
Computers and Fluids 140 (2016) 72–80 

Contents lists available at ScienceDirect 

Computers and Fluids 

journal homepage: www.elsevier.com/locate/compfluid 

Bifurcation analysis of laminar isothermal planar opposed-jet flow 

Shuang Liu 

a , Bofu Wang 

b , Zhenhua Wan 

a , ∗, Dongjun Ma 

c , Dejun Sun 

a 

a Department of Modern Mechanics, University of Science and Technology of China, Hefei 230027, Anhui, China 
b Shanghai Institute of Applied Mathematics and Mechanics, and Shanghai Key Laboratory of Mechanics in Energy Engineering, Shanghai University, 

Shanghai 20 0 072, China 
c Institute of Applied Physics and Computational Mathematics, Beijing 10 0 088, China 

a r t i c l e i n f o 

Article history: 

Received 11 September 2015 

Revised 11 May 2016 

Accepted 8 September 2016 

Available online 9 September 2016 

MSC: 

00-01 

99-00 

Keywords: 

Hydrodynamic instability 

Bifurcation 

Opposed-jet flow 

Model equations 

Symmetry 

a b s t r a c t 

For a fixed geometric configuration, hydrodynamic instabilities and bifurcation processes of laminar 

isothermal planar opposed-jet flows with symmetric and slightly asymmetric inlet boundary conditions 

are investigated numerically using a high-resolution approach based on spectral element method. In cur- 

rent configuration, when inlet boundary conditions are symmetric, in the range of the Reynolds number 

considered ( Re ≤ 200), multiple new symmetry-breaking bifurcations are observed and four new flow 

patterns are identified. Their hydrodynamic characteristics are analyzed, in particular their symmetries. In 

addition, the case that inlet boundary conditions are slightly asymmetric is investigated. It is found that 

bifurcation processes are extremely sensitive to this small symmetry-breaking imperfection and much 

different from those in the symmetric case. Furthermore, model equations are constructed by symmetry 

consideration to explain the numerical results based on hydrodynamic equations. 

© 2016 Elsevier Ltd. All rights reserved. 
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1. Introduction 

Opposed-jet flows can greatly enhance fluid mixing efficiency

and have been applied in a variety of industrial applications such

as polymer processing [1] and nanoparticle synthesis [2] . A com-

prehensive discussion on opposed-jet reactor applications can be

found in Refs. [3,4] . Knowledge about various flow instabilities and

bifurcation processes are important for setting appropriate working

conditions for opposed-jet flows. Besides the practical importance,

the opposed-jet flow system is one of many nonlinear hydrody-

namic systems exhibiting complex and fascinating dynamics, the

investigation of which is of great theoretical significance. Relevant

studies have been carried out by many researchers through exper-

imental, numerical or theoretical methods for non-isothermal and

isothermal opposed-jet flows. 

The non-isothermal opposed-jet flows taking into account ther-

mal instabilities have been investigated extensively, especially in

combustion community. The major research effort has focused on

the determination of ignition and extinction conditions of the dif-

fusion flames [5,6] . Without considering thermal instabilities, many

researchers have studied the hydrodynamic instabilities of isother-
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al symmetric opposed-jet flows. Rolon et al. [7] investigated

sothermal opposed-jet flows of air experimentally using contoured

ozzles to produce uniform velocity profiles. When the inlet mass

ow rates were identical, they observed that besides the symmet-

ic flow pattern, there existed two stable and steady flow states

ith broken symmetry, in which the stagnation point deviated

rom the center toward one or the other inlet. These two asymmet-

ic flow states were mirror images of each other. Denshchikov et al.

8,9] investigated isothermal opposed-jet flows of water experi-

entally, and they observed periodically oscillating flow pattern

nder certain flow rates and geometric configurations, in which

wo jets were deflected in the opposite directions which were pe-

iodically switched. Pawlowski et al. [10] carried out a numerical

tudy of the structure and stability of laminar isothermal opposed-

et flows with uniform velocity profiles of identical amplitude in

lanar and axisymmetric geometries. In the planar geometry with

arious aspect ratios, four flow regimes were found, which were

ymmetric steady regime, multiple steady regime, deflecting jet

egime and time-dependent chaotic regime with vortex shedding,

espectively. Using numerical bifurcation analysis and linear stabil-

ty analysis, they revealed the transitions between a single (sym-

etric) steady state and multiple steady states or periodic steady

tates. In the axisymmetric geometry, only symmetric steady and

ultiple steady regimes were identified. 

http://dx.doi.org/10.1016/j.compfluid.2016.09.007
http://www.ScienceDirect.com
http://www.elsevier.com/locate/compfluid
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compfluid.2016.09.007&domain=pdf
mailto:wanzh@ustc.edu.cn
http://dx.doi.org/10.1016/j.compfluid.2016.09.007
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Fig. 1. Schematic of opposed-jet flow system. 
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There are also some studies considering how the asymmetry of

nlet boundary conditions affects opposed-jet flows. For instance,

iani et al. [11] performed experimental and numerical studies on

pposed-jet flow with non-uniform velocity profiles in axisymmet-

ic configuration. They found experimentally that, when inflow ve-

ocities were identical and amplitudes were small, flow fields were

ymmetric. Moreover, as velocity amplitude increased, asymmet-

ic flow fields were identified. Corresponding bifurcation diagram

as obtained by means of numerical bifurcation analysis. When

he velocity of one jet (the corresponding Reynolds number was

enoted by Re 1 ) was fixed with a small amplitude, the stagnation

lane location ( SPL ) was found experimentally to change smoothly

ith the variation of Re 2 (the Reynolds number corresponding to

he other jet). When Re 1 was large enough, a hysteretic jump of

PL could be observed as Re 2 varied. 

Instabilities in a related class of cross-slot flow have also been

tudied [12–14] . Arratia et al. [12] studied the flow of dilute poly-

er solutions in a cross-slot microchannel. As the Deborah number

as increased, they identified a transition to steady asymmetric

ow which was invariant to a spatial rotation of angle π around

he center. A second transition to time-dependent flow occured at

igher Deborah number. Motivated by these experimental obser-

ations, Poole et al. [13] performed numerical simulations on two-

imensional cross-slot flow of a viscoelastic fluid described by the

pper-convected Maxwell model under low Reynolds number flow

onditions and observed qualitatively similar flow behaviors. It was

emonstrated that the transition to steady asymmetric state orig-

nated from elastic instability. Poole et al. [14] studied inertial in-

tability of cross-slot flow of a Newtonian fluid. They found that, as

eynolds number was increased, steady asymmetric flow appeared

fter a supercritical pitchfork bifurcation. This asymmetric flow is

ifferent from that observed for inertialess viscoelastic fluid flow

13] and invariant to a spatial reflection about the mid-plane half-

ay between the two outlets. 

Bifurcations and control of flow in a similar configuration with

hree inlets and one outlet (the X-junction flow) were studied by

ashgari et al. [15] via linear stability analysis and direct numerical

imulations. As Re increased, a symmetry-breaking pitchfork bifur-

ation occurred due to a lift-up mechanism and the flow became

symmetric. Distributed suction or blowing at the walls computed

hrough a sensitivity analysis was used for instability control and

hown to delay this bifurcation significantly. At higher Re , flow be-

ame three dimensional through a secondary bifurcation. 

In this paper we aim to investigate hydrodynamic instabilities

nd bifurcation processes of opposed-jet flow using numerical bi-

urcation analysis. For a fixed configuration in Ref. [10] , instabili-

ies and bifurcations are studied in a broad range of Re . When in-

et boundary conditions are symmetric, multiple new symmetry-

reaking bifurcations are observed and four new flow patterns are

ound. Considering that the presence of symmetry of opposed-jet

ow system is the result of an idealization and symmetry plays an

mportant role in the bifurcation process [16–18] , we investigate

he case that inflow velocities are slightly different. The results

emonstrate that this small symmetry-breaking imperfection has

 great influence on the bifurcation processes of opposed-jet flow.

oreover, model equations are constructed by symmetry consider-

tion and used to explain the numerical results based on hydrody-

amic equations qualitatively. 

The rest of the paper is organized as follows. Section 2 de-

cribes the problem and flow configuration. Then we describe the

ssentials of numerical approaches and make validation for our nu-

erical solvers in Section 3 . Detailed results are presented and dis-

ussions are made in Section 4 . Finally, some remarks and conclu-

ions are drawn. 
a  

a  

t

. Problem description 

The schematic of planar opposed-jet flow system in the Carte-

ian coordinate is illustrated in Fig. 1 . The variables D 

∗, W 

∗ and

 

∗ (the superscript indicates dimensional quantities) are the width

f the inlet, the spacing between two inlets and the distance be-

ween the outlet and the mid-plane x = 0 , respectively. Flow re-

ion is confined by two parallel horizontal walls at y = ±W 

∗/ 2 . It

s noted that the opposed-jet flow model under investigation is

wo-dimensional and the flow is assumed to be homogenous in

he third dimension even at the highest Reynolds number consid-

red. 

The Navier–Stokes equations are employed to describe the be-

avior of isothermal incompressible Newtonian fluid flow. The gov-

rning equations are expressed below in dimensionless form 

 · � u = 0 , 

∂ � u 

∂t 
+ 

�
 u · ∇ 

�
 u = −∇ p + 

1 

Re 
∇ 

2 �
 u , (1) 

here � u = (u, v ) is the velocity vector and p is the pressure.

ength, velocity, time and pressure are scaled by D 

∗, u ∗2 , D 

∗/u ∗2 , and
∗u ∗2 

2 , respectively, where ρ∗ is the fluid density. Reynolds num-

er is defined as Re = ρ∗D 

∗u ∗
2 
/η∗, where η∗ denotes the dynamical

iscosity of the fluid. A dimensionless parameter θ = (u ∗
1 

− u ∗
2 
) /u ∗

2 
s introduced to measure the difference between inlet velocities.

oreover, there is a geometric parameter defined as α = D 

∗/W 

∗. 

The above set of equations is supplemented with the following

oundary conditions. Uniform velocity profiles which can be pro-

uced in contoured nozzles experimentally are prescribed at the

pper and lower inlets, whose amplitudes are u ∗
1 

and u ∗
2 
, respec-

ively. The no-slip and no-penetration boundary conditions are pre-

cribed at the solid walls. It is supposed that the flow near the

utlet is well developed. 

In this study, the geometric parameter α is fixed at 0.25. The

pposed-jet flow bifurcation is investigated for θ = 0 and θ = 0 . 01

ith Re up to 200. The horizontal length L ∗ is set to be 10 W 

∗

hich is large enough to ensure that the outlet boundary condition

oes not affect the flow structure in the stagnation region and the

ifurcation results throughout the Re range we have considered. 

When θ = 0 , the governing equations and boundary conditions

re equivariant to a spatial reflection K x about the mid-plane x = 0

nd a rotation R π of angle π around the center. Thus, the sym-

etry group of the problem is D 2 [17] . Its action on the velocity

ector � u is 

K x (u, v )(x, y ) = (−u, v )(−x, y ) , 

 π (u, v )(x, y ) = (−u, −v )(−x, −y ) . (2) 

When θ � = 0, the up-down symmetry of the problem is broken

nd the governing equations and boundary conditions are equiv-

riant to only the spatial reflection K x about mid-plane x = 0 . Thus,

he symmetry group of the problem is Z . 
2 
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Table 1 

The critical Reynolds number Re cr of the first primary bifurca- 

tion of opposed-jet flow with θ = 0 using different meshes and 

orders of interpolating polynomials n . 

Spectral elements n σ ( Re = 45 ) σ ( Re = 47 ) Re cr 

4834 4 –1 .477E–3 1 .020E–3 46 .2 

7888 4 –1 .287E–3 1 .203E–3 46 .0 

7888 5 –1 .286E–3 1 .230E–3 46 .0 

11,222 4 –1 .286E–3 1 .231E–3 46 .0 

Fig. 2. Spectral element distribution at the central region of mesh comprising 7888 

elements. 
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3. Numerical approaches and validation 

3.1. Numerical approaches 

In this study opposed-jet flow system is analyzed through com-

putation of transient and steady solutions and linear stability anal-

ysis of steady flows. The numerical approaches are described in the

following sections. 

3.1.1. Transient-state solver 

The domain decomposition Stokes algorithm [19] is utilized to

solve the governing Eq. (1) using a spectral/ hp element solver

[20] . The computation domain is decomposed into non-overlapping

spectral elements { �j }. The unknowns are approximated by high-

order Gauss–Legendre–Lobatto polynomials in each element �j .

The discrete equations are obtained from the following variational

weak form of the governing equations 

(∂ t � u , � ω ) + 

1 

Re 
( ∇ 

�
 u , ∇ 

�
 ω ) + ( � u · ∇ 

�
 u , � ω ) − (p, ∇ · � ω ) = 0 , 

( ∇ · � u , q ) = 0 , (3)

where � ω and q are trial functions and ( ·, ·) is the inner product

defined as (φ, ψ) = 

∫ 
� j 

φ(x ) ψ(x ) dx . 

The second-order stiff stable scheme [21] is adopted for time

integration. The linear terms are treated implicitly and the nonlin-

ear terms explicitly. Then the discretized variational weak form is

re-formed with an unsteady Stokes operator on the left-hand side

and explicit forcing terms on the right-hand side. In the domain

decomposition approach, the interior and marginal degrees of free-

dom are decoupled and the divergence-free condition is satisfied

strictly. The resulting linear system in each element is solved by

direct method. 

3.1.2. Steady-state solver 

The Navier–Stokes equations can be re-formed as 

∂ t � u = −∇ p − �
 u · ∇ 

�
 u + 

1 

Re 
∇ 

2 �
 u 

= −(I − ∇ ∇ 

−2 ∇ ·)( � u · ∇ 

�
 u ) + 

1 

Re 
∇ 

2 �
 u 

= N( � u ) + L � u , (4)

where N and L represent the nonlinear and linear operators, re-

spectively. For first-order implicit/explicit Euler scheme we have 

�
 u 

n +1 − �
 u 

n 

�t 
= N( � u 

n ) + L � u 

n +1 = (I − �tL ) −1 (N + L ) � u 

n . (5)

The steady Navier–Stokes equations read 

0 = N( � u ) + L � u . (6)

Applying Newton’s method to Eq. (6) , in each iteration the approx-

imate solution 

�
 u to Eq. (6) is updated by a correction δ� u which

satisfies the following linear equation 

(N �
 u + L ) δ� u = −(N + L ) � u , (7)

where N �
 u is the Jocabian matrix associated with the nonlinear

term N evaluated at state � u . A Jacobian-free Newton-Krylov method

[22] is used to obtain stable or unstable steady solutions. Unsteady

Stokes algorithm is used as the preconditioner of the Newton it-

eration [23] . Using (I − �t L ) −1 �t as a preconditioner, the linear

system for Newton iteration can be reformulated as 

( I − �tL ) 
−1 �t 

(
N 

→ 

u 
+ L 

)
δ
→ 

u 

= −( I − �tL ) 
−1 �t ( N + L ) 

→ 

u 

. (8)

Inexact Newton method is used for accelerating convergence

[24,25] . The right- and left-hand side of Eq. (8) are calculated by

time-stepping methods based on Eq. (5) . The nonlinear iterative

process is terminated when the relative residual is less than 10 −12 .
Steady-state solution branch is tracked by using Newton’s

ethod as a function of a continuation parameter which is Re in

his study. Once a steady solution is obtained by using direct nu-

erical simulation or Newton iteration with a specific initial con-

ition, using it as the initial guess, solutions at adjacent Re can be

btained by Newton iteration. In this way, as Re varies, the whole

olution branch can be obtained. 

.1.3. Linear stability analysis 

The evolution of infinitesimal perturbations � u ′ from a steady

ase flow 

�
 u is governed by the following linearized Navier–Stokes

quation 

 t � u 

′ = (N �
 u + L ) � u 

′ , (9)

here N �
 u is same Jocabian matrix as in Eq. (7) . Corresponding

igenvalue problem reads 

(N �
 u + L ) ̂  u = λ ˆ u , (10)

here ˆ u is the eigenmode corresponding to eigenvalue λ. The sta-

ility of the steady base flow is determined by the leading eigen-

alues, i.e., those with the largest real parts. For �t � 1, the solu-

ion to the linearized Eq. (9) can be re-formed as 

�
  

′ (t + �t) = e �t(N �
 u + L ) �

 u 

′ (t) 

≈ �
 u 

′ (t) + �t(I − �tL ) −1 (N �
 u + L ) � u 

′ (t) . (11)

ote that the leading eigenvalues of (N �
 u + L ) are in correspon-

ence with the dominate ones of e �t(N �
 u + L ) which can be calculated

y the Arnoldi method and integrating the linearized Navier-Stokes

quations. The Arnoldi algorithm from the ARPACK library [26] is

sed. The tolerance used in Arnoldi eigenvalue solver is 10 −5 . 

.2. Validation 

In order to validate our algorithms and implementations, we

arried out a test case to determine the critical Reynolds num-

er Re cr of the first primary bifurcation of opposed-jet flow with

= 0 . The results are illustrated in Table 1 . Three meshes with

834, 7888 and 11,222 spectral elements are used for the calcu-

ation. The elements are clustered near the center and solid walls.

 figure depicting the central region of mesh comprising 7888 ele-

ents is shown in Fig. 2 . In this mesh, element size is �x = �y =
 . 05 near the center and �y = 0 . 05 in the vertical direction near

he solid walls. The base flow and corresponding spectral stabil-

ty are calculated for Re = 45 and Re = 47 . The largest real parts σ
f the eigenvalues are given in Table 1 . Then Re cr is determined

y linear interpolation. We obtained the converged critical value
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(a)

(b)

Fig. 3. (a) Streamlines of base flow pattern P I at Re = 45 . 0 . (b) Close-up of the stag- 

nation region. Color code: red (blue) corresponds to largest (lowest) velocity value. 

(For interpretation of the references to colour in this figure legend, the reader is 

referred to the web version of this article.) 
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Fig. 4. The real parts σ of leading eigenvalues of base flow pattern P I as functions 

of Re . 
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Fig. 5. Scaling law Im 

2 ∝ (Re − Re cr ) of imaginary parts Im of eigenvalues in (a) N 5 
and (b) N 6 near corresponding critical Re at which collisions happen. 

Fig. 6. Contours of horizontal (the upper one) and vertical (the lower one) velocity 

components of velocity eigenmodes (a) � �1 , (b) � �2 , (c) � �3 and (d) � �4 near corre- 

sponding critical Re . Color code: red (blue) corresponds to largest (lowest) magni- 

tude. (For interpretation of the references to colour in this figure legend, the reader 

is referred to the web version of this article.) 
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e cr = 46 . 0 which is consistent with previous results (the value

iven in [10] is about 47). Hence, the mesh comprising 7888 el-

ments and 4th-order interpolating polynomials are adequate for

iving faithful results of stability analysis and used throughout our

tudy. In addition, we carried out simulations and stability anal-

sis with lengthened computational domain with L ∗/W 

∗ = 15 at

elected Re (including the largest Re we have considered in this

tudy) with θ = 0 . The results are consistent with those obtained

ith L ∗/W 

∗ = 10 . Hence, the shorter one is adequate for giving re-

iable results and used in the scope of this study. It is noted that

irect numerical simulations were conducted at selected Re (in-

luding the largest one investigated) and only stable steady solu-

ions were obtained. The results of direct numerical simulation are

onsistent with those obtained by Newton iteration and linear sta-

ility analysis. 

. Results 

.1. Symmetric case 

When inlet boundary conditions are symmetric, i.e ., θ = 0 , the

ase flow has all the symmetries of the problem. The base flow

attern we name P I is shown in Fig. 3 . The streamlines at Re = 45 . 0

re depicted in Fig. 3 (a), and a close-up of the stagnation region

s given in Fig. 3 (b). There is a stagnation point located half-way

etween the two inlets. Four recirculation bubbles of equal size can

e observed near the stagnation point indicating P I possesses the

 2 symmetry. 

The stable or unstable P I flow can be obtained using Newton’s

ethod. Stability analysis of P I flow is performed and the real parts

of leading eigenvalues as functions of Re are depicted in Fig. 4 .

ix branches N 1 − N 6 corresponding to six different eigenmodes are

dentified, among which four ( N 1 − N 4 ) are steady eigenmodes and

wo ( N 5 − N 6 ) are unsteady eigenmodes. It is observed from the

gure that the six eigenmodes are unstable in certain Re ranges.

he base flow pattern P I may lose stability to new flow patterns. 

As shown in Fig. 4 , the steady eigenmodes corre-

ponding to N 1 − N 4 become unstable sequentially at

e = 46 . 0 , 74 . 0 , 106 . 1 , 133 . 0 , respectively. We can observe the
ranch N 5 ( N 6 ) appears after the collision of N 1 and N 3 ( N 2 and

 4 ) at the collision point C 1 ( C 2 ) which is labeled in the figure.

he imaginary part Im of eigenvalue of N 5 ( N 6 ) which represents

he oscillating frequency of corresponding eigenmode is found

o be proportional to (Re − Re cr ) 0 . 5 near Re cr , where Re cr is the

ritical Re at which collision C 1 ( C 2 ) happens. In other words,

m 

2 ∝ (Re − Re cr ) , as depicted in Fig. 5 . The emergence of com-

lex eigenvalues after the collisions of real eigenvalues can be

xplained using model equations as illustrated later. 

The velocity eigenmodes �
 �1 − �

 �4 corresponding to N 1 − N 4 

ranches near corresponding critical Re are displayed in Fig. 6 .

ontours of horizontal and vertical velocity components are both

resented. It is observed that � �1 and 

�
 �3 are invariant to spatial

eflection K x about the mid-plane x = 0 , and 

�
 �2 and 

�
 �4 are in-

ariant to spatial rotation R π around the center. This observation

s important for the construction of model equations. 

At Re = 46 . 0 , the base flow P I loses stability through a su-

ercritical pitchfork bifurcation and gives rise to flow pattern P II 
hich is found to be stable throughout the Re range we study

sing linear stability analysis. The streamlines of P II at Re = 47 . 0

re depicted in Fig. 7 (a). P II flow is characterized by the deviation

f the stagnation point from the mid-plane y = 0 towards the in-

et where there are two relatively smaller recirculation bubbles. P II 
s invariant to spatial reflection K x about the mid-plane x = 0 and

ossesses the Z 2 symmetry. We remark that P II comprises two so-

utions which are conjugated by spatial reflection about the mid-

lane y = 0 and lie on a single group orbit. The distance δ of the

tagnation point away from the mid-plane y = 0 is an appropriate

uantity to quantify the bifurcation from P I to P II . The bifurcation

iagram is depicted in Fig. 7 (b). The appearance of flow pattern

 II and corresponding critical Re we obtain agree well with pre-

ious results [10] . It is noted that P II possesses the same symme-

ry as the asymmetric steady flow in cross-slot geometry which

riginates from inertial instability [14] . Similar symmetry-breaking

ifurcation was observed in X-junction flow [15] which was due

o a lift-up mechanism. It is expected that the same mechanism
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Fig. 7. (a) Streamlines of P II at Re = 47 . 0 . (b) Diagram of bifurcation giving rise 

to P II . Black circle indicates the bifurcation point. Corresponding critical Re is dis- 

played. δ is used as the characteristic quantity. Stable (unstable) patterns are indi- 

cated by solid (dashed) branches. 

Fig. 8. (a) Streamlines of P III at Re = 76 . 0 . (b) Horizontal-velocity profiles of P I and 

P III at the cross section x = 0 at Re = 76 . 0 . (c) Diagram of bifurcation giving rise 

to P III . Black circle indicates the bifurcation point. Corresponding critical Re is dis- 

played. u ex is used as the characteristic quantity. Dashed branches indicate unstable 

patterns. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9. (a-b) Streamlines of (a) P III and (b) P IV at Re = 140 . 0 . (c) Diagram of bifur- 

cation giving rise to P IV . Black circle indicates the bifurcation point. Corresponding 

critical Re is displayed. u ex is used as the characteristic quantity. Stable (unstable) 

patterns are indicated by solid (dashed) branches. 

Fig. 10. (a-b) Streamlines of (a) P V and (b) P II at Re = 107 . 0 . (c) Diagram of bifur- 

cation giving rise to P V . Black circle indicates the bifurcation point. Corresponding 

critical Re is displayed. δ is used as the characteristic quantity. Dashed branches 

indicate unstable patterns. 
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plays an important role in the primary instability of opposed-jet

flow considering the similarity of flow structures. 

As Re is increased, the base flow P I gives rise to a new flow

pattern P III through a second supercritical pitchfork bifurcation at

Re = 74 . 0 , as can be identified from Fig. 4 . The P III flow is found

to be unstable using linear stability analysis, and the streamlines

for P III at Re = 76 . 0 are depicted in Fig. 8 (a). We also plot the

horizontal-velocity profiles of P I and P III at the cross section x = 0

at the same Re in Fig. 8 (b). From Fig. 8 (a) we observe that P III 
has two recirculation bubbles of different sizes locating near each

inlet. The P III flow is invariant to spatial rotation R π around the

center and possesses the C 2 symmetry. P III also comprises two so-

lutions which are conjugated by spatial reflection about the mid-

plane y = 0 . At this time it is more appropriate to take u ex , the ex-

tremum of horizontal velocity u at the cross section x = 0 located

near the lower inlet, rather than δ as the characteristic quantity

to quantify the bifurcation. The bifurcation diagram is depicted in

Fig. 8 (c). 

Taking P III flow as base flow, a secondary pitchfork bifurcation

is captured at Re = 128 . 0 . After this bifurcation, a new flow pat-

tern P IV appears. The streamlines for P III and P IV at Re = 140 . 0 are

depicted in Fig. 9 (a) and (b), respectively. It is observed that P III 
is still invariant to spatial rotation R π around the center and pos-

sesses the C 2 symmetry, while P IV does not possess any nontrivial

symmetry. P IV comprises four solutions which are conjugated by

spatial reflection about the mid-plane y = 0 or x = 0 , or by spatial

rotation R π around the center. It is found that P becomes sta-
III 
le after this secondary pitchfork bifurcation by means of linear

tability analysis and P IV keeps being unstable throughout the Re

ange we consider. The bifurcation diagram is depicted in Fig. 9 (c)

here u ex is used as the characteristic quantity. To the best of our

nowledge, stable flow pattern P III has not been reported in previ-

us experimental or numerical studies of opposed-jet flow system.

e note that P III possesses the same symmetry as the asymmetric

teady flow in cross-slot geometry which originates from elastic in-

tability [12,13] . To our knowledge similar flow pattern originating

rom inertial instability in cross-slot geometry has not been ob-

erved [14] . 

We come back to the bifurcation of base flow pattern P I . As Re

s further increased, another pitchfork bifurcation occurs at Re =
06 . 1 , as can also be identified from Fig. 4 . A new flow pattern

 V appears after this bifurcation and is found to be unstable by

eans of linear stability analysis. The streamlines for P V flow at

e = 107 . 0 are depicted in Fig. 10 (a), and the streamlines for P II 
ow at the same Re are illustrated in Fig. 10 (b) for comparison.

e can see that P V possesses the same symmetry as P II , i.e., the Z 2 
ymmetry. Just like P II , P V also comprises two solutions which are

onjugated by spatial reflection about the mid-plane y = 0 . Using δ
s the characteristic quantity, the bifurcation diagram is shown in

ig. 10 (c). 

As revealed from Fig. 4 , a fourth pitchfork bifurcation of P I flow

ccurs at Re = 133.0. Again a new pattern P is obtained after this
VI 
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Fig. 11. (a-b) Streamlines of (a) P VI and (b) P III at Re = 135 . 0 . (c) Diagram of bifur- 

cation giving rise to P VI . Black circle indicates the bifurcation point. Corresponding 

critical Re is displayed. u ex is used as the characteristic quantity. Dashed branches 

indicate unstable patterns. 

Fig. 12. Bifurcation diagram of opposed-jet flow with θ = 0 . Black circles indicate 

bifurcation points. Blue (red) lines indicate that δ (10 u ex ) is used as the character- 

istic quantity. Stable (unstable) patterns are indicated by solid (dashed) branches. 

(For interpretation of the references to colour in this figure legend, the reader is 

referred to the web version of this article.) 
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Fig. 13. Bifurcation diagram of opposed-jet flow with θ = 0 . 01 . Black circles indi- 

cate bifurcation points. Critical Re for various bifurcations are displayed. δ is used as 

the characteristic quantity. Stable (unstable) patterns are indicated by solid (dashed) 

branches. 

Fig. 14. (a) Streamlines of AP I at Re = 20 . 0 . (b–d) Streamlines of (b) AP I , (c) AP II and 

(d) AP III at Re = 54 . 0 . (e) Streamlines of AP IV at Re = 76 . 0 . 
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ifurcation and also found to be unstable by means of linear stabil-

ty analysis. The streamlines of P VI flow at Re = 135 . 0 are depicted

n Fig. 11 (a), and the streamlines of P III flow at the same Re are

hown in Fig. 11 (b) for comparison. It is observed that P VI pos-

esses the same symmetry as P III , i.e., the C 2 symmetry. Just like

 III , P VI also comprises two solutions which are conjugated by spa-

ial reflection about the mid-plane y = 0 . Using u ex as the charac-

eristic quantity, we obtain the bifurcation diagram as depicted in

ig. 11 (c). 

For clarity, a bifurcation diagram summarizing our findings

bout opposed-jet flow with θ = 0 is shown in Fig. 12 . Both δ and

0 u ex are utilized to illustrate the bifurcation processes. Overall six

ow patterns ( P I − P V I ) are observed, and four of them ( P I I I − P V I )

re firstly discovered to our knowledge. 

.2. Slightly asymmetric case 

When inflow velocities are slightly different, we find that

he bifurcation processes are extremely sensitive to this small

ymmetry-breaking imperfection and much different from those in

he symmetric case. Using δ as the characteristic quantity, bifur-

ation diagram of opposed-jet flow with θ = 0 . 01 is depicted in

ig. 13 . As displayed in the figure, at small Re , there exists only

ne stable and steady flow pattern AP I . The streamlines of AP I at

e = 20 . 0 are depicted in Fig. 14 (a). AP I possesses the Z 2 symmetry

s a consequence of asymmetry of inlet boundary conditions. It is

bserved that, at small Re , the up-down symmetry of AP I is only

lightly broken. AP is found to be stable throughout the range of
I 
e we consider by means of linear stability analysis. As Re is in-

reased, a saddle-node bifurcation occurs at Re = 53 . 4 and gives

ise to two new flow patterns AP II and AP III . The streamlines of AP I ,

P II and AP III at Re = 54 . 0 are shown in Fig. 14 (b)–(d), respectively.

t is observed that AP II and AP III possess the same symmetry as

P I , i.e., the Z 2 symmetry. By means of linear stability analysis it

s found that AP II is unstable whereas AP III is stable. Actually, up-

own asymmetry forced by asymmetric inlet boundary conditions

nduces the first primary pitchfork bifurcation in the symmetric

ase to be imperfect. As Re is further increased, AP II gives rise to a

ew flow pattern AP IV through a pitchfork bifurcation at Re = 75 . 7 .

he streamlines of AP IV at Re = 76 . 0 are depicted in Fig. 14 (e). It is

bserved that AP IV does not possess any nontrivial symmetry. AP IV 
omprises two solutions which are conjugated by spatial reflection

bout the mid-plane x = 0 . Corresponding solution branches over-

ap in Fig. 13 . Linear stability analysis demonstrates that AP IV is

nstable. 

Bifurcation analysis of opposed-jet flow with θ = 0 . 02 is also

erformed and the results are similar to those with θ = 0 . 01 . We

emark that bifurcations with θ = 0 . 02 occur at slightly larger Re

han their counterparts with θ = 0 . 01 . 
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4.3. Model equations 

When θ = 0 , the governing Eq. (1) , boundary conditions and

the base flow pattern P I are invariant to spatial reflection

K x (x, y ) → (−x, y ) and spatial rotation R π (x, y ) → (−x, −y ) ; hence,

bifurcations occur in the presence of D 2 symmetry. Near the

threshold of mode-interaction of eigenmodes � �1 and 

�
 �2 of the

base flow pattern P I the dynamics of opposed-jet flow can be re-

duced to a center manifold ( a 1 , a 2 ) where a i give the amplitudes

for the eigenmodes � �i 

�
 �(t; x, y ) = a 1 (t) � �1 (x, y ) + a 2 (t) � �2 (x, y ) 

+ (remaining stable modes ) . (12)

The symmetries of eigenmodes � �1 and 

�
 �2 determine how the

D 2 symmetry acts on the center manifold variables [16] ; we have 

K x (a 1 , a 2 ) = (a 1 , −a 2 ) , 

R π (a 1 , a 2 ) = (−a 1 , a 2 ) . (13)

The equations for a 1 and a 2 will be symmetric with respect to

this action which implies they have the form 

da 1 
dt 

= g 1 (a 2 1 , a 
2 
2 ) a 1 , 

da 2 
dt 

= g 2 (a 2 1 , a 
2 
2 ) a 2 . (14)

Expanding Eq. (14) to third order we have 

da 1 
dt 

= ra 1 + Aa 3 1 + Ba 1 a 
2 
2 , 

da 2 
dt 

= ra 2 + Ca 3 2 + Da 2 1 a 2 , (15)

where r is the bifurcation parameter and plays the role of Re in

opposed-jet flow system. Coefficients in Eq. (15) are chosen such

that D < A < 0 and B < C < 0, guaranteeing that “pure mode

solutions” ( a 1 , 0) and (0, a 2 ) bifurcate from the base solution (0, 0)

supercritically at r = 0 and are stable. When a 1 and a 2 are scaled

appropriately, Eq. (15) can be rewritten as 

da 1 
dt 

= ra 1 − a 3 1 + B a 1 a 
2 
2 , 

da 2 
dt 

= ra 2 − a 3 2 + D a 2 1 a 2 . (16)

It is noted that in opposed-jet flow system eigenmodes � �1 and
�
 �2 become unstable at different Re and when θ � = 0, the up-

down symmetry is broken and the system is equivariant to only

the spatial reflection K x about mid-plane x = 0 . Thus, we unfold

Eq. (16) as 

da 1 
dt 

= ra 1 − a 3 1 − 2 a 1 a 
2 
2 − h, 

da 2 
dt 

= r a 2 − a 3 2 − 2 a 2 1 a 2 , (17)

where coefficients are appropriately chosen ( B = D = −2 and r =
r − 1 ). h measures the extent to which the system is asymmet-

ric and plays the role of θ in opposed-jet flow system. When h � =
0, model Eq. (17) are invariant to the action K x (a 1 , a 2 ) = (a 1 , −a 2 )

and the equation for a 1 is inhomogeneous ((0, a 2 ) is no longer a

stationary solution). 

Bifurcation diagrams of model Eq. (17) with h = 0 and 0.1 are

depicted in Fig. 15 (a) and (b), respectively. Blue (red) lines indi-

cate that a 1 ( a 2 ) is used as the characteristic quantity. When h = 0 ,

the base solution (0, 0) gives rise to “pure mode solutions ′ ′ ( a 1 , 0)

and (0, a 2 ) through two primary bifurcations sequentially. Corre-

sponding critical r are 0.0 and 1.0, respectively. ( a 1 , 0) is stable and

(0, a ) is unstable. As r is increased, solution (0, a ) gives rise to a
2 2 
mixed mode solution” ( a 1 , a 2 ) through a secondary pitchfork bi-

urcation at r = 2 . 0 and becomes stable. It is noted that, with a 2 
s the characteristic quantity, the unstable branch coming off at

 = 2.0 is actually an overlapping of two solution branches which

re conjugate with each other under the action R π and possess the

ame a 2 values. When h = 0 . 1 and r is small, only one solution in

he form of ( a 1 , 0) exists and is stable. As r is increased, a saddle-

oddle bifurcation occurs at r = 0 . 4 and two solutions in the form

f ( a 1 , 0) appear, among which the unstable one goes through

 pitchfork bifurcation at r = 1 . 0 and gives rise to new solutions

 a 1 , ±a 2 ) which possess the same a 1 values. Comparing

ig. 15 with Figs. 12 and 13 , it is observed that the nonlinear be-

aviors of model Eq. (17) with h = 0 and h = 0 . 1 are similar with

hose of opposed-jet flow with θ = 0 and θ = 0 . 01 , respectively

it is noted that only the first two eigenmodes are taken into ac-

ount in the model equations). The critical Re at which eigenmodes
�
 

1 and 

�
 �2 of base flow pattern P I become unstable are 46.0 and

4.0, respectively. Although the difference between these two crit-

cal Re is relatively large, model equations constructed based on

enter manifold theorem and symmetry consideration with appro-

riate coefficients can capture the nonlinear behaviors of opposed-

et flow and the effects of forced up-down asymmetry qualitatively.

As displayed in Fig. 15 , the first primary pitchfork bifurcation

n the symmetric case becomes imperfect when h = 0 . 1 . When we

et a 2 = 0 and fix r in Eq. (17) , solution ( a 1 , 0) is a function of

 . As displayed in Fig. 16 (a), at selected r, a 1 changes smoothly

s h varies. As r increases and remains being negative, the rate

f change of a 1 at h = 0 increases and will diverge when r = 0 .

hen r > 0, as h varies around h = 0 a hysteresis loop is observed,

s displayed in Fig. 16 (b) for r = 1 . Similar phenomena can indeed

appen in opposed-jet flow system. When Re = 45 . 0 , as displayed

n Fig. 16 (c), δ changes smoothly with θ and no hysteresis loop is

resent. When Re is increased to 60.0, as displayed in Fig. 16 (d),

e obtain a hysteresis loop as θ varies around θ = 0 . It’s another

anifestation of the fact that the first primary pitchfork bifurca-

ion becomes imperfect when asymmetry is introduced. It is noted

hat the appearance of hysteresis loop here is analogous with the

xperimental results of Ciani et al. [11] . 

Now we try to understand using model equations the emer-

ence of complex eigenvalues after collisions of real eigenvalues

n symmetric opposed-jet flow system as displayed in Fig. 4 . Sup-

osing that the dynamics of opposed-jet flow can be reduced to

 center manifold ( a 1 , a 2 , a 3 , a 4 ) near the threshold of mode-

nteraction of eigenmodes � �1 − �
 �4 where a i give the amplitudes

or the eigenmodes � �i 

�
 (t; x, y ) = a 1 (t) � �1 (x, y ) + a 2 (t) � �2 (x, y ) + a 3 (t) � �3 (x, y ) 

+ a 4 (t) � �4 (x, y ) + (remaining stable modes ) . (18)

Equations for a 1 − a 4 are symmetric with respect to action

13) and they have the form 

da 1 
dt 

= g 11 (a 2 1 , a 
2 
2 , a 

2 
3 , a 

2 
4 ) a 1 + g 12 (a 2 1 , a 

2 
2 , a 

2 
3 , a 

2 
4 ) a 3 , 

da 2 
dt 

= g 21 (a 2 1 , a 
2 
2 , a 

2 
3 , a 

2 
4 ) a 2 + g 22 (a 2 1 , a 

2 
2 , a 

2 
3 , a 

2 
4 ) a 4 , 

da 3 
dt 

= g 31 (a 2 1 , a 
2 
2 , a 

2 
3 , a 

2 
4 ) a 3 + g 32 (a 2 1 , a 

2 
2 , a 

2 
3 , a 

2 
4 ) a 1 , 

da 4 
dt 

= g 41 (a 2 1 , a 
2 
2 , a 

2 
3 , a 

2 
4 ) a 4 + g 42 (a 2 1 , a 

2 
2 , a 

2 
3 , a 

2 
4 ) a 2 . (19)

Unfolding Eq. (19) and taking only the linear part we have 

d 

dt 

⎛ 

⎜ ⎝ 

a 1 
a 3 
a 2 
a 4 

⎞ 

⎟ ⎠ 

= 

(
S 1 

S 2 

)⎛ 

⎜ ⎝ 

a 1 
a 3 
a 2 
a 4 

⎞ 

⎟ ⎠ 

, (20)
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Fig. 15. Bifurcation diagrams of model Eq. (17) with (a) h = 0 and (b) h = 0 . 1 . Black circles indicate bifurcation points. Critical r for various bifurcations are displayed. Blue 

(red) lines indicate that a 1 ( a 2 ) is used as the characteristic quantity. Stable (unstable) solutions are indicated by solid (dashed) branches. (For interpretation of the references 

to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 16. (a-b) Solution ( a 1 , 0) to model Eq. (17) as a function of h with r fixed at (a) –1, –0.5, –0.05 and (b) 1. (c-d) δ of opposed-jet flow as a function of θ for (c) Re = 45 . 0 

and (d) Re = 60 . 0 . 
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here 

 1 = 

(
s 11 s 12 

s 21 s 22 

)
, S 2 = 

(
s 33 s 34 

s 43 s 44 

)
. (21)

 ij are functions of the bifurcation parameter r . The characteris-

ic equation of matrix S 1 is λ2 − T λ + D = 0 , where T = s 11 + s 22 

nd D = s 11 s 22 − s 21 s 12 are the trace and determinant of S 1 . When

≡ T 2 − 4 D > 0 , eigenvalues of S 1 are real, whereas when � <

, eigenvalues are complex. Assume that S 1 has a real eigenvalue

1 of multiplicity two at r = r 1 which indicates that N 1 and N 3 

ranches in Fig. 4 collide. Thus, we have T (r 1 ) = 2 λ1 and D (r 1 ) =
2 
1 . With dr = r − r 1 ∼ o(1) , using Taylor expansion we have 

= 4 

(
λ1 

dT 

dr 
− dD 

dr 

)∣∣∣∣
r= r 1 

d r + O 

(
d r 2 

)
. (22)

If 
(
λ1 

dT 
dr 

− dD 
dr 

) | r= r 1 � = 0 , it can be obtained that � ∼ dr . This

pproximately linear relationship between � and dr near r = r 1 
mplies that the sign of � changes when r is increased beyond

 1 . This is consistent with the observation that complex eigen-

alue pair emerges after collision of two real eigenvalue branches

n symmetric opposed-jet flow system. Based on the results of

inear stability analysis of the Navier–Stokes equations, we have

> 0 ( � < 0) for r < r 1 ( r > r 1 ). What might need clarifica-

ion is that our simplified analysis cannot determine the explicit

ependence of T or D with r . Note also that the imaginary part

m of the new complex eigenvalue pair is proportional to 
√ | �| .

his implies that Im 

2 ∝ dr when dr ∼ o (1), which is consistent with

umerical results based on hydrodynamic equations as displayed
n Fig. 5 . The emergence of complex eigenvalue pair after the colli-

ion of N 2 and N 4 can be explained similarly. Above arguments im-

ly that the emergence of complex eigenvalues originates from the

act that eigenmodes of the two eigenvalue branches which col-

ide with each other possess the same symmetry. It is noted that

igenmodes � �1 and 

�
 �2 possess different symmetries and complex

igenvalue pair does not appear when corresponding eigenvalue

ranches N 1 and N 2 collide in Fig. 4 . This is consistent with our

xplanation about the emergence of complex eigenvalues. 

. Conclusion 

To predict various flow patterns in opposed-jet flow system

s of great practical importance and theoretical significance. In

his study, numerical bifurcation analysis is performed for lami-

ar isothermal planar opposed-jet flow with geometric parame-

er α = 0 . 25 . Cases with symmetric and slightly asymmetric inlet

oundary conditions are both investigated. Rich flow patterns are

bserved. 

In the symmetric case, within the range of Re ≤ 200.0, multiple

ymmetry-breaking bifurcations are observed. Six flow patterns are

dentified, i.e., P I − P V I , among which P I I I − P V I are firstly discovered.

 I possesses the D 2 symmetry, P II and P V possess the Z 2 symmetry,

 III and P VI possess the C 2 symmetry, while P IV does not possess

ny nontrivial symmetry. In the range of Re we consider, linear

tability analysis shows that, among bifurcated flow patterns, P II 
s stable and P IV − P V I are unstable. P III becomes stable after a sec-

ndary pitchfork bifurcation. 
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When inlet boundary conditions are slightly asymmetric, it is

found that bifurcation processes are extremely sensitive to this

small symmetry-breaking imperfection and much different from

those in the symmetric case. Four flow patterns, i.e., AP I − AP IV , are

observed. AP I − AP I I I possess the Z 2 symmetry, while AP IV does not

possess any nontrivial symmetry. Stability analysis demonstrates

that AP I and AP III are stable, while AP II and AP IV are unstable in

the range of Re we consider. 

Model equations are constructed by symmetry consideration

and used to explain numerical results based on hydrodynamic

Eq. (1) . With appropriate coefficients, model Eq. (17) can quali-

tatively capture nonlinear behaviors of opposed-jet flow and the

effects of forced up-down asymmetry. It is observed that δ of

opposed-jet flow varies smoothly with θ at small Re and a hys-

teresis loop appears when Re is large enough. This is consistent

with the results of model equations. It is another manifestation of

the fact that the first primary pitchfork bifurcation becomes im-

perfect when asymmetry is introduced. In symmetric opposed-jet

flow system, the real parts σ of leading eigenvalues of base flow

pattern P I vary with Re and complex eigenvalues emerge after col-

lisions of real eigenvalues. The emergence of complex eigenvalues

is explained using model equations as well. 
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