ⊗ ι)L(ξ, ˜I)|H0 = L(ξ, ˜I)|H0

where we have used the functoriality of E d and the unit property of Q. �

Finally, if A is conformal covariant, we notice that for any g ∈ GA, we
have gB(˜I)g−1 = B(g˜I) and gB′(˜I)g−1 = B′(g˜I). Indeed, we notice that the
actions of g commute with μ (see the discussion after (1.1)). Therefore, the
conformal covariance of E d implies the two equations. If A is only Möbius
covariant, we also have similar relations for g ∈ ˜PSU(1, 1). We summarize the
above results as follows. (Note that (4.6) follows from lemma 4.6.)

Theorem 4.7. B : ˜I ∈ ˜J �→ B(˜I) and B′ : ˜I ∈ ˜J �→ B′(˜I) are families of von
Neumann algebras satisfying the following properties for any ˜I, ˜J ∈ ˜J .

(a) (Extension property) A(I) ⊂ B(˜I) ∩ B′(˜I).
(b) (Isotony) If ˜I ⊂ ˜J , then B(˜I) ⊂ B( ˜J) and B′(˜I) ⊂ B′( ˜J).
(c) (Reeh–Schlieder property) B(˜I)ιΩ and B′(˜I)ιΩ are dense subspaces of Ha.

Indeed, we have

B(˜I)ιΩ = B′(˜I)ιΩ = Ha(I). (4.6)

(d) (Haag duality) B(˜I)′ = B′(˜I ′).
(e) (Möbius/conformal covariance) For any g ∈ ˜PSU(1, 1) one has

gB(˜I)g−1 = B(g˜I), gB′(˜I)g−1 = B′(g˜I). (4.7)

When A is conformal covariance, the above relations are also true when
g ∈ GA.
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We say that B and B′ are the non-local extensions of A associated with
the C∗-Frobenius algebra Q, and that B′ is the clockwise dual net of B. The
latter name is justified by the Haag duality B(˜I)′ = B′(˜I ′).

Given Q = (Ha, μ, ι) and the associated non-local extensions B,B′, we
define Q′ = (Ha, μ′, ι), where μ′ = μßa,a.

Proposition 4.8. The non-local extensions of A associated with the C∗-Frobenius
algebra Q′ are B′ and B′′, where B′′ is the clockwise dual net of B′.

Proof. We let B1,B′
1 be the non-local extensions associated with Q′, and show

that B1 = B′. The operators in B1(˜I) are written as μ′L(ξ, ˜I)|Ha
where

ξ ∈ Ha(I). By the braiding axiom of E d, μ′L(ξ, ˜I)|Ha
= μßL(ξ, ˜I)|Ha

=
μR(ξ, ˜I)|Ha

which is inside B′(˜I). Moreover, any operator in B′(˜I) is of this
form. This proves B1(˜I) = B′(˜I). �

We describe the relation between B and its clockwise double dual net
B′′. Let ˜I ′′ be the clockwise complement of ˜I ′. Then, we have I ′′ = I and
argI′′ = argI −2π.

Proposition 4.9. B′′(˜I ′′) = B(˜I) for any ˜I ∈ ˜J .

Proof. We have B(˜I) = B′(˜I ′)′ and, similarly, B′(˜I ′) = B′′(˜I ′′)′. �

5. Categorical Modular Operators and Conjugations

We first recall the Tomita–Takesaki theory for von Neumann algebras associ-
ated with cyclic separating vectors; details can be found in [38] or [37]. Let
M be a von Neumann algebra acting on a Hilbert space H, and assume that
Ω ∈ H is a cyclic and separating vector of M. (We do not require ‖Ω‖= 1.) One
defines unbounded antilinear operators S : MΩ → MΩ and F : M′Ω → M′Ω
such that for any x ∈ M, y ∈ M′,

SxΩ = x∗Ω, FyΩ = y∗Ω.

S and F are indeed preclosed operators, whose closures are also denoted by
the same symbols S and F , respectively. Moreover, S∗ = F . Let S = JΔ

1
2

be the polar decomposition of S, where the positive operator Δ = S∗S is
called the modular operator, and the antiunitary map J is called the modular
conjugation. We have ΔitΩ = JΩ = Ω, S = S−1, J2 = 1, S = JΔ

1
2 = Δ− 1

2 J.
Let i =

√−1. For any t ∈ R, we have

ΔitMΔ−it = M, JMJ = M′.

Tomita–Takesaki theory can be applied to non-local extensions without
difficulty. This will be used to derive a categorical Tomita–takesaki theory in
this section.

Definition 5.1. For each Hi ∈ Obj(Repd(A)) with dualizing data (Hi, evi,i)
(see Sect. 3), and for any ˜I ∈ ˜J , we define unbounded antilinear operators
S

˜I , F˜I : Hi → Hi with domains Hi(I) such that for any ξ ∈ Hi(I),

S
˜Iξ = L(ξ, ˜I)∗coevi,iΩ, F

˜Iξ = R(ξ, ˜I)∗coevi,iΩ. (5.1)
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Recall (cf. Definition 3.5) that Hi is assumed to have dualizing data
(Hi, evi,i).

Remark 5.2. We also understand S
˜I and F

˜I as categorical operators, which
means that they can act on any object of Repd(A). We write S

˜I as S
˜I |Hi

and
similarly F

˜I as F
˜I |Hi

if we want to emphasize that S
˜I and F

˜I are acting on
the object Hi ∈ Repd(A). Then, their domains are Hi(I). Later we will show
that S

˜I |Hi
, F

˜I |Hi
are preclosed (with the same absolute value), and will use

the same symbols to denote the closures. Then, the domains of S
˜I |Hi

, F
˜I |Hi

will be a dense subspace of Hi containing Hi(I).

The following proposition describes how S
˜I , F˜I depends on the dualizing

data.

Proposition 5.3. Suppose that Hi,Hj ∈ Obj(Repd(A)) are equal as represen-
tations of A, with possibly different dualizing data given by (Hi, evi,i) and
(Hj , evj,j), respectively. By the uniqueness of standard evaluations (cf. Sect. 3),
there is a unique unitary u ∈ HomA(Hi,Hj) such that

evj,j = evi,i(1i ⊗ u−1).

Then, for each ˜I ∈ ˜J ,

S
˜I |Hj

= uS
˜I |Hi

, F
˜I |Hj

= uF
˜I |Hi

.

Note that we do not assume Hi and Hj are the same objects of Rep(A),
even though Hi,Hj are so.

Proof. Recall the functoriality: for any ξ ∈ Hi(I) = Hj(I) and η ∈ Hj , we
have (1i ⊗ u−1)L(ξ, ˜I) = L(ξ, ˜I)u−1 and (u−1 ⊗ 1i)R(ξ, ˜I) = R(ξ, ˜I)u−1 when
acting on Hj . Therefore,

S
˜I |Hj

ξ = L(ξ, ˜I)∗coevj,jΩ = L(ξ, ˜I)∗(1i ⊗ u)coevi,iΩ

=uL(ξ, ˜I)∗coevi,iΩ = uS
˜I |Hi

ξ.

The relation for F -operators is proved in the same way. �

We shall show that S
˜I and F

˜I are involutions. First of all, we need:

Proposition 5.4. Choose Hi ∈ Obj(Repd(A)). If ξ ∈ Hi(I), then S
˜Iξ ∈ Hi(I),

F
˜Iξ ∈ Hi(I). Moreover, for any Hk ∈ Obj(Rep(A)) we have

L(S
˜Iξ,

˜I)|Hk
= L(ξ, ˜I)∗(coevi,i ⊗ 1k), (5.2)

R(F
˜Iξ,

˜I)|Hk
= R(ξ, ˜I)∗(1k ⊗ coevi,i). (5.3)

Note that in the above two equations, L(ξ, ˜I)∗ is a bounded linear op-
erator from Hi � Hi � Hk to Hi � Hk, and R(ξ, ˜I)∗ from Hk � Hi � Hi to
Hk �Hi. Also, Hk is not assumed to be dualizable or dualized. Then, Hi �Hk

and Hk � Hi have no dualizing data if Hk is not dualized.
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Proof. That S
˜Iξ and F

˜Iξ are inside Hi(I) follows from the obvious fact that
L(ξ, ˜I)∗coevi,i and R(ξ, ˜I)∗coevi,i are in HomA(I′)(H0,Hi). For any χ ∈ Hk,
we use proposition 2.3 to compute that

L(S
˜Iξ,

˜I)χ = L
(

L(ξ, ˜I)∗coevi,iΩ, ˜I
)

χ = L(ξ, ˜I)∗L
(

coevi,iΩ, ˜I
)

χ

(2.8)
=====L(ξ, ˜I)∗(coevi,i ⊗ 1k)L

(

Ω, ˜I
)

χ
(2.6)

===== L(ξ, ˜I)∗(coevi,i ⊗ 1k)χ.

The other equation is proved similarly. �

Proposition 5.5. For any Hi ∈ Obj(Repd(A)) and ξ ∈ Hi(I), we have S2
˜I
ξ =

F 2
˜I
ξ = ξ.

Proof. We compute

S2
˜I
ξ

(5.1)
===== L(S

˜Iξ,
˜I)∗coevi,iΩ

(5.2)
===== (evi,i ⊗ 1i)L(ξ, ˜I)coevi,iΩ

=(evi,i ⊗ 1i)(1i ⊗ coevi,i)L(ξ, ˜I)Ω
(3.1)

===== L(ξ, ˜I)Ω = ξ.

Similarly, we may use (3.2) to show F 2
˜I
ξ = ξ. �

The above two propositions imply immediately the following result.

Corollary 5.6. For any Hi ∈ Obj(Repd(A)),Hk ∈ Obj(Rep(A)), ξ ∈ Hi(I), φ ∈
Hi � Hk, ψ ∈ Hk � Hi,

L(ξ, ˜I)∗φ = (evi,i ⊗ 1k)L(S
˜Iξ,

˜I)φ, (5.4)

R(ξ, ˜I)∗ψ = (1k ⊗ evi,i)R(F
˜Iξ,

˜I)ψ. (5.5)

Next, we relate S
˜I and F

˜I .

Proposition 5.7. We have

F
˜I = ϑS

˜I . (5.6)

More precisely, for any Hi ∈ Obj(Repd(A)) and ξ ∈ Hi(I) we have F
˜Iξ =

ϑiS˜Iξ.

Recall that ϑi is the (unitary) twist operator of Hi.

Proof. By the braiding axiom of E d we have R(ξ, ˜I)|Hi
= ßi,iL(ξ, ˜I)|Hi

. There-
fore,

F
˜Iξ = R(ξ, ˜I)∗coevi,iΩ = L(ξ, ˜I)∗ß−1

i,i
coevi,iΩ

(3.10)
===== L(ξ, ˜I)∗(1i ⊗ ϑi)coevi,iΩ

=ϑiL(ξ, ˜I)∗coevi,iΩ = ϑiS˜Iξ.

�

We will see later that S
˜I and F

˜I are preclosed. Therefore S∗
˜I
S

˜I = F ∗
˜I
F

˜I

will be denoted by Δ
˜I . This fact is crucial for proving the geometric modular

theorems.
We now show the Möbius covariance of S

˜I and F
˜I .
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Proposition 5.8. For any g ∈ ˜PSU(1, 1),

gS
˜Ig

−1 = Sg ˜I , gF
˜Ig

−1 = Fg ˜I . (5.7)

Proof. The domain of Sg ˜I is Hi(gI), whereas the domain of gS
˜Ig

−1 is gHi(I).
From (1.2), one clearly has gHi(I) = Hi(gI). Now choose any ξ ∈ Hi(gI).
Then, g−1ξ ∈ Hi(I), and L(ξ, g˜I) = gL(g−1ξ, ˜I)g−1 by the Möbius covariance
of E d. Notice that Ω is ˜PSU(1, 1)-invariant and that the morphisms intertwine
the actions of ˜PSU(1, 1). Therefore,

Sg ˜Iξ = L(ξ, g˜I)∗coevi,iΩ = gL(g−1ξ, ˜I)∗g−1coevi,iΩ

=gL(g−1ξ, ˜I)∗coevi,ig
−1Ω = gL(g−1ξ, ˜I)∗coevi,iΩ = gS

˜Ig
−1ξ.

�

The following proposition says that we can use morphisms to relate the
S

˜I and F
˜I on different dualized objects. Recall the conjugates of morphisms

defined by (3.6).

Proposition 5.9. For any Hi,Hj ∈ Obj(Repd(A)) with (canonical) dual objects
Hi,Hj, respectively, and for any G ∈ HomA(Hi,Hj), we have

G · S
˜I |Hi

⊂ S
˜I |Hj

· G, G · F
˜I |Hi

⊂ F
˜I |Hj

· G,

where the conjugate of G ∈ HomA(Hi,Hj) is defined using the dualizing data
of Hi,Hj.

Proof. Notice GHi(I) ⊂ Hj(I) and GHi(I) ⊂ Hj(I). For any ξ ∈ Hi(I), we
have L(Gξ, ˜I) = (G ⊗ 1)L(ξ, ˜I) by (2.8). Therefore,

S
˜I |Hj

Gξ = L(Gξ, ˜I)∗coevj,jΩ = L(ξ, ˜I)∗(G∗ ⊗ 1j)coevj,jΩ
(3.5)

=====L(ξ, ˜I)∗(1i ⊗ G)coevi,iΩ = GL(ξ, ˜I)∗coevi,iΩ = GS
˜I |Hi

ξ.

We conclude G · S
˜I |Hi

⊂ S
˜I |Hj

· G. The second relation follows from a simi-
lar argument or from Proposition 5.7 and the fact that the twist intertwines
morphisms. �

To prove further properties of S
˜I and F

˜I , we have to relate them with the
S and F operators of non-local extensions of A. First of all, if Q = (Ha, μ, ι) is
a C∗-Frobenius algebra in Repd(A), then Ha has a dualizing data (Ha, eva,a).
On the other hand, notice that Ha is self-dual and eva,a := ι∗μ defines an
evaluation satisfying the conjugate equation

(eva,a ⊗ 1a)(1a ⊗ coeva,a) = 1a = (1a ⊗ eva,a)(coeva,a ⊗ 1a).

We say that Q is standard if eva,a is a standard evaluation. Therefore, when Q
is standard, (Ha, eva,a = ι∗μ) is another dualizing data for the representation
Ha of A. By the uniqueness of standard evaluations, we have a unitary ε ∈
HomA(Ha,Ha) satisfying

eva,a(ε ⊗ 1a) = ι∗μ = eva,a(1a ⊗ ε), (5.8)
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called the reflection operator of Q.
In the remaining part of this section, we shall always assume that Q

is a standard C∗-Frobenius algebra in Repd(A), and Ha has dualizing data
(Ha, eva,a) which defines the reflection operator ε. Let B and B′ be the pair of
non-local extensions of A obtained by Q. Then, according to Proposition 4.6,
for each ˜I ∈ ˜J , ιΩ is a cyclic separating vector for B(˜I) and B′(˜I).

Proposition 5.10. Assume that Q is standard. Then, ε−1S
˜I |Ha

and ε−1F
˜I |Ha

are, respectively, the (preclosed) S operators of B(˜I) and B′(˜I) with respect to
ιΩ. More precisely, for any X ∈ B(˜I) and Y ∈ B′(˜I),

ε−1S
˜I |Ha

· XιΩ = X∗ιΩ, ε−1F
˜I |Ha

· Y ιΩ = Y ∗ιΩ. (5.9)

Proof. We prove the second equation. To simplify discussions, we suppress the
|Ha

after F
˜I . Choose any ξ ∈ Ha(I). We want to show that F

˜IB(ξ, ˜I)ιΩ =
εB(ξ, ˜I)∗ιΩ. By proposition 4.6, we have F

˜IB(ξ, ˜I)ιΩ = F
˜Iξ. On the other

hand,

εB(ξ, ˜I)∗ιΩ = εR(ξ, ˜I)∗μ∗ιΩ
(5.5)

===== ε(1a ⊗ eva,a)R(F
˜Iξ,

˜I)μ∗ιΩ

=ε(1a ⊗ eva,a)(μ∗ι ⊗ 1a)R(F
˜Iξ,

˜I)Ω = ε(1a ⊗ eva,a)(μ∗ι ⊗ 1a) · F
˜Iξ.

By (5.8), we have (ε ⊗ 1a)μ∗ι = coeva,a. Therefore,

ε(1a ⊗ eva,a)(μ∗ι ⊗ 1a) = (ε ⊗ eva,a)(μ∗ι ⊗ 1a)

=(1a ⊗ eva,a)(ε ⊗ 1a ⊗ 1a)(μ∗ι ⊗ 1a) = (1a ⊗ eva,a)((ε ⊗ 1a)μ∗ι ⊗ 1a)

=(1a ⊗ eva,a)(coeva,a ⊗ 1a) = 1a.

This proves the second equation. A similar argument proves the first one. �
Remark 5.11. Since ϑ commutes with homomorphisms, it commutes in par-
ticular with ε. Therefore, the S operators of B(˜I) and B′(˜I) differ by a twist:
ε−1F

˜I |Ha
= ϑ · ε−1S

˜I |Ha
.

By Tomita–Takesaki theory [38, Chapter VI], we know that S
˜I |Ha

and
F

˜I |Ha
are preclosed since ε−1S

˜I |Ha
and ε−1F

˜I |Ha
are so. Using this fact, we

can show

Lemma 5.12. Let Q = (Ha, μ, ι) be a standard C∗-Frobenius algebra in Repd(A),
and let Hi ∈ Obj(Repd(A)) be equivalent to a subrepresentation of Ha. Then,
S

˜I |Hi
, F

˜I |Hi
are preclosed.

Proof. Since the proofs for the two operators are the same, we only prove
the preclosedness of S

˜I |Hi
. By Proposition 5.10 and Tomita–Takesaki theory

for the von Neumann algebras B(˜I), we know that S
˜I |Ha

is preclosed. Let
ϕ ∈ EndA(Hi,Ha) be an isometry embedding Hi into Ha. Let Hi be the
(canonical) dual object of Hi. Since ϕ∗ϕ = 1i, we have ϕ∗ · ϕ = 1i.

By Proposition 5.9, we have ϕ · S
˜I |Hi

⊂ S
˜I |Ha

· ϕ. Let 〈·|·〉 denote the
inner product of Hi. Then, for each ξ, η ∈ Hi(I),

〈

S
˜I |Hi

ξ
∣

∣

∣S
˜I |Hi

η
〉

ϕ∗·ϕ=1i=======
〈

ϕS
˜I |Hi

ξ
∣

∣

∣ϕS
˜I |Hi

η
〉

=
〈

S
˜I |Ha

ϕξ
∣

∣

∣S
˜I |Ha

ϕη
〉

.
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Choose any sequence ξn in Hi(I) such that ξn → 0 and S
˜I |Hi

ξn converges.
Then, ϕξn → 0. By the above relation, S

˜I |Ha
ϕξ converges. So, by the pre-

closedness of S
˜I |Ha

, S
˜I |Ha

ϕξ converges to 0. By the above relation again, we
conclude S

˜I |Hi
ξ → 0. So S

˜I |Hi
must be preclosed. �

Thus, to prove that S
˜I and F

˜I are preclosed on any dualized object Hi,
it suffices to show that any Hi can be embedded into Ha for some standard
C∗-Frobenius algebra Q = (Ha, μ, ι). This is well known. We review such
construction below and recall some important properties that will be used in
later sections.

First, assume Hk ∈ Obj(Repd(A)) with dualizing data (Hk, evk,k). Then,
Q = (Hk � Hk, μ, ι) is a standard C∗-Frobenius algebra, where

ι = coevk,k, μ = 1k ⊗ evk,k ⊗ 1k. (5.10)

Moreover, the dualizing data of Hk �Hk defined as in Definition 3.5 are clearly
(Hk � Hk, ι∗μ). Therefore, the reflection operator is just

ε = 1k⊗k.

Now assume that {Hi : i ∈ E} is a finite set of distinct objects in
Repd(A), indexed by E . Let (Hi, evi,i) be the dualizing data of Hi. Assume
Hk =

⊕

i∈E Hi, and let the morphism ϕi : Hi → Hk be the inclusion. Fix a
dualizing data (Hk, evk,k) for Hk. Since ϕj = (ϕ∗

j )
∨ and hence evk,k(ϕi⊗ϕj) =

evk,k(ϕ∗
jϕi ⊗ 1j) = δi,jevi,i, we clearly have

Hk �
⊕

i∈E
Hi, evk,k =

∑

i∈E
evi,i(ϕ

∗
i ⊗ ϕi

∗), (5.11)

because the right-hand side of the second equation of (5.11) times (ϕi ⊗ ϕj)
also equals δi,jevi,i. Let Q be the corresponding standard C∗-Frobenius algebra
for Hk � Hk defined by (5.10). Then, we have a unitary equivalence of A-
representations

⊕

i,j∈E
ψi,j :

⊕

i,j∈E
Hi � Hj

�−→ Hk � Hk (5.12)

where

ψi,j = ϕi ⊗ ϕj (5.13)

is an isometry. We have

ψi,j = ψj,i. (5.14)

Moreover, using (5.10) and (5.11), we see that for each i, j, l,m ∈ E ,

μ(ψi,j ⊗ ψl,m) = δj,l · ψi,m(1i ⊗ evj,j ⊗ 1m), (5.15)

and hence

ι∗μ(ψi,j ⊗ ψj,l) = δi,l · evi�j,j�l. (5.16)

In the case that 0 ∈ E , i.e., {Hi : i ∈ E} contains H0. Notice that
H0 = H0. Then, for each i, j ∈ E , by identifying Hi with Hi �H0 and Hj with
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H0 � Hj using the right and left unitors, respectively, and noticing (5.15), we
obtain an isometry

μ(ψi,0 ⊗ ψ0,j) = ψi,j : Hi � Hj → Hk � Hk. (5.17)

Now, for any Hi ∈ Obj(Repd(A)), we set Hk = H0

⊕Hi. Recall H0 =
H0. Then, Hk �Hk defines a standard C∗-Frobenius algebra. By (5.12), Hi �
Hi � H0 is a sub-representation of Hk � Hk. Thus, we conclude:

Proposition 5.13. S
˜I and F

˜I are preclosed operators on any Hi ∈ Obj(Repd(A)).

Remark 5.14. In the following, we will always let S
˜I , F˜I denote the closures

of the preclosed operators in (5.1). Then, it is clear that Propositions 5.3,
5.7, 5.8, 5.9 and Remark 5.11 still hold for S

˜I , F˜I . The original operators
(without taking closures) will be denoted by S

˜I |Hi(I), F˜I |Hi(I) (whose domains
are precisely Hi(I)).

We have a positive closed operator Δ
˜I := S∗

˜I
S

˜I = F ∗
˜I
F

˜I definable on any
object Hi ∈ Obj(Repd(A)). (We will write Δ

˜I as ΔI after showing that Δ
˜I

is independent of the choice of argI .) So Δ
˜I |Hi

is a positive closed operator
on Hi. We call Δ

˜I the modular operator of E d. Note that by proposition 5.3,
Δ

˜I |Hi
does not rely on the dualizing data of Hi. We define the categorical do-

main D(Δ
1
2
˜I
) which associates to each Hi ∈ Obj(Repd(A)) the dense subspace

D(Δ
1
2
˜I
|Hi

) of Hi. Then, D(Δ
1
2
˜I
) = D(S

˜I) = D(F
˜I). We also have (categorical)

polar decompositions

S
˜I = J

˜I · Δ
1
2
˜I
, F

˜I = ϑJ
˜I · Δ

1
2
˜I

(5.18)

where J
˜I , when restricted to any Hi ∈ Obj(Repd(A)), is an anti-unitary op-

erator

J
˜I |Hi

: Hi → Hi.

We call J
˜I the (left) modular conjugation of E d. (The right modular conjuga-

tion is ϑJ
˜I for the obvious reason.)

Our next goal is to use Proposition 5.9 to study the relations of modular
operators and conjugations on different dualized objects. To prepare for the
proof, we recall that two closed operators A and B on a Hilbert space H are
said to commute strongly if the von Neumann algebras generated by A and by
B commute.7 If A is bounded, then A and B commute strongly if and only if

AB ⊂ BA, A∗B ⊂ BA∗. (5.19)

(Cf., for instance, [22, Sec. B.1].) We also recall the definition of strongly
commuting diagrams of closed operators introduced in [23].

7The von Neumann algebra generated by A is the one generated by U and all eitH where
A = UH is the polar decomposition of A.
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Definition 5.15. Let P,Q,R,S be Hilbert spaces, and A : P → R, B : Q →
S, C : P → Q,D : R → S be unbounded closed operators. By saying that the
diagram of closed operators

P C−−−−→ Q
A

⏐

⏐

�
B

⏐

⏐

�

R D−−−−→ S

(5.20)

commutes strongly, we mean the following: Let H = P ⊕ Q ⊕ R ⊕ S. Define
closed operators R,S on H with domains D(R) = D(A) ⊕ D(B) ⊕ R ⊕ S,
D(S) = D(C) ⊕ Q ⊕ D(D) ⊕ S, such that

R(ξ ⊕ η ⊕ χ ⊕ ς) = 0 ⊕ 0 ⊕ Aξ ⊕ Bη (∀ξ ∈ D(A), η ∈ D(B), χ ∈ R, ς ∈ S),
S(ξ ⊕ η ⊕ χ ⊕ ς) = 0 ⊕ Cξ ⊕ 0 ⊕ Dχ (∀ξ ∈ D(C), η ∈ Q, χ ∈ D(D), ς ∈ S).

(Such construction is called the extension from A,B to R, and from C,D to
S.) Then, R and S commute strongly. In the case that A and B are preclosed
antilinear operators, we choose anti-unitary operators U1 on R and U2 on S.
We say that (5.20) commutes strongly if the following diagram of closed linear
operators commutes strongly:

P C−−−−→ Q
U1A

⏐

⏐

�
U2B

⏐

⏐

�

R U2DU−1
1−−−−−−→ S

. (5.21)

This definition is independent of the choice of U1, U2.

Proposition 5.16. For any α ∈ C, Hi,Hj ∈ Obj(Repd(A)), and G ∈
HomA(Hi,Hj), the following equation holds when acting on Hi.

G · Δα
˜I
|Hi

⊂ Δα
˜I
|Hj

· G, G · J
˜I |Hi

= J
˜I |Hj

· G. (5.22)

Moreover, if G is an isometry (i.e., G∗G = 1i), then for each I ∈ J ,

G · Δ
1
2
˜I
|Hi(I) = Δ

1
2
˜I
|Hj(I) · G, G · Δα

˜I
|Hi

= Δα
˜I
|Hj

· G. (5.23)

Thus, in the case that G is an isometry, we conclude

G · S
˜I |Hi

= S
˜I |Hj

· G, G · F
˜I |Hi

= F
˜I |Hj

· G. (5.24)

Proof. Recall Proposition 5.9. Since G∗ = G∨ = G
∗
, we also have G∗S

˜I |Hj
⊂

S
˜I |Hi

G
∗
. Therefore, the following diagram of closed operators commutes strongly.

Hi
G−−−−→ Hj

S
˜I

⏐

⏐

�

S
˜I

⏐

⏐

�

Hi
G−−−−→ Hj

. (5.25)
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If we take the polar decomposition of the two vertical S
˜I , then its phase and

any power of its absolute value commute strongly with the horizontal G and
G, i.e., the following diagrams commute strongly

Hi
G−−−−→ Hj

Δα
˜I

⏐

⏐

�

Δα
˜I

⏐

⏐

�

Hi
G−−−−→ Hj

Hi
G−−−−→ Hj

J
˜I

⏐

⏐

�

J
˜I

⏐

⏐

�

Hi
G−−−−→ Hj

. (5.26)

This proves (5.22).
We already know G ·Δα

˜I
|Hi

⊂ Δα
˜I
|Hj

·G. Similarly, we have G∗ ·Δα
˜I
|Hj

⊂
Δα

˜I
|Hi

·G∗. Apply G(·)G to both sides and set p = G∗G, we obtain p·Δα
˜I
|Hj

G ⊂
GΔα

˜I
|Hi

. So the domain of Δα
˜I
|Hj

G (which equals the domain of pΔα
˜I
|Hj

G)
is inside the domain of GΔα

˜I
|Hi

. This proves the second relation of (5.23). A
similar argument proves the first of (5.23). �

In the case that G is an isometry, the second relation of (2.1) has a more
geometric interpretation:

Corollary 5.17. Let Hj ∈ Obj(Repd(A)), and let Hi be an A-invariant sub-
space of Hj, which is therefore an object of Repf(A). Then,

D(Δα
˜I
|Hi

) = D(Δα
˜I
|Hj

) ∩ Hi,

and for any ξ inside this vector space, we have

Δα
˜I
|Hi

· ξ = Δα
˜I
|Hj

· ξ.

The dualizing data of Hi are irrelevant since the modular operator does
not rely on it.

Proof. Let G ∈ HomA(Hi,Hj) be the inclusion, and apply the second relation
of (5.23). �

The following are some easy consequences of the Tomita–Takesaki theory
[38, Chapter VI].

Proposition 5.18. The following are true when acting on any Hi ∈
Obj(Repd(A)).

J2
˜I
= 1. (5.27)

Δ
˜I′ = Δ−1

˜I
, ϑJ

˜I′ = J
˜I . (5.28)

J
˜IΔ

1
2
˜I

= Δ− 1
2

˜I
J

˜I . (5.29)

Recall that ˜I ′ is the clockwise complement of ˜I.

Proof. We know that Hi must be equivalent to a subobject of Ha where Q =
(Ha, μ, ι) is a standard C∗-Frobenius algebra in Repd(A). We let (Ha, ι∗μ)
be the dualizing data of Ha. Then, the reflection operator ε equals 1a. Let B
and B′ be the non-local extensions of A associated with Q (cf. Sect. 4). By
Propositions 5.10 and 5.7, S

˜I |Ha
and F

˜I′ |Ha
= ϑaS

˜I′ |Ha
are, respectively, the
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S operators for B(˜I) and B′(˜I ′) associated with the cyclic vector ιΩ. So, by the
Tomita–Takesaki Theory for von-Neumann algebras, we have J

˜I |Ha
= J−1

˜I
|Ha

and polar decomposition S
˜I |Ha

= J
˜I |Ha

Δ
1
2
˜I
|Ha

= Δ− 1
2

˜I
|Ha

J
˜I |Ha

(which proves

(5.27) and (5.29) on Ha), and we also have ϑaS
˜I′ |Ha

= ϑaJ˜I′ |Ha
Δ

1
2
˜I′ |Ha

. Since
B(I) and B′(I ′) are commutants of each other (Theorem 4.7), the S operator
for B′(I ′) (which is ϑaS

˜I′ |Ha
) is also the F operator for B(˜I), which equals

J
˜I |Ha

Δ− 1
2

˜I
|Ha

. So, the uniqueness of polar decomposition implies (5.28) on Ha.
We have proved (5.27)-(5.29) on Ha. Let ϕ ∈ HomA(Hi,Ha) be an isom-

etry. It is now easy to prove these three on Hi using Proposition 5.16. For
instance,

ϕ · J
˜I |Hi

Δ
1
2
˜I
|Hi

= J
˜I |Ha

Δ
1
2
˜I
|Ha

· ϕ = Δ− 1
2

˜I
|Ha

J
˜I |Ha

· ϕ = ϕ · Δ− 1
2

˜I
|Hi

J
˜I |Hi

.

This proves (5.29) on Hi. A similar argument proves (5.27) and (5.28)
on Hi. �
Corollary 5.19. For each ˜I ∈ ˜J and Hi ∈ Obj(Repd(A)), we have F

˜I′ |Hi
=

(S
˜I |Hi

)∗.

Proof. We compute

S∗
˜I

= (J
˜IΔ

1
2
˜I
)∗ (5.27)

===== Δ
1
2
˜I
J

˜I

(5.29)
===== J

˜IΔ
− 1

2
˜I

(5.28)
===== ϑJ

˜I′Δ
1
2
˜I′ = F

˜I′ .

�
Remark 5.20. We close this section with a brief discussion of the relations
between Δ

˜I and Connes spatial derivatives [14]. Fix I ∈ J . Choose a non-
empty Hi ∈ Obj(Repd(A)) and let N = πi,I′(A(I ′)). The (normalized) state
on A(I ′) defined by 〈·Ω|Ω〉 is transported through the isomorphism πi,I′ to a
state ϕ on N . Let M = N ′ be the commutant of N (acting on Hi). Then,
M can be described by the left representation of Q = (Hi � Hi, μ, ι) on Hi

as follows: Let B be the non-local extension associated with Q. Then, any
X ∈ B(˜I) can be expressed as A(χ, ˜I) = μL(χ, ˜I) for some χ ∈ (Hi � Hi)(I).
We then define a representation of B(˜I) on Hi by defining the action of A(χ, ˜I)
on any ξ ∈ Hi to be (1i ⊗ evi,i)L(χ, ˜I)ξ. This representation is indeed faithful
(since B(˜I) is indeed a (type III) factor). Moreover, the image of B(˜I) under
this representation is exactly M. The state of B(˜I) defined by 〈·ιΩ|ιΩ〉 is
transported through this representation to a state ψ of M. Then, we actually
have

Δ
˜I |Hi

=
dψ

dϕ
. (5.30)

Note that ψ is in general not normalized: By the fact that ι = coevi,i we
have ψ(1) = di where di is the quantum dimension of Hi, i.e. di10 = evi,icoevi,i

where the ev and coev are standard. We give another description of ψ: Let
E : M → πi,I(A(I)) be the minimal conditional expectation of the subfactor
πi,I(A(I)) ⊂ M. Transport the state 〈·Ω|Ω〉 of A(I) to πi,I(A(I)) and denote
it by ψ0. Then, the normalized state d−1

i ψ equals ψ0 ◦ E .
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6. Categorical and Non-local Bisognano–Wichmann Theorems

Let r : z ∈ S
1 �→ z = z−1 ∈ S

1 be the reflection, represented by
(

0 1
1 0

)

.

(I.e., r(z) = 0z+1
1z+0 .) Then, r = r−1, and g ∈ PSU(1, 1) �→ rgr ∈ PSU(1, 1) is

an automorphism of PSU(1, 1), and acts on S
1 as g(z) = αz+β

βz+α
. Recall that

any element in PSU(1, 1) takes the form g =
(

α β

β α

)

where |α|2 − |β|2 = 1.

Then, we have rgr =
(

α β
β α

)

. We lift this automorphism to ˜PSU(1, 1) and

also denote it by r(·)r. For ˜I = (I, arg I) ∈ ˜J , we define r˜I = (rI, argrI) where
argrI(z) = − argI(z) for any z ∈ rI.

Define S
1
+ = {a + ib ∈ S

1 : b > 0} to be the upper semi-circle. Define ˜

S1
+

such that argS1+ takes values in (0, π). Then, ˜

S1− := r˜S1
+ is the lower semi-circle

with arg values in (−π, 0). Note that ˜

S1− is the clockwise complement of ˜

S1
+.

We write Δ
˜

S1+
,Δ

˜

S1−
, as Δ+,Δ−, respectively. We also define Θ = J

˜

S1+
, called

the PCT operator of E d, which is an anti-unitary map from each Hi to its
dual object Hi.

The action of Θ on Hi ∈ Obj(Repd(A)) is written as Θ|Hi
as usual, or

Θi for short. Note that Θ is an involution by Proposition 5.18, i.e.,

Θi = Θ−1
i

for each Hi ∈ Obj(Repd(A)). Also, if g ∈ ˜PSU(1, 1) and ˜I = g˜

S1
+, then by

proposition 5.8,

J
˜I = gΘg−1. (6.1)

The following noteworthy result follows from proposition 5.16, which says that
conjugates of morphisms are implemented by the PCT operator.

Theorem 6.1. For any morphism G of objects in Repd(A), we have

G = Θ · G · Θ.

Consider the rotation subgroup �(t) =

(

e
it
2 0
0 e

−it
2

)

and dilation subgroup

δ(t) =
(

cosh t
2 − sinh t

2− sinh t
2 cosh t

2

)

of PSU(1, 1). For each I ∈ J , define δI(t) =

gδ(t)g−1 where g ∈ PSU(1, 1) and gS
1
+ = I. Then, δI is well defined, and

δ(t) = δS1+(t). We lift � and δ to one-parameter subgroups of ˜PSU(1, 1) and
denote them by the same symbols.

Let Q = (Ha, μ, ι) be a C∗-Frobenius algebra in Repd(A), and let B,B′ be
the pair of non-local extensions of A associated with Q. The following result is
well known (cf. [2] theorem 2.1 or [30] proposition 3.2). We present the details
of the proof for the reader’s convenience.
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Lemma 6.2. Let D
˜I and ΘQ be the modular operator and conjugation for

B(˜S1
+) and the cyclic separating vector ιΩ. Then, z(t) := δI(2πt)Dit

˜I
is a one-

parameter group of unitary operators on Ha independent of ˜I, and ΘQgΘQ

equals the action of rgr when acting on Ha.

Proof. Set A =
(−1 i

1 i

)

corresponding to the Cayley transform sending the

(resp. positive) real line to the unit (resp. upper semi-) circle. Its inverse is

A−1 =
(− 1

2
1
2

− i
2 − i

2

)

. Let τ±(t) ∈ PSU(1, 1) such that A−1τ+(t)A =
(

1 t
0 1

)

and

A−1τ−(t)A =
(

1 0
−t 1

)

. Then, τ+ and τ− are the one-parameter translation

subgroups of PSU(1, 1) associated with S
1
+ and S

1
−, respectively. τ± fixes ∓1

and rotates the other points anticlockwisely when t increases. It is well known
that these subgroups A−1τ±(t)A generate PSL2(R) = A−1PSU(1, 1)A and
hence τ± generate PSU(1, 1). Indeed, one computes A−1�(t)A =
(

cos(t/2) sin(t/2)
− sin(t/2) cos(t/2)

)

and the dilation group δ(t) satisfies

A−1δ(t)A =
(

et/2 0
0 e−t/2

)

. Using these relations, one computes

�(4t) = τ+(tan t)τ−(sin 2t)τ+(tan t),
δ(2t) = τ+(−et)τ−(1 − e−t)τ+(1)τ−(1 − et).

This proves the claim since τ+, δ, � generate PSU(1, 1) by KAN decomposition
[33].

We also let τ± denote their lifts to ˜PSU(1, 1). We claim that τ± generate
˜PSU(1, 1). Since the preimage of 1 ∈ PSU(1, 1) under the covering map is
�(2πZ), it suffices to show �(2π) is inside the subgroup generated by τ±. This is
true because the above relation for �(4t) holds not just in PSU(1, 1), but also in
˜PSU(1, 1) due to the uniqueness of lifting whose initial value is 1 ∈ ˜PSU(1, 1).

We compute that for each s, t ∈ R,

δ(−2πs)τ±(t)δ(2πs) = τ±(e∓2πst).

These relations hold in PSU(1, 1). Consider these as one-parameter subgroups
of the variable t (and fixed s) and note that their lifts to ˜PSU(1, 1) are unique,
we see that these relations also hold in ˜PSU(1, 1). Similarly, one checks that

rτ±(t)r = τ±(−t).

By [3, Cor.4.4], the generators of τ± are positive. (In the case that A is con-
formal covariant, this also follows from [39] Lemma 3.1 and Theorem 3.8.) For
any t ≥ 0, since τ+(t)(˜S1

+) ⊂ ˜

S1
+, by Theorem 4.7, we have Adτ+(t)(B(˜S1

+)) ⊂
B(˜S1

+). Then, by Borchers’ theorem [11, Thm. II.9], we obtain for any t ∈ R

(when acting on Ha) that

Dit
+gD−it

+ = δ(−2πs)gδ(2πs), JQgJQ = rgr (6.2)
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when g is in τ+. Similarly, since τ−(t)(˜S1
+) ⊂ ˜

S1
+ when t ≤ 0, we conclude that

(6.2) holds when g ∈ τ−. Thus, it holds for all g ∈ ˜PSU(1, 1).
The first half of (6.2) shows that z(t) := δ

˜

S1+
(2πt)Dit

˜

S1+

|Ha
commutes with

any g ∈ ˜PSU(1, 1). For each ˜I ∈ ˜J , choose g sending ˜

S1
+ to ˜I. Note that

gD
˜

S1+
g−1 = D

˜I since g preserves ιΩ and gB(˜S1
+)g−1 = B(˜I) by Theorem 4.7.

Thus, we conclude that z(t) = δI(2πt)Dit
˜I
|Ha

. In particular, z(t) is independent

of ˜I. Apply the first half of (6.2) to the case g = δ(2πs), we see that Dit
+

commutes with δ(2πs). This proves that z(t) is a one-parameter group. �

Theorem 6.3. Let Q = (Ha, μ, ι) be a standard C∗-Frobenius algebra in Repd(A)
with reflection operator ε ∈ HomA(Ha,Ha) (see (5.8)). Ha is the dual object
of Ha. Let B (and also B′) be the non-local extension of A associated with Q.
For any ˜I ∈ ˜J , Δ

˜I |Ha
(resp. ε−1Θ) is the modular operator (resp. conjuga-

tion) for B(˜I) (resp. B(˜S1
+)) and the cyclic separating vector ιΩ. Moreover, the

following are true when acting on Ha.
(a) (Geometric modular theorem) For any t ∈ R,

Δit
˜I

= δI(−2πt). (6.3)

(b) (PCT theorem) For any g ∈ ˜PSU(1, 1),

ε−1Θ · g · Θε = rgr (6.4)

ε−1Θ · B(˜I) · Θε = B′(r˜I). (6.5)

Note that in equation (6.4), rgr is in ˜PSU(1, 1) and is acting on Ha.

Proof. By Proposition 5.10, the modular operator and conjugation for B(˜I)
are Δ

˜I |Ha
and ε−1J

˜I |Ha
, respectively. Thus, Lemma 6.2 implies (6.4) and

the fact that z(t) := δI(2πt)Δit
˜I

(acting on Ha) is a one-parameter group

independent of ˜I. Thus, δ(2πt)Δit
+ = δ−(2πt)Δit

− where δ− = δS1− . By (5.28),
we have Δit

− = Δ−it
+ . We also have δ−(2πt) = �(π)δ(2πt)�(−π), which equals

δ(−2πt) by an easy calculation. Thus, z(t) = z(−t), which forces z(t) to be
1. This proves the geometric modular theorem. By the non-local Haag duality
(Theorem 4.7), B′(˜

S1−) is the commutant of B(˜S1
+). Thus, by Tomita–Takesaki

theorem, (6.5) holds in the special case that ˜I = ˜

S1
+. The general case follows

from the special case, the Möbius covariance of B, and equation (6.4). �

Theorem 6.4. For any ˜I ∈ ˜J , the following are true when acting on any Hj ∈
Obj(Repd(A)).
(a) (Geometric modular theorem) For any t ∈ R,

Δit
˜I

= δI(−2πt). (6.6)

(b) (PCT theorem) For any g ∈ ˜PSU(1, 1),

Θ · g · Θ = rgr. (6.7)
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Moreover, for any Hi ∈ Obj(Repd(A)) and ξ ∈ Hi(I), we have

Θ · Hi(I) = Hi(rI), (6.8)

Θ · L(ξ, ˜I) · Θ = R(Θξ, r˜I). (6.9)

Proof. Let Q = (Ha, μ, ι) where Ha = Hk � Hk and Hk = H0 ⊕ Hj . (See
the discussions starting from (5.10), especially the choice of dualizing data.)
Since ε = 1, (6.6) and (6.7) hold on Ha by Theorem 6.3. Note that Θa is an
involution on Ha (since Ha is the canonical dual object of Ha). ψj,0 : Hj �
Hj,0 → Ha (defined by (5.13)) is an isometry, whose conjugate is ψ0,j by
(5.14). Since morphisms intertwine the actions of ˜PSU(1, 1) ( [21, Prop. 2.2]
and Lemma B.1), by Proposition 5.16,

ψj,0ΘjgΘj = Θaψ0,jgΘj = ΘagΘaψj,0 = (rgr)ψj,0 = ψj,0(rgr),

which proves (6.7) on Hj . (6.6) on Hj can be proved in a similar way.
Now we take Hk = H0 ⊕ Hi ⊕ Hj and define Q = (Ha, μ, ι) in the same

way. Again, we use freely the notations starting from (5.10). Identify Hi with
Hi � H0 using the right unitor. Choose any ξ ∈ Hi(I). Recall the definition of
A,B in Sect. 4. Then,

ΘaA(ψi,0ξ, ˜I)ΘaιΩ = ΘaA(ψi,0ξ, ˜I)ιΩ
(4.4)

===== Θaψi,0ξ = ψ0,iΘiξ.

By the non-local PCT theorem, ΘaA(ψi,0ξ, ˜I)Θ is inside B′(r˜I). So there exists
η ∈ Ha(r˜I) such that ΘaA(ψi,0ξ, ˜I)Θa = B(η, r˜I). Again, by (4.4), we must
have η = ψ0,iΘiξ. Therefore, Θiξ = ψ∗

0,i
η ∈ ψ∗

0,i
Ha(rI) ⊂ Hi(rI). This proves

Θ · Hi(I) ⊂ Hi(rI). Similarly, Θ · Hi(rI) ⊂ Hi(I). Thus, we have proved (6.8).
We have proved that ΘaA(ψi,0ξ, ˜I)Θa = B(ψ0,iΘiξ, r˜I). Let both sides

act on ψj,0. The left-hand side is

ΘaA(ψi,0ξ, ˜I)Θaψj,0 = ΘaA(ψi,0ξ, ˜I)ψ0,jΘj = ΘaμL(ψi,0ξ, ˜I)ψ0,jΘj

(2.8)
=====Θaμ(ψi,0 ⊗ ψ0,j)L(ξ, ˜I)Θj

(5.17)
===== Θaψi,jL(ξ, ˜I)Θj

(5.14)
===== ψj,iΘi�jL(ξ, ˜I)Θj ,

which equals the right-hand side (acting on Hj)

B(ψ0,iΘiξ, r˜I)ψj,0 = μR(ψ0,iΘiξ, r˜I)ψj,0
(2.8)

===== μ(ψj,0 ⊗ ψ0,i)R(Θiξ, r˜I)
(5.17)

=====ψj,iR(Θiξ, r˜I).

Equation (6.9) is now proved. �

Convention 6.5. By (6.6), Δ
˜I depends only on I but not on argI . Thus, we

will write Δ
˜I as ΔI in the future.

Corollary 6.6. ([21] Thm.2.11). For any Hi ∈ Obj(Repd(A)), I ∈ J , and
x ∈ A(I), we have

Θπi,I(x)Θ = πi,rI(ΘxΘ). (6.10)

Notice that ΘxΘ ∈ A(rI) by the PCT theorem for A.
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Proof. Choose an argI . Then, by (2.6), we have πi,I(x) = L(xΩ, ˜I)|Hi
and

πi,rI(ΘxΘ) = R(ΘxΘΩ, r˜I)|Hi
= R(ΘxΩ, r˜I)|Hi

. We may now apply (6.9) to
prove the desired equation. �

Remark 6.7. The above corollary gives an explicit construction of dual repre-
sentation of any Hi ∈ Obj(Repd(A)). Namely, we choose any separable Hilbert
space Hi, and choose an arbitrary anti-unitary map � : Hi → Hi. Define a rep-
resentation πi of A on Hi such that for any I ∈ J and x ∈ A(I),

πi,I(x) = � · πi,rI(ΘxΘ) · �−1. (6.11)

Then, (Hi, πi) is equivalent to the a dual object of (Hi, πi).

The conformal spin statistics theorem is also an easy consequence of the
categorical PCT theorem:

Theorem 6.8. ([21] Thm. 3.13, [26] Sect. 4.1). On any Hi ∈ Obj(Repd(A)),
we have

ϑ = �(2π). (6.12)

Proof. By (5.28), we have Θ = J
˜

S1+
= ϑJ

˜

S1−
. So J

˜

S1−
= ϑ−1Θ. Since ˜

S1− =

�(−π)˜S1
+, by proposition 5.8 we also have S

˜

S1−
= �(−π)S

˜

S1+
�(π), and hence

J
˜

S1−
= �(−π)Θ�(π). So ϑ−1Θ = �(−π)Θ�(π). By the categorical PCT theorem,

Θ�(t) = (r�(t)r)Θ = �(−t)Θ. Therefore, ϑ−1Θ = �(−2π)Θ and hence ϑ =
�(2π). �

We now want to generalize Theorem 6.3 to any (non-necessarily standard)
C∗-Frobenius algebra Q = (Ha, μ, ι) in Repd(A). Again, we choose a dualizing
data (Ha, eva,a) for Ha. (Recall that eva,a, eva,a are standard.) There is a
unique invertible ε ∈ HomA(Ha,Ha), also called (left) reflection operator,
such that

eva,a(ε ⊗ 1a) = ι∗μ. (6.13)

By the uniqueness of standard evaluations up to unitaries, it is clear that Q is
standard if and only if ε is unitary.

Lemma 6.9. We have

ε∨ = (ε−1)∗ and hence ε−1 = ε. (6.14)

Proof. The adjoint of (6.13) is (ε∗ ⊗ 1a)coeva,a = μ∗ι. (6.13) also implies
eva,a(1a ⊗ ε∨) = ι∗μ. By the Frobenius relation and the unit property of Q,
we have

(ι∗μ ⊗ 1a)(1a ⊗ μ∗ι) = (ι∗ ⊗ 1a)(1a ⊗ μ)(μ∗ ⊗ 1a)(1a ⊗ ι)

= (ι∗ ⊗ 1a)μ∗μ(1a ⊗ ι) = 1a.
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Thus, (eva,a(1a ⊗ ε∨) ⊗ 1a)(1a ⊗ (ε∗ ⊗ 1a)coeva,a) must be 1a. But

(eva,a(1a ⊗ ε∨) ⊗ 1a)(1a ⊗ (ε∗ ⊗ 1a)coeva,a)

= (eva,a ⊗ 1a)(1a ⊗ ε∨ε∗ ⊗ 1a)(1a ⊗ coeva,a)

=(eva,a ⊗ 1a)((ε∨ε∗)∨ ⊗ 1a ⊗ 1a)(1a ⊗ coeva,a) = (ε∨ε∗)∨.

So we must have ε∨ = (ε−1)∗, and hence, ε−1 = (ε∨)∗ = ε. �

From this, one easily sees that coeva,a = (ε∨ ⊗ 1a)μ∗ι and coeva,a =
(1a⊗ε)μ∗ι. Using these two equations, the following can be proved in essentially
the same way as proposition 5.10.

Proposition 6.10. ε−1S
˜I |Ha

and ε∗F
˜I |Ha

are, respectively, the S operators of
B(˜I) and B′(˜I) with respect to ιΩ.

Proof. In Proposition 5.10, we assumed Q is standard and used coeva,a =
(ε ⊗ 1a)μ∗ι (see the second paragraph of the proof) to show ε−1F

˜I |Ha
is the

S operator for B′(I). In the current general case, since we have coeva,a =
(ε∨ ⊗ 1a)μ∗ι, we apply the proof of Proposition 5.10 verbatim, except that we
replace ε by ε∨. So ε−1 is replaced by (ε∨)−1, which equals ε∗ by (6.14). This
proves ε∗F

˜I |Ha
is the S operator for B′(˜I).

Similarly, one may use coeva,a = (1a ⊗ ε)μ∗ι to show ε−1S
˜I |Ha

is the
S operator for B(I). Alternatively, we know that ε∗F

˜I′ |Ha
is the S operator

of B′(˜I ′) = B(˜I)′ (recall non-local Haag duality in Theorem 4.7); thus, it is
the F operator of B(˜I). It’s adjoint should be the S operator of B(˜I). We use
Corollary 5.19 and Proposition 5.9 to compute this adjoint:

(ε∗F
˜I′ |Ha

)∗ = S
˜I |Ha

· ε = εS
˜I |Ha

= ε−1S
˜I |Ha

.

�

Hence, we have:

Proposition 6.11. The modular conjugations and operators of B(˜I) and B′(˜I)
with respect to ιΩ are described by the following polar decompositions:

ε−1S
˜I

∣

∣

Ha
=

(

J
˜Iε(ε

∗ε)− 1
2
) · (

Δ
1
2
I (ε∗ε)

1
2
)

∣

∣

∣

Ha

, (6.15)

ε∗F
˜I

∣

∣

∣

Ha

=
(

ϑJ
˜Iε

∨(ε∗ε)
1
2
) · (

Δ
1
2
I (ε∗ε)− 1

2
)

∣

∣

∣

Ha

. (6.16)

Proof. Recall the polar decompositions (5.18). By proposition 5.16, ΔI com-

mutes with any homomorphism, and we have ε−1J
˜IΔ

1
2
I = J

˜Iε
−1Δ

1
2
I = J

˜IεΔ
1
2
I .

This proves (6.15). Similarly we have ε∗ϑJ
˜IΔ

1
2
I = ϑJ

˜Iε
∗Δ

1
2
I = ϑJ

˜Iε
∨Δ

1
2
I . In

addition, using (6.14) we have

(ε∨)∗ε∨ = ε−1ε∨ = ε−1(ε∗)−1 = (ε∗ε)−1. (6.17)

This proves the polar decomposition (6.16). �

We now prove the following modified Bisognano–Wichmann theorem.
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Theorem 6.12. Let Q = (Ha, μ, ι) be a (non-necessarily standard) C∗-Frobenius
algebra in Repd(A), let B and B′ be the associated non-local extensions of A,
and let ε be the reflection operator (see (6.13)). Choose any ˜I ∈ ˜J . The fol-
lowing are true when acting on Ha.
(a) (Modified geometric modular theorem) Let D

˜I and D′
˜I

be, respectively,

the modular operators of B(˜I) and B′(˜I) with respect to ιΩ. Then, for
any t ∈ R,

Dit
˜I

= (ε∗ε)itδI(−2πt), (D′
˜I
)it = (ε∗ε)−itδI(−2πt). (6.18)

(b) (PCT theorem) Let ΘQ =
(

J
˜

S1+
ε(ε∗ε)− 1

2
)∣

∣

Ha
be the modular conjugation

of B(˜S1
+) with respect to ιΩ. Then, for any g ∈ ˜PSU(1, 1),

ΘQ · g · ΘQ = rgr (6.19)

ΘQ · B(˜I) · ΘQ = B′(r˜I). (6.20)

Proof. The proof of PCT theorem is exactly the same as in the standard
case (Theorem 6.3), which uses Lemma 6.2. By proposition 6.11, we have

D
1
2
˜I

=
(

Δ
1
2
I (ε∗ε)

1
2
)

∣

∣

∣

Ha

and (D′
˜I
)

1
2 =

(

Δ
1
2
I (ε∗ε)− 1

2
)

∣

∣

∣

Ha

. Thus, equations (6.18)

follow directly from (6.3). �

Corollary 6.13. For the non-local extension B obtained by a C∗-Frobenius al-
gebra Q in Repd(A), the standard geometric modular Theorem (6.3) holds if
and only if Q is standard.

Proof. Q is standard if and only if the invertible homomorphism ε is unitary,
if and only if ε∗ε = 1a. �

7. Unbounded Field Operators in Rigid Categorical Extensions

In this section, we discuss the relation between the domain of Δ
1
2
I and the

preclosedness of certain unbounded operators in E f . Since the modular conju-
gations do not rely on dualizing data, we work with dualizable objects instead
of dualized ones. Recall that E f is the categorical extension associated with
the braided C∗-tensor category Repf(A) of dualizable Möbius covariant rep-
resentations of A. (Cf. Sect. 3.)

First, we recall the following well-known fact (cf. [38] section VI.1). A
proof is included for the reader’s convenience.

Proposition 7.1. Let M be a von Neumann algebra on a Hilbert space H with
commutant M′, and let Ω be a cyclic separating vector of M. Let Δ,J be the
modular operator and conjugation of (M,Ω), and set S = JΔ

1
2 . For any ξ ∈ H,

define an unbounded operator L (ξ) with domain M′Ω such that L (ξ)yΩ = yξ
for any y ∈ M′. Then, the following two conditions are equivalent.
(a) Ω ∈ D(L (ξ)∗).
(b) ξ ∈ D(Δ

1
2 ).
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If either (a) or (b) is true, then L (ξ) is preclosed, and Sξ = L (ξ)∗Ω.

Proof. Let J be the modular conjugation. Recall that S := JΔ
1
2 has core

MΩ, F = S∗ = JΔ− 1
2 has core M′Ω, and SxΩ = x∗Ω, FyΩ = y∗Ω for any

x ∈ M, y ∈ M′.
First, we assume that (a) is true. Then, for any y ∈ M′, we compute

〈S∗yΩ|ξ〉 = 〈y∗Ω|ξ〉 = 〈Ω|yξ〉 = 〈Ω|L (ξ)yΩ〉 = 〈L (ξ)∗Ω|yΩ〉,
which shows that ξ ∈ D(S) = D(Δ

1
2 ) and Sξ = L (ξ)∗Ω.

Next, assume that (b) is true. Choose any y1, y2 ∈ M′. Then,

〈L (Sξ)y1Ω|y2Ω〉 = 〈y1Sξ|y2Ω〉 = 〈Sξ|y∗
1y2Ω〉 = 〈Fy∗

1y2Ω|ξ〉 = 〈y∗
2y1Ω|ξ〉

=〈y1Ω|y2ξ〉 = 〈y1Ω|L (ξ)y2Ω〉,
which shows L (Sξ) ⊂ L (ξ)∗. Thus, Ω ∈ D(L (Sξ)) ⊂ D(L (ξ)∗), and Sξ =
L (Sξ)Ω = L (ξ)∗Ω. Since L (Sξ) has dense domain, so does L (ξ)∗. Therefore,
L (ξ) is preclosed. �

We would like to generalize the above proposition to E f . For any ˜I ∈
˜J , recall that ˜I ′ is the clockwise complement of ˜I. We define �

˜I ∈ ˜J such
that (�

˜I)′ = ˜I, and call �
˜I the anticlockwise complement of ˜I. Choose Hi ∈

Obj(Rep(A)). (We do not assume Hi to be dualizable.) For any ξ ∈ Hi, we
let L (ξ, ˜I) (resp. R(ξ, ˜I)) act on any Hj ∈ Obj(Rep(A)) as an unbounded
operator Hj → Hi � Hj (resp. Hj → Hj � Hi) with domain Hj(I ′) such that
for any η ∈ Hj(I ′),

L (ξ, ˜I)η = R(η, ˜I ′)ξ, resp. R(ξ, ˜I)η = L(η, �
˜I)ξ. (7.1)

It is clear that Ω is inside the domains of L (ξ, ˜I)|H0 and R(ξ, ˜I)|H0 , and the
state-field correspondence

L (ξ, ˜I)Ω = R(ξ, ˜I)Ω = ξ (7.2)

is satisfied. We also have that

L (ξ, ˜I)|H0 = R(ξ, ˜I)|H0 , (7.3)

and that they depend only on I but not on the choice of argI . Indeed, both
operators send any yΩ ∈ A(I ′)Ω to yξ.

The following is obvious.

Lemma 7.2. Choose Hi,Hj ,Hk,Hl ∈ Obj(Rep(A)) and ξ ∈ Hi. If G ∈
HomA(Hi,Hj) and K ∈ HomA(Hk,Hl), then for each η ∈ Hk(I ′),

L (Gξ, ˜I)Kη = (G ⊗ K)L (ξ, ˜I)η, (7.4)

R(Gξ, ˜I)Kη = (K ⊗ G)R(ξ, ˜I)η (7.5)

Proof. Note that Kη ∈ Hl(I ′). We have

L (Gξ, ˜I)Kη = R(Kη, ˜I ′)Gξ
(2.8)

===== (G ⊗ K)R(η, ˜I ′)ξ = (G ⊗ K)L (ξ, ˜I)η.

This proves the first relation. A similar argument proves the second one. �
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Definition 7.3. For any Hi ∈ Obj(Rep(A)) and I ∈ J , Hpr
i (I) is the set of

all ξ ∈ Hi such that L (ξ, ˜I)|H0 = R(ξ, ˜I)|H0 is preclosed. It is clear that
Hi(I) ⊂ Hpr

i (I).

It turns out that for any ξ ∈ Hpr
i (I), L (ξ, ˜I) is preclosed on any Hj ∈

Obj(Rep(A)). To prove this, we first need a lemma.

Lemma 7.4. Let Hi,Hj ∈ Obj(Rep(A)), ˜I, ˜J ∈ ˜J , and assume that ˜J is clock-
wise to ˜I. If ξ ∈ Hi, ξ0 ∈ D((L (ξ, ˜I)|H0)

∗), and η, η0 ∈ Hj(J), then

〈L (ξ, ˜I)η|R(η0, ˜J)ξ0〉 = 〈R(η0, ˜J)∗η|L (ξ, ˜I)∗ξ0〉. (7.6)

Proof. Choose ξ, ξ0, η, η0 as in the lemma. Recall that by proposition 2.3, we
have R(η0, ˜J)∗η ∈ H0(J) and

R(R(η0, ˜J)∗η, ˜I ′)|Hi
= R(R(η0, ˜J)∗η, ˜J)|Hi

= R(η0, ˜J)∗R(η, ˜J)|Hi
.

Thus,

〈L (ξ, ˜I)η|R(η0, ˜J)ξ0〉 = 〈R(η, ˜J)ξ|R(η0, ˜J)ξ0〉 = 〈R(η0, ˜J)∗R(η, ˜J)ξ|ξ0〉
=〈R(R(η0, ˜J)∗η, ˜I ′)ξ|ξ0〉 = 〈L (ξ, ˜I)R(η0, ˜J)∗η|ξ0〉 = 〈R(η0, ˜J)∗η|L (ξ, ˜I)∗ξ0〉.

�

Theorem 7.5. Choose any Hi ∈ Obj(Rep(A)), ˜I ∈ ˜J , and ξ ∈ Hpr
i (I). Then,

L (ξ, ˜I)|Hj
and R(ξ, ˜I)|Hj

are preclosed for any Hj ∈ Obj(Rep(A)).

Proof. Let ˜J = ˜I ′. Assume that ηn is a sequence of vectors in Hj(J) con-
verging to 0 such that L (ξ, ˜I)ηn converges to χ ∈ Hi � Hj . We shall show
that χ = 0. Since L (ξ, ˜I)|H0 is preclosed, W := D((L (ξ, ˜I)|H0)

∗) is a dense
subspace of Hi. Since R(η0, ˜J) is bounded for any η0 ∈ Hj(J), we con-
clude that R(Hj(J), ˜J)W is dense in R(Hj(J), ˜J)Hi which spans a dense sub-
space of Hi � Hj by the density axiom of E . Therefore, it suffices to show
that 〈χ|R(η0, ˜J)ξ0〉 = 0 for any ξ0 ∈ W and η0 ∈ Hj(J). We notice that
〈χ|R(η0, ˜J)ξ0〉 is the limit of

〈L (ξ, ˜I)ηn|R(η0, ˜J)ξ0〉 (7.6)
===== 〈R(η0, ˜J)∗ηn|L (ξ, ˜I)∗ξ0〉,

which converges to 0 since R(η0, ˜J) is bounded. This proves that L (ξ, ˜I)|Hj

is precloded. As for R(ξ, ˜I)|Hj
, the argument is similar. �

We need two lemmas before we prove the main result of this section.

Lemma 7.6. Let A,B be densely defined unbounded linear operators on a Hilbert
space H with common domain D(A) = D(B) = D . Assume that the ranges
of A and B are mutually orthogonal and that there exist mutually orthogonal
projections p, q on H satisfying

A ⊂ Ap, B ⊂ Bq.

Then, A + B is preclosed if and only if both A and B are so.
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Proof. First, assume A,B are preclosed. Let e, f be the projections of H onto
the ranges of A,B, respectively. Choose ξn ∈ D converging to 0 such that
(A + B)ξn converges. Then, Aξn = eAξn + eBξn, which converges. Since A is
preclosed, Aξn → 0. Similarly, Bξn → 0. So (A + B)ξn → 0.

Now, assume A + B is preclosed. Choose ξn ∈ D converging to 0 such
that Aξn converges. Since A ⊂ Ap, we have pξn ∈ pD ⊂ D , and Apξn = Aξn.
Similarly, qpξn ∈ D and Bqpξn = Bpξn. But pq = 0. So Bpξn = 0. So
Aξn = (A + B)pξn, which we know converges. Since A + B is preclosed and
pξn → 0, we must have (A + B)pξn → 0. So Aξn → 0. So A is preclosed.
Similarly, B is also preclosed. �

Lemma 7.7. Let Hi,Hj ,Hk ∈ Obj(Repf(A)) and ξ ∈ Hi. Suppose that ϕ ∈
HomA(Hj ,Hk) is an isometry. Then, L (ξ, ˜I)|Hj(I′) (resp. R(ξ, ˜I)|Hj(I′)) is
preclosed if and only if L (ξ, ˜I)|Hj(I′) ·ϕ∗|Hk(I′) (resp. R(ξ, ˜I)|Hj(I′) ·ϕ∗|Hk(I′))
is so.

Proof. We prove this for L . It is an easy exercise that a preclosed operator
multiplied by a bounded operator from the right is preclosed. Thus, the “only
if” part follows immediately. The “if” part follows from that L (ξ, ˜I)|Hj(I′)

equals L (ξ, ˜I)|Hj(I′) · ϕ∗|Hk(I′) times ϕ|Hj(I′). �

We now relate the preclosedness of L (ξ, ˜I) with the domain of Δ
1
2
I .

Theorem 7.8. Let Hi ∈ Obj(Repf(A)) and ˜I ∈ ˜J . Choose an arbitrary dual
object Hi and standard evi,i, evi,i with adjoints coevi,i, coevi,i. Then, for any
ξ ∈ Hi, the following are equivalent:

(a) Ω is in the domain of L (ξ, ˜I)∗coevi,i.
(a’) Ω is in the domain of R(ξ, ˜I)∗coevi,i.

(b) ξ is in the domain of Δ
1
2
I |Hi

.

If any of them is true, then ξ ∈ Hpr
i (I), and

S
˜Iξ = L (ξ, ˜I)∗coevi,iΩ, F

˜Iξ = R(ξ, ˜I)∗coevi,iΩ. (7.7)

Proof. We consider dualized objects. In particular, we let (Hi, evi,i) be the
dualizing data for Hi. Choose any ξ ∈ Hi. Let Hk = H0 ⊕ Hi, let Ha =
Hk � Hk, and consider the standard C∗-Frobenius algebra Q = (Ha, μ, ι).
(See the discussions starting from (5.10).) Let B,B′ be the associated non-
local extensions of A. Identify Hi with Hi � H0 using the right unitor. Then,
ψi,0 : Hi = Hi � H0 → Ha defined in (5.13) is an isometry. Let M = B(˜I).
Since ψi,0ξ ∈ Ha, we can define an unbounded operator L Q(ψi,0ξ) on Ha with
domain M′ιΩ such that L Q(ψi,0ξ)yιΩ = yψ0,iξ for any y ∈ M′ = B′(˜I ′).

Step 1. We first shown that ξ ∈ Hpr
i (I) is equivalent to that L Q(ψi,0ξ)

is preclosed. Note that M′ιΩ = Ha(I ′) by (4.6), and that elements in M′ are
of the form B(η, ˜I ′) = μR(η, ˜I ′)|Ha

where η ∈ Ha(I ′). We compute that for
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any η ∈ Ha(I ′),

L Q(ψi,0ξ)η
(4.4)

===== L Q(ψi,0ξ)B(η, ˜I ′)ιΩ = B(η, ˜I ′)ψi,0ξ = μR(η, ˜I ′)ψi,0ξ

=μL (ψi,0ξ, ˜I)η
(7.4)

===== μ(ψi,0 ⊗ 1a)L (ξ, ˜I)η,

which shows

L Q(ψi,0ξ) = μ(ψi,0 ⊗ 1a)L (ξ, ˜I)|Ha(I′) (7.8)

with common domain Ha(I ′).
Since 1a =

∑

s,t∈{0,i} ψs,tψ
∗
s,t

where each ψs,tψ
∗
s,t

is the projection of Ha

onto a subrepresentation equivalent to Hs � Ht, we have

L Q(ψi,0ξ) =
∑

s,t∈{0,i}
μ(ψi,0 ⊗ ψs,t)(1i ⊗ ψ∗

s,t)L (ξ, ˜I)|Ha(I′)

(7.4)
=====

∑

s,t∈{0,i}
μ(ψi,0 ⊗ ψs,t)L (ξ, ˜I)ψ∗

s,t|Ha(I′).

By (5.15), we have

L Q(ψi,0ξ) = ψi,0L (ξ, ˜I)ψ∗
0,0|Ha(I′) + ψi,iL (ξ, ˜I)ψ∗

0,i|Ha(I′). (7.9)

Apply Lemma 7.6 by choosing D = Ha(I ′), p = ψ0,0ψ
∗
0,0, and q = ψ0,iψ

∗
0,i

.
We see that L Q(ψi,0ξ) is preclosed if and only if the two terms on the right-
hand side of (7.9) are both preclosed. The latter condition is, by Lemma 7.7
and Theorem 7.5, equivalent to that L (ξ, ˜I)|H0(I′) is preclosed, i.e., that ξ ∈
Hpr

i (I).
Step 2. We now show that the (a) of this theorem is equivalent to that

of Proposition 7.1, namely, that ιΩ is in the domain of L Q(ψi,0ξ)∗. We have

ψ∗
i,iιΩ

(5.15)
===== (ψi,0 ⊗ ψ0,i)

∗μ∗ιΩ
(5.16)

===== coevi�0,0�iΩ = coevi,iΩ, (7.10)

and similarly

ψ∗
i,0ιΩ

(5.15)
===== (ψi,0 ⊗ ψ0,0)∗μ∗ιΩ

(5.16)
===== 0. (7.11)

Thus, by (7.9), that ιΩ is in the domain of L Q(ψi,0ξ)∗ is equivalent to that
coevi,iΩ is in the domain of (L (ξ, ˜I)ψ∗

0,i
|Ha(I′))∗. This is true if and only if

the function

η ∈ Ha(I ′) �→ 〈L (ξ, ˜I)ψ∗
0,i

η|coevi,iΩ〉
is continuous. Using (2.1), it is easy to see that the above is equivalent to the
continuity of

η ∈ Hi(I
′) �→ 〈L (ξ, ˜I)η|coevi,iΩ〉,

which is precisely (a) of our theorem.
Step 3. By Proposition 5.10, the modular operator for B(I) and ιΩ is

ΔI |Ha
. The vector ψi,0ξ is inside the domain of ΔI

1
2 |Ha

if and only if ξ is
in the domain of ΔI

1
2 |Hi

, since we have ψi,0ΔI
1
2 |Hi

= ΔI
1
2 |Ha

ψi,0 due to
Proposition 5.16. Thus, by Proposition 7.1, we see that (a), (b), and ξ ∈
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Hpr
i (I) are equivalent. Moreover, if they are true, then by the last statement

of Proposition 7.1, (recall Proposition 5.10 and note ε = 1) we have

S
˜I |Ha

ψi,0ξ = L Q(ψi,0ξ)∗ιΩ,

which by (7.9), (7.10), (7.11) equals

ψ0,iL (ξ, ˜I)∗coevi,iΩ.

Since ψi,0 = ψ0,i and hence ψ0,iS˜I |Hi
ξ = S

˜I |Ha
ψi,0ξ, we obtain

S
˜Iξ = L (ξ, ˜I)∗coevi,iΩ.

To prove the equivalence of (a’) and (b) and the second equation of (7.7),
construct Q = (Hk �Hk, μ, ι) where Hk = H0 ⊕Hi, and use similar arguments
by choosing M = B′(˜I) and considering RQ(ψ0,iξ) defined by sending each
yιΩ ∈ M′ιΩ to yψ0,iξ. �
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A. Connes Categorical Extensions

In appendix section, we sketch the construction of categorical extensions via
Connes fusion. Details can be found in [23]. We do not assume the represen-
tations to be dualizable in this section.

Recall that we set Hi(I) = HomA(I′)(H0,Hi)Ω. For any ξ ∈ Hi(I), we
define Z(ξ, ˜I) to be the unique element in HomA(I′)(H0,Hi) satisfying ξ =
Z(ξ, ˜I)Ω. If J is disjoint from I, we define a (degenerate) inner product 〈·|·〉
(antilinear on the second variable) on the algebraic tensor product Hi(I) ⊗
Hj(J) such that for any ξ1, ξ2 ∈ Hi(I) and η1, η2 ∈ Hj(J),

〈ξ1 ⊗ η1|ξ2 ⊗ η2〉 = 〈Z(η2, J)∗Z(η1, J)Z(ξ2, I)∗Z(ξ1, I)Ω|Ω〉. (A.1)

This is nothing but the formula of Connes relative tensor product. We let
Hi(I) � Hj(J) be the Hilbert space completion of Hi(I) ⊗ Hj(J) under this
inner product. Note that A(I) and A(J) can naturally act on Hi(I) ⊗ Hj(J)
by acting on the first resp. second component of the tensor product.

If I0 ⊂ I and J0 ⊂ J , then Hi(I0) and Hj(J0) are dense in Hi(I) and
Hj(J). Note that Hi(I0) ⊗ Hj(J0) is also dense in Hi(I) ⊗ Hj(J) under the
above inner product. (Indeed, Hi(I) ⊗ Hj(J0) is dense in Hi(I) ⊗ Hj(J) since
the Z operators associated with the vectors of Hi(I) are bounded. Likewise,
Hi(I0)⊗Hj(J0) is also dense in Hi(I)⊗Hj(J0) since the Z operators associated
with the vectors of Hj(J0) are bounded.) Thus, we have a natural unitary
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map Hi(I0) � Hj(J0)
�−→ Hi(I) � Hj(J) induced by inclusion of intervals. Its

adjoint Hi(I)�Hj(J) �−→ Hi(I0)�Hj(J0) is the natural unitary map induced
by restriction of intervals. Both maps commute with the actions of A(I0) and
A(J0).

Let I1, I2 be disjoint, respectively, from J1, J2. First, assume that these
two pairs of intervals ”overlap properly,” which means that I1∩I2, J1∩J2 ∈ J .
Then,

Hi(I1) � Hj(J1)
�−→ Hi(I1 ∩ I2) � Hj(J1 ∩ J2)

�−→ Hi(I2) � Hj(J2) (A.2)

defines a natural unitary map Hi(I1)�Hj(J1)
�−→ Hi(I2)�Hj(J2). In general,

we need to choose a path γ : [0, 1] → Conf2(S1), where Conf2(S1) = {(z, w) ∈
S

1 : z �= w}. We assume that γ(0) ∈ I1 × J1 and γ(1) ∈ I2 × J2. Then, we
can define a natural unitary map γ• : Hi(I1) � Hj(J1)

�−→ Hi(I2) � Hj(J2)
by covering γ by a chain of pairs of open intervals (K1, L1), . . . (Kn, Ln), such
that K1 = I1, L1 = J1,Kn = I2, Ln = J2, and that for each l = 1, 2, . . . , n,
(Kl−1, Ll−1) and (Kl,Kl) overlap properly. Then, we can use a chain of unitary
maps induced by restriction and inclusion of intervals (as in (A.2)) to define γ•.
We say that γ• is the path continuation induced by γ. If we have paths γ1, γ2,
then (γ1 ∗ γ2)• = γ•

1γ•
2 . Moreover, γ• depends only on the homotopy class of

γ. Then, we can transport the actions of A(I1),A(J1) from Hi(I1) � Hj(I1)
to Hi(I2)�Hj(I2) through the map γ•. Indeed, the result of transportation is
independent of the choice of γ. It turns out that we have a well defined action
of A on any Connes fusion Hi(I) � Hj(J) so that it restricts to the standard
actions of A(I),A(J) on Hi(I) � Hj(J) and that the actions of A commute
with all path continuations. Thus, Hi(I) � Hj(J) becomes a representation of
A, and the path continuations are unitary isomorphisms of A-modules.

In the construction of the tensor category Rep(A), we let Hi � Hj be
Hi(S1

+) � Hj(S1
−), where S

1
+, S1

− ∈ J are, respectively, the upper and lower
semi-circle. Choose argS1+ (resp. argS1−) to be the one whose values are inside

(0, π) (resp. (−π, 0)). This defines ˜

S1
+ and ˜

S1−. Now, for each ˜I = (I, argI) ∈ ˜J
and ξ ∈ Hi(I), we describe the operator L(ξ, ˜I). Recall that ˜I ′ is the clockwise
complement of ˜I, which means that I ′ is (the interior of) the complement of
I, and ˜I ′ is clockwise to ˜I. We write ˜I ′ = (I ′, argI′). The action Z(ξ, I) : η ∈
Hj(I ′) �→ ξ ⊗ η ∈ Hi(I) � Hj(I ′) is a bounded operator which intertwines the
actions of A(I ′). Thus, Z(ξ, I) ∈ HomA(I′)(Hj ,Hi(I)�Hj(I ′)). We now choose
a path γ : [0, 1] → Conf2(S1) from I×I ′ to S

1
+×S

1
− such that the arguments of

˜I and ˜I ′ are changing continuously to those of ˜

S1
+ and ˜

S1−, respectively, along
γ. Then, for each η ∈ Hj , L(ξ, ˜I)η is defined to be

L(ξ, ˜I)η = γ•Z(ξ, I)η ∈ Hi � Hj . (A.3)

Define a path ρ : [0, 1] → Conf2(S1) from S
1
+ × S

1
− to S

1
− × S

1
+ by ρ(t) =

(eiπ( 1
2−t), eiπ(− 1

2−t)). Then,

ρ• : Hi � Hj = Hi(S1
+) � Hj(S1

−) → Hi(S1
−) � Hj(S1

+) � Hj � Hi (A.4)
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is the braiding ßi,j . We define R(ξ, ˜I)η = ßi,jL(ξ, ˜I)η. That these operators
define a categorical extension E = (A,Rep(A),�,H) of A (called Connes
categorical extension) was proved in [23].

B. Möbius Covariance of Categorical Extensions

Let E f = (A,Repf(A),�,H) be the rigid (vector-labeled and closed) categor-
ical extension of the Möbius covariant net A as in Sect. 3. Recall that we as-
sume objects in Repf(A) (which are dualizable) to be Möbius covariant, which
means there is a strongly continuous unitary representation Ui of ˜PSU(1, 1) on
Hi such that (1.2) holds. (Recall that such representation is unique by [21].)
In this section, we prove Theorem 3.2, namely, that the fusion of two Möbius
covariant representations is also Möbius covariant, and that E f is Möbius co-
variant. We remark that the arguments in this section can also be used to show
that E is conformal covariant when A is so; see the end of the section.

We first notice the following easy fact:

Lemma B.1. Any morphism in Repf(A) commutes with the actions of ˜PSU(1, 1).

Proof. Let Hi,Hj ∈ Repf(A) and G ∈ HomA(Hi,Hj). Let Hk = Hi ⊕ Hj .
Then, the unique representation Uk of ˜PSU(1, 1) on Hk is described by Uk(g) =
diag(Ui(g), Uj(g)) for any g ∈ ˜PSU(1, 1). We regard G as an endomorphism of
Hk by acting trivially on Hj . Then, it suffices to show that any endomorphism
of Hk commutes with the action of ˜PSU(1, 1) on Hk. By linearity, it suffices
to prove this for any unitary V ∈ EndA(Hk). Then, by the uniqueness of
the representation of ˜PSU(1, 1) on Hk, we have Uk(g) = V Uk(g)V ∗ for any
g ∈ ˜PSU(1, 1). Therefore, V commutes with the action of ˜PSU(1, 1). �

Choose any Hj ∈ Obj(Repf(A)), ˜I ∈ ˜J , and define a unitary representa-
tion V

˜I of ˜PSU(1, 1) on Hi � Hj by setting

V
˜I(g)L(ξ, ˜I)η = L(gξ, g˜I)gη (B.1)

for any ξ ∈ Hi(I), η ∈ Hj(I ′), g ∈ ˜PSU(1, 1). Note that we have gHi(I) =
Hi(gI) since, by (1.2), we have gHomA(I′)(H0,Hi)g−1 = HomA(gI′)(H0,Hi).
Thus, we have

L(gξ, g˜I) = gL(ξ, ˜I)g−1

when acting on H0. Now, we choose any ξ1, ξ2 ∈ Hi(I), η1, η2 ∈ Hj(I ′), and
use the locality of E f and the fact that gΩ = Ω to compute that

〈L(gξ1, g˜I)gη1|L(gξ2, g˜I)gη2〉 = 〈L(gξ1, g˜I)R(gη1, g˜I ′)Ω|L(gξ2, g˜I)R(gη2, g˜I ′)Ω〉
=〈L(gξ2, g˜I)∗L(gξ1, g˜I)Ω|R(gη1, g˜I ′)∗R(gη2, g˜I ′)Ω〉
=〈gL(ξ2, ˜I)∗L(ξ1, ˜I)Ω|gR(η1, ˜I ′)∗R(η2, ˜I ′)Ω〉

= 〈L(ξ2, ˜I)∗L(ξ1, ˜I)Ω|R(η1, ˜I ′)∗R(η2, ˜I ′)Ω〉
=〈L(ξ1, ˜I)η1|L(ξ2, ˜I)η2〉. (B.2)
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This proves the well-definedness and the unitarity of V
˜I(g).

Notice that V
˜I is independent of ˜I, namely V

˜I = V
˜I0

when ˜I, ˜I0 ∈ ˜J .
Indeed, it suffices to check this when ˜I0 ⊂ ˜I. In that case, the actions of
V

˜I(g) and V
˜I0

(g) on L(Hi(I0), ˜I)Hj(I ′) are clearly the same. So they must be
equal. We write V

˜I as V for short. From our definition (B.1), it is clear that
V (gh) = V (g)V (h) for any g, h ∈ ˜PSU(1, 1). Thus, V is a representation of
˜PSU(1, 1).

We choose ˜I0 ⊂ ˜I such that I0 ⊂⊂ I. To check the continuity of the repre-
sentation V , we need to show that for any sequence of elements gn in ˜PSU(1, 1)
converging to 1, L(gnξ, gn

˜I0)gnη converges to L(ξ, ˜I0)η for any ξ ∈ Hi(I0) and
η ∈ Hj . Assume without loss of generality that gnI0 ⊂ I for any n. Since gnη

converges to η, it suffices to show that L(gnξ, gn
˜I0)|Hj

= L(gnξ, ˜I)|Hj
con-

verge strongly to L(ξ, ˜I) and are uniformly bounded over n. By the locality
and the state-field correspondence of E f , L(gnξ, ˜I)χ = R(χ, ˜I ′)gnξ converges
to R(χ, ˜I ′)ξ = L(ξ, ˜I)χ for any χ ∈ Hj(I ′). Set x = L(ξ, ˜I)∗L(ξ, ˜I)|H0 ∈ A(I).
Then xn := gnxg∗

n equals L(gnξ, gn
˜I)∗L(gnξ, gn

˜I)|H0 . So xnΩ = L(gnξ, gn
˜I)∗gnξ.

Hence, by proposition 2.3,

‖L(gnξ, ˜I)|Hj
‖2= ‖L(gnξ, ˜I)∗L(gnξ, ˜I)|Hj

‖= ‖L(L(gnξ, ˜I)∗gnξ, ˜I)|Hj
‖

=‖L(xnΩ, gn
˜I)|Hj

‖= ‖πj,gnI(xn)‖≤ ‖xn‖= ‖x‖.

This shows that ‖L(gnξ, ˜I)|Hj
‖ is uniformly bounded over all n. Thus L(gnξ, ˜I)

converges strongly to L(ξ, ˜I).
To show that V makes Hi � Hj Möbius covariant, we need to check that

V (g)πi�j,J (x) = πi�j,gJ (gxg−1)V (g)

for any g ∈ ˜PSU(1, 1), J ∈ J , x ∈ A(J). It suffices to verify this equation
when both sides act on L(Hi(I), ˜I)Hj(J) where I is disjoint from J . This is
easy. Therefore, Hi � Hj is Möbius covariant, and the unique representation
of ˜PSU(1, 1) is described by (B.1). From (B.1), it is clear that L(gξ, g˜I) =
gL(ξ, ˜I)g−1 is always true on any Hj ∈ Obj(Repf(A)). By the braiding axiom
of E f and lemma B.1, we also have R(gξ, g˜I) = gR(ξ, ˜I)g−1. This proves the
Möbius covariance of E f .

Finally, we explain how the above arguments can be adapted to show the
conformal covariance of E when A is conformal covariant. Let A be conformal
covariant. Recall that for any Hi ∈ Obj(Rep(A)), ξ ∈ Hi(I), and g ∈ GA, we
have gξg−1 ∈ Hi(gI) where gξg−1 := gL(ξ, ˜I)g−1Ω = gR(ξ, ˜I)g−1Ω. Thus, for
any Hi,Hj ∈ Obj(Rep(A)), one can define an action of GA on Hi � Hj by
setting

V
˜I(g)L(ξ, ˜I)η = L(gξg−1, g˜I)gη (B.3)

for any ξ ∈ Hi(I), η ∈ Hj(I ′), g ∈ GA. Note that (B.3) also equals

L(gξg−1, g˜I)gR(η, ˜I ′)g−1gΩ = L(gξg−1, g˜I)R(gηg−1, g˜I ′)gΩ
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since we have gR(η, ˜I ′)g−1 = R(gηg−1, g˜I ′) when acting on H0. Using this
relation and the calculations as in (B.2), one checks that V

˜I(g) is well defined
and unitary. Similar arguments as in the above paragraphs show that V

˜I is
independent of ˜I, that V respects the group multiplication of GA (which follows
clearly from the definition of V

˜I(g), that the representation V : GA � Hi �Hj

is continuous, and that (1.1) holds. Thus, V is the unique representation of GA
making Hi � Hj conformal covariant. The relations (2.14) follow easily from
the definition (B.3) of V .
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