Regular vertex operator subalgebras and compressions of intertwining operators

Bin Gui
Department of Mathematics, Rutgers University, USA

A R T I C L E I N F O

Article history:

Received 6 March 2020
Available online 11 August 2020
Communicated by David Hernandez
Keywords:
Vertex operator algebras
Intertwining operators

A B S T R A C T

Let V be a vertex operator subalgebra of U. Assume that U, V, and its commutant V^{c} in U are CFT-type, self-dual, and regular VOAs. Assume also that the double commutant $V^{c c}$ equals V. We prove that any intertwining operator of V is a compression of intertwining operators of U.
© 2020 Elsevier Inc. All rights reserved.

0. Introduction

In [21], Krauel-Miyamoto showed that if V is a vertex operator subalgebra of U, if U, V, and the commutant V^{c} are CFT-type, self-dual, and regular VOAs, and if $V^{c c}=V$, then any irreducible V-module appears in some irreducible U-module. For example, by [5,6,2], these assumptions are satisfied when we take $V \subset U$ to be $L_{k+1}(\mathfrak{g}) \subset$ $L_{k}(\mathfrak{g}) \otimes L_{1}(\mathfrak{g})$, where k is a positive integer, \mathfrak{g} is a finite dimensional complex simple Lie algebra of type $A D E$, and $L_{k}(\mathfrak{g})$ is the corresponding (unitary) affine VOA. In this case, V^{c} is a discrete series principle W-algebra $\mathcal{W}_{l}(\mathfrak{g})$.

The above results have important applications to the unitarity problems in VOAs: For example, we can conclude that any irreducible $\mathcal{W}_{l}(\mathfrak{g})$-module is unitarizable since this is true for any unitary affine VOA. Moreover, using these results (together with the

[^0]techniques developed in [23-25]), Tener showed in [26] that the modular tensor categories associated to all unitary affine VOAs and type $A E$ discrete series W-algebras are unitary, and solved a longstanding problem in subfactor theory and algebraic quantum field theory: that the conformal nets associated to unitary affine VOAs and type $A D E$ discrete series W-algebras are completely rational.

In this paper, we generalize the result of [21] to intertwining operators: We show that any intertwining operator of V is a compression of intertwining operators of U (Theorem 4.4). To be more precise, let W_{I}, W_{J}, W_{K} be (ordinary) U-modules, which can also be regarded as weak V-modules. Suppose that \mathcal{Y}^{U} is a type $\binom{W_{K}}{W_{I} W_{J}}$ intertwining operator of U, and W_{i}, W_{j}, W_{k} are graded irreducible V-submodules of W_{I}, W_{J}, W_{K} respectively, then one can find $\lambda \in \mathbb{Q}$ such that z^{λ} times the restriction of \mathcal{Y}^{U} to W_{i}, W_{j}, W_{k} is an intertwining operator \mathcal{Y} of V. (Note that without the factor z^{λ}, the restriction itself may not satisfy the L_{-1}-derivative property.) We then say that \mathcal{Y} is a compression of \mathcal{Y}^{U}. (See Definition 3.4 for more details.) Our main result of this article is that any intertwining operator of V can be written as a (finite) sum of those that are compressions of intertwining operators of U.

Our result can be applied to prove many important functional analytic properties for intertwining operators. One such property is the (polynomial) energy bounds condition [$7,13,14]$, which says roughly that the smeared intertwining operators are bounded by L_{0}^{n} for some $n \geq 0$. Proving energy bounds condition for intertwining operators is a key step in relating the tensor structures of VOA modules and the corresponding conformal net modules; see [28,27,12,15]. On the other hand, one may deduce the energy bounds condition of the compressed intertwining operator \mathcal{Y} from that of \mathcal{Y}^{U}. Since, by our main result, any intertwining operator of $L_{k}(\mathfrak{g})$ or $\mathcal{W}_{l}(\mathfrak{g})$ (when \mathfrak{g} is of type $A D E$) is a compression of tensor products of intertwining operators of $L_{1}(\mathfrak{g})$, and since the latter were proved in [27] to be energy bounded, we can conclude that all intertwining operators of $L_{k}(\mathfrak{g})$ or $\mathcal{W}_{l}(\mathfrak{g})$ are energy bounded. This result will be used in [15] to show that if V is $L_{k}(\mathfrak{g})$ or $\mathcal{W}_{l}(\mathfrak{g})$, and if \mathcal{A} is the corresponding conformal net, then the tensor and braid structures of the representation categories of V and \mathcal{A} are compatible.

Acknowledgment

The author would like to thank James Tener for helpful discussions on the topic of this paper.

1. Intertwining operators and tensor categories

Let $(V, Y, \mathbf{1}, \nu)$ be a vertex operator algebra (VOA) where $\mathbf{1}$ is the vacuum vector and ν is the conformal vector. For any $v \in V$, write $Y(v, z)=\sum_{n \in \mathbb{Z}} Y(v)_{n} z^{-n-1}$ where $Y(v)_{n} \in \operatorname{End}(V)$. Then $L_{n}:=Y(\nu)_{n+1}$ satisfy the Virasoro relation

$$
\left[L_{n}, L_{m}\right]=(n-m) L_{n+m}+\delta_{n,-m} \frac{n^{3}-n}{12} c
$$

where c is the central charge of V. We shall always assume that V is CFT-type, namely, V has L_{0}-grading $V=\bigoplus_{n \in \mathbb{N}} V(n)$ and $V(0)=\mathbb{C} \mathbf{1}$. We also assume that V is self-dual and regular (equivalently, self-dual, rational and C_{2}-cofinite [1]). Note that the selfdual condition is equivalent to the existence of a non-degenerate invariant bilinear form. As a consequence of CFT-type and being self-dual, V is simple. (See, for example, [7] proposition 6.4-(iv).) Moreover, any (ordinary) V-module is semisimple, and the category of V-modules is a rigid modular tensor category [20].

We write V-modules as $W_{i}, W_{j}, W_{k}, \ldots$ whose vertex operators are denoted by $Y_{i}, Y_{j}, Y_{k}, \ldots$ respectively. V itself as a V-module (the vacuum module) will also be written as W_{0}. We write $Y_{i}(v, z)=\sum_{n \in \mathbb{Z}} Y_{i}(v)_{n} z^{-n-1}$ where each $Y_{i}(v)_{n} \in \operatorname{End}\left(W_{i}\right)$. Again, any V-module has L_{0}-grading $W_{i}=\bigoplus_{n \in \mathbb{C}} W(n)$. Recall that a homogeneous vector of W_{i} is, by definition, an eigenvector of L_{0}. In the case that W_{i} is irreducible (i.e. simple), we furthermore have $W_{i}=\bigoplus_{n \in \mathbb{N}+\alpha} W(n)$ for some $\alpha \in \mathbb{C}$. (Indeed, $\alpha \in \mathbb{Q}$ by $[4,9]$.) We let P_{n} denote the projection of W_{i} onto $W_{i}(n)$. We also let

$$
W_{i}(\leq n)=\bigoplus_{\operatorname{Re}(m) \leq n} W(m)
$$

and let $P_{\leq n}$ be the projection of W_{i} onto $W_{i}(\leq n)$.
Let $W_{\bar{i}}$ denote the contragredient module of W_{i}. Recall that as a vector space, $W_{\bar{i}}=$ $\bigoplus_{n \in \mathbb{C}} W_{i}(n)^{*}$. (See [10] for more details.) The evaluation between $w^{\prime} \in W_{\bar{i}}$ and $w \in W_{i}$ is written as $\left\langle w, w^{\prime}\right\rangle$ or $\left\langle w^{\prime}, w\right\rangle$. (The same notation will be used if one of w, w^{\prime} is in the algebraic completion.) Since V is self-dual, we identify the vacuum module $V=W_{0}$ and its contragredient module $W_{\overline{0}}$. $W_{\overline{\bar{i}}}$ is identified with W_{i} in an obvious way.

Recall that if W_{i}, W_{j}, W_{k} are V-modules, an intertwining operator \mathcal{Y} of type $\binom{W_{k}}{W_{i} W_{j}}$ (or $\binom{k}{i}$ for short) is a linear map

$$
\begin{gathered}
W_{i} \rightarrow \operatorname{End}\left(W_{j}, W_{k}\right)\{z\} \\
w_{i} \mapsto \mathcal{Y}\left(w^{(i)}, z\right)=\sum_{n \in \mathbb{C}} \mathcal{Y}\left(w^{(i)}\right)_{n} z^{-n-1}
\end{gathered}
$$

where the sum above is the formal sum, each $\mathcal{Y}\left(w^{(i)}\right)_{n}$ is in $\operatorname{End}\left(W_{j}, W_{k}\right)$, and the following conditions are satisfied:
(a) (Lower truncation) For any $w^{(j)} \in W_{j}, \mathcal{Y}\left(w^{(i)}\right)_{n} w^{(j)}=0$ when $\operatorname{Re}(n)$ is sufficiently large.
(b) (Jacobi identity) For any $u \in V, w^{(i)} \in W_{i}, m, n \in \mathbb{Z}, s \in \mathbb{C}$, we have

$$
\begin{aligned}
& \sum_{l \in \mathbb{N}}\binom{m}{l} \mathcal{Y}\left(Y_{i}(u)_{n+l} w^{(i)}\right)_{m+s-l} \\
= & \sum_{l \in \mathbb{N}}(-1)^{l}\binom{n}{l} Y_{k}(u)_{m+n-l} \mathcal{Y}\left(w^{(i)}\right)_{s+l}
\end{aligned}
$$

$$
\begin{equation*}
-\sum_{l \in \mathbb{N}}(-1)^{l+n}\binom{n}{l} \mathcal{Y}\left(w^{(i)}\right)_{n+s-l} Y_{j}(u)_{m+l} \tag{1.1}
\end{equation*}
$$

(c) (L_{-1}-derivative) $\frac{d}{d z} \mathcal{Y}\left(w^{(i)}, z\right)=\mathcal{Y}\left(L_{-1} w^{(i)}, z\right)$ for any $w^{(i)} \in W_{i}$.

We say that W_{i}, W_{j}, W_{k} are respectively the charge space, the source space, and the target space of \mathcal{Y}. If W_{i}, W_{j}, W_{k} are all irreducible, we say that \mathcal{Y} is an irreducible intertwining operator.

Recall that given $\mathcal{Y} \in \mathcal{V}\binom{k}{i}$, one can define $\mathbb{B} \mathcal{Y} \in \mathcal{V}\left(\begin{array}{c}{ }_{j}{ }_{i}\end{array}\right)$ and $\mathfrak{C} \mathcal{Y} \in \mathcal{V}\binom{\bar{j}}{i}$, called the (positively) braided intertwining operator and the contragredient intertwining operator of \mathcal{Y}, by choosing any $w^{(i)} \in W_{i}, w^{(j)} \in W_{j}, w^{(\bar{k})} \in W_{\bar{k}}$ and setting

$$
\begin{gathered}
\mathbb{B} \mathcal{Y}\left(w^{(j)}, z\right) w^{(i)}=e^{z L_{-1}} \mathcal{Y}\left(w^{(i)}, e^{\mathbf{i} \pi} z\right) w^{(j)}, \\
\left\langle\mathscr{C} \mathcal{Y}\left(w^{(i)}, z\right) w^{(\bar{k})}, w^{(j)}\right\rangle=\left\langle w^{(\bar{k})}, \mathcal{Y}\left(e^{z L_{1}}\left(e^{\mathbf{i} \pi} z^{-2}\right)^{L_{0}} w^{(i)}, z^{-1}\right) w^{(j)}\right\rangle .
\end{gathered}
$$

In particular, $Y_{\bar{i}} \in \mathcal{V}\binom{\bar{i}}{0 \bar{i}}$ (the vertex operator for $\left.W_{\bar{i}}\right)$ is contragredient to Y_{i}. See [10] for details.

We refer the reader to [17] and the references therein for the definition and basic properties of the tensor category $\operatorname{Rep}(V)$ of V-modules. (See also [13] for a sketch of the Huang-Lepowsky tensor product theory.) Roughly speaking, $\operatorname{Rep}(V)$ is defined such that the fusion rules are exactly the dimensions of the spaces of intertwining operators, and the R - and F-matrices are described by the braid and the fusion relations of intertwining operators.

To be more precise, the tensor functor (fusion product) \boxtimes is defined in such a way that there is a functorial isomorphism

$$
\begin{equation*}
\operatorname{Hom}_{V}\left(W_{i} \boxtimes W_{j}, W_{k}\right) \xrightarrow{\simeq} \mathcal{V}\binom{k}{i j}, \quad \alpha \mapsto \mathcal{Y}_{\alpha} \tag{1.2}
\end{equation*}
$$

for any V-modules W_{i}, W_{j}, W_{k}. By saying this map is functorial, we mean that if $F \in$ $\operatorname{Hom}_{V}\left(W_{i^{\prime}}, W_{i}\right), G \in \operatorname{Hom}_{V}\left(W_{j^{\prime}}, W_{j}\right)$, and $H \in \operatorname{Hom}_{V}\left(W_{k}, W_{k^{\prime}}\right)$, then for any $w^{\left(i^{\prime}\right)} \in$ $W_{i^{\prime}}$ and $w^{\left(j^{\prime}\right)} \in W_{j^{\prime}}$,

$$
\mathcal{Y}_{H \alpha(F \otimes G)}\left(w^{\left(i^{\prime}\right)}, z\right) w^{\left(j^{\prime}\right)}=H \mathcal{Y}_{\alpha}\left(F w^{\left(i^{\prime}\right)}, z\right) G w^{\left(j^{\prime}\right)}
$$

In particular, we denote by $\mathcal{L}_{i, j} \in \mathcal{V}\binom{i \boxtimes j}{i j}=\mathcal{V}\binom{W_{i} \boxtimes W_{j}}{W_{i} W_{j}}$ the value of the identity element $\mathbf{1}_{i \boxtimes j} \in \operatorname{Hom}_{V}\left(W_{i} \boxtimes W_{j}, W_{i} \boxtimes W_{j}\right)$ under (1.2), i.e.,

$$
\mathcal{L}_{i, j}=\mathcal{Y}_{1_{i \otimes j}} .
$$

Here we adopt the notation

$$
W_{i \boxtimes j}=W_{i} \boxtimes W_{j} .
$$

Then for any $\alpha \in \operatorname{Hom}_{V}\left(W_{i} \boxtimes W_{j}, W_{k}\right)$, by the functoriality of (1.2) and that $\alpha=$ $\alpha \cdot \mathbf{1}_{W_{i} \boxtimes W_{j}}$, it is clear that

$$
\mathcal{Y}_{\alpha}=\alpha \mathcal{L}_{i, j}
$$

(In the papers of Huang-Lepowsky, $\mathcal{L}_{i, j}\left(w^{(i)}, z\right) w^{(j)}$ is written as $w^{(i)} \boxtimes_{P(z)} w^{(j)}$, regarded as a fusion product of the vectors $w^{(i)}, w^{(j)}$.)

Note that $Y_{i} \in \mathcal{V}\left(\begin{array}{c}i \\ 0\end{array}{ }_{i}\right)$. The left unitor $W_{0} \boxtimes W_{i} \xrightarrow{\simeq} W_{i}$ is defined such that it is sent by (1.2) to the element Y_{i}. The right unitor

$$
\mathrm{\kappa}(i): W_{i} \boxtimes W_{0} \xrightarrow{\simeq} W_{i}
$$

is defined such that

$$
\mathcal{Y}_{\kappa(i)}=\mathbb{B} Y_{i} .
$$

We call $\mathcal{Y}_{\kappa(i)} \in \mathcal{V}\binom{{ }_{i}^{i}}{i}$ the creation operator of W_{i}.
The braid isomorphism $\mathbb{B}=\mathbb{B}_{i, j}: W_{i} \boxtimes W_{j} \xrightarrow{\simeq} W_{j} \boxtimes W_{i}$ is defined such that

$$
\mathcal{Y}_{\mathbb{B}_{i, j}}=\mathbb{B} \mathcal{L}_{i, j} .
$$

We will not use braiding in this article. To describe the associativity isomorphisms, we first notice:

Proposition 1.1. Choose any $z \in \mathbb{C}^{\times}=\mathbb{C}-\{0\}$. Then for any $n \in \mathbb{C}$,

$$
\begin{equation*}
\operatorname{Span}_{w^{(i)} \in W_{i}, w^{(j)} \in W_{j}} P_{\leq n} \cdot \mathcal{L}_{i, j}\left(w^{(i)}, z\right) w^{(j)}=\left(W_{i} \boxtimes W_{j}\right)(\leq n) . \tag{1.3}
\end{equation*}
$$

This proposition was proved in [13] section A.2. ${ }^{1}$ The main idea of the proof is as follows. Set $W_{k}=W_{i} \boxtimes W_{j}$. Then it is equivalent to proving that for any $w^{(\bar{k})} \in W_{\bar{k}}$, if

$$
\left\langle w^{(\bar{k})}, \mathcal{L}_{i, j}\left(w^{(i)}, z\right) w^{(j)}\right\rangle=0
$$

for any $w^{(i)} \in W_{i}$ and $w^{(j)} \in W_{j}$, then $w^{(\bar{k})}=0$. To see this, let $\mathcal{W} \subset W_{\bar{k}}$ be the subspace of all $w^{(\bar{k})}$ satisfying the above identity. Using the Jacobi identity for intertwining operators, it is easy to see that \mathcal{W} is V-invariant, i.e. it is a V-submodule of $W_{\bar{k}}$. Assume \mathcal{W} is non-trivial. Choose an irreducible module W_{l} such that \mathcal{W} has an irreducible submodule isomorphic to $W_{\bar{l}}$. Then there is a non-zero $T \in \operatorname{Hom}_{V}\left(W_{k}, W_{l}\right)$ whose transpose $T^{\mathrm{t}} \in \operatorname{Hom}_{V}\left(W_{\bar{l}}, W_{\bar{k}}\right)$ maps $W_{\bar{l}}$ into \mathcal{W}. Using the definition of \mathcal{W} and the fact that

[^1]$T^{\mathrm{t}} w^{(\bar{l})} \in \mathcal{W}$ for each $w^{(\bar{l})} \in W_{\bar{l}}$, it is easy to see that $T \mathcal{L}_{i, j}=0$. Recall $W_{k}=W_{i} \boxtimes W_{j}$. So we can write $T \mathcal{L}_{i, j}=\mathcal{Y}_{T}$. Therefore $T=0$, which gives a contradiction.

Corollary 1.2. Let W_{i}, W_{j}, W_{s} be V-modules, and assume that W_{s} is isomorphic to an irreducible submodule of $W_{i} \boxtimes W_{j}$. If $\Xi_{i, j}^{s}$ is a basis of $\operatorname{Hom}_{V}\left(W_{i} \boxtimes W_{j}, W_{s}\right), \alpha \in \Xi_{i, j}^{s}$, then there exist homogeneous vectors $w_{1}^{(i)}, \ldots, w_{m}^{(i)} \in W_{i}, w_{1}^{(j)}, \ldots, w_{m}^{(j)} \in W_{j}, w^{(\bar{s})} \in W_{\bar{s}}$, and constants $\lambda_{1}, \ldots, \lambda_{m} \in \mathbb{Q}$, such that for any $\beta \in \Xi_{i, j}^{s}$, the expression

$$
\begin{equation*}
\sum_{l=1}^{m} z^{\lambda_{l}}\left\langle\mathcal{Y}_{\beta}\left(w_{l}^{(i)}, z\right) w_{l}^{(j)}, w^{(\bar{s})}\right\rangle \tag{1.4}
\end{equation*}
$$

is a constant (where z is a complex variable), and it is non-zero if and only if $\beta=\alpha$.
Proof. Choose $n \in \mathbb{C}$ such that $W_{s}(n)$ is non-trivial. Choose for each $\alpha \in \Xi_{i, j}^{s}$ a mor$\operatorname{phism} \check{\alpha} \in \operatorname{Hom}_{V}\left(W_{s}, W_{i} \boxtimes W_{j}\right)$ such that $\alpha \breve{\beta}=\delta_{\alpha, \beta} \mathbf{1}_{s}$ for any $\alpha, \beta \in \Xi_{i, j}^{s}$. Now we fix $\alpha \in \Xi_{i, j}^{s}$, and choose a non-zero vector $w^{(s)} \in W_{s}(n)$. By Proposition 1.1, there exist homogeneous vectors $w_{1}^{(i)}, \ldots, w_{m}^{(i)} \in W_{i}$ and $w_{1}^{(j)}, \ldots, w_{m}^{(j)} \in W_{j}$ such that

$$
\sum_{l=1}^{m} P_{n} \mathcal{L}_{i, j}\left(w_{l}^{(i)}, 1\right) w_{l}^{(j)}=\check{\alpha} w^{(s)}
$$

Choose $w^{(\bar{s})} \in W_{\bar{s}}(n)$ such that $\left\langle w^{(s)}, w^{(\bar{s})}\right\rangle \neq 0$. (Recall that $W_{\bar{s}}(n)$ is the dual vector space of $W_{s}(n)$.) Then it is easy to check that the constant

$$
\begin{equation*}
\sum_{l=1}^{m}\left\langle\mathcal{Y}_{\beta}\left(w_{l}^{(i)}, 1\right) w_{l}^{(j)}, w^{(\bar{s})}\right\rangle \tag{1.5}
\end{equation*}
$$

is non-zero (in which case equals $\left\langle w^{(s)}, w^{(\bar{s})}\right\rangle$) if and only if $\beta=\alpha$. Now let

$$
\lambda_{l}=\mathrm{wt}\left(w_{l}^{(s)}\right)-\mathrm{wt}\left(w_{l}^{(i)}\right)-\mathrm{wt}\left(w_{l}^{(j)}\right),
$$

where the three terms on the right hand side are the weights (i.e. the L_{0}-eigenvalues) of the corresponding homogeneous vectors. Then (1.5) equals (1.4). This proves the claim of this corollary.

For any irreducible equivalence class of V-modules we choose a representing element and let them form a (finite) set \mathcal{E}. We assume $W_{0} \in \mathcal{E}$. Choose V-modules $W_{i}, W_{j}, W_{k}, W_{l}$. If $W_{s} \in \mathcal{E}$, we write $s \in \mathcal{E}$ for short. For each $r \in \mathcal{E}$, we choose bases $\Xi_{j, k}^{r}$ of $\operatorname{Hom}_{V}\left(W_{j} \boxtimes W_{k}, W_{r}\right)$ and $\Xi_{i, r}^{l}$ of $\operatorname{Hom}_{V}\left(W_{i} \boxtimes W_{r}, W_{l}\right)$. Choose $z, \zeta \in \mathbb{C}^{\times}$with $0<|\zeta|<|z|$. Then for any $w^{(i)} \in W_{i}, w^{(j)} \in W_{j}$, and any $\alpha \in \Xi_{i, r}^{l}, \beta \in \Xi_{j, k}^{r}$ the product

$$
\begin{equation*}
\mathcal{Y}_{\alpha}\left(w^{(i)}, z\right) \mathcal{Y}_{\beta}\left(w^{(j)}, \zeta\right) \tag{1.6}
\end{equation*}
$$

converges absolutely [19], in the sense that for any $w^{(k)} \in W_{k}, w^{(\bar{l})} \in W_{\bar{l}}$,

$$
\sum_{n \in \mathbb{C}}\left|\left\langle\mathcal{Y}_{\alpha}\left(w^{(i)}, z\right) P_{n} \mathcal{Y}_{\beta}\left(w^{(j)}, \zeta\right) w^{(k)}, w^{(\bar{l})}\right\rangle\right|<+\infty
$$

Moreover, consider the expression

$$
\begin{equation*}
\left\langle\mathcal{Y}_{\alpha}\left(w^{(i)}, z\right) \mathcal{Y}_{\beta}\left(w^{(j)}, \zeta\right) w^{(k)}, w^{(\bar{l})}\right\rangle \tag{1.7}
\end{equation*}
$$

as an element of $\left(W_{i} \otimes W_{j} \otimes W_{k} \otimes W_{\bar{l}}\right)^{*}$. (Note that this element depends also on the $\operatorname{arguments} \arg z$ and $\arg \zeta$.) By linearity, we have a linear map

$$
\begin{equation*}
\Psi_{z, \zeta}: \bigoplus_{r \in \mathcal{E}} \operatorname{Hom}_{V}\left(W_{i} \boxtimes W_{r}, W_{l}\right) \otimes \operatorname{Hom}_{V}\left(W_{j} \boxtimes W_{k}, W_{r}\right) \rightarrow\left(W_{i} \otimes W_{j} \otimes W_{k} \otimes W_{\bar{l}}\right)^{*} \tag{1.8}
\end{equation*}
$$

sending $\alpha \otimes \beta$ to the linear functional defined by (1.7). This map is well-known to be injective. Indeed, choose any \mathfrak{X} in the domain of $\Psi_{z, \zeta}$. If $\Psi_{z, \zeta}(\mathfrak{X})$ equals 0 for one pair (z, ζ), then, by the existence of differential equations as in [19], $\Psi_{z, \zeta}(\mathfrak{X})$ equals 0 for all z, ζ satisfying $0<|\zeta|<|z|$. (See [13] the paragraphs after theorem 2.4 for a detailed explanation.) Then, using Proposition 1.1, it is not hard to show $\mathfrak{X}=0$. (See for instance [13] proposition 2.3 whose proof is in section A.2.)

Similarly, when $0<|z-\zeta|<|\zeta|$, one can define an injective linear map

$$
\begin{equation*}
\Phi_{z, \zeta}: \bigoplus_{s \in \mathcal{E}} \operatorname{Hom}_{V}\left(W_{s} \boxtimes W_{k}, W_{l}\right) \otimes \operatorname{Hom}_{V}\left(W_{i} \boxtimes W_{j}, W_{s}\right) \rightarrow\left(W_{i} \otimes W_{j} \otimes W_{k} \otimes W_{\bar{l}}\right)^{*} \tag{1.9}
\end{equation*}
$$

sending each $\gamma \otimes \delta$ to the linear functional determined by the following iterate of intertwining operators:

$$
\begin{equation*}
\left\langle\mathcal{Y}_{\gamma}\left(\mathcal{Y}_{\delta}\left(w^{(i)}, z-\zeta\right) w^{(j)}, \zeta\right) w^{(k)}, w^{(\bar{l})}\right\rangle \tag{1.10}
\end{equation*}
$$

Again, this map depends on the choice of arguments: $\arg (z-\zeta)$ and $\arg (\zeta)$, and the above expression converges absolutely in an appropriate sense. By a deep result of [18,19], $\Phi_{z, \zeta}$ and $\Psi_{z, \zeta}$ have the same image.

We now assume

$$
\begin{equation*}
0<|z-\zeta|<|\zeta|<|z|, \quad \arg (z-\zeta)=\arg \zeta=\arg z \tag{1.11}
\end{equation*}
$$

In particular, ζ, z are on the same ray starting from the origin. If we also choose bases $\Xi_{s, k}^{l}$ and $\Xi_{i, j}^{s}$ of $\operatorname{Hom}_{V}\left(W_{s} \boxtimes W_{k}, W_{l}\right)$ and $\operatorname{Hom}_{V}\left(W_{i} \boxtimes W_{j}, W_{s}\right)$ respectively, then we have a matrix $\left\{F_{\gamma \delta}^{\alpha \beta}\right\}$ (the fusion matrix) representing the invertible map $\Psi_{z, \zeta} \Phi_{z, \zeta}^{-1}$. Equivalently,
we have a unique number $F_{\gamma \delta}^{\alpha \beta}$ for each $\alpha, \beta, \gamma, \delta$ such that for each $s \in \mathcal{E}$ and each $\gamma \in \Xi_{s, k}^{l}, \delta \in \Xi_{i, j}^{s}$, the fusion relation

$$
\begin{equation*}
\mathcal{Y}_{\gamma}\left(\mathcal{Y}_{\delta}\left(w^{(i)}, z-\zeta\right) w^{(j)}, \zeta\right)=\sum_{r \in \mathcal{E}} \sum_{\alpha \in \Xi_{i, r}^{l}, \beta \in \Xi_{j, k}^{r}} F_{\gamma \delta}^{\alpha \beta} \cdot \mathcal{Y}_{\alpha}\left(w^{(i)}, z\right) \mathcal{Y}_{\beta}\left(w^{(j)}, \zeta\right) \tag{1.12}
\end{equation*}
$$

holds for each $w^{(i)} \in W_{i}, w^{(j)} \in W_{j}$. This fusion matrix is independent of the particular choice of z, ζ satisfying the above mentioned conditions. The associativity isomorphisms of $\operatorname{Rep}(V)$ are defined in such a way that after making $\operatorname{Rep}(V)$ strict, we have

$$
\begin{equation*}
\gamma\left(\delta \otimes \mathbf{1}_{k}\right)=\sum_{r \in \mathcal{E}} \sum_{\alpha \in \Xi_{i, r}^{l}, \beta \in \Xi_{j, k}^{r}} F_{\gamma \delta}^{\alpha \beta} \cdot \alpha\left(\mathbf{1}_{i} \otimes \beta\right) \tag{1.13}
\end{equation*}
$$

namely, F is also an F-matrix of $\operatorname{Rep}(V)$.

2. Fusion of annihilation and vertex operators

Let W_{i}, W_{j} be V-modules. For each $W_{s} \in \mathcal{E}$, there is a non-degenerate bilinear form $\langle\cdot, \cdot\rangle$ on $\operatorname{Hom}_{V}\left(W_{i} \boxtimes W_{j}, W_{s}\right) \otimes \operatorname{Hom}_{V}\left(W_{s}, W_{i} \boxtimes W_{j}\right)$ such that if $\alpha \in \operatorname{Hom}_{V}\left(W_{i} \boxtimes W_{j}, W_{s}\right)$ and $T \in \operatorname{Hom}_{V}\left(W_{s}, W_{i} \boxtimes W_{j}\right)$, then

$$
\begin{equation*}
\alpha T=\langle\alpha, T\rangle \mathbf{1}_{s} \tag{2.1}
\end{equation*}
$$

This bilinear form gives an isomorphism

$$
\begin{equation*}
\operatorname{Hom}_{V}\left(W_{s}, W_{i} \boxtimes W_{j}\right) \xrightarrow{\simeq} \operatorname{Hom}_{V}\left(W_{i} \boxtimes W_{j}, W_{s}\right)^{*} \tag{2.2}
\end{equation*}
$$

We shall always identify $\operatorname{Hom}_{V}\left(W_{s}, W_{i} \boxtimes W_{j}\right)$ and $\operatorname{Hom}_{V}\left(W_{i} \boxtimes W_{j}, W_{s}\right)^{*}$ using the above isomorphism.

Recall from the last section that $\Xi_{i, j}^{s}$ is a basis of $\operatorname{Hom}_{V}\left(W_{i} \boxtimes W_{j}, W_{s}\right)$. Then we can choose a dual basis $\left\{\check{\alpha}: \alpha \in \Xi_{i, j}^{s}\right\}$. Namely, for each $\alpha \in \Xi_{i, j}^{s}$, we have $\check{\alpha} \in \operatorname{Hom}_{V}\left(W_{s}, W_{i} \boxtimes W_{j}\right)$, and if $\beta \in \Xi_{i, j}^{s}$, then $\langle\alpha, \check{\beta}\rangle=\delta_{\alpha, \beta}$. So we also have

$$
\begin{equation*}
\alpha \breve{\beta}=\delta_{\alpha, \beta} \mathbf{1}_{s} . \tag{2.3}
\end{equation*}
$$

This implies that

$$
\begin{equation*}
\mathbf{1}_{i \boxtimes j}=\sum_{s \in \mathcal{E}} \sum_{\alpha \in \Xi_{i, j}^{s}} \check{\alpha} \alpha, \tag{2.4}
\end{equation*}
$$

since, by (2.3), the left multiplications of both sides of (2.4) by any $\beta \in \Xi_{i, j}^{s}$ equal β.
In [16], Huang-Kong used the rigidity of $\operatorname{Rep}(V)$ to define a natural isomorphism $\operatorname{Hom}_{V}\left(W_{\bar{i}} \boxtimes W_{\bar{j}}, W_{\bar{s}}\right) \xrightarrow{\simeq} \operatorname{Hom}_{V}\left(W_{i} \boxtimes W_{j}, W_{s}\right)^{*}$. Since $\mathcal{V}\left({ }_{\bar{i}}^{\bar{s}}\right)$ is isomorphic to $\mathcal{V}\left({ }_{\bar{i}}{ }^{j}{ }_{s}\right)$ by sending \mathcal{Y} to $\mathcal{C Y}$, we also have an isomorphism

$$
\begin{equation*}
\mathrm{q}: \operatorname{Hom}_{V}\left(W_{i} \boxtimes W_{j}, W_{s}\right)^{*} \xrightarrow{\simeq} \operatorname{Hom}_{V}\left(W_{\bar{i}} \boxtimes W_{s}, W_{j}\right) . \tag{2.5}
\end{equation*}
$$

In the following, we review the construction of this isomorphism.
In [20], Huang showed that $\operatorname{Rep}(V)$ is rigid, and the (categorical) dual object of any V-module W_{i} could be chosen to be the contragredient module $W_{\bar{i}}$. Moreover, if we define

$$
\mathrm{ev}_{\bar{i}, i} \in \operatorname{Hom}_{V}\left(W_{\bar{i}} \boxtimes W_{i}, V\right)
$$

such that

$$
\mathcal{Y}_{\mathrm{ev}_{\bar{i}, i}}=\subset \mathcal{Y}_{\mathrm{K}(\bar{i})}
$$

(Recall that $\mathcal{Y}_{\mathrm{K}(\bar{i})}$ is the creation operator of $W_{\bar{i}}$, which is of type $\binom{\bar{i}}{i} . \mathcal{Y}_{\mathrm{ev}_{\bar{i}, i}}$, which is of type $\binom{0}{\bar{i}}$, is called the annihilation operator of W_{i}.) then there is a (unique) morphism

$$
\operatorname{coev}_{i, \bar{i}} \in \operatorname{Hom}_{V}\left(V, W_{i} \boxtimes W_{\bar{i}}\right)
$$

satisfying the conjugate equations

$$
\begin{aligned}
\left(\mathbf{1}_{i} \otimes \mathrm{ev}_{\bar{i}, i}\right)\left(\operatorname{coev}_{i, \bar{i}} \otimes \mathbf{1}_{i}\right) & =\mathbf{1}_{i}, \\
\left(\mathrm{ev}_{\bar{i}, i} \otimes \mathbf{1}_{\bar{i}}\right)\left(\mathbf{1}_{\bar{i}} \otimes \operatorname{coev}_{i, \bar{i}}\right) & =\mathbf{1}_{\bar{i}}
\end{aligned}
$$

This is also true for $W_{\bar{i}}$. Thus we have $\mathrm{ev}_{i, \bar{i}}$ and $\operatorname{coev}_{\bar{i}, i}$ defined by $\mathrm{ev}_{i, \bar{i}}=\mathrm{ev}_{\overline{\bar{i}}, \bar{i}}$ and $\operatorname{coev}_{\bar{i}, i}=\operatorname{coev}_{\bar{i}, \bar{i}}$.

Recall the identification (2.2). We define

$$
\begin{gather*}
\mathrm{\Psi}: \operatorname{Hom}_{V}\left(W_{s}, W_{i} \boxtimes W_{j}\right) \xrightarrow{\simeq} \operatorname{Hom}_{V}\left(W_{\bar{i}} \boxtimes W_{s}, W_{j}\right), \\
T \mapsto \mathrm{Y}(T)=\left(\mathrm{ev}_{\bar{i}, i} \otimes \mathbf{1}_{j}\right)\left(\mathbf{1}_{\bar{i}} \otimes T\right) . \tag{2.6}
\end{gather*}
$$

That Y is an isomorphism follows from the conjugate equations. Using the definition of y and equation (2.4), it is easy to see

$$
\begin{equation*}
\mathrm{ev}_{\bar{i}, i} \otimes \mathbf{1}_{j}=\sum_{s \in \mathcal{E}} \sum_{\alpha \in \Xi_{i, j}^{s}} \mathrm{\Psi}(\check{\alpha})\left(\mathbf{1}_{\bar{i}} \otimes \alpha\right) . \tag{2.7}
\end{equation*}
$$

Thus, by (1.12) and (1.13), we have the following fusion relation which will play an important role in later sections: Let $z, \zeta \in \mathbb{C}$ satisfy (1.11). Then for any $w^{(i)} \in W_{i}, w^{(\bar{i})} \in$ $W_{\bar{i}}$,

$$
\begin{equation*}
Y_{j}\left(\mathcal{Y}_{\mathrm{ev}_{\overline{\mathrm{i}}, i}}\left(w^{(\bar{i})}, z-\zeta\right) w^{(i)}, \zeta\right)=\sum_{s \in \mathcal{E}} \sum_{\alpha \in \Xi_{i, j}^{s}} \mathcal{Y}_{\mathrm{Y}(\widetilde{\alpha})}\left(w^{(\bar{i})}, z\right) \mathcal{Y}_{\alpha}\left(w^{(i)}, \zeta\right) \tag{2.8}
\end{equation*}
$$

Note that for each $s \in \mathcal{E},\left\{\mathrm{Y}(\check{\alpha}): \alpha \in \Xi_{i, j}^{s}\right\}$ is a basis of $\operatorname{Hom}_{V}\left(W_{\bar{i}} \boxtimes W_{s}, W_{j}\right)$. Roughly speaking, this fusion relation says that any intertwining operator arises from fusing the annihilation operators and the vertex operators. This is parallel to the fact that any V module character occurs in the sum resulting from the modular transformation $\tau \mapsto-1 / \tau$ of the vacuum module character.

3. Compressions of intertwining operators

Assume that V is a vertex operator subalgebra (sub-VOA for short) of another CFTtype VOA U with vertex operator Y^{U} and conformal vector ω. This means that V is a subspace of U, V and U share the same vacuum vector $\mathbf{1}$, and that $Y^{U}\left(v_{1}, z\right) v_{2}=$ $Y\left(v_{1}, z\right) v_{2}$ when $v_{1}, v_{2} \in V$. Let $L_{n}^{U}=Y^{U}(\omega)_{n+1}$. We shall always assume the additional condition that

$$
\begin{equation*}
L_{0}^{U} \nu=2 \nu, \quad L_{1}^{U} \nu=0 \tag{3.1}
\end{equation*}
$$

Then by [11] or [22] theorem 3.11.12, $\left(V^{c}, Y^{\prime}, \mathbf{1}, \nu^{\prime}\right)$ is a sub-VOA of U, where V^{c} is the set of all $u \in U$ such that $Y(v)_{n} u=0$ for all $v \in V$ and $n \in \mathbb{N}, Y^{\prime}$ is the restriction of Y^{U} to V^{c}, and $\nu^{\prime}=\omega-\nu$. We set $L_{n}^{\prime}=Y^{\prime}\left(\nu^{\prime}\right)_{n+1}$.

Assume that V^{c} is self-dual, CFT-type, and regular. Then $V \otimes V^{c}$ is also CFT-type and self-dual (and also regular). Thus it is simple. Therefore, the homomorphism of $V \otimes V^{c}$-modules

$$
\begin{equation*}
V \otimes V^{c} \rightarrow U, \quad v \otimes v^{\prime} \mapsto Y(v)_{-1} Y\left(v^{\prime}\right)_{-1} \mathbf{1} \tag{3.2}
\end{equation*}
$$

(cf. [22] proposition 3.12.7) must be injective. Thus, we can regard $V \otimes V^{c}$ as a conformal sub-VOA of U sharing the same conformal vector $\omega=\nu+\nu^{\prime}=\nu \otimes \mathbf{1}+\mathbf{1} \otimes \nu^{\prime}$. Note that by the identification $v \otimes v^{\prime}=Y(v)_{-1} Y\left(v^{\prime}\right)_{-1} \mathbf{1}$, we have $\mathbf{1}=\mathbf{1} \otimes \mathbf{1}, v=v \otimes \mathbf{1}, v^{\prime}=$ $1 \otimes v^{\prime}$.

Recall that by [10] chapter 4, any irreducible $V \otimes V^{c}$-module is the tensor product of a V-module and a V^{c}-module. Moreover, by [3] theorem 2.10, any irreducible intertwining operator of $V \otimes V^{c}$ can be written as a sum of tensor products of irreducible intertwining operators of V and of V^{c}. Therefore, any U-module, considered as a $V \otimes V^{c}$-module, is a direct sum of those of the form $W_{i} \otimes W_{i^{\prime}}$, where W_{i} is an irreducible V-module and $W_{i^{\prime}}$ is an irreducible V^{c}-module. Theorem 2.10 also implies that any intertwining operator of U can be decomposed as a sum of $\mathcal{Y}_{\alpha} \otimes \mathcal{Y}_{\alpha^{\prime}}$, where \mathcal{Y}_{α} and $\mathcal{Y}_{\alpha^{\prime}}$ are irreducible intertwining operators of V and V^{c} respectively.

In the following, $W_{I}, W_{J}, W_{K}, \ldots$ will denote U-modules, and $W_{i^{\prime}}, W_{j^{\prime}}, W_{k^{\prime}}, \ldots$ will denote V^{c}-modules. $\mathcal{V}^{U}\binom{K}{I}$ and $\mathcal{V}^{\prime}\left(\begin{array}{c}i^{\prime}{ }^{\prime} j^{\prime}\end{array}\right)$ will denote the corresponding vector spaces of intertwining operators of U and V^{c} respectively. Note that W_{I} can not be regarded as a V-module (unless when $\omega=\nu$) but only as a weak V-module (see [8] for the definition.)

Definition 3.1. Let W_{i} be an irreducible V-module and W_{I} be a U-module. Let $\varphi: W_{i} \rightarrow$ W_{I} and $\psi: W_{I} \rightarrow W_{i}$ be homomorphisms of weak V-modules, i.e., they intertwine the actions of V. We say that φ is grading-preserving if φ maps each L_{0}-eigenspace of W_{i} into an L_{0}^{U}-eigenspace of W_{I}. We say that ψ is grading-preserving if the preimage under ψ of any L_{0}^{U}-eigenspace of W_{I} is contained in an L_{0}-eigenspace of W_{i}.

Remark 3.2. We have seen that there is an identification of $V \otimes V^{c}$-modules:

$$
\begin{equation*}
W_{I} \simeq \bigoplus_{s \in \mathcal{E}} W_{s} \otimes W_{\sigma(s)} \tag{3.3}
\end{equation*}
$$

where for each $s \in \mathcal{E}, W_{\sigma(s)}$ is a (non-necessarily irreducible) V^{c}-module. We can also regard (3.3) as a decomposition of W_{I} into irreducible weak V-modules, where for each $s \in \mathcal{E}, W_{\sigma(s)}$ is the multiplicity space of W_{s}. (Note that different elements in \mathcal{E} give rise to non-equivalent irreducible modules.) Choose any $s \in \mathcal{E}$. Choose $\varphi: W_{s} \rightarrow W_{I}$ and $\psi: W_{I} \rightarrow W_{s}$ to be homomorphisms of weak V-modules. Then it is not hard to see that we can find $w^{(\sigma(s))} \in W_{\sigma(s)}$ and $\varpi \in W_{\sigma(s)}^{*}$ (note that $W_{\sigma(s)}^{*}$ is the dual vector space of $\left.W_{\sigma(s)}\right)$ such that

$$
\begin{equation*}
\varphi=\mathbf{1}_{s} \otimes w^{(\sigma(s))}, \quad \psi=\mathbf{1}_{s} \otimes \varpi \tag{3.4}
\end{equation*}
$$

where $w^{(\sigma(s))}$ is considered as the linear map $\mathbb{C} \rightarrow W_{\sigma(s)}$ sending 1 to $w^{(\sigma(s))} .{ }^{2}$ Moreover, outside $W_{s} \otimes W_{\sigma(s)}, \mathbf{1}_{s} \otimes \varpi$ is defined to be the zero functional. Thus, it is clear that φ (resp. ψ) is grading-preserving if any only if $w^{(\sigma(s))}$ (resp. ϖ) equals an (L_{0}^{\prime}-) homogeneous vector of $W_{\sigma(s)}$ (resp. $\left.W_{\overline{\sigma(s)}}\right)$.

Definition 3.3. Let W_{i} be an irreducible V-module and W_{I} be a U-module. We say that W_{i} is a compression of W_{I} if W_{I} (considered as a weak V-module) has an irreducible weak V-submodule isomorphic to W_{i}. Equivalently, the $V \otimes V^{c}$-module W_{I} has a (non-trivial) irreducible submodule isomorphic to $W_{i} \otimes W_{i^{\prime}}$ for some irreducible V^{c}-module $W_{i^{\prime}}$.

Definition 3.4. Let $\mathcal{Y} \in \mathcal{V}\binom{k}{i}$ be an irreducible intertwining operator of V.
(a) Let $\mathcal{Y}^{U} \in \mathcal{V}^{U}\binom{K}{I}$ be an intertwining operator of U. We say that \mathcal{Y} is a compression of \mathcal{Y}^{U}, if there exit $\lambda \in \mathbb{Q}$ and grading-preserving homomorphisms of weak V-modules $\varphi: W_{i} \rightarrow W_{I}, \phi: W_{j} \rightarrow W_{J}$, and $\psi: W_{K} \rightarrow W_{k}$, such that for any $w^{(i)} \in W_{i}$ and $z \in \mathbb{C}^{\times}$

$$
\mathcal{Y}\left(w^{(i)}, z\right)=z^{\lambda} \cdot \psi \mathcal{Y}^{U}\left(\varphi w^{(i)}, z\right) \phi
$$

[^2](b) If W_{I}, W_{J} are U-modules, we say that \mathcal{Y} is a compression of type $\left({ }_{I}{ }_{J}\right)$ intertwining operators of U, if \mathcal{Y} is a (finite) sum of compressions of intertwining operators of U whose charge spaces are W_{I} and source spaces are W_{J}.
(c) If \mathcal{Y} is a (finite) sum of compressions of intertwining operators of U, we simply say that \mathcal{Y} is a compression of intertwining operators of U

Proposition 3.5. Let W_{I}, W_{J}, W_{K} be U-modules with $V \otimes V^{c}$-irreducible decompositions

$$
W_{I} \simeq \bigoplus W_{i} \otimes W_{i^{\prime}}, \quad W_{J} \simeq \bigoplus W_{j} \otimes W_{j^{\prime}}, \quad W_{K} \simeq \bigoplus W_{k} \otimes W_{k^{\prime}}
$$

Then, according to these decompositions, any $\mathcal{Y}^{U} \in \mathcal{V}^{U}\binom{{ }_{I}^{K}}{J}$ can be written as a sum of elements of the form $\mathcal{Y} \otimes \mathcal{Y}^{\prime}$, where $\mathcal{Y} \in \mathcal{V}\binom{k}{i}$ is the compression of a type $\binom{K}{I}$ intertwining operator of U, and \mathcal{Y}^{\prime} is an irreducible intertwining operator of V^{c}.

Proof. We fix irreducible $V \otimes V^{c}$-submodules $W_{i} \otimes W_{i^{\prime}}, W_{j} \otimes W_{j^{\prime}}, W_{k} \otimes W_{k^{\prime}}$ of W_{I}, W_{J}, W_{k} respectively. Let $\Theta_{i^{\prime}, j^{\prime}}^{k^{\prime}}$ be a basis of $\operatorname{Hom}_{V^{c}}\left(W_{i^{\prime}} \boxtimes W_{j^{\prime}}, W_{k^{\prime}}\right)$. We have a (functorial) isomorphism

$$
\begin{equation*}
\operatorname{Hom}_{V^{c}}\left(W_{i^{\prime}} \boxtimes W_{j^{\prime}}, W_{k^{\prime}}\right) \xrightarrow{\simeq} \mathcal{V}^{\prime}\binom{k^{\prime}}{i^{\prime} j^{\prime}}, \quad \alpha^{\prime} \mapsto \mathcal{Y}_{\alpha^{\prime}}^{\prime} \tag{3.5}
\end{equation*}
$$

similar to (1.2). Consider \mathcal{Y}^{U} as an intertwining operator of $V \otimes V^{c}$, and restrict it to $W_{i} \otimes W_{i^{\prime}}, W_{j} \otimes W_{j^{\prime}}, W_{k} \otimes W_{k^{\prime}}$. Then, by [3] theorem 2.10 , this restriction is a sum of tensor products of V - and V^{c}-intertwining operators. Assume without loss of generality that this restriction is non-zero. Then $W_{k}, W_{k^{\prime}}$ must be irreducible submodules of $W_{i} \boxtimes$ $W_{j}, W_{i^{\prime}} \boxtimes W_{j^{\prime}}$ respectively. Now, for each $\alpha^{\prime} \in \Theta_{i^{\prime}, j^{\prime}}^{k^{\prime}}$, we can find $\alpha \in \operatorname{Hom}_{V}\left(W_{i} \boxtimes W_{j}, W_{k}\right)$ (not necessarily in $\Xi_{i, j}^{k}$) such that the restriction of \mathcal{Y}^{U} equals

$$
\sum_{\alpha^{\prime} \in \Theta_{i^{\prime}, j^{\prime}}^{k^{\prime}}} \mathcal{Y}_{\alpha} \otimes \mathcal{Y}_{\alpha^{\prime}}^{\prime}
$$

We shall show that each \mathcal{Y}_{α} is a sum of compressions of type $\binom{K}{I}$ intertwining operators of U.

Choose $\alpha^{\prime} \in \Theta_{i^{\prime}, j^{\prime}}^{k^{\prime}}$ and apply Corollary 1.2 to V^{c}. Then there exist homogeneous vectors $w_{1}^{\left(i^{\prime}\right)}, \ldots, w_{m}^{\left(i^{\prime}\right)} \in W_{i^{\prime}}, w_{1}^{\left(j^{\prime}\right)}, \ldots, w_{m}^{\left(j^{\prime}\right)} \in W_{j^{\prime}}, w^{\left(\overline{k^{\prime}}\right)} \in W_{\overline{k^{\prime}}}$, and constants $\lambda_{1}, \ldots, \lambda_{m} \in \mathbb{Q}$, such that for any $\beta^{\prime} \in \Theta_{i^{\prime}, j^{\prime}}^{k^{\prime}}$, the expression

$$
\begin{equation*}
\sum_{l=1}^{m} z^{\lambda_{l}}\left\langle\mathcal{Y}_{\beta^{\prime}}^{\prime}\left(w_{l}^{\left(i^{\prime}\right)}, z\right) w_{l}^{\left(j^{\prime}\right)}, w^{\left(\overline{k^{\prime}}\right)}\right\rangle \tag{3.6}
\end{equation*}
$$

is a constant (over the complex variable z), and this constant is non-zero if and only if $\beta^{\prime}=\alpha^{\prime}$. By scaling the vector $w^{\left(\overline{k^{\prime}}\right)}$, we may assume that when $\beta^{\prime}=\alpha^{\prime}$, the above
constant is 1 . Now, for each $l=1,2, \ldots, m$, define grading-preserving homomorphisms of weak V-modules $\varphi_{l}: W_{i} \rightarrow W_{I}, \phi_{l}: W_{j} \rightarrow W_{J}, \psi: W_{K} \rightarrow W_{k}$ by

$$
\varphi_{l}=\mathbf{1}_{i} \otimes w_{l}^{\left(i^{\prime}\right)}, \quad \phi_{l}=\mathbf{1}_{j} \otimes w_{l}^{\left(j^{\prime}\right)}, \quad \psi=\mathbf{1}_{k} \otimes w^{\left(\overline{k^{\prime}}\right)}
$$

Then we have

$$
\mathcal{Y}_{\alpha}\left(w^{(i)}, z\right)=\sum_{l=1}^{m} z^{\lambda_{l}} \cdot \psi \mathcal{Y}^{U}\left(\varphi_{l} w^{(i)}, z\right) \phi_{l}
$$

This finishes the proof.

4. Proof of the main result

In this section, we assume that $V^{c c}=V$. Let W_{I}, W_{J} be V-modules, and we fix irreducible decompositions of $V \otimes V^{c}$-modules:

$$
\begin{align*}
U & \simeq\left(V \otimes V^{c}\right) \oplus\left(\bigoplus W_{a} \otimes W_{a^{\prime}}\right) \tag{4.1}\\
W_{I} & \simeq\left(V \otimes V^{c}\right) \oplus\left(\bigoplus W_{i} \otimes W_{i^{\prime}}\right) \tag{4.2}\\
W_{J} & \simeq\left(V \otimes V^{c}\right) \oplus\left(\bigoplus W_{j} \otimes W_{j^{\prime}}\right) \tag{4.3}
\end{align*}
$$

We first recall the following obvious fact.
Proposition 4.1. If $W_{a} \otimes W_{a^{\prime}}$ is an irreducible $V \otimes V^{c}$-submodule of $U \ominus\left(V \otimes V^{c}\right)$, then W_{a} is not isomorphic to V and $W_{a^{\prime}}$ is not isomorphic to V^{c}.

Proof. If $W_{a^{\prime}}$ is isomorphic to V^{c}, then $W_{a^{\prime}}$ contains a non-zero homogeneous vector w_{2} equivalent to the vacuum vector of V^{c}. Choose any non-zero $w_{1} \in W_{a}$. Then for any $v^{\prime} \in V^{c}$ and $n \in \mathbb{N}, Y^{\prime}\left(v^{\prime}\right)_{n} w_{2}=0$. Therefore $Y^{U}\left(v^{\prime}\right)_{n}\left(w_{1} \otimes w_{2}\right)=w_{1} \otimes Y^{\prime}\left(v^{\prime}\right)_{n} w_{2}=0$. Thus $w_{1} \otimes w_{2} \in V^{c c}=V=V \otimes \mathbf{1}$, which is impossible since $w_{1} \otimes w_{2}$ is not in $V \otimes V^{c}$. So $W_{a^{\prime}}$ is not isomorphic to V^{c}. Since $V^{c c c}=V^{c}$, for a similar reason, W_{a} is also not isomorphic to V.

For each irreducible V^{c}-module, we choose a representing element, and let them form a finite set \mathcal{E}^{\prime}. Assume $W_{0^{\prime}}:=V^{c}$ is in \mathcal{E}^{\prime}. If $W_{i^{\prime}}, W_{j^{\prime}}, W_{k^{\prime}}$ are V^{c}-modules, we choose a basis $\Theta_{i, j}^{k}$ of $\operatorname{Hom}_{V^{c}}\left(W_{i^{\prime}} \boxtimes W_{j^{\prime}}, W_{k^{\prime}}\right)$. The linear isomorphism

$$
\begin{equation*}
\mathrm{u}: \operatorname{Hom}_{V^{c}}\left(W_{i^{\prime}} \boxtimes W_{j^{\prime}}, W_{k^{\prime}}\right)^{*} \xrightarrow{\simeq} \operatorname{Hom}_{V^{c}}\left(W_{\overline{i^{\prime}}} \boxtimes W_{k^{\prime}}, W_{j^{\prime}}\right) \tag{4.4}
\end{equation*}
$$

and the morphism

$$
\operatorname{ev}_{\overline{i^{\prime}}, i^{\prime}} \in \operatorname{Hom}_{V^{c}}\left(W_{\bar{i}^{\prime}} \boxtimes W_{i^{\prime}}, V^{c}\right)
$$

are defined as in section 2. Then $\mathcal{Y}_{\mathrm{ev}_{\overline{i^{\prime}}, i^{\prime}}^{\prime}}^{\prime}$ is the annihilation operator of $W_{i^{\prime}}$.
According to the decomposition for $W_{I}, W_{\bar{I}}$ also has the corresponding decomposition:

$$
W_{\bar{I}} \simeq\left(V \otimes V^{c}\right) \oplus\left(\bigoplus W_{\bar{i}} \otimes W_{\bar{i}^{\prime}}\right)
$$

Let

$$
\mathrm{ev}_{\bar{I}, I} \in \operatorname{Hom}_{U}\left(W_{\bar{I}} \boxtimes W_{I}, U\right)
$$

which corresponds to the annihilation operator $\mathcal{Y}_{\mathrm{ev}_{\bar{T}, I}}^{U}$ of the U-module W_{I}. Suppose that in the above decompositions, $W_{i} \boxtimes W_{i^{\prime}}$ is an irreducible submodule of $W_{I} \ominus\left(V \otimes V^{c}\right)$. If we regard $\mathcal{Y}_{\operatorname{ev}_{\bar{I}, I}}^{U}$ as an intertwining operator of $V \otimes V^{c}$, then it is easy to see that the restriction of $\mathcal{Y}_{\mathrm{ev}_{\bar{T}, I}}^{U}$ to the charge subspace $W_{\bar{i}} \boxtimes W_{\bar{i}^{\prime}}$ source subspace $W_{i} \boxtimes W_{i^{\prime}}$ and the target subspace $V \otimes V^{c}$ is $\mathcal{Y}_{\mathrm{ev}_{\bar{i}, i}} \otimes \mathcal{Y}_{\mathrm{ev}_{\bar{i}^{\prime}, i^{\prime}}}^{\prime}$, the tensor product of the annihilation operators of W_{i} and of $W_{i^{\prime}}$.

Theorem 4.2. Let V be a vertex operator subalgebra of U satisfying (3.1). Assume that U, V, and V^{c} are CFT type, self-dual, and regular VOAs. Assume also that $V^{c c}=V$. Let W_{I}, W_{J} be U-modules. Let W_{i}, W_{j} be irreducible V-modules that are compressions of W_{I} and W_{J} respectively. Then any irreducible intertwining operator of V with charge space W_{i} and source space W_{j} is a compression of type $\left({ }_{I}^{\bullet}{ }_{J}\right)$ intertwining operators of U.

Proof. Let $W_{i} \otimes W_{i^{\prime}}$ and $W_{j} \otimes W_{j^{\prime}}$ be irreducible $V \otimes V^{c}$-submodules of W_{I}, W_{J} respectively. Assume that $k \in \mathcal{E}$ and not all type $\binom{k}{i}$ intertwining operators of V are compressions of type $\binom{\bullet}{I}$ intertwining operators of U. Let $\mathscr{V}\binom{k}{i}$ be a subspace of $\mathcal{V}\binom{k}{i}$ with codimension 1 containing all elements of $\mathcal{V}\binom{k}{i}$ that are compressions of type $\left({ }_{I}^{\bullet}{ }_{J}\right)$ intertwining operators of U. Choose a nonzero element $\mathfrak{A} \in \operatorname{Hom}_{V}\left(W_{i} \boxtimes W_{j}, W_{k}\right)$ such that $\mathcal{Y}_{\mathfrak{A}} \notin \mathscr{V}\binom{k}{i}$. We assume that the basis $\Xi_{i, j}^{k}$ of $\operatorname{Hom}_{V}\left(W_{i} \boxtimes W_{j}, W_{k}\right)$ is chosen such that $\mathfrak{A} \in \Xi_{i, j}^{k}$, and that $\mathcal{Y}_{\alpha} \in \mathscr{V}\binom{k}{i}$ for any $\alpha \in \Xi_{i, j}^{k}$ not equal to \mathfrak{A}.

Choose $z, \zeta \in \mathbb{C}$ satisfying (1.11). Recall that Y_{I}^{U} is the U-vertex operator of W_{I} and $\mathcal{Y}_{\mathrm{ev}_{\bar{T}, I}}^{U}$ is the U-annihilation operator of W_{I}. In the following, we shall calculate the fusion relation for the iterate of $V \otimes V^{c}$-intertwining operators Y_{J}^{U} and $\mathcal{Y}_{\mathrm{ev}_{T, I}}^{U}$ (with restricted charge, source, and target spaces) in two ways. These two methods will give incompatible results, which therefore lead to a contradiction. Let $\pi_{j \otimes j^{\prime}}$ be the projection of the algebraic completion of W_{J} onto the one of $W_{j} \otimes W_{j^{\prime}}$.

Step 1. Note that for each $s \in \mathcal{E}, s^{\prime} \in \mathcal{E}^{\prime}$, the set $\Xi_{i, j}^{s} \times \Theta_{i^{\prime}, j^{\prime}}^{s^{\prime}}$ (more precisely, $\left\{\mathcal{Y}_{\alpha} \otimes\right.$ $\left.\left.\mathcal{Y}_{\alpha^{\prime}}^{\prime}: \alpha \in \Xi_{i, j}^{s}, \alpha^{\prime} \in \Theta_{i^{\prime}, j^{\prime}}^{s^{\prime}}\right\}\right)$ is a basis of the vector space of type $\binom{W_{s} \otimes W_{s^{\prime}}}{W_{i} \otimes W_{i^{\prime}} W_{j} \otimes W_{j^{\prime}}}$ intertwining operators of $V \otimes V^{c}$. (See [3] theorem 2.10; it is also an easy consequence of Corollary 1.2.) Thus, for any $s \in \mathcal{E}, s^{\prime} \in \mathcal{E}^{\prime}$ and $\alpha, \beta \in \operatorname{Hom}_{V}\left(W_{i} \boxtimes W_{j}, W_{s}\right), \alpha^{\prime}, \beta^{\prime} \in$ $\operatorname{Hom}_{V^{c}}\left(W_{i^{\prime}} \boxtimes W_{j^{\prime}}, W_{s^{\prime}}\right)$, there is a unique constant $\lambda_{\alpha, \beta, \alpha^{\prime}, \beta^{\prime}} \in \mathbb{C}$ such that for any

$$
\begin{equation*}
w_{1} \in W_{\bar{i}}, w_{2} \in W_{\overline{i^{\prime}}}, w_{3} \in W_{i}, w_{4} \in W_{i^{\prime}}, w_{5} \in W_{j}, w_{6} \in W_{j^{\prime}} \tag{4.5}
\end{equation*}
$$

the following fusion relation of $V \otimes V^{c}$-intertwining operators holds:

$$
\begin{align*}
& \pi_{j \otimes j^{\prime}} \cdot Y_{J}^{U}\left(\mathcal{Y}_{\mathrm{ev}_{\bar{I}, I}}^{U}\left(w_{1} \otimes w_{2}, z-\zeta\right)\left(w_{3} \otimes w_{4}\right), \zeta\right)\left(w_{5} \otimes w_{6}\right) \\
= & \sum_{\substack{s \in \mathcal{E} \\
s^{\prime} \in \mathcal{E}^{\prime}}} \sum_{\substack{ \\
\alpha^{\prime}, \beta \in \beta^{\prime} \in \Xi_{i, j}^{s} \\
i^{\prime}, j^{\prime}}} \lambda_{\alpha, \beta, \alpha^{\prime}, \beta^{\prime}} \cdot \mathcal{Y}_{\mathrm{Y}(\widetilde{\beta})}\left(w_{1}, z\right) \mathcal{Y}_{\alpha}\left(w_{3}, \zeta\right) w_{5} \otimes \mathcal{Y}_{\mathrm{Y}\left(\overline{\beta^{\prime}}\right)}^{\prime}\left(w_{2}, z\right) \mathcal{Y}_{\alpha^{\prime}}^{\prime}\left(w_{4}, \zeta\right) w_{6} . \tag{4.6}
\end{align*}
$$

(Recall (1.2) and (3.5) for the notations $\mathcal{Y}, \mathcal{Y}^{\prime}$.) On the other hand, by (2.8), the iterate of the U-intertwining operators Y_{J}^{U} and $\mathcal{Y}_{\mathrm{ev}_{\bar{I}, I}}^{U}$ equals a sum of products of type $\left(\begin{array}{c}J \\ I \\ \bullet\end{array}\right)$ intertwining operators and type $\binom{\bullet}{I_{J}}$ intertwining operators of U. Therefore, by Proposition 3.5 and the uniqueness of fusion coefficients, we have

$$
\begin{equation*}
\lambda_{\mathfrak{A}, \beta, \alpha^{\prime}, \beta^{\prime}}=0 \tag{4.7}
\end{equation*}
$$

for any $s^{\prime} \in \mathcal{E}^{\prime}, \beta \in \Xi_{i, j}^{k}$, and $\alpha^{\prime}, \beta^{\prime} \in \Theta_{i^{\prime}, j^{\prime}}^{s^{\prime}}$. In particular, the right hand side of (4.6) has no terms containing $\mathcal{Y}_{\mathrm{Y}(\check{\mathfrak{A}})}\left(w_{1}, z\right) \mathcal{Y}_{\mathfrak{A}}\left(w_{3}, \zeta\right) w_{5}$.

Step 2. We calculate the iterate of $\pi_{j \otimes j^{\prime}} \cdot Y_{J}^{U}$ and $\mathcal{Y}_{\mathrm{ev}_{T, I}}^{U}$ using a different method, and show that some terms containing $\mathcal{Y}_{\mathrm{u}(\check{\mathfrak{l}})}\left(w_{1}, z\right) \mathcal{Y}_{\mathfrak{A}}\left(w_{3}, \zeta\right) w_{5}$ will appear. By the paragraph before the theorem, we know that for any $w_{1}, w_{2}, \ldots, w_{6}$ as in (4.5),

$$
\begin{align*}
& \quad \mathcal{Y}_{\mathrm{ev}_{\bar{T}, I}}^{U}\left(w_{1} \otimes w_{2}, z-\zeta\right)\left(w_{3} \otimes w_{4}\right) \\
& =\mathcal{Y}_{\mathrm{ev}_{\bar{i}, i}}\left(w_{1}, z-\zeta\right) w_{3} \otimes \mathcal{Y}_{\mathrm{ev}_{\bar{i}^{\prime}, i^{\prime}}^{\prime}}^{\prime}\left(w_{2}, z-\zeta\right) w_{4} \\
& \quad+\sum_{W_{a} \otimes W_{a^{\prime}}} \sum_{\gamma, \gamma^{\prime}} \mathcal{Y}_{\gamma}\left(w_{1}, z-\zeta\right) w_{3} \otimes \mathcal{Y}_{\gamma^{\prime}}^{\prime}\left(w_{2}, z-\zeta\right) w_{4} \tag{4.8}
\end{align*}
$$

where the first sum is over all irreducible $V \otimes V^{c}$-submodules of $U \ominus\left(V \otimes V^{c}\right)$ as in the decomposition (4.1), $\gamma \in \operatorname{Hom}_{V}\left(W_{\bar{i}} \boxtimes W_{i}, W_{a}\right)$, and $\gamma^{\prime} \in \operatorname{Hom}_{V^{c}}\left(W_{\overline{\bar{i}^{\prime}}} \boxtimes W_{i^{\prime}}, W_{a^{\prime}}\right)$. We shall now calculate the iterate of $\pi_{j \otimes j^{\prime}} \cdot Y_{J}^{U}$ with each term on the right hand side of (4.8).

The first term is in the algebraic completion of $V \otimes V^{c}$. Moreover, the restriction of Y_{J}^{U} (regarded as a $V \otimes V^{c}$-intertwining operator) to $V \otimes V^{c}, W_{j} \otimes W_{j^{\prime}}, W_{j} \otimes W_{j^{\prime}}$ equals $Y_{j} \otimes Y_{j^{\prime}}^{\prime}$, where $Y_{j}, Y_{j^{\prime}}^{\prime}$ are respectively the vertex operators of the V-module W_{j} and the V^{c}-module $W_{j^{\prime}}$. Therefore, by (2.8),

$$
\begin{align*}
& \pi_{j \otimes j^{\prime}} \cdot Y_{J}^{U}\left(\mathcal{Y}_{\mathrm{ev}_{\bar{i}, i}}\left(w_{1}, z-\zeta\right) w_{3} \otimes \mathcal{Y}_{\mathrm{ev}_{\overline{\bar{l}^{\prime}, i^{\prime}}}^{\prime}}^{\prime}\left(w_{2}, z-\zeta\right) w_{4}, \zeta\right)\left(w_{5} \otimes w_{6}\right) \\
= & Y_{j}\left(\mathcal{Y}_{\mathrm{ev}_{\bar{i}, i}}\left(w_{1}, z-\zeta\right) w_{3}, \zeta\right) w_{5} \otimes Y_{j^{\prime}}^{\prime}\left(\mathcal{Y}_{\mathrm{ev}_{\overline{i^{\prime}, i^{\prime}}}^{\prime}}^{\prime}\left(w_{2}, z-\zeta\right) w_{4}, \zeta\right) w_{6} \\
= & \sum_{s \in \mathcal{E}} \sum_{\alpha \in \Xi_{i, j}^{s}} \mathcal{Y}_{\mathrm{Y}(\bar{\alpha})}\left(w_{1}, z\right) \mathcal{Y}_{\alpha}\left(w_{3}, \zeta\right) w_{5} \otimes Y_{j^{\prime}}^{\prime}\left(\mathcal{Y}_{\mathrm{e}_{\bar{i}^{\prime}, i^{\prime}}^{\prime}}^{\prime}\left(w_{2}, z-\zeta\right) w_{4}, \zeta\right) w_{6} . \tag{4.9}
\end{align*}
$$

In the above expression, (the sum of) all the terms containing $\mathcal{Y}_{\mathbf{Y}(\mathfrak{\mathfrak { A }})}\left(w_{1}, z\right) \mathcal{Y}_{\mathfrak{A}}\left(w_{3}, \zeta\right) w_{5}$ is

$$
\begin{equation*}
\mathcal{Y}_{\mathrm{Y}(\overline{\mathfrak{A}})}\left(w_{1}, z\right) \mathcal{Y}_{\mathfrak{A}}\left(w_{3}, \zeta\right) w_{5} \otimes Y_{j^{\prime}}^{\prime}\left(\mathcal{Y}_{\mathrm{ev}_{\overline{i^{\prime}}, i^{\prime}}^{\prime}}^{\prime}\left(w_{2}, z-\zeta\right) w_{4}, \zeta\right) w_{6} \tag{4.10}
\end{equation*}
$$

On the other hand, suppose that when restricted to the charge subspace $W_{a} \otimes W_{a^{\prime}}$ (where $W_{a} \otimes W_{a^{\prime}}$ is an irreducible submodule of $U \ominus\left(V \otimes V^{c}\right)$) and source and target subspace $W_{j} \otimes W_{j^{\prime}}$, the $V \otimes V^{c}$-intertwining operator Y_{J}^{U} could be written as $\sum_{\delta, \delta^{\prime}} \mathcal{Y}_{\delta} \otimes$ $\mathcal{Y}_{\delta^{\prime}}^{\prime}$, where each \mathcal{Y}_{δ} is of type $\binom{j}{a}$ and $\mathcal{Y}_{\delta^{\prime}}^{\prime}$ has type $\left(\begin{array}{c}j^{\prime} \\ a^{\prime} \\ j^{\prime}\end{array}\right)$. Then the iterate of $\pi_{j \otimes j^{\prime}} \cdot Y_{J}^{U}$ with the second term of (4.8) is

$$
\begin{align*}
& \sum_{W_{a} \otimes W_{a^{\prime}}} \sum_{\gamma, \gamma^{\prime}} \pi_{j \otimes j^{\prime}} \cdot Y_{J}^{U}\left(\mathcal{Y}_{\gamma}\left(w_{1}, z-\zeta\right) w_{3} \otimes \mathcal{Y}_{\gamma^{\prime}}\left(w_{2}, z-\zeta\right) w_{4}, \zeta\right)\left(w_{5} \otimes w_{6}\right) \\
= & \sum_{W_{a} \otimes W_{a^{\prime}}} \sum_{\substack{\gamma, \gamma^{\prime} \\
\delta, \delta^{\prime}}} \mathcal{Y}_{\delta}\left(\mathcal{Y}_{\gamma}\left(w_{1}, z-\zeta\right) w_{3}, \zeta\right) w_{5} \otimes \mathcal{Y}_{\delta^{\prime}}^{\prime}\left(\mathcal{Y}_{\gamma^{\prime}}^{\prime}\left(w_{2}, z-\zeta\right) w_{4}, \zeta\right) w_{6} . \tag{4.11}
\end{align*}
$$

If we write each $\mathcal{Y}_{\delta}\left(\mathcal{Y}_{\gamma}\left(w_{1}, z-\zeta\right) w_{3}, \zeta\right) w_{5}$ as a sum of products of V-intertwining operators under the bases $\Xi_{i, j}^{s}$ and $\left\{\mathrm{U}(\widetilde{\alpha}): \alpha \in \Xi_{i, j}^{s}\right\}$ (over all $s \in \mathcal{E}$) similar to part of (4.6), then the sum of all the terms containing $\mathcal{Y}_{\mathrm{Y}(\tilde{\mathfrak{R}})}\left(w_{1}, z\right) \mathcal{Y}_{\mathfrak{A}}\left(w_{3}, \zeta\right) w_{5}$ should be

$$
\begin{equation*}
\mathcal{Y}_{\mathrm{Y}(\check{\mathfrak{A}})}\left(w_{1}, z\right) \mathcal{Y}_{\mathfrak{A}}\left(w_{3}, \zeta\right) w_{5} \otimes \sum_{W_{a} \otimes W_{a^{\prime}}} \sum_{\substack{\gamma, \gamma^{\prime} \\ \delta, \delta^{\prime}}} \kappa_{\gamma, \delta} \cdot \mathcal{Y}_{\delta^{\prime}}^{\prime}\left(\mathcal{Y}_{\gamma^{\prime}}^{\prime}\left(w_{2}, z-\zeta\right) w_{4}, \zeta\right) w_{6} \tag{4.12}
\end{equation*}
$$

where each $\kappa_{\gamma, \delta}$ is a constant. By Proposition 4.1, every $W_{a^{\prime}}$ (which is irreducible) is not isomorphic to V^{c}. Therefore, as the linear map $\Phi_{z, \zeta}$ (see (1.9)) is injective, the sum of (4.10) and (4.12) is not zero for some w_{1}, \ldots, w_{6} satisfying (4.5). This shows that (4.6) (which is the sum of (4.9) and (4.11)) has non-zero terms containing $\mathcal{Y}_{\mathbf{Y}(\mathfrak{\mathfrak { L }})}\left(w_{1}, z\right) \mathcal{Y}_{\mathfrak{A}}\left(w_{3}, \zeta\right) w_{5}$. In other words, $\lambda_{\mathfrak{A}, \mathfrak{A}, \alpha^{\prime}, \beta^{\prime}} \neq 0$ for some $s^{\prime} \in \mathcal{E}^{\prime}$ and $\alpha^{\prime}, \beta^{\prime} \in \Theta_{i^{\prime}, j^{\prime}}^{s^{\prime}}$. This gives a contradiction.

The following result was proved in [21]:

Theorem 4.3. Let V be a vertex operator subalgebra of U satisfying (3.1). Assume that U, V, and V^{c} are CFT type, self-dual, and regular VOAs. Assume also that $V^{c c}=V$. Then any irreducible V-module is the compression of a U-module.

The above two theorems imply immediately the following:

Theorem 4.4. Under the assumption of Theorem 4.3, any irreducible intertwining operator of V is a compression of intertwining operators of U.

References

[1] T. Abe, G. Buhl, C. Dong, Rationality, regularity, and C_{2}-cofiniteness, Trans. Am. Math. Soc. 356 (8) (2004) 3391-3402.
[2] T. Arakawa, T. Creutzig, A.R. Linshaw, W-algebras as coset vertex algebras, Invent. Math. 218 (1) (2019) 145-195.
[3] T. Abe, C. Dong, H. Li, Fusion rules for the vertex operator algebras $M(1)^{+}$and V_{L}^{+}, Commun. Math. Phys. 253 (2005) 171-219.
[4] G. Anderson, G. Moore, Rationality in conformal field theory, Commun. Math. Phys. 117 (3) (1988) 441-450.
[5] T. Arakawa, Associated varieties of modules over Kac-Moody algebras and C_{2}-cofiniteness of W algebras, Int. Math. Res. Not. 2015 (22) (2015) 11605-11666.
[6] T. Arakawa, Rationality of W-algebras: principal nilpotent cases, Ann. Math. (2015) 565-604.
[7] S. Carpi, Y. Kawahigashi, R. Longo, M. Weiner, From Vertex Operator Algebras to Conformal Nets and Back (Vol. 254, No. 1213), Memoir of the American Mathematical Society, 2018.
[8] C. Dong, H. Li, G. Mason, Regularity of rational vertex operator algebras, Adv. Math. 132 (1) (1997) 148-166.
[9] C. Dong, H. Li, G. Mason, Modular-invariance of trace functions in orbifold theory and generalized moonshine, Commun. Math. Phys. 214 (1) (2000) 1-56.
[10] I. Frenkel, Y.Z. Huang, J. Lepowsky, On Axiomatic Approaches to Vertex Operator Algebras and Modules (Vol. 494), American Mathematical Soc., 1993.
[11] I.B. Frenkel, Y. Zhu, Vertex operator algebras associated to representations of affine and Virasoro algebras, Duke Math. J. 66 (1) (1992) 123-168.
[12] B. Gui, Categorical extensions of conformal nets, arXiv preprint arXiv:1812.04470, 2018.
[13] B. Gui, Unitarity of the modular tensor categories associated to unitary vertex operator algebras, I, Commun. Math. Phys. 366 (1) (2019) 333-396.
[14] B. Gui, Energy bounds condition for intertwining operators of type B, C, and G_{2} unitary affine vertex operator algebras, Trans. Am. Math. Soc. 372 (2019) 7371-7424.
[15] B. Gui, Unbounded field operators in categorical extensions of conformal nets, arXiv preprint arXiv: 2001.03095, 2020.
[16] Y.Z. Huang, L. Kong, Full field algebras, Commun. Math. Phys. 272 (2) (2007) 345-396.
[17] Y.Z. Huang, J. Lepowsky, Tensor categories and the mathematics of rational and logarithmic conformal field theory, J. Phys. A, Math. Theor. 46 (49) (2013) 494009.
[18] Y.Z. Huang, A theory of tensor products for module categories for a vertex operator algebra, IV, J. Pure Appl. Algebra 100 (1-3) (1995) 173-216.
[19] Y.Z. Huang, Differential equations and intertwining operators, Commun. Contemp. Math. 7 (03) (2005) 375-400.
[20] Y.Z. Huang, Rigidity and modularity of vertex tensor categories, Commun. Contemp. Math. 10 (supp01) (2008) 871-911.
[21] M. Krauel, M. Miyamoto, A modular invariance property of multivariable trace functions for regular vertex operator algebras, J. Algebra 444 (2015) 124-142.
[22] J. Lepowsky, H. Li, Introduction to Vertex Operator Algebras and Their Representations (Vol. 227), Springer Science \& Business Media, 2012.
[23] J.E. Tener, Construction of the unitary free fermion Segal CFT, Commun. Math. Phys. 355 (2) (2017) 463-518.
[24] J.E. Tener, Geometric realization of algebraic conformal field theories, Adv. Math. 349 (2019) 488-563.
[25] J.E. Tener, Representation theory in chiral conformal field theory: from fields to observables, Sel. Math. 25 (5) (2019) 76.
[26] J.E. Tener, Fusion and positivity in chiral conformal field theory, arXiv preprint arXiv:1910.08257, 2019.
[27] V. Toledano-Laredo, Fusion of positive energy representations of LSpin $_{2 n}$, arXiv preprint arXiv: math/0409044, 2004.
[28] A. Wassermann, Operator algebras and conformal field theory III. Fusion of positive energy representations of $L S U(N)$ using bounded operators, arXiv preprint arXiv:math/9806031, 1998.

[^0]: E-mail addresses: bin.gui@rutgers.edu, binguimath@gmail.com.

[^1]: 1 Proposition 1.1 is similar to but slightly stronger than [18] Lemma 14.9. That lemma says that (1.3) holds with $P_{\leq s}$ replaced by P_{s} and $\left(W_{i} \boxtimes W_{j}\right)(\leq s)$ by $\left(W_{i} \boxtimes W_{j}\right)(s)$. Huang's result is enough for applications in our paper.

[^2]: ${ }^{2}$ To see that φ can be written in this way, choose any $t \in \mathcal{E}$ and $\omega \in W_{\sigma(t)}^{*}$, and consider the homomorphism of irreducible V-modules $T_{\omega}: W_{s} \rightarrow W_{t}$ defined by $T_{\omega}=\left(\mathbf{1}_{t} \otimes \omega\right) \circ \varphi$. Then $T_{\omega}=0$ whenever $s \neq t$ (since $W_{s} \not 千 W_{t}$). So the image of φ is in $W_{s} \otimes W_{\sigma(s)}$. Now assume $t=s$. Then T_{ω} is a scalar. Choose a basis $\left\{e_{1}, e_{2}, \ldots\right\}$ of W_{s}, and write $\varphi\left(e_{1}\right)=\sum_{n} e_{n} \otimes w_{n}$ where each w_{n} is in $W_{\sigma(s)}$. Then, for each ω, $T_{\omega}\left(e_{1}\right)=\sum_{n} \omega\left(w_{n}\right) e_{n}$ is a scalar multiple of e_{1}, which shows that $w_{n}=0$ when $n>1$. Thus $\varphi=\mathbf{1}_{s} \otimes w_{1}$. That ψ has the desired form can be proved similarly.

