
Journal of Algebra 564 (2020) 32–48
Contents lists available at ScienceDirect

Journal of Algebra

www.elsevier.com/locate/jalgebra

Regular vertex operator subalgebras and 

compressions of intertwining operators

Bin Gui
Department of Mathematics, Rutgers University, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 6 March 2020
Available online 11 August 2020
Communicated by David Hernandez

Keywords:
Vertex operator algebras
Intertwining operators

Let V be a vertex operator subalgebra of U . Assume that U , 
V , and its commutant V c in U are CFT-type, self-dual, and 
regular VOAs. Assume also that the double commutant V cc

equals V . We prove that any intertwining operator of V is a 
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0. Introduction

In [21], Krauel-Miyamoto showed that if V is a vertex operator subalgebra of U , 
if U , V , and the commutant V c are CFT-type, self-dual, and regular VOAs, and if 
V cc = V , then any irreducible V -module appears in some irreducible U -module. For 
example, by [5,6,2], these assumptions are satisfied when we take V ⊂ U to be Lk+1(g) ⊂
Lk(g) ⊗L1(g), where k is a positive integer, g is a finite dimensional complex simple Lie 
algebra of type ADE, and Lk(g) is the corresponding (unitary) affine VOA. In this case, 
V c is a discrete series principle W -algebra Wl(g).

The above results have important applications to the unitarity problems in VOAs: 
For example, we can conclude that any irreducible Wl(g)-module is unitarizable since 
this is true for any unitary affine VOA. Moreover, using these results (together with the 
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techniques developed in [23–25]), Tener showed in [26] that the modular tensor categories 
associated to all unitary affine VOAs and type AE discrete series W -algebras are unitary, 
and solved a longstanding problem in subfactor theory and algebraic quantum field 
theory: that the conformal nets associated to unitary affine VOAs and type ADE discrete 
series W -algebras are completely rational.

In this paper, we generalize the result of [21] to intertwining operators: We show that 
any intertwining operator of V is a compression of intertwining operators of U (Theo-
rem 4.4). To be more precise, let WI , WJ , WK be (ordinary) U -modules, which can also 
be regarded as weak V -modules. Suppose that YU is a type 

(
WK

WIWJ

)
intertwining operator 

of U , and Wi, Wj , Wk are graded irreducible V -submodules of WI , WJ , WK respectively, 
then one can find λ ∈ Q such that zλ times the restriction of YU to Wi, Wj , Wk is an 
intertwining operator Y of V . (Note that without the factor zλ, the restriction itself may 
not satisfy the L−1-derivative property.) We then say that Y is a compression of YU . 
(See Definition 3.4 for more details.) Our main result of this article is that any inter-
twining operator of V can be written as a (finite) sum of those that are compressions of 
intertwining operators of U .

Our result can be applied to prove many important functional analytic properties for 
intertwining operators. One such property is the (polynomial) energy bounds condition 
[7,13,14], which says roughly that the smeared intertwining operators are bounded by 
Ln

0 for some n ≥ 0. Proving energy bounds condition for intertwining operators is a key 
step in relating the tensor structures of VOA modules and the corresponding conformal 
net modules; see [28,27,12,15]. On the other hand, one may deduce the energy bounds 
condition of the compressed intertwining operator Y from that of YU . Since, by our 
main result, any intertwining operator of Lk(g) or Wl(g) (when g is of type ADE) is a 
compression of tensor products of intertwining operators of L1(g), and since the latter 
were proved in [27] to be energy bounded, we can conclude that all intertwining operators 
of Lk(g) or Wl(g) are energy bounded. This result will be used in [15] to show that if 
V is Lk(g) or Wl(g), and if A is the corresponding conformal net, then the tensor and 
braid structures of the representation categories of V and A are compatible.
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1. Intertwining operators and tensor categories

Let (V, Y, 1, ν) be a vertex operator algebra (VOA) where 1 is the vacuum vector and 
ν is the conformal vector. For any v ∈ V , write Y (v, z) =

∑
n∈Z Y (v)nz−n−1 where 

Y (v)n ∈ End(V ). Then Ln := Y (ν)n+1 satisfy the Virasoro relation

[Ln, Lm] = (n−m)Ln+m + δn,−m
n3 − n

12 c,



34 B. Gui / Journal of Algebra 564 (2020) 32–48
where c is the central charge of V . We shall always assume that V is CFT-type, namely, 
V has L0-grading V =

⊕
n∈N V (n) and V (0) = C1. We also assume that V is self-dual 

and regular (equivalently, self-dual, rational and C2-cofinite [1]). Note that the self-
dual condition is equivalent to the existence of a non-degenerate invariant bilinear form. 
As a consequence of CFT-type and being self-dual, V is simple. (See, for example, [7]
proposition 6.4-(iv).) Moreover, any (ordinary) V -module is semisimple, and the category 
of V -modules is a rigid modular tensor category [20].

We write V -modules as Wi, Wj , Wk, . . . whose vertex operators are denoted by 
Yi, Yj , Yk, . . . respectively. V itself as a V -module (the vacuum module) will also be 
written as W0. We write Yi(v, z) =

∑
n∈Z Yi(v)nz−n−1 where each Yi(v)n ∈ End(Wi). 

Again, any V -module has L0-grading Wi =
⊕

n∈C W (n). Recall that a homogeneous 
vector of Wi is, by definition, an eigenvector of L0. In the case that Wi is irreducible (i.e. 
simple), we furthermore have Wi =

⊕
n∈N+α W (n) for some α ∈ C. (Indeed, α ∈ Q by 

[4,9].) We let Pn denote the projection of Wi onto Wi(n). We also let

Wi(≤ n) =
⊕

Re(m)≤n

W (m),

and let P≤n be the projection of Wi onto Wi(≤ n).
Let Wi denote the contragredient module of Wi. Recall that as a vector space, Wi =⊕
n∈C Wi(n)∗. (See [10] for more details.) The evaluation between w′ ∈ Wi and w ∈ Wi

is written as 〈w,w′〉 or 〈w′, w〉. (The same notation will be used if one of w, w′ is in the 
algebraic completion.) Since V is self-dual, we identify the vacuum module V = W0 and 
its contragredient module W0. Wi

is identified with Wi in an obvious way.
Recall that if Wi, Wj , Wk are V -modules, an intertwining operator Y of type 

(
Wk

WiWj

)
(or 

(
k
i j

)
for short) is a linear map

Wi → End(Wj ,Wk){z}

wi 
→ Y(w(i), z) =
∑
n∈C

Y(w(i))nz−n−1

where the sum above is the formal sum, each Y(w(i))n is in End(Wj , Wk), and the 
following conditions are satisfied:

(a) (Lower truncation) For any w(j) ∈ Wj , Y(w(i))nw(j) = 0 when Re(n) is sufficiently 
large.

(b) (Jacobi identity) For any u ∈ V, w(i) ∈ Wi, m, n ∈ Z, s ∈ C, we have

∑
l∈N

(
m

l

)
Y
(
Yi(u)n+lw

(i))
m+s−l

=
∑

(−1)l
(
n

l

)
Yk(u)m+n−lY(w(i))s+l
l∈N
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−
∑
l∈N

(−1)l+n

(
n

l

)
Y(w(i))n+s−lYj(u)m+l. (1.1)

(c) (L−1-derivative) d
dzY(w(i), z) = Y(L−1w

(i), z) for any w(i) ∈ Wi.
We say that Wi, Wj , Wk are respectively the charge space, the source space, and the

target space of Y. If Wi, Wj , Wk are all irreducible, we say that Y is an irreducible 
intertwining operator.

Recall that given Y ∈ V
(

k
i j

)
, one can define BY ∈ V

(
k
j i

)
and �Y ∈ V

( j

i k

)
, called the 

(positively) braided intertwining operator and the contragredient intertwining operator 
of Y, by choosing any w(i) ∈ Wi, w(j) ∈ Wj , w(k) ∈ Wk and setting

BY(w(j), z)w(i) = ezL−1Y(w(i), eiπz)w(j),

〈�Y(w(i), z)w(k), w(j)〉 = 〈w(k),Y(ezL1(eiπz−2)L0w(i), z−1)w(j)〉.

In particular, Yi ∈ V
(

i
0 i

)
(the vertex operator for Wi) is contragredient to Yi. See [10]

for details.
We refer the reader to [17] and the references therein for the definition and basic 

properties of the tensor category Rep(V ) of V -modules. (See also [13] for a sketch of the 
Huang-Lepowsky tensor product theory.) Roughly speaking, Rep(V ) is defined such that 
the fusion rules are exactly the dimensions of the spaces of intertwining operators, and 
the R- and F -matrices are described by the braid and the fusion relations of intertwining 
operators.

To be more precise, the tensor functor (fusion product) � is defined in such a way 
that there is a functorial isomorphism

HomV (Wi � Wj ,Wk)
�−→ V

(
k

i j

)
, α 
→ Yα (1.2)

for any V -modules Wi, Wj , Wk. By saying this map is functorial, we mean that if F ∈
HomV (Wi′ , Wi), G ∈ HomV (Wj′ , Wj), and H ∈ HomV (Wk, Wk′), then for any w(i′) ∈
Wi′ and w(j′) ∈ Wj′ ,

YHα(F⊗G)(w(i′), z)w(j′) = HYα(Fw(i′), z)Gw(j′).

In particular, we denote by Li,j ∈ V
(
i�j
i j

)
= V

(
Wi�Wj

Wi Wj

)
the value of the identity element 

1i�j ∈ HomV (Wi � Wj , Wi � Wj) under (1.2), i.e.,

Li,j = Y1i�j
.

Here we adopt the notation

Wi�j = Wi � Wj .
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Then for any α ∈ HomV (Wi � Wj , Wk), by the functoriality of (1.2) and that α =
α · 1Wi�Wj

, it is clear that

Yα = αLi,j .

(In the papers of Huang-Lepowsky, Li,j(w(i), z)w(j) is written as w(i)�P (z)w
(j), regarded 

as a fusion product of the vectors w(i), w(j).)
Note that Yi ∈ V

(
i

0 i

)
. The left unitor W0 � Wi

�−→ Wi is defined such that it is sent 
by (1.2) to the element Yi. The right unitor

κ(i) : Wi � W0
�−→ Wi

is defined such that

Yκ(i) = BYi.

We call Yκ(i) ∈ V
(

i
i 0

)
the creation operator of Wi.

The braid isomorphism B = Bi,j : Wi � Wj
�−→ Wj � Wi is defined such that

YBi,j
= BLi,j .

We will not use braiding in this article. To describe the associativity isomorphisms, we 
first notice:

Proposition 1.1. Choose any z ∈ C× = C − {0}. Then for any n ∈ C,

Span
w(i)∈Wi,w(j)∈Wj

P≤n · Li,j(w(i), z)w(j) = (Wi � Wj)(≤ n). (1.3)

This proposition was proved in [13] section A.2.1 The main idea of the proof is as 
follows. Set Wk = Wi � Wj . Then it is equivalent to proving that for any w(k) ∈ Wk, if

〈w(k),Li,j(w(i), z)w(j)〉 = 0

for any w(i) ∈ Wi and w(j) ∈ Wj , then w(k) = 0. To see this, let W ⊂ Wk be the sub-
space of all w(k) satisfying the above identity. Using the Jacobi identity for intertwining 
operators, it is easy to see that W is V -invariant, i.e. it is a V -submodule of Wk. As-
sume W is non-trivial. Choose an irreducible module Wl such that W has an irreducible 
submodule isomorphic to Wl. Then there is a non-zero T ∈ HomV (Wk, Wl) whose trans-
pose T t ∈ HomV (Wl, Wk) maps Wl into W. Using the definition of W and the fact that 

1 Proposition 1.1 is similar to but slightly stronger than [18] Lemma 14.9. That lemma says that (1.3) holds 
with P≤s replaced by Ps and (Wi � Wj)(≤ s) by (Wi � Wj)(s). Huang’s result is enough for applications 
in our paper.
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T tw(l) ∈ W for each w(l) ∈ Wl, it is easy to see that TLi,j = 0. Recall Wk = Wi � Wj . 
So we can write TLi,j = YT . Therefore T = 0, which gives a contradiction.

Corollary 1.2. Let Wi, Wj , Ws be V -modules, and assume that Ws is isomorphic to an 
irreducible submodule of Wi�Wj. If Ξs

i,j is a basis of HomV (Wi�Wj , Ws), α ∈ Ξs
i,j, then 

there exist homogeneous vectors w(i)
1 , . . . , w(i)

m ∈ Wi, w(j)
1 , . . . , w(j)

m ∈ Wj, w(s) ∈ Ws, and 
constants λ1, . . . , λm ∈ Q, such that for any β ∈ Ξs

i,j , the expression

m∑
l=1

zλl〈Yβ(w(i)
l , z)w(j)

l , w(s)〉 (1.4)

is a constant (where z is a complex variable), and it is non-zero if and only if β = α.

Proof. Choose n ∈ C such that Ws(n) is non-trivial. Choose for each α ∈ Ξs
i,j a mor-

phism α̂ ∈ HomV (Ws, Wi � Wj) such that αβ̂ = δα,β1s for any α, β ∈ Ξs
i,j . Now we fix 

α ∈ Ξs
i,j , and choose a non-zero vector w(s) ∈ Ws(n). By Proposition 1.1, there exist 

homogeneous vectors w(i)
1 , . . . , w(i)

m ∈ Wi and w(j)
1 , . . . , w(j)

m ∈ Wj such that

m∑
l=1

PnLi,j(w(i)
l , 1)w(j)

l = α̂w(s).

Choose w(s) ∈ Ws(n) such that 〈w(s), w(s)〉 �= 0. (Recall that Ws(n) is the dual vector 
space of Ws(n).) Then it is easy to check that the constant

m∑
l=1

〈Yβ(w(i)
l , 1)w(j)

l , w(s)〉 (1.5)

is non-zero (in which case equals 〈w(s), w(s)〉) if and only if β = α. Now let

λl = wt(w(s)
l ) − wt(w(i)

l ) − wt(w(j)
l ),

where the three terms on the right hand side are the weights (i.e. the L0-eigenvalues) of 
the corresponding homogeneous vectors. Then (1.5) equals (1.4). This proves the claim 
of this corollary. �

For any irreducible equivalence class of V -modules we choose a representing ele-
ment and let them form a (finite) set E . We assume W0 ∈ E . Choose V -modules 
Wi, Wj , Wk, Wl. If Ws ∈ E , we write s ∈ E for short. For each r ∈ E , we choose bases 
Ξr
j,k of HomV (Wj � Wk, Wr) and Ξl

i,r of HomV (Wi � Wr, Wl). Choose z, ζ ∈ C× with 
0 < |ζ| < |z|. Then for any w(i) ∈ Wi, w(j) ∈ Wj , and any α ∈ Ξl

i,r, β ∈ Ξr
j,k the product

Yα(w(i), z)Yβ(w(j), ζ) (1.6)
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converges absolutely [19], in the sense that for any w(k) ∈ Wk, w(l) ∈ Wl,∑
n∈C

∣∣〈Yα(w(i), z)PnYβ(w(j), ζ)w(k), w(l)〉
∣∣ < +∞.

Moreover, consider the expression

〈Yα(w(i), z)Yβ(w(j), ζ)w(k), w(l)〉 (1.7)

as an element of (Wi ⊗Wj ⊗Wk ⊗Wl)∗. (Note that this element depends also on the 
arguments arg z and arg ζ.) By linearity, we have a linear map

Ψz,ζ :
⊕
r∈E

HomV (Wi � Wr,Wl) ⊗ HomV (Wj � Wk,Wr) → (Wi ⊗Wj ⊗Wk ⊗Wl)
∗

(1.8)

sending α ⊗ β to the linear functional defined by (1.7). This map is well-known to be 
injective. Indeed, choose any X in the domain of Ψz,ζ . If Ψz,ζ(X) equals 0 for one pair 
(z, ζ), then, by the existence of differential equations as in [19], Ψz,ζ(X) equals 0 for all 
z, ζ satisfying 0 < |ζ| < |z|. (See [13] the paragraphs after theorem 2.4 for a detailed 
explanation.) Then, using Proposition 1.1, it is not hard to show X = 0. (See for instance 
[13] proposition 2.3 whose proof is in section A.2.)

Similarly, when 0 < |z − ζ| < |ζ|, one can define an injective linear map

Φz,ζ :
⊕
s∈E

HomV (Ws � Wk,Wl) ⊗ HomV (Wi � Wj ,Ws) → (Wi ⊗Wj ⊗Wk ⊗Wl)
∗

(1.9)

sending each γ ⊗ δ to the linear functional determined by the following iterate of inter-
twining operators:

〈Yγ(Yδ(w(i), z − ζ)w(j), ζ)w(k), w(l)〉. (1.10)

Again, this map depends on the choice of arguments: arg(z−ζ) and arg(ζ), and the above 
expression converges absolutely in an appropriate sense. By a deep result of [18,19], Φz,ζ

and Ψz,ζ have the same image.
We now assume

0 < |z − ζ| < |ζ| < |z|, arg(z − ζ) = arg ζ = arg z. (1.11)

In particular, ζ, z are on the same ray starting from the origin. If we also choose bases Ξl
s,k

and Ξs
i,j of HomV (Ws � Wk, Wl) and HomV (Wi � Wj , Ws) respectively, then we have a 

matrix {Fαβ
γδ } (the fusion matrix) representing the invertible map Ψz,ζΦ−1

z,ζ . Equivalently, 
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we have a unique number Fαβ
γδ for each α, β, γ, δ such that for each s ∈ E and each 

γ ∈ Ξl
s,k, δ ∈ Ξs

i,j , the fusion relation

Yγ(Yδ(w(i), z − ζ)w(j), ζ) =
∑
r∈E

∑
α∈Ξl

i,r,β∈Ξr
j,k

Fαβ
γδ · Yα(w(i), z)Yβ(w(j), ζ) (1.12)

holds for each w(i) ∈ Wi, w(j) ∈ Wj . This fusion matrix is independent of the particular 
choice of z, ζ satisfying the above mentioned conditions. The associativity isomorphisms 
of Rep(V ) are defined in such a way that after making Rep(V ) strict, we have

γ(δ⊗ 1k) =
∑
r∈E

∑
α∈Ξl

i,r,β∈Ξr
j,k

Fαβ
γδ · α(1i ⊗ β), (1.13)

namely, F is also an F -matrix of Rep(V ).

2. Fusion of annihilation and vertex operators

Let Wi, Wj be V -modules. For each Ws ∈ E , there is a non-degenerate bilinear form 
〈·, ·〉 on HomV (Wi�Wj , Ws) ⊗HomV (Ws, Wi�Wj) such that if α ∈ HomV (Wi�Wj , Ws)
and T ∈ HomV (Ws, Wi � Wj), then

αT = 〈α, T 〉1s. (2.1)

This bilinear form gives an isomorphism

HomV (Ws,Wi � Wj)
�−→ HomV (Wi � Wj ,Ws)∗. (2.2)

We shall always identify HomV (Ws, Wi�Wj) and HomV (Wi�Wj , Ws)∗ using the above 
isomorphism.

Recall from the last section that Ξs
i,j is a basis of HomV (Wi � Wj , Ws). Then 

we can choose a dual basis {α̂ : α ∈ Ξs
i,j}. Namely, for each α ∈ Ξs

i,j , we have 

α̂ ∈ HomV (Ws, Wi � Wj), and if β ∈ Ξs
i,j , then 〈α, β̂〉 = δα,β. So we also have

αβ̂ = δα,β1s. (2.3)

This implies that

1i�j =
∑
s∈E

∑
α∈Ξs

i,j

α̂α, (2.4)

since, by (2.3), the left multiplications of both sides of (2.4) by any β ∈ Ξs
i,j equal β.

In [16], Huang-Kong used the rigidity of Rep(V ) to define a natural isomorphism 
HomV (Wi � Wj , Ws) 

�−→ HomV (Wi � Wj , Ws)∗. Since V
(

s
i j

)
is isomorphic to V

( j
i s

)
by 

sending Y to �Y, we also have an isomorphism
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4 : HomV (Wi � Wj ,Ws)∗
�−→ HomV (Wi � Ws,Wj). (2.5)

In the following, we review the construction of this isomorphism.
In [20], Huang showed that Rep(V ) is rigid, and the (categorical) dual object of any 

V -module Wi could be chosen to be the contragredient module Wi. Moreover, if we define

evi,i ∈ HomV (Wi � Wi, V )

such that

Yevi,i
= �Yκ(i),

(Recall that Yκ(i) is the creation operator of Wi, which is of type 
(

i
i 0

)
. Yevi,i

, which is of 
type 

( 0
i i

)
, is called the annihilation operator of Wi.) then there is a (unique) morphism

coevi,i ∈ HomV (V,Wi � Wi)

satisfying the conjugate equations

(1i ⊗ evi,i)(coevi,i ⊗ 1i) = 1i,

(evi,i ⊗ 1i)(1i ⊗ coevi,i) = 1i.

This is also true for Wi. Thus we have evi,i and coevi,i defined by evi,i = ev
i,i

and 
coevi,i = coev

i,i
.

Recall the identification (2.2). We define

4 : HomV (Ws,Wi � Wj)
�−→ HomV (Wi � Ws,Wj),

T 
→ 4(T ) = (evi,i ⊗ 1j)(1i ⊗ T ). (2.6)

That 4 is an isomorphism follows from the conjugate equations. Using the definition of 
4 and equation (2.4), it is easy to see

evi,i ⊗ 1j =
∑
s∈E

∑
α∈Ξs

i,j

4(α̂)(1i ⊗ α). (2.7)

Thus, by (1.12) and (1.13), we have the following fusion relation which will play an 
important role in later sections: Let z, ζ ∈ C satisfy (1.11). Then for any w(i) ∈ Wi, w(i) ∈
Wi,

Yj(Yevi,i
(w(i), z − ζ)w(i), ζ) =

∑
s∈E

∑
α∈Ξs

i,j

Y4(α̂)(w(i), z)Yα(w(i), ζ). (2.8)
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Note that for each s ∈ E , {4(α̂) : α ∈ Ξs
i,j} is a basis of HomV (Wi � Ws, Wj). Roughly 

speaking, this fusion relation says that any intertwining operator arises from fusing the 
annihilation operators and the vertex operators. This is parallel to the fact that any V -
module character occurs in the sum resulting from the modular transformation τ 
→ −1/τ
of the vacuum module character.

3. Compressions of intertwining operators

Assume that V is a vertex operator subalgebra (sub-VOA for short) of another CFT-
type VOA U with vertex operator Y U and conformal vector ω. This means that V is 
a subspace of U , V and U share the same vacuum vector 1, and that Y U (v1, z)v2 =
Y (v1, z)v2 when v1, v2 ∈ V . Let LU

n = Y U (ω)n+1. We shall always assume the additional 
condition that

LU
0 ν = 2ν, LU

1 ν = 0. (3.1)

Then by [11] or [22] theorem 3.11.12, (V c, Y ′, 1, ν′) is a sub-VOA of U , where V c is the 
set of all u ∈ U such that Y (v)nu = 0 for all v ∈ V and n ∈ N, Y ′ is the restriction of 
Y U to V c, and ν′ = ω − ν. We set L′

n = Y ′(ν′)n+1.
Assume that V c is self-dual, CFT-type, and regular. Then V ⊗ V c is also CFT-type 

and self-dual (and also regular). Thus it is simple. Therefore, the homomorphism of 
V ⊗ V c-modules

V ⊗ V c → U, v ⊗ v′ 
→ Y (v)−1Y (v′)−11 (3.2)

(cf. [22] proposition 3.12.7) must be injective. Thus, we can regard V ⊗V c as a conformal
sub-VOA of U sharing the same conformal vector ω = ν + ν′ = ν ⊗ 1 + 1 ⊗ ν′. Note 
that by the identification v ⊗ v′ = Y (v)−1Y (v′)−11, we have 1 = 1 ⊗ 1, v = v ⊗ 1, v′ =
1 ⊗ v′.

Recall that by [10] chapter 4, any irreducible V ⊗V c-module is the tensor product of a 
V -module and a V c-module. Moreover, by [3] theorem 2.10, any irreducible intertwining 
operator of V ⊗V c can be written as a sum of tensor products of irreducible intertwining 
operators of V and of V c. Therefore, any U -module, considered as a V ⊗V c-module, is a 
direct sum of those of the form Wi⊗Wi′ , where Wi is an irreducible V -module and Wi′ is 
an irreducible V c-module. Theorem 2.10 also implies that any intertwining operator of U
can be decomposed as a sum of Yα⊗Yα′ , where Yα and Yα′ are irreducible intertwining 
operators of V and V c respectively.

In the following, WI , WJ , WK , . . . will denote U -modules, and Wi′ , Wj′ , Wk′ , . . . will 
denote V c-modules. VU

(
K
I J

)
and V ′( k′

i′ j′

)
will denote the corresponding vector spaces of 

intertwining operators of U and V c respectively. Note that WI can not be regarded as a 
V -module (unless when ω = ν) but only as a weak V -module (see [8] for the definition.)
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Definition 3.1. Let Wi be an irreducible V -module and WI be a U -module. Let ϕ : Wi →
WI and ψ : WI → Wi be homomorphisms of weak V -modules, i.e., they intertwine the 
actions of V . We say that ϕ is grading-preserving if ϕ maps each L0-eigenspace of Wi

into an LU
0 -eigenspace of WI . We say that ψ is grading-preserving if the preimage under 

ψ of any LU
0 -eigenspace of WI is contained in an L0-eigenspace of Wi.

Remark 3.2. We have seen that there is an identification of V ⊗ V c-modules:

WI 

⊕
s∈E

Ws ⊗Wσ(s) (3.3)

where for each s ∈ E , Wσ(s) is a (non-necessarily irreducible) V c-module. We can also 
regard (3.3) as a decomposition of WI into irreducible weak V -modules, where for each 
s ∈ E , Wσ(s) is the multiplicity space of Ws. (Note that different elements in E give rise 
to non-equivalent irreducible modules.) Choose any s ∈ E . Choose ϕ : Ws → WI and 
ψ : WI → Ws to be homomorphisms of weak V -modules. Then it is not hard to see that 
we can find w(σ(s)) ∈ Wσ(s) and � ∈ W ∗

σ(s) (note that W ∗
σ(s) is the dual vector space of 

Wσ(s)) such that

ϕ = 1s ⊗ w(σ(s)), ψ = 1s ⊗�, (3.4)

where w(σ(s)) is considered as the linear map C → Wσ(s) sending 1 to w(σ(s)).2 More-
over, outside Ws ⊗Wσ(s), 1s ⊗� is defined to be the zero functional. Thus, it is clear 
that ϕ (resp. ψ) is grading-preserving if any only if w(σ(s)) (resp. �) equals an (L′

0-) 
homogeneous vector of Wσ(s) (resp. Wσ(s)).

Definition 3.3. Let Wi be an irreducible V -module and WI be a U -module. We say that 
Wi is a compression of WI if WI (considered as a weak V -module) has an irreducible weak 
V -submodule isomorphic to Wi. Equivalently, the V ⊗V c-module WI has a (non-trivial) 
irreducible submodule isomorphic to Wi ⊗Wi′ for some irreducible V c-module Wi′ .

Definition 3.4. Let Y ∈ V
(

k
i j

)
be an irreducible intertwining operator of V .

(a) Let YU ∈ VU
(

K
I J

)
be an intertwining operator of U . We say that Y is a com-

pression of YU , if there exit λ ∈ Q and grading-preserving homomorphisms of weak 
V -modules ϕ : Wi → WI , φ : Wj → WJ , and ψ : WK → Wk, such that for any w(i) ∈ Wi

and z ∈ C×

Y(w(i), z) = zλ · ψYU (ϕw(i), z)φ.

2 To see that ϕ can be written in this way, choose any t ∈ E and ω ∈ W ∗
σ(t), and consider the homomor-

phism of irreducible V -modules Tω : Ws → Wt defined by Tω = (1t ⊗ ω) ◦ ϕ. Then Tω = 0 whenever 
s 
= t (since Ws /�Wt). So the image of ϕ is in Ws ⊗Wσ(s). Now assume t = s. Then Tω is a scalar. Choose 
a basis {e1, e2, . . . } of Ws, and write ϕ(e1) =

∑
n en ⊗ wn where each wn is in Wσ(s). Then, for each ω, 

Tω(e1) =
∑

n ω(wn)en is a scalar multiple of e1, which shows that wn = 0 when n > 1. Thus ϕ = 1s ⊗w1. 
That ψ has the desired form can be proved similarly.
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(b) If WI , WJ are U -modules, we say that Y is a compression of type 
( •
I J

)
intertwining 

operators of U , if Y is a (finite) sum of compressions of intertwining operators of U whose 
charge spaces are WI and source spaces are WJ .

(c) If Y is a (finite) sum of compressions of intertwining operators of U , we simply 
say that Y is a compression of intertwining operators of U

Proposition 3.5. Let WI , WJ , WK be U -modules with V ⊗ V c-irreducible decompositions

WI 

⊕

Wi ⊗Wi′ , WJ 

⊕

Wj ⊗Wj′ , WK 

⊕

Wk ⊗Wk′ .

Then, according to these decompositions, any YU ∈ VU
(

K
I J

)
can be written as a sum 

of elements of the form Y ⊗ Y ′, where Y ∈ V
(

k
i j

)
is the compression of a type 

(
K
I J

)
intertwining operator of U , and Y ′ is an irreducible intertwining operator of V c.

Proof. We fix irreducible V⊗V c-submodules Wi⊗Wi′ , Wj⊗Wj′ , Wk⊗Wk′ of WI , WJ , Wk

respectively. Let Θk′

i′,j′ be a basis of HomV c(Wi′ � Wj′ , Wk′). We have a (functorial) 
isomorphism

HomV c(Wi′ � Wj′ ,Wk′) �−→ V ′
(

k′

i′ j′

)
, α′ 
→ Y ′

α′ (3.5)

similar to (1.2). Consider YU as an intertwining operator of V ⊗ V c, and restrict it to 
Wi ⊗ Wi′ , Wj ⊗ Wj′ , Wk ⊗ Wk′ . Then, by [3] theorem 2.10, this restriction is a sum of 
tensor products of V - and V c-intertwining operators. Assume without loss of generality 
that this restriction is non-zero. Then Wk, Wk′ must be irreducible submodules of Wi �
Wj , Wi′�Wj′ respectively. Now, for each α′ ∈ Θk′

i′,j′ , we can find α ∈ HomV (Wi�Wj , Wk)
(not necessarily in Ξk

i,j) such that the restriction of YU equals

∑
α′∈Θk′

i′,j′

Yα ⊗ Y ′
α′ .

We shall show that each Yα is a sum of compressions of type 
(

K
I J

)
intertwining operators 

of U .
Choose α′ ∈ Θk′

i′,j′ and apply Corollary 1.2 to V c. Then there exist homogeneous 
vectors w(i′)

1 , . . . , w(i′)
m ∈ Wi′ , w(j′)

1 , . . . , w(j′)
m ∈ Wj′ , w(k′) ∈ Wk′ , and constants 

λ1, . . . , λm ∈ Q, such that for any β′ ∈ Θk′

i′,j′ , the expression

m∑
l=1

zλl〈Y ′
β′(w(i′)

l , z)w(j′)
l , w(k′)〉 (3.6)

is a constant (over the complex variable z), and this constant is non-zero if and only 
if β′ = α′. By scaling the vector w(k′), we may assume that when β′ = α′, the above 
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constant is 1. Now, for each l = 1, 2, . . . , m, define grading-preserving homomorphisms 
of weak V -modules ϕl : Wi → WI , φl : Wj → WJ , ψ : WK → Wk by

ϕl = 1i ⊗ w
(i′)
l , φl = 1j ⊗ w

(j′)
l , ψ = 1k ⊗ w(k′).

Then we have

Yα(w(i), z) =
m∑
l=1

zλl · ψYU (ϕlw
(i), z)φl.

This finishes the proof. �
4. Proof of the main result

In this section, we assume that V cc = V . Let WI , WJ be V -modules, and we fix 
irreducible decompositions of V ⊗ V c-modules:

U 

(
V ⊗ V c

)
⊕

(⊕
Wa ⊗Wa′

)
, (4.1)

WI 

(
V ⊗ V c

)
⊕
(⊕

Wi ⊗Wi′

)
, (4.2)

WJ 

(
V ⊗ V c

)
⊕

(⊕
Wj ⊗Wj′

)
. (4.3)

We first recall the following obvious fact.

Proposition 4.1. If Wa ⊗Wa′ is an irreducible V ⊗ V c-submodule of U � (V ⊗ V c), then 
Wa is not isomorphic to V and Wa′ is not isomorphic to V c.

Proof. If Wa′ is isomorphic to V c, then Wa′ contains a non-zero homogeneous vector 
w2 equivalent to the vacuum vector of V c. Choose any non-zero w1 ∈ Wa. Then for any 
v′ ∈ V c and n ∈ N, Y ′(v′)nw2 = 0. Therefore Y U (v′)n(w1 ⊗ w2) = w1 ⊗ Y ′(v′)nw2 = 0. 
Thus w1 ⊗ w2 ∈ V cc = V = V ⊗ 1, which is impossible since w1 ⊗ w2 is not in V ⊗ V c. 
So Wa′ is not isomorphic to V c. Since V ccc = V c, for a similar reason, Wa is also not 
isomorphic to V . �

For each irreducible V c-module, we choose a representing element, and let them form 
a finite set E ′. Assume W0′ := V c is in E ′. If Wi′ , Wj′ , Wk′ are V c-modules, we choose a 
basis Θk

i,j of HomV c(Wi′ � Wj′ , Wk′). The linear isomorphism

4 : HomV c(Wi′ � Wj′ ,Wk′)∗ �−→ HomV c(Wi′ � Wk′ ,Wj′) (4.4)

and the morphism

evi′,i′ ∈ HomV c(Wi′ � Wi′ , V
c)



B. Gui / Journal of Algebra 564 (2020) 32–48 45
are defined as in section 2. Then Y ′
ev

i′,i′
is the annihilation operator of Wi′ .

According to the decomposition for WI , WI also has the corresponding decomposition:

WI 

(
V ⊗ V c

)
⊕

(⊕
Wi ⊗Wi′

)
.

Let

evI,I ∈ HomU (WI � WI , U)

which corresponds to the annihilation operator YU
evI,I

of the U -module WI . Suppose that 
in the above decompositions, Wi � Wi′ is an irreducible submodule of WI � (V ⊗ V c). 
If we regard YU

evI,I
as an intertwining operator of V ⊗ V c, then it is easy to see that 

the restriction of YU
evI,I

to the charge subspace Wi � Wi′ source subspace Wi � Wi′ and 
the target subspace V ⊗ V c is Yevi,i

⊗ Y ′
ev

i′,i′
, the tensor product of the annihilation 

operators of Wi and of Wi′ .

Theorem 4.2. Let V be a vertex operator subalgebra of U satisfying (3.1). Assume that U , 
V , and V c are CFT type, self-dual, and regular VOAs. Assume also that V cc = V . Let 
WI , WJ be U -modules. Let Wi, Wj be irreducible V -modules that are compressions of WI

and WJ respectively. Then any irreducible intertwining operator of V with charge space 
Wi and source space Wj is a compression of type 

( •
I J

)
intertwining operators of U .

Proof. Let Wi ⊗ Wi′ and Wj ⊗ Wj′ be irreducible V ⊗ V c-submodules of WI , WJ re-
spectively. Assume that k ∈ E and not all type 

(
k
i j

)
intertwining operators of V are 

compressions of type 
( •
I J

)
intertwining operators of U . Let V

(
k
i j

)
be a subspace of 

V
(

k
i j

)
with codimension 1 containing all elements of V

(
k
i j

)
that are compressions of type ( •

I J

)
intertwining operators of U . Choose a nonzero element A ∈ HomV (Wi � Wj , Wk)

such that YA /∈ V
(

k
i j

)
. We assume that the basis Ξk

i,j of HomV (Wi �Wj , Wk) is chosen 

such that A ∈ Ξk
i,j , and that Yα ∈ V

(
k
i j

)
for any α ∈ Ξk

i,j not equal to A.
Choose z, ζ ∈ C satisfying (1.11). Recall that Y U

I is the U -vertex operator of WI

and YU
evI,I

is the U -annihilation operator of WI . In the following, we shall calculate the 

fusion relation for the iterate of V ⊗ V c-intertwining operators Y U
J and YU

evI,I
(with 

restricted charge, source, and target spaces) in two ways. These two methods will give 
incompatible results, which therefore lead to a contradiction. Let πj⊗j′ be the projection 
of the algebraic completion of WJ onto the one of Wj ⊗Wj′ .

Step 1. Note that for each s ∈ E , s′ ∈ E ′, the set Ξs
i,j × Θs′

i′,j′ (more precisely, {Yα ⊗
Y ′
α′ : α ∈ Ξs

i,j , α
′ ∈ Θs′

i′,j′}) is a basis of the vector space of type 
(

Ws⊗Ws′
Wi⊗Wi′ Wj⊗Wj′

)
intertwining operators of V ⊗ V c. (See [3] theorem 2.10; it is also an easy consequence 
of Corollary 1.2.) Thus, for any s ∈ E , s′ ∈ E ′ and α, β ∈ HomV (Wi � Wj , Ws), α′, β′ ∈
HomV c(Wi′ � Wj′ , Ws′), there is a unique constant λα,β,α′,β′ ∈ C such that for any

w1 ∈ Wi, w2 ∈ Wi′ , w3 ∈ Wi, w4 ∈ Wi′ , w5 ∈ Wj , w6 ∈ Wj′ , (4.5)
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the following fusion relation of V ⊗ V c-intertwining operators holds:

πj⊗j′ · Y U
J

(
YU

evI,I
(w1 ⊗ w2, z − ζ)(w3 ⊗ w4), ζ

)
(w5 ⊗ w6)

=
∑
s∈E
s′∈E′

∑
α,β∈Ξs

i,j

α′,β′∈Θs′
i′,j′

λα,β,α′,β′ · Y
4(β̂)(w1, z)Yα(w3, ζ)w5 ⊗ Y ′

4(
̂
β′)

(w2, z)Y ′
α′(w4, ζ)w6.

(4.6)

(Recall (1.2) and (3.5) for the notations Y, Y ′.) On the other hand, by (2.8), the it-
erate of the U -intertwining operators Y U

J and YU
evI,I

equals a sum of products of type (
J
I •

)
intertwining operators and type 

( •
I J

)
intertwining operators of U . Therefore, by 

Proposition 3.5 and the uniqueness of fusion coefficients, we have

λA,β,α′,β′ = 0 (4.7)

for any s′ ∈ E ′, β ∈ Ξk
i,j , and α′, β′ ∈ Θs′

i′,j′ . In particular, the right hand side of (4.6)
has no terms containing Y

4(Â)(w1, z)YA(w3, ζ)w5.
Step 2. We calculate the iterate of πj⊗j′ ·Y U

J and YU
evI,I

using a different method, and 
show that some terms containing Y

4(Â)(w1, z)YA(w3, ζ)w5 will appear. By the paragraph 
before the theorem, we know that for any w1, w2, . . . , w6 as in (4.5),

YU
evI,I

(w1 ⊗ w2, z − ζ)(w3 ⊗ w4)

=Yevi,i
(w1, z − ζ)w3 ⊗ Y ′

ev
i′,i′

(w2, z − ζ)w4

+
∑

Wa⊗Wa′

∑
γ,γ′

Yγ(w1, z − ζ)w3 ⊗ Y ′
γ′(w2, z − ζ)w4 (4.8)

where the first sum is over all irreducible V ⊗ V c-submodules of U � (V ⊗ V c) as in 
the decomposition (4.1), γ ∈ HomV (Wi � Wi, Wa), and γ′ ∈ HomV c(Wi′ � Wi′ , Wa′). 
We shall now calculate the iterate of πj⊗j′ · Y U

J with each term on the right hand side 
of (4.8).

The first term is in the algebraic completion of V ⊗ V c. Moreover, the restriction of 
Y U
J (regarded as a V ⊗ V c-intertwining operator) to V ⊗ V c, Wj ⊗Wj′ , Wj ⊗Wj′ equals 

Yj ⊗Y ′
j′ , where Yj , Y ′

j′ are respectively the vertex operators of the V -module Wj and the 
V c-module Wj′ . Therefore, by (2.8),

πj⊗j′ · Y U
J

(
Yevi,i

(w1, z − ζ)w3 ⊗ Y ′
ev

i′,i′
(w2, z − ζ)w4, ζ

)
(w5 ⊗ w6)

=Yj

(
Yevi,i

(w1, z − ζ)w3, ζ
)
w5 ⊗ Y ′

j′
(
Y ′

ev
i′,i′

(w2, z − ζ)w4, ζ
)
w6

=
∑
s∈E

∑
α∈Ξs

i,j

Y4(α̂)(w1, z)Yα(w3, ζ)w5 ⊗ Y ′
j′
(
Y ′

ev
i′,i′

(w2, z − ζ)w4, ζ
)
w6. (4.9)
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In the above expression, (the sum of) all the terms containing Y
4(Â)(w1, z)YA(w3, ζ)w5

is

Y
4(Â)(w1, z)YA(w3, ζ)w5 ⊗ Y ′

j′
(
Y ′

ev
i′,i′

(w2, z − ζ)w4, ζ
)
w6. (4.10)

On the other hand, suppose that when restricted to the charge subspace Wa ⊗ Wa′

(where Wa ⊗Wa′ is an irreducible submodule of U � (V ⊗ V c)) and source and target 
subspace Wj⊗Wj′ , the V ⊗V c-intertwining operator Y U

J could be written as 
∑

δ,δ′ Yδ⊗
Y ′
δ′ , where each Yδ is of type 

(
j

a j

)
and Y ′

δ′ has type 
(

j′

a′ j′

)
. Then the iterate of πj⊗j′ ·Y U

J

with the second term of (4.8) is

∑
Wa⊗Wa′

∑
γ,γ′

πj⊗j′ · Y U
J

(
Yγ(w1, z − ζ)w3 ⊗ Yγ′(w2, z − ζ)w4, ζ

)
(w5 ⊗ w6)

=
∑

Wa⊗Wa′

∑
γ,γ′

δ,δ′

Yδ

(
Yγ(w1, z − ζ)w3, ζ

)
w5 ⊗ Y ′

δ′
(
Y ′
γ′(w2, z − ζ)w4, ζ

)
w6. (4.11)

If we write each Yδ

(
Yγ(w1, z − ζ)w3, ζ

)
w5 as a sum of products of V -intertwining oper-

ators under the bases Ξs
i,j and {4(α̂) : α ∈ Ξs

i,j} (over all s ∈ E) similar to part of (4.6), 
then the sum of all the terms containing Y

4(Â)(w1, z)YA(w3, ζ)w5 should be

Y
4(Â)(w1, z)YA(w3, ζ)w5 ⊗

∑
Wa⊗Wa′

∑
γ,γ′

δ,δ′

κγ,δ · Y ′
δ′
(
Y ′
γ′(w2, z − ζ)w4, ζ

)
w6 (4.12)

where each κγ,δ is a constant. By Proposition 4.1, every Wa′ (which is irreducible) 
is not isomorphic to V c. Therefore, as the linear map Φz,ζ (see (1.9)) is injective, 
the sum of (4.10) and (4.12) is not zero for some w1, . . . , w6 satisfying (4.5). This 
shows that (4.6) (which is the sum of (4.9) and (4.11)) has non-zero terms contain-
ing Y

4(Â)(w1, z)YA(w3, ζ)w5. In other words, λA,A,α′,β′ �= 0 for some s′ ∈ E ′ and 

α′, β′ ∈ Θs′

i′,j′ . This gives a contradiction. �
The following result was proved in [21]:

Theorem 4.3. Let V be a vertex operator subalgebra of U satisfying (3.1). Assume that 
U , V , and V c are CFT type, self-dual, and regular VOAs. Assume also that V cc = V . 
Then any irreducible V -module is the compression of a U -module.

The above two theorems imply immediately the following:

Theorem 4.4. Under the assumption of Theorem 4.3, any irreducible intertwining oper-
ator of V is a compression of intertwining operators of U .
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