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0. Introduction

In his breakthrough work [24], Wassermann computed the fusion rules for type A

WZW conformal nets, thus establishing the first important relation between the ten-
sor structures of VOA modules and conformal net ones. One of the key steps in [24]
is to prove that sufficiently many intertwining operators have bounded smeared
primary (i.e. lowest weight) fields. The boundedness condition does not hold in
general, and should be replaced by the (polynomial) energy bounds condition [5],
which says roughly that the smeared intertwining operator is bounded by some
nth power of the energy operator L0. By generalizing the ideas of Wassermann,
Toledano-Laredo established in [22] the energy bounds condition for sufficiently
many intertwining operators of type D unitary affine VOAs. Similar results for
type BCG were proved recently by the author in [12]. The main strategies are the
same (which we call the compression method): One first show the energy bounds
for level 1 intertwining operators. The higher level cases are treated inductively
by considering the diagonal embedding V l+1

g ⊂ V 1
g ⊗ V l

g and showing that suf-
ficiently many V l+1

g -intertwining operators are compressions (i.e. restrictions) of
V 1

g ⊗ V l
g -intertwining operators. Since the latter are energy-bounded by induction,

the former are so.
The most difficult and technical part of this method is to verify that compress-

ing the intertwining operators of the larger VOA (say V 1
g ⊗ V l

g) produce enough
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intertwining operators of the smaller VOA (say V l+1
g ). In [12, 22, 24] this is mostly

done by Lie algebraic methods, which require case by case studies. Generalizing
such analysis to type E (especially E8) WZW-models will be still possible but
significantly more difficult. Fortunately, when g is of type ADE, due to the facts
(cf. [2–4]) that V l+1

g and its commutant in V 1
g ⊗V l

g are both regular, and that V l+1
g

equals its double commutant, it is always possible to produce enough intertwining
operators via compressions (cf. [14, 17]). This proves the energy bounds condition
for all WZW-intertwining operators of type ADE (which, even in the case of type
AD, is stronger than the results in [22, 24]). Moreover, this method is vertex alge-
braic and does not require case by case studies. Unfortunately, it is not known if
the main results in [4] can be applied to other Lie types or not. Thus, so far, for
the remaining type F4, one can only prove the energy bounds using Lie theoretic
methods. This is the goal of this paper.

Let f4 be the type F4 complex simple Lie algebra. Let l ∈ Z+. The main result of
this paper is that sufficiently many intertwining operators of the unitary affine VOA
V l

f4
is energy-bounded. To be more precise, let λ4 be the highest weight associated to

the smallest non-trivial irreducible f4-module Lf4(λ4) (which is of dimension 26 and
admissible at level 1), and Lf4(λ4, l) is the irreducible representation of the affine
VOA V l

f4
with highest weight λ4. We show that any intertwining operator with

charge space Lf4(λ4, l) is energy-bounded (Theorem 2.1), and that any irreducible
V l

f4
-module is a submodule of a tensor (fusion) product of Lf4(λ4, l) (Theorem 5.1).

(The second result says that considering only intertwining operators with charge
space Lf4(λ4, l) is “sufficient”.) Theorem 5.1 is an easy consequence of V l

f4
-fusion

rules well known in the literature; Theorem 2.1 is the non-trivial part of our main
result. In the following, we briefly explain the strategies of the proof by comparing
f4 with g2 studied in [12].

One might guess that f4 and g2 can be treated in a similar way due to the
conformal embedding V 1

f4
⊗V 1

g2
⊂ V 1

e8 . However, it turns out that f4 is very different
from g2 and from all the classical Lie types in the following two aspects.

(1) For any complex simple Lie algebra g not of type F4 or E8, the weight multi-
plicities of the smallest non-trivial irreducibles are bounded by 1. By contrast,
Lf4(λ4) has weight 0 with multiplicity 2. Consequently, the tensor product rules
of Lf4(λ4) exceed 1, which makes the analysis of f4 more subtle.

(2) It seems very difficult (if not impossible) to reduce the higher level cases to the
level 1 case using the Lie algebraic methods as in [12, 22, 24]. Thus, one also
needs to treat level 2 separately. However, the method for g2 level 1 (see [12]
especially Lemma 5.5) can be applied only to f4 level 1 but not level 2.

We resolve the second issue by exploiting the conformal embeddings

V 1
sl2 ⊗ V 1

sp6
⊂ V 1

f4,

Virc9 ⊗ V 2
sl2 ⊗ V 2

sp6
⊂ V 2

f4,
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where Virc9 is the (regular) unitary Virasoro VOA with central charge c9 < 1. Since
the intertwining operators of the smaller VOAs are energy-bounded, so are those
of the larger ones. See Sec. 3 for more details. As for the first issue, we show that
the 2-dimensional weight 0 subspace Lf4(λ4)[0] is spanned by two particular vectors
(called Fρ3vρ3 , Fρ4vρ4) killed by the homomorphisms in Homg(λ4 ⊗ λ4, λ4) and in
Homg(λ4 ⊗ λ3, λ3), respectively. (Here λ3 is the highest weight for the irreducible
273-dimensional representation.) The key result is Lemma 4.2, for which we give
two different proofs. The importance of this result is that any homomorphism of
the form Homg(λ4 ⊗ λ, λ) (where λ is a dominant integral weight of f4) reduces to
a linear combination of those in Homg(λ4 ⊗ λ4, λ4) and Homg(λ4 ⊗ λ3, λ3). (For
instance, see the proof of Proposition 6.1.)

Section 6 contains the most technical part of this paper, which reduces the four
types of intertwining operators in Proposition 6.3 to those of levels 1 and 2. The
main idea is the same as case (II) of [12, Sec. 5.2]. In particular, Proposition 6.2
and Lemma 6.1, on which the proof of Proposition 6.3 relies, also appears either
explicitly or implicitly in [12]. Indeed, Proposition 6.2 is a (slight) generalization
of [12, Lemma 2.15], whereas Lemma 6.1 generalizes the arguments in the proof
of [12, Lemma 5.6].

The main result of this paper, together with those in [12, 14, 22, 24], is crucial
for showing the equivalence of the VOA tensor categories and the conformal net
tensor categories associated to WZW-models and their regular cosets. This is the
main topic of [13] and will not be discussed in this paper.

1. Energy-Bounded Intertwining Operators

We refer the readers to [5, 7, 11] for the basics of unitary VOAs, unitary modules,
and unitary intertwining operators. Let V be a unitary VOA. Thus, V is equipped
with an inner product 〈·|·〉 (antilinear on the second variable) and an antilinear
automorphism Θ (preserving the vacuum vector Ω and the conformal vector ν)
such that for every v, v1, v2 ∈ V ,

〈v1|Y (v, z)v2〉 = 〈Y (ezL1(−z−2)L0Θv, z−1)v1|v2〉.
Moreover, Θ is anti-unitary, and Θ2 = 1V . A V -module (Wi, Yi) is called unitary
if Wi is equipped with an inner product 〈·|·〉 under which the above relation holds
for any v ∈ V, v1, v2 ∈ Wi. In particular, V is a unitary V -module. The eigenvalues
of L0 on Wi are non-negative.

For each v ∈ V, we write Y (v, z) =
∑

n∈Z
Y (v)nz−n−1. Recall that if Wi, Wj , Wk

are unitary V -modules, a type
(

Wk

WiWj

)
=

(
k

i j

)
(unitary) intertwining operator Y is

a linear map

Wi → End(Wj , Wk){z},
wi �→ Y(w(i), z) =

∑
n∈R

Y(w(i))nz−n−1,
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where the sum above is the formal sum, each Y(w(i))n is in End(Wj , Wk), and the
following conditions are satisfied:

(a) (Lower truncation) For any w(j) ∈ Wj , Y(w(i))nw(j) = 0 when n is sufficiently
large.

(b) (Jacobi identity) For any u ∈ V, w(i) ∈ Wi, m, n ∈ Z, s ∈ R, we have

∑
l∈N

(
m

l

)
Y(Yi(u)n+lw

(i))m+s−l,

=
∑
l∈N

(−1)l

(
n

l

)
Yk(u)m+n−lY(w(i))s+l

−
∑
l∈N

(−1)l+n

(
n

l

)
Y(w(i))n+s−lYj(u)m+l. (1)

(c) (L−1-derivative) d
dzY(w(i), z) = Y(L−1w

(i), z).

We say that Wi, Wj , Wk are , respectively, the charge space, the source space,
and the target space of Y. If Wi, Wj , Wk are all irreducible, we say that Y is an
irreducible intertwining operator.

Let w(i) ∈ Wi be a homogeneous vector (for simplicity), i.e. w(i) is an eigenvector
of L0. We say that Y(w(i), z) is energy-bounded (or satisfies polynomial energy
bounds) if there exist M, t, r ≥ 0 such that for any w(j) ∈ Wj , n ∈ R,

‖Y(w(i))nw(j)‖≤ M(1 + |n|)t‖(1 + L0)rw(j)‖,

where the norms ‖·‖ are defined by the inner products of Wj , Wk. We say that Y is
energy-bounded if Y(w(i), z) is so for any homogeneous w(i) ∈ Wi. We say that V

is strongly energy-bounded if Yi is energy-bounded for any unitary V -module Wi.
Suppose that g is a finite dimensional (unitary) complex simple Lie algebra. Let

(·|·) be the (unique) invariant inner product under which the longest roots of g have
length

√
2. For each l ∈ Z+ = {1, 2, 3, . . .}, the affine VOA V l

g is the unique unitary
VOA generated by the weight 1 subspace V (1) such that V (1) (with the naturally
defined Lie algebra structure) is equivalent to g, and that the inner product 〈·|·〉
on V (1) equals l times (·|·). V l

g is strongly energy-bounded. (See [5, Example 8.7])
Thus, by [11, Corollary 3.7(a)], we have

Proposition 1.1. Let Y be an irreducible V l
g -module with charge space Wi. If there

exists a homogeneous nonzero w(i) ∈ Wi such that Y(w(i), z) is energy-bounded, then
Y is energy-bounded.

In the remaining part of this paper, unless otherwise stated, we shall let g denote
the type F4 complex simple Lie algebra f4.

2050096-4

In
t. 

J.
 M

at
h.

 2
02

0.
31

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 T
SI

N
G

H
U

A
 U

N
IV

E
R

SI
T

Y
 o

n 
04

/0
2/

22
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



November 24, 2020 16:34 WSPC/S0129-167X 133-IJM 2050096

Polynomial energy bounds for type F4 WZW-models

2. The 26-Dimensional Representation Lg(λ4)

We follow the notations in [12]. Recall that we set g = f4. Let h be the Cartan
subalgebra of g. Then h∗ is the space of weights of g. Let θ be the longest root of
f4. Recall that the invariant inner product (·|·) on f4 is chosen such that (θ|θ) = 2.
One then have an isomorphism h 
 h∗ induced by this inner product. For any root
α and weight λ, we set

nλ,α =
2(λ|α)
(α|α)

. (2)

g has an involution ∗ such that X∗ = −X when X is an element in the compact real
form. Then, with the ∗-structure, g is a unitary Lie algebra. Thus, given a unitary
representation W of g where W is equipped with an inner product 〈·|·〉, we have
for any X ∈ g, u, v ∈ W that

〈Xu|v〉 = 〈u|X∗v〉.

In particular, the adjoint representation g � g is unitary. Hence, for any X, Y, Z ∈
g, we have

([X, Y ]|Z) = (Y |[X∗, Z]).

Let l = Z+. Let P+(g) be the set of dominant integral weights of g. Let P+(g, l)
be the set of all λ ∈ P+(g) admissible at level l (i.e. (λ|θ) ≤ l). Let V l

g be the level
l unitary affine VOA associated to g. Then, the irreducible unitary representations
of V l

g are precisely those equivalent to some highest weight (equivalently, lowest
energy) representation Lg(λ, l), where λ ∈ P+(g, l). (See [9]) Lg(λ) denotes the
finite dimensional (unitary) irreducible representation of g with highest weight λ.
We also identify Lg(λ) with the lowest energy subspace of Lg(λ, l). If μ ∈ h is a
weight, then Lg(λ)[μ] the μ-weight space of g, i.e. Lg(λ)[μ] consists of v ∈ Lg(λ)
such that hv = (h|μ)v for any h ∈ h.

f4 has the following simple roots (described by the “orthogonal basis”)

ρ1 = [0, 1,−1, 0], ρ2 = [0, 0, 1,−1], ρ3 = [0, 0, 0, 1], ρ4 =
1
2
[1,−1,−1,−1].

The corresponding fundamental weights are

λ1 = [1, 1, 0, 0], λ2 = [2, 1, 1, 0], λ3 =
1
2
[3, 1, 1, 1], λ4 = [1, 0, 0, 0].

We also have θ = λ1 = [1, 1, 0, 0]. We also adopt the following notation

(n1, n2, n3, n4) = n1λ1 + n2λ2 + n3λ4 + n4λ4.

f4 has 24 positive roots, whose lengths are either 1 or
√

2. Those with length
1 fall into the following two groups. The roots in Group A are orthogonal to the

2050096-5

In
t. 

J.
 M

at
h.

 2
02

0.
31

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 T
SI

N
G

H
U

A
 U

N
IV

E
R

SI
T

Y
 o

n 
04

/0
2/

22
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



November 24, 2020 16:34 WSPC/S0129-167X 133-IJM 2050096

B. Gui

highest root θ = λ1:

(0,−1, 2,−1) = [0, 0, 0, 1] (= ρ3)

(−1, 1, 0,−1) = [0, 0, 1, 0]

(0, 0,−1, 2) =
1
2
[1,−1,−1,−1] (= ρ4)

(0,−1, 1, 1) =
1
2
[1,−1,−1, 1]

(−1, 1,−1, 1) =
1
2
[1,−1, 1,−1]

(−1, 0, 1, 0) =
1
2
[1,−1, 1, 1]

Group B consists of those not orthogonal to θ. There are also six elements in
group B:

[0, 1, 0, 0], [1, 0, 0, 0],
1
2
[1, 1,±1,±1].

Any positive root with length
√

2 is of the form [a, b, c, d] where only two of a, b, c, d

are nonzero; the first nonzero number is 1; the second one is 1 or −1. If α is a
root, we choose a raising operator Eα. Then Fα := E∗

α is a lowering operator.
We normalize Eα such that Eα, Fα, Hα = [Eα, Fα] satisfy [Hα, Eα] = 2Eα. Thus
[Hα, Fα] = −2Eα. Indeed, if β is also a root, then [Hα, Eβ ] = nβ,αEβ , [Hα, Fβ ] =
−nβ,αFβ . More generally, due to the fact that for any λ ∈ h∗ 
 h, we have

(Hα|λ) = nλ,α,

if v is a λ-weight vector, then

Hαv = nλ,αv.

We also have

(Eα|Eα) = (Fα|Fα) =
2

(α|α)
.

One can assume furthermore that

E−α = Fα, F−α = Eα, H−α = −Hα.

See [12, Sec. 1.2] for more details.
Lg(λ4) is 26-dimensional and has 25 weights: the zero weight, the 12 roots in

groups A and B, and there negatives. If a weight μ of Lg(λ4) is not zero, then
dim Lg(λ4)[μ] = 1. On the other hand, dimLg(λ4)[0] = 2. These facts can be
checked by LieART (see Sec. Appendix A).

The main result of this paper is:

Theorem 2.1. Any irreducible intertwining operator of V l
f4

with charge space
Lf4(λ4, l) is energy-bounded.
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3. The Case l = 1, 2

In this section, we prove Theorem 2.1 when l = 1, 2. The proof for level 1 is similar
but slightly simpler than level 2. So we will mainly focus on level 2. g = f4 has
a unitary Lie subalgebras a1 and c3 where a1 is generated by the raising and the
lowering operators of λ1 and c3 is generated by those of ρ2, ρ3, ρ4. Then a1 and c3
are simple Lie algebras of type A1, C3, respectively, i.e. a1 = sl2, c3 = sp6. By the
fact that ρ2 ± λ1, ρ3 ± λ1, ρ2 ± λ1 are not roots of f4 since there lengths exceed√

2, we have [a1, c3] = 0, which shows that there is an embedding of unitary Lie
algebras a1⊕ c3 ⊂ f4. Moreover, the long roots of a1, c3 both have lengths

√
2 under

the normalized invariant inner product of g. Thus, the Dynkin indexes of a1 ⊂ f4
and c3 ⊂ f4 are both 1, and one thus have unitary vertex operator subalgebras

V l
a1

⊗ V l
c3 ⊂ V l

f4 .

(See, for example, [12, Sec. 2.1]) By comparing the central charges, one sees that
when l = 1, the above subalgebra is a conformal subalgebra, i.e. both sides have
the same central charge and hence the same conformal vector. When l = 2, the
difference between the two central charges is c9 = 1− 6

9·10 . Thus, we have conformal
subalgebras

V 1
a1

⊗ V 1
c3 ⊂ V 1

f4 ,

Virc9 ⊗ V 2
a1

⊗ V 2
c3 ⊂ V 2

f4 ,

where Virc9 is the unitary Virasoro VOA with central charge c9. By [6], unitary
affine VOAs and unitary Virasoro VOAs with central charge c < 1 are regu-
lar. So Virc9 ⊗ V 2

a1
⊗ V 2

c3 is regular. Thus, any unitary V 2
f4

-module, as a unitary
Virc9 ⊗ V 2

a1
⊗ V 2

c3 -module, has a finite orthogonal irreducible decomposition, and
each irreducible component has the form W1⊗W2⊗W3, where W1, W2, W3 are irre-
ducible representations of Virc9 , V 2

a1
, V 2

c3 , respectively. (Cf. [21, Proposition 2.20]).

Lemma 3.1. Lf4(λ4, 2) has an irreducible unitary Virc9 ⊗ V 2
a1

⊗ V 2
c3-submodule

W1 ⊗ La1(�, 2) ⊗ Lc3(ϑ1, 2), (3)

where W1 is an irreducible unitary Virc9-module, � is the highest weight of the
(2-dimensional) vector representation of sl2, and ϑ1 is the highest weight of the
(6-dimensional) vector representation of sp6.

The case of level 1 is similar and is left to the reader.

Proof. The lowest energy subspace of Lf4(λ4, 2) is Lf4(λ4). Since the restrictions
of λ4 to the Cartan subalgebras of a1 and c3 equal � and ϑ1, respectively, the f4-
module Lf4(λ4) has an irreducible (a1⊕ c3)-submodule La1(�)⊗Lc3(ϑ1). Thus, the
weak V 2

a1
⊗V 2

c3-submodule of Lf4(λ4, 2) generated by La1(�)⊗Lc3(ϑ1) is equivalent
to La1(�, 2)⊗Lc3(ϑ1, 2). Recall that Lf4(λ4, 2) is a finite sum of irreducible Virc9 ⊗
V 2

a1
⊗V 2

c3 -submodules of the form W1⊗W2⊗W3 which, as a weak V 2
a1
⊗V 2

c3 -module,
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is a direct sum of W2 ⊗ W3. Therefore, there must be an irreducible submodule
W1 ⊗ W2 ⊗ W3 with W2 ⊗ W3 
 La1(�, 2) ⊗ Lc3(ϑ1, 2).

Proposition 3.1. Theorem 2.1 holds when l equals 1 or 2.

Proof. We only discuss the case of l = 2 since the other case can be treated in a
similar way. Let Y be any intertwining operator of V 2

f4
with charge space Lf4(λ4, 2).

By Proposition 1.1, it suffices to prove that Y(w, z) is energy-bounded for some
nonzero homogeneous vector w ∈ Lf4(λ4, 2). If we regard Y as an intertwining
operator of Virc9 ⊗V 2

a1
⊗V 2

c3 , then, by the above lemma, one can restrict the charge
space of Y of a charge subspace of the form (3). Let Y0 be the restriction of Y to
this charge subspace. Then it suffices to prove that Y0 is energy-bounded.

By [1, Theorem 2.10], Y0 is a finite sum of intertwining operators of the form
Y1⊗Y2⊗Y3 where Y1,Y2,Y3 are irreducible intertwining operators of Virc9 , V 2

a1
, V 2

c3

with charge spaces W1, La1(�, 2), Lc3(ϑ1, 2), respectively. By [12, Theorem 4.2], Y3

is energy-bounded. By [24], Y2 is energy-bounded. By [18, Proposition IV.1.3], any
intertwining operator of a unitary c < 1 Virasoro VOA is energy-bounded.a So Y1

is energy-bounded. By the arguments in [5, Sec. 6], or [11, Proposition 3.5], tensor
products of energy-bounded intertwining operators are energy-bounded. So Y0 is
energy-bounded.

Remark 3.1. The method in this section can be used to prove a similar result for
the level 1 affine type G2 VOA V 1

g2
. Let α1 = [

√
2/3, 0], α2 = [−√

3/2,
√

1/2] be the
simple roots of g2. Then α3 = [0,

√
2] is a root of g with squared length 2. We have

embedding a1 ⊕ a1 ⊂ g2 with the first a1 generated by the raising and the lowering
operators of α1, and the second one generated by those of α3. This embedding
induces a conformal extension V 3

a1
⊗ V 1

a1
⊂ V 1

g2
. Let ς = [

√
1/6,

√
1/2] which is the

highest weight of the 7-dimensional irreducible g2-module. Then the V 1
g2

-module
Lg2(ς, 1) has an irreducible V 3

a1
⊗ V 1

a1
-submodule La1(�, 3) ⊗ La1(�, 1). Since the

intertwining operators of V 3
a1

⊗ V 1
a1

with such charge space are energy-bounded, so
are those of V 1

g2
with charge space Lg2(ς, 1).

4. The Tensor (Fusion) Product Rule Nν
μ

For each λ ∈ P+(g, l), we let Δλ be the conformal weight of Lg(λ, l), i.e. Δλ is the
smallest eigenvalue of L0 on Lg(λ, l). Note that Δλ depends on l. Indeed, we have
Δλ = Cλ

2(l+h∨) where h∨ is the dual Coxeter number of g, and Cλ is the Casimir
number of Lg(λ).

We denote by V l
g

(
ν

λ μ

)
the vector space of type

(
ν

λ μ

)
=

( Lg(ν,l)
Lg(λ,l) Lg(μ,l)

)
intertwin-

ing operators of V l
g , assuming that λ, μ, ν are admissible at level l. We let Nν

λμ be

aThis also follows from the fact that any intertwining operator of a type A discrete series W -
algebra is energy-bounded. See the introduction of [14].
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the dimension of this vector space. Since in this paper, we will be mainly interested
in the case that λ = λ4, we let

Nν
μ := Nν

λ4μ = dimV l
g

(
ν

λ4 μ

)
. (4)

Set

Δν
λμ = Δλ + Δμ − Δν .

We also write Homg(Lg(λ)⊗Lg(μ), Lg(ν)) as Homg(λ⊗μ, ν) for short. Then for any
Y ∈ V l

g

(
ν

λ μ

)
and u(λ) ∈ Lg(λ), v(μ) ∈ Lg(μ), we have Y(u(λ))Δν

λμ−1 · u(μ) ∈ Lg(ν).
We define the linear map

Ψ :V l
g

(
ν

λ μ

)
→ Homg(λ ⊗ μ, ν) (5)

by sending each element Y to ΨY satisfying

ΨY(u(λ) ⊗ u(μ)) = Y(u(λ))Δν
λμ

−1 · u(μ).

It is well known that Ψ is injective. Moreover, if (λ|θ) = 1 (for example, if λ = λ4)
then Ψ is also surjective. (See [10, (5.9)]) In this case, the fusion rule agrees with
the truncated tensor product rule:

Nν
λ = dim Homg(λ4 ⊗ μ, ν).

In particular, Nν
μ is independent of the level l at which μ, ν are admissible.

Thus, to study the dimension of V l
g

(
ν

λ4 μ

)
, it suffices to understand the tensor

product rules of Lg(λ4). Let vμ ∈ Lg(μ)[μ], vν ∈ Lg(ν)[ν] be (nonzero) highest
weight vectors of Lg(μ), Lg(ν), respectively. Define a linear map

Γ :Homg(λ ⊗ μ, ν) → Lg(λ)[ν − μ]∗, (6)

such that for any T ∈ Homg(λ ⊗ μ, ν), ΓT , as a linear functional on Lg(λ)[ν − μ],
is defined by

(ΓT )(u(λ)) = 〈T (u(λ) ⊗ vμ)|vν〉 (7)

for any u(λ) ∈ Lg(λ)[ν − μ]. Then, Γ is injective.
The image of Γ can be described as follows. Let Kμ

g (λ)[ν−μ] be the subspace of
Lg(λ)[ν − μ] spanned by vectors of the form F

nμ,α+1
α u(λ), where α is a simple root

of g, and u(λ) ∈ Lg(λ) has weight ν−μ+(nμ,α +1)α. Denote by Kμ
g (λ)[ν −μ]⊥ the

set of elements of Lg(λ)[ν−μ]∗ vanishing on Kμ
g (λ)[ν−μ]. Then by [12, Proposition

1.17], we have

Im(Γ) = Kμ
g (λ)[ν − μ]⊥. (8)

Thus,

Nν
λμ = dimLg(λ)[ν − μ] − dimKμ

g (λ)[ν − μ]. (9)
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For example, fix nonzero vectors

vρ3 ∈ Lg(λ4)[ρ3], vρ4 ∈ Lg(λ4)[ρ4]. (10)

Since we know that a simple root α must be one of ρ1, ρ2, ρ3, ρ4, it is easy to see
that

Kλ3
g (λ4)[0] = C · Fρ4vρ4 , Kλ4

g (λ4)[0] = C · Fρ3vρ3 . (11)

As we shall see immediately, these two vectors are nonzero and (indeed) linearly
independent. Thus, we have Nλ3

λ3
= Nλ4

λ4
= 1. More generally, we have:

Lemma 4.1. Let μ = n1λ1 + n2λ2 + n3λ3 + n4λ4 be a dominant integral weight.

(a) If n3 = n4 = 0, then Nμ
μ = 0.

(b) If n3 > 0 and n4 = 0, then Nμ
μ = 1 and Kμ

g (λ4)[0] = C · Fρ4vρ4 .
(c) If n3 = 0 and n4 > 0, then Nμ

μ = 1 and Kμ
g (λ4)[0] = C · Fρ3vρ3 .

(d) If n3, n4 > 0, then Nμ
μ = 2.

We shall prove this lemma together with the following one:

Lemma 4.2. Fρ3vρ3 and Fρ4vρ4 form a basis of Lg(λ4)[0].

Proof. We know that any vector in Kμ
g (λ4)[0] must be of the form F

nμ,α+1
α u where

u ∈ Lg(λ4) has weight (nμ,α+1)α and α is one of ρ1, . . . , ρ4. Since (nμ,α+1)α is one
of the 25 weights of Lg(λ4), the only possible case is that nμ,α = 0 (equivalently,
(μ|α) = 0) and α ∈ {ρ3, ρ4}. (Note that ρ1, ρ2 are not weights of Lg(λ4).)

It is easy to calculate that

(μ|ρ3) =
n3

2
, (μ|ρ4) =

n4

2
.

In case (a), μ is orthogonal to both ρ3, ρ4. It follows that Kμ
g (λ4)[0] is spanned

by Fρ3vρ3 , Fρ4vρ4 . In particular, K0
g(λ4)[0] is spanned by the two vectors. Since

Homg(λ4 ⊗ 0, 0) is clearly trivial, by (9), we must have K0
g(λ4)[0] = Lg(λ)[0] whose

dimension is 2. Thus, Fρ3vρ3 , Fρ4vρ4 span Lg(λ4)[0]. This proves Lemma 4.2. By
this lemma, Kμ

g (λ4)[0], which has dimension 2, equals Lg(λ4)[0]. So Nμ
μ = 0.

Assume case (b). Then μ is orthogonal to ρ4 but not ρ3. It follows that
Kμ

g (λ4)[0] = C · Fρ4vρ4 . Similarly, in case (c), μ is orthogonal to ρ3 but not ρ4.
So Kμ

g (λ4)[0] = C · Fρ3vρ3 . Finally, in case (d), neither ρ3 nor ρ4 is orthogonal to
μ. So Kμ

g (λ4)[0] must be trivial.

Similar to Lemma 4.2, we have:

Lemma 4.3. Let ρ5 = 1
2 [−1, 1, 1,−1] whose negative is a root in group A. Choose

a nonzero vρ5 ∈ Lg(λ4)[ρ5]. Then Fρ3vρ3 and Fρ5vρ5 form a basis of Lg(λ4)[0].

Proof. For each root α, let 
α be the element in the Weyl group defined by the
reflection along the hyperplane orthogonal to α. In other words, for each λ ∈ h,
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α(λ) = λ−nλ,α ·α. Now we set α = [0, 1, 1, 0] and β = [1, 0, 0, 0]. Set 
 = 
α
β .
Then 
(ρ3) = ρ3 and 
(ρ4) = ρ5. Thus, Fρ3vρ3 and Fρ5vρ5 are linearly independent
since Fρ3vρ3 and Fρ4vρ4 are so. Indeed, one can show that two vectors are not paral-
lel by calculating the angle between them. Due to the equivalence induced by reflec-
tions, the angles between Fρ3vρ3 , Fρ5vρ5 and between Fρ3vρ3 , Fρ4vρ4 can be calcu-
lated using the same algorithm and share similar properties. (See Sec. Appendix B
for an instance of calculating the angle.)

When ν − μ is a nonzero weight of Lg(λ4), the weight space Lg(λ4)[ν − μ]
has dimension 1. In this case, the number Nν

μ can be calculated by the following
method. (Cf. [12, Corollary 1.18]).

Proposition 4.1. Let μ, ν ∈ P+(g). Assume that ν − μ is a nonzero weight of
Lg(λ4). Then Nν

μ = 1 if and only if for any α ∈ {ρ1, ρ2, ρ3, ρ4},
dimLg(λ4)[ν − μ + (nμ,α + 1)α] = 0.

Otherwise, Nν
μ = 0.

5. The Fundamental Types

We say that an intertwining operator in V l
g

(
ν

λ4 μ

)
is of type

(
ν
μ

)
level l.

We have shown that the level 1 intertwining operators with charge space
Lg(λ4, 1) are energy-bounded. Thus, by [12, Proposition 2.14] and that (λ4|θ) = 1,
to prove the energy bounds condition for any type

(
ν
μ

)
level l intertwining operator,

it suffices to consider the case that (μ|θ) = (ν|θ) = l. In this case, ν − μ, which is
orthogonal to θ, is either 0 or one of the six roots in group A. Also, since N0

λ4λ4
= 1

(by, for example, Proposition 4.1), Lg(λ4, l) is self-dual. Thus, any type
(

ν
μ

)
level

l intertwining operator is the adjoint of a type
(
μ
ν

)
level l intertwining operator.

(See [11, Sec. 1.3] for the definition of adjoint intertwining operators.) Thus, by
[11, Corollary 3.7(d)] type

(
ν
μ

)
level l intertwining operators are energy-bounded if

and only if type
(
μ
ν

)
level l intertwining operators are so.

Definition 5.1. Assume k, l ∈ Z+ and k ≤ l. Let μ0, ν0 ∈ P+(g, k) and μ, ν ∈
P+(g, l). We say that type

(
ν
μ

)
level l reduces to type

(
ν0
μ0

)
level k, if the following

conditions are satisfied:

(a) Nν
μ ≤ Nν0

μ0
.

(b) There exists ρ ∈ P+(g, l − k) such that μ = μ0 + ρ and ν = ν0 + ρ.

The following result generalizes [12, Lemma 2.15(a)], and applies to all Lie types
but not just f4.

Proposition 5.1. Suppose that type
(

ν
μ

)
level l reduces to type

(
ν0
μ0

)
level k. Then

Nν
μ = Nν0

μ0
. Moreover, all type

(
ν
μ

)
level l intertwining operators are energy-bounded

if all type
(

ν0
μ0

)
level k intertwining operators are so.
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Proof. The main idea is the same as in the proof of [12, Lemma 2.15(a)]. Define a
linear map Vk

g

(
ν0

λ4 μ0

) → V l
g

(
ν

λ4 μ

)
, Y �→ Ỹ as follows. Set k′ = l − k. Set irreducible

unitary V k
g ⊗ V k′

g -modules

W1 = Lg(λ4, k) ⊗ Lg(0, k′),

W2 = Lg(μ0, k) ⊗ Lg(ρ, k′),

W3 = Lg(ν0, k) ⊗ Lg(ρ, k′).

Note that the vertex operator Yρ associated to the V k′
g -module Lg(ρ, k′) is of type(

ρ
0 ρ

)
. For each Y of type

(
ν0
μ0

)
level k,

Y := Y ⊗ Yρ

is an intertwining operator of V k
g ⊗V k′

g of type
(

W3
W1W2

)
. Since V k′

g is strongly energy-
bounded, the vertex operator Yρ is energy-bounded. So Y is energy-bounded if Y
is so.

Let vλ4 , vμ0 , vν0 , Ω, vρ be the highest weight (and lowest energy) vectors of
Lg(λ4, k), Lg(μ0, k), Lg(ν0, k), Lg(0, k′), Lg(ρ, k′). (Note that Ω can be chosen to
be the vacuum vector of the VOA V k′

g = Lg(0, k′).) Set

w1 = vλ4 ⊗ Ω, w2 = vμ0 ⊗ vρ, w3 = vν0 ⊗ vρ

which are homogeneous vectors in W1, W2, W3, respectively. Consider the diago-
nal embedding g ⊂ g ⊕ g which induces V l

g ⊂ V k
g ⊗ V k′

g . Then, w1, w2, w3 are
highest weight vectors of the level l affine Lie algebra ĝl with weights λ4, μ, ν,

respectively. Let Ỹ be the “restriction” of Y to the irreducible V l
g -submodules

generated by w1, w2, w3, respectively. To be more precise, note that the unitary
g-modules gw1, gw2, gw3 are equivalent to Lg(λ4), Lg(μ), Lg(ν), respectively. Let
e3 be the orthogonal projection of W3 onto gw3. Let s = Δν0

λ4μ0
− 1, and define

TY ∈ Homg(λ4 ⊗ μ, ν) by

TY : Lg(λ4) ⊗ Lg(μ) → Lg(ν)

u(λ4) ⊗ u(μ) �→ e3Y(u(λ4))su
(μ).

Then, by [12, Theorem 2.12], there is a unique Ỹ of type
(

ν
μ

)
level l such that

ΨỸ = TY , (Recall that the injective map Ψ is defined in (5).) and Ỹ is energy-
bounded if Y is so. (Indeed, by the proof of that theorem, Ỹ is chosen to be za ·
p3Y(p1, z)p2 for some a ∈ R, where p1, p2, p3 are the orthogonal projections of W3

onto ĝw1, ĝw2, ĝw3, respectively.)
From the definition of Y and TY , it is not hard to see that ΓΨY equals ΓTY .

Therefore, as ΨỸ = TY , we have ΓΨY = ΓΨỸ. Thus, by the injectivity of Ψ and Γ,
we have Y = 0 if and only if Ỹ = 0. Therefore, the linear map Y �→ Ỹ is injective.
By condition (a), this map is bijective.
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Proposition 5.2. Assume that (ν|θ) = (μ|θ) = l. Then any intertwining operator
of type

(
ν
μ

)
level l reduces to one of the following fundamental types:

(1) Type
(

2λ3
λ2+λ4

)
level 4 and its adjoint.

(2) Type
(

λ2
λ1+λ4

)
level 3 and its adjoint.

(3) Type
(
2λ4
λ3

)
level 2 and its adjoint.

(4) Type
(
λ3+λ4

λ2

)
level 3 and its adjoint.

(5) Type
(
λ2+λ4
λ1+λ3

)
level 4 and its adjoint.

(6) Type
(
λ3
λ1

)
level 2 and its adjoint.

(7) Type
(
λ3+λ4
λ3+λ4

)
level 3.

(8) Type
(
λ3
λ3

)
level 2.

(9) Type
(
λ4
λ4

)
level 1.

Proof. Assume Nν
μ > 0. By Lemma 4.1, if ν = μ, then any type reduces to one

of (7)– (9). Now assume ν �= μ. Then Nν
μ ≤ 1, and either ν − μ or its negative

is one of the six roots in group A. (See Sec. 2.) By Proposition 4.1 or by LieART
computations (see Sec. Appendix A), it is not hard to check that each of the first
six cases has fusion/tensor product rule 1. Moreover, these six cases correspond to
the six positive roots in group A. Assume ν − μ is positive. So ν − μ is a positive
root in group A. Then

(
ν
μ

)
level l reduces the one of (1)–(6) corresponding to ν−μ.

If ν −μ is negative, then
(
μ
ν

)
, which is adjoint to

(
ν
μ

)
, reduces to the one of (1)–(6).

Note that only case (7) has fusion rule 2. All the other fundamental types have
fusion rule 1 by (for instance) Proposition 4.1.

We close this section with an application of Proposition 5.1. Given λ, μ ∈
P+(f4, l), one can define the fusion product

Lf4(λ, l) � Lf4(μ, l) =
⊕

ν∈P+(f4,l)

Lf4(λ, l) ⊗ V l
f4

(
ν

λ μ

)∗
,

which we write as λ � μ for short. (Note that λ � μ depends on the level l.) Thus,
the multiplicity of ν in λ � μ is the fusion rule Nν

λμ. Fusion products of more than
two irreducible modules can be defined inductively. The associativity of � (i.e.
(λ � μ) � ν 
 λ � (μ � ν)) follows from, say, [23] or [15, 16] or [20].

Theorem 5.1. For any l = 1, 2, 3, . . . , the irreducible V l
f4

-module Lf4(λ4, l) �-
generates the category of (semisimple) V l

f4
-modules. Namely, any irreducible V l

f4
-

module is equivalent to a submodule of a (finite) fusion product of Lf4(λ4, l).

Proof. Let Q be a subset of P+(f4, l) consisting of all ν such that Lf4(ν, l) appears
as an irreducible submodule of a fusion product of Lf4(λ4, l). Equivalently, Q is the
smallest subset containing λ4 and satisfying that if μ ∈ Q and Nν

μ ≡ Nν
λ4 μ > 0

then ν ∈ Q. Note that 0 ∈ Q since λ4 is self-dual.
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We first claim that if λ, μ ∈ Q and λ+μ is admissible at level l then λ+μ ∈ Q.
By the associativity of �, it suffices to show that Nλ+μ

λ μ > 0. Suppose Nλ+μ
λ μ = 0. Set

k = (θ|λ), ν = λ + μ, μ0 = 0, ν0 = λ. Then, type
(

ν
λ μ

)
level l reduces to type

(
λ

λ 0

)
level k in the same sense of Definition 5.1, namely, we have (a) Nν

λμ ≤ Nν0
λμ0

, and
(b) there exists ρ ∈ P+(f4, l − k) such that μ = μ0 + ρ and ν = ν0 + ρ. (Set ρ = μ.)
Thus, by the proof of Proposition 5.1, we have Nν

λμ = Nν0
λμ0

, i.e., Nλ+μ
λ μ = Nλ

λ 0,
which equals 1. This gives a contradiction.

We now use the above result to prove Q = P+(f4, l). This is clearly true when
l = 1 (since both sets equal {0, λ4}). Assume l ≥ 2. Then, by the above result,
2λ4 ∈ Q. By for instance Proposition 4.1, we have Nλ3

2λ4
≡ Nλ3

λ4 2λ4
= 1 (cf. Propo-

sition 5.2(3)). So λ3 ∈ Q. Since Nλ1
λ3

= 1 (cf. Propostion 5.2(6)), λ1 ∈ Q. Thus
Q = P+(f4, l) = {0, λ4, 2λ4, λ1, λ3} when l = 2. Assume l ≥ 3. Then λ1 + λ4 ∈ Q

by the above paragraph. Thus, as Nλ2
λ1+λ4

= 1 (cf. Proposition 5.2(2)), we conclude
λ2 ∈ Q. By the above paragraph, any n1λ1 + · · · + n4λ4, if admissible at level l, is
in Q. This proves Q = P+(f4, l) in general.

6. Proof for the Fundamental Types

By the results in the last section, to prove Theorem 2.1, it suffices to prove the
energy bounds condition for any intertwining operator of fundamental type. Since
the case l ≤ 2 has already been proved, it remains to prove the cases (1) (2) (4) (5)
(7) in Proposition 5.2. We first discuss the easier case.

Proof for case (7)

Proposition 6.1. The intertwining operators of type
(
λ3+λ4
λ3+λ4

)
level 3 are energy-

bounded.

Proof. Choose a nonzero intertwining operator Y1 of type
(
λ3
λ3

)
level 2. Then

Y1 is energy-bounded by Proposition 3.1. As in the proof of Proposition 5.1,
one can construct Ỹ1 of type

(
λ3+λ4
λ3+λ4

)
level 3 by compressing Y1 ⊗ Yλ4 , where

Yλ4 is the vertex operator of Lg(λ4, 1). Moreover, Ỹ1 is energy-bounded, and
by the last paragraph of that proof, ΓΨỸ1 = ΓΨY1. Now, ΨY1 is a nonzero
element in Homg(λ4 ⊗ λ3, λ3). Thus, by (8), ΓΨỸ1 is a nonzero linear func-
tional on Lg(λ4)[0] orthogonal to Kμ3

g (λ3)[0]. Therefore, by Lemma 4.1, ΓΨỸ1

kills Fρ4vρ4 .
Similarly, we choose a nonzero Y2 of type

(
λ4
λ4

)
level 1. Then one can construct

Ỹ2 of type
(
λ3+λ4
λ3+λ4

)
level 3 by compressing Y2 ⊗ Yλ3 where Yλ3 is the vertex oper-

ator of Lg(λ3, 2). Then Ỹ2 is energy-bounded, and, by (8) and Lemma 4.1, ΓΨỸ2

kills Fρ3vρ3 . Therefore, by Lemma 4.2, Ỹ1 and Ỹ2 are linearly independent. So the
2-dimensional vector space V3

g

(
λ3+λ4

λ4 λ3+λ4

)
is spanned by the energy-bounded inter-

twining operators Ỹ1 and Ỹ2. This completes the proof.
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Proof for cases (1) (2) (4) (5)

Our proof of these four cases relies on the following proposition which holds for
any complex (unitary) finite dimensional simple Lie algebra. The statement and
the proof are similar to (but slightly more general than) [12, Lemma 2.15b]. It is
also a generalization of Proposition 5.1.

Proposition 6.2. Choose λ, μ, ν ∈ P+(g, l) satisfying dimV l
g

(
ν

λ μ

)
> 0. Assume

that there exist ρ, μ0, ν0 ∈ P+(g, l) satisfying the following conditions. (We set k =
max{(λ|θ), (μ0|θ), (ν0|θ)}.)
(a) dimV l

g

(
ν

λ μ

) ≤ dimVk
g

(
ν0

λ μ0

)
.

(b) μ = μ0 + ρ, and dimLg(ν0)[ν − ρ] = dim Homg(ν0 ⊗ ρ, ν) = 1.
(c) (ρ|θ) + k ≤ l.
(d) For any nonzero Y ∈ Vk

g

(
ν0

λ μ0

)
,

(ΨY)(Lg(λ)[ν − μ] ⊗ Lg(μ0)[μ0]) �= 0. (12)

(Note that the above expression is a subspace of Lg(ν0)[ν−ρ].) Then dimV l
g

(
ν

λ μ

)
=

dimVk
g

(
ν0

λ μ0

)
, and all the intertwining operators in V l

g

(
ν

λ μ

)
are energy-bounded if

those in Vk
g

(
ν0

λ μ0

)
are so.

Proof. As in the proof of Proposition 5.1, define a linear map Vk
g

(
ν0

λ μ0

) → V l
g

(
ν

λ μ

)
,

Y �→ Ỹ as follows. Set k′ = l−k. Then, by (b), ρ ∈ P+(g, k′). Set irreducible unitary
V k

g ⊗ V k′
g -modules

W1 = Lg(λ, k) ⊗ Lg(0, k′),

W2 = Lg(μ0, k) ⊗ Lg(ρ, k′),

W3 = Lg(ν0, k) ⊗ Lg(ρ, k′).

For each Y ∈ Vk
g

(
ν0

λ μ0

)
,

Y := Y ⊗ Yρ

is an intertwining operator of V k
g ⊗ V k′

g of type
(

W3
W1W2

)
.

We now define the homogeneous vectors w1, w2, w3 as in the proof of Propo-
sition 5.1. Let vλ, vμ0 , vρ be the highest weight (and lowest energy) vectors of
Lg(λ, k), Lg(μ0, k), Lg(ρ, k′), respectively. Ω is the vacuum vector and highest
weight vector of Lg(0, k′). Set

w1 = vλ ⊗ Ω, w2 = vμ0 ⊗ vρ.

The lowest (L0-) energy subspace of W3 is Lg(ν0) ⊗ Lg(ρ). By (b), the g-module
Lg(ν0) ⊗ Lg(ρ) has a unique irreducible submodule (equivalent to) Lg(ν). We let
w3 be a (nonzero) highest weight vector of Lg(ν). Consider again the diagonal
embedding V l

g ⊂ V k
g ⊗V k′

g . Then w1, w2, w3 are highest weight vectors of the affine
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Lie algebra ĝl with weights λ, μ, ν, respectively. Let e3 be the orthogonal projection
of W3 onto gw3. Let s = Δν0

λμ0
− 1, and define TY ∈ Homg(λ ⊗ μ, ν) by

TY : Lg(λ) ⊗ Lg(μ) → Lg(ν)

u(λ) ⊗ u(μ) �→ e3Y(u(λ))su
(μ).

Again, by [12, Theorem 2.12], there is a unique Ỹ ∈ V l
g

(
ν

λ μ

)
such that ΨỸ = TY ,

and that Ỹ is energy-bounded if Y is so.
It remains to check that Y �→ Ỹ is injective. Suppose Ỹ = 0. Then TY = 0.

Identify Lg(λ, k) with Lg(λ, k) ⊗ Ω and hence Lg(λ) with Lg(λ) ⊗ Ω. For each
u ∈ Lg(λ)[ν − μ],

TY(u ⊗ w2) = e3(Y ⊗ Yρ)(u ⊗ Ω)sw2 = e3(Y(u)svμ0 ⊗ vρ),

which is 0. Since Y(u)svμ0 ⊗vρ ∈ Lg(ν0)⊗vρ, e3 restricts to and can be regarded as
the projection of Lg(ν0) ⊗ Lg(ρ) onto Lg(ν) 
 gw3. Thus, e3 is a nonzero element
in Homg(ν0 ⊗ ρ, ν). Since Y(u)svμ0 ∈ Lg(ν0)[ν − ρ], one has e3(Y(u)svμ0 ⊗ vρ) =
(Γe3)(Y(u)svμ0), which equals 0. Since Γ is injective, Γe3 �= 0. So Y(u)svμ0 = 0 since
Lg(ν0)[ν−ρ] is one- dimensional. To summarize, we have proved that Y(u)svμ0 = 0
for any u ∈ Lg(λ)[ν − μ]. Therefore, by condition (d), we must have Y = 0.

Lemma 6.1. In Proposition 6.2, we set α = ν0 − ν + ρ and η = ν − μ. Then
condition (d) holds if the following are satisfied :

(i) dim Homg(λ ⊗ μ0, ν0) = 1.
(ii) α is a positive root of g.
(iii) There exists u ∈ Lg(λ)[η] such that Eαu /∈ Kμ0

g (λ)[ν0 − μ0].

Moreover, assume (i) and (ii). Then (iii) holds if the following is satisfied:

(iii′) dimLg(λ)[ν0 − μ0] = 1 and (η|α) < 0.

We will show that cases (1) and (4) satisfy (i)–(iii), and that cases (2) and (5)
satisfy (i)–(iii’).

Proof. Choose any nonzero Y ∈ Vk
g

(
ν0

λ μ0

)
. Then T := ΨY is nonzero. Choose

any nonzero u ∈ Lg(λ)[η] satisfying condition (iii). As usual, we let vμ0 and vν0

be (nonzero) highest weight vectors of Lg(μ0), Lg(ν0), respectively. Since α is a
positive root, we have a lowering operator Fα. Then

〈T (u ⊗ vμ0)|Fαvν0〉 = 〈T (Eαu ⊗ vμ0 )|vν0〉 + 〈T (u ⊗ Eαvμ0)|vν0 〉 = 〈T (Eαu ⊗ vμ0)|vν0〉.
Since Eαu has weight η + α = ν0 − (μ − ρ) = ν0 − μ0, we have

〈T (u ⊗ vμ0 )|Fαvν0〉 = (ΓT )(Eαu).

By (i) and (8), Kμ0
g (λ)[ν0 − μ0] has codimension 1, which must be the kernel of

the nonzero linear functional ΓT . So (ΓT )(Eαu) is not zero since Eαu is not in this
kernel. This proves (12).
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Assume that (i)–(iii’) are true. Since we have assumed dimV l
g

(
ν

λ μ

)
> 0 in Propo-

sition 6.2, Lg(λ)[ν −μ] = Lg(λ)[η] is non-trivial. Choose any nonzero u ∈ Lg(λ)[η].
Since (η|α) < 0 and hence nη,α < 0, we have Eαu �= 0. Indeed, this follows either
by a standard sl2-argument or by the following calculation:

〈Eαu|Eαu〉 = 〈FαEαu|u〉 = 〈Fαu|Fαu〉 − 〈Hαu|u〉
≥ −〈Hαu|u〉 = −nη,α(u|u) > 0.

Since dim Lg(λ)[ν0−μ0] = dim Homg(λ⊗μ0, ν0) = 1, the subspace Kμ0
g (λ)[ν0−μ0]

is trivial by (9). This proves (iii).

We return to the Lie algebra g = f4. We now prove the energy bounds condition
for the cases (1), (2), (4) and (5). To be more specific, we prove:

Proposition 6.3. The intertwining operators of the following types are energy-
bounded :

(1) Type
(
λ2+λ4

2λ3

)
level 4.

(2) Type
(

λ2
λ1+λ4

)
level 3.

(4) Type
(

λ2
λ3+λ4

)
level 3.

(5) Type
(
λ2+λ4
λ1+λ3

)
level 4.

Then their adjoint types are also energy-bounded. (See the beginning of Sec. 5.)

Proof. For all these cases, we let λ = λ4. Recall the notations in Sec. 2. Choose
μ, ν, ρ, μ0, ν0, and calculate ν − ρ,

k = max{(λ|θ), (μ0|θ), (ν0|θ)}, α = ν0 − ν + ρ, η = ν − μ.

Case (1), k = 2.

μ = 2λ3, ν = λ2 + λ4, ρ = λ3, μ0 = λ3, ν0 = λ3,

ν − ρ = (0, 1,−1, 1), α = [0, 0, 0, 1], η = [0, 0, 0,−1].

Case (2), k = 2.

μ = λ1 + λ4, ν = λ2, ρ = λ4, μ0 = λ1, ν0 = λ3,

ν − ρ = (0, 1, 0,−1), α =
1
2
[1,−1,−1, 1], η = [0, 0, 1, 0].

Case (4), k = 1.

μ = λ3 + λ4, ν = λ2, ρ = λ3, μ0 = λ4, ν0 = λ4,

ν − ρ =
1
2
[1, 1, 1,−1], α =

1
2
[1,−1,−1, 1], η =

1
2
[−1, 1, 1,−1].
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Case (5), k = 2.

μ = λ1 + λ3, ν = λ2 + λ4, ρ = λ3, μ0 = λ1, ν0 = λ3,

ν − ρ = (0, 1,−1, 1), α = [0, 0, 0, 1], η =
1
2
[1,−1, 1,−1].

We know that Nν
μ = 1 since all the cases in Proposition 5.2, except case (7), have

fusion (tensor product) rule 1. Thus, dimV l
g

(
ν

λ μ

)
= 1. We now check that conditions

(a)–(c) of Proposition 6.2 and (i)–(iii) (or (iii’)) of Lemma 5 are satisfied. By the
fusion rules in Proposition 5.2, in each case, Nν0

μ0
= dimVk

g

(
ν0

λ μ0

)
= 1. Thus (a) and

(i) are satisfied. (c) and (ii) are obvious. In case (4), ν − ρ is in group B, which is
a weight Lg(ν0) = Lg(λ4) with multiplicity 1. So dimLg(ν0)[ν − ρ] = 1. One can
show that dim Homg(ν0 ⊗ ρ, ν) = 1 using Proposition 4.1. This proves (b). For the
other cases, condition (b) can be checked using LieART. (See Sec. Appendix A for
details.)

It remains to check condition (iii) or (iii’) of Lemma 6.1. We first discuss cases
(2) and (5). Then ν0 − μ0 = (−1, 0, 1, 0) is a nonzero weight of Lg(λ) = Lg(λ4). So
dim Lg(λ)[ν0−μ0] = 1. It is easy to check that (η|α) < 0. This proves (iii’). Now, we
assume case (1). Recall the definition of vρ3 and vρ4 in (10). Then Kμ0

g (λ)[ν0−μ0] =
Kλ3

g (λ4)[0], which, by Lemma 4.1, is spanned by Fρ4vρ4 . We have η = −α = −ρ3.
Choose any nonzero u ∈ Lg(λ)[η] = Lg(λ4)[−ρ3]. Then Eαu = Eρ3u, which has
weight 0. By a standard sl2-argument (where sl2 is generated by Eρ3 and Fρ3 ),
Eρ3u and Fρ3vρ3 are proportional since the (irreducible) sl2-subrepresentations gen-
erated by u and by vρ3 agree. Thus, by lemma 4.2, Eαu and Fρ4vρ4 are linearly
independent. So Eαu is not in Kμ0

g (λ)[ν0 − μ0]. This proves (iii). Similarly, in case
(4), by Lemma 4.1 we have Kμ0

g (λ)[ν0 − μ0] = Kλ4
g (λ4)[0] = C · Fρ3vρ3 . Choose

ρ5 = 1
2 [−1, 1, 1,−1] and nonzero vρ5 ∈ Lg(λ4)[ρ5]. Then Lg(λ)[η] = Lg(λ4)[ρ5]. We

have α = −ρ5. So Eαvρ5 = E−ρ5vρ5 = Fρ5vρ5 , which, by Lemma 4.3, is not in
C · Fρ3vρ3 . This again proves (iii).

Thus, we have proved that the intertwining operators of fundamental types are
energy-bounded. This proves Theorem 2.1.

Appendix A. Computations by LieART

One can calculate the weight multiplicities and the tensor product rules using
LiE [19]b or the Mathematica package LieART [8]. The LieART codes used in
this paper are provided below.

The following LieART (v.2.0.0) code shows the root system of g = f4.

RootSystem[F4]//OrthogonalBasis

bThe LiE onlie service can be found on the personal website of M.A.A. van Leuwen.
See http://wwwmathlabo.univ-poitiers.fr/ maavl/LiE/form.html.
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The weights and their multiplicities of Lg(λ4) = Lg((0, 0, 0, 1)) can be calculated
by the code:

WeightSystem[Irrep[F4][0,0,0,1]]//OrthogonalBasis

The following codes are used in the proof of Proposition 6.3 to check the first
half of condition (b), namely, dim Lg(ν0)[ν−ρ] = 1. The outputs of these codes are
all 1.

• Case (1) input:

WeightMultiplicity[Weight[F4][0,1,−1,1], Irrep[F4][0,0,1,0]]

• Case (2) input:

WeightMultiplicity[Weight[F4][0,1,0,−1], Irrep[F4][0,0,1,0]]

• Case (4) input:

WeightMultiplicity[Weight[F4][0,1,−1,0], Irrep[F4][0,0,0,1]]

• Case (5) input:

WeightMultiplicity[Weight[F4][0,1,−1,1], Irrep[F4][0,0,1,0]]

The code for case (1) computes the multiplicity of the weight (0, 1,−1, 1) in
Lg((0, 0, 1, 0)) = Lg(λ3). The other codes are understood in a similar way.

To check the second half of condition (b), namely, Homg(ν0 ⊗ ρ, ν) = 1, we
calculate ν0 ⊗ ρ, which shows that ν (boxed in the outputs) appears precisely once
in the tensor product. We write (n1, n2, n3, n4) as (n1n2n3n4) when none of the
four integers exceeds 9.

• Case (1) input:

DecomposeProduct[Irrep[F4][0,0,1,0], Irrep[F4][0,0,1,0]]//StandardForm

Output:

(0010)⊗ (0010) = (0000) + (0001) + (1000) + 2(0010) + 2(0002) + 2(1001)

+ (2000) + (0100) + (0003) + 2(0011) + (1010) + (1002)

+ (0101) + (0020)

• Case (2) input:

DecomposeProduct[Irrep[F4][0,0,1,0], Irrep[F4][0,0,0,1]]//StandardForm

Output:

(0010)⊗ (0001) = (0001) + (1000) + (0010) + (0002) + (1001) + (0100) + (0011)

• Case (4): Same as case (2).

• Case (5): Same as case (1).
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Appendix B. Another Proof of Lemma 4.2

Due to the importance of Lemma 4.2, we give in this section an alternate proof of
this lemma. Let v ∈ Lg(λ4)[λ4] be a highest weight vector with length 1. Set

α = [1, 0, 0,−1], β =
1
2
[1, 1, 1, 1]

which are roots of g. Recall ρ3 = [0, 0, 0, 1], ρ4 = 1
2 [1,−1,−1,−1]. Then α + ρ3 =

β + ρ4 = [1, 0, 0, 0] = λ4. By scaling vρ3 , vρ4 , we may assume that vρ3 = Fαv and
vρ4 = Fβv. We shall show that Fρ3Fαv and Fρ4Fβv are not parallel by calculating
the angle between them.

We first calculate the square length

〈Fρ3Fαv|Fρ3Fαv〉 = 〈Fαv|Eρ3Fρ3Fαv〉.
Since [Eρ3 , Fρ3 ] = Hρ3 , Eρ3v = 0, and since ρ3 − α = [−1, 0, 0, 2] is not a root, the
above expression equals

〈Fαv|Hρ3Fαv〉 = nλ4−α,ρ3〈Fαv|Fαv〉 = nρ3,ρ3〈Fαv|Fαv〉
= 2〈Fαv|Fαv〉 = 2〈v|Hαv〉 = 2nλ4,α‖v‖2= 2.

A similar calculation shows

〈Fρ4Fβv|Fρ4Fβv〉 = 2nλ4,β‖v‖2= 2.

To show that the two vectors are not parallel, we need to show that the absolute
value of 〈Fρ3Fαv|Fρ4Fβv〉 is not equal to 2.

Set γ = β − ρ3 = α − ρ4 = 1
2 [1, 1, 1,−1] which is a positive root. We would

like to express [Eρ3 , Fβ ] in terms of Fγ . Note that (Fγ |Fγ) = 2/(γ|γ) = 2. Since
[Fρ3 , Fβ ] = 0 as ρ3 + β = 1

2 [1, 1, 1, 3] is not a root, we have

([Eρ3 , Fβ ]|[Eρ3 , Fβ ]) = (Fβ |[Fρ3 , [Eρ3 , Fβ ]]) = (Fβ |[[Fρ3 , Eρ3 ], Fβ ])

= −(Fβ |[Hρ3 , Fβ ]) = nβ,ρ3(Fβ |Fβ) = 1 · 2 = 2.

Thus, [Eρ3 , Fβ ] = k1Fγ for some constant k1 satisfying |k1| = 1. Similarly, since
ρ4 + α = 1

2 [3,−1,−1,−3] is not a root, and since (Fα|Fα) = 2/(α|α) = 1, we have

([Eρ4 , Fα]|[Eρ4 , Fα]) = −(Fα|[Hρ4 , Fα]) = nα,ρ4(Fα|Fα) = 2 · 1 = 2.

Thus [Eρ4 , Fα] = k2Fγ where |k2| = 1. Now, using the fact that ρ3 − ρ4 =
1
2 [−1, 1, 1, 3] is not a root, we find

〈Fρ3Fαv|Fρ4Fβv〉 = 〈Fαv|Eρ3Fρ4Fβv〉 = 〈Fαv|Fρ4 [Eρ3 , Fβ ]v〉 = k1〈Fαv|Fρ4Fγv〉
= k1〈Eρ4Fαv|Fγv〉 = k1k2〈Fγv|Fγv〉 = k1k2〈v|Hγv〉
= k1k2nλ4,γ = k1k2

whose absolute value is 1. This finishes the proof.
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