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The onset of thermal convection in a rapidly rotating spherical shell is studied by
linear stability analysis based on the fully compressible Navier–Stokes equations.
Compressibility is quantified by the number of density scale heights Nρ , which
measures the intensity of density stratification of the motionless, polytropic base state.
The nearly adiabatic flow with polytropic index n = 1.499 < na = 1.5 is considered,
where na is the adiabatic polytropic index. By investigating the stability of the base
state with respect to the disturbance of specified wavenumber, the instability process
is found to be sensitive to the Prandtl number Pr and to Nρ . For large Pr and small
Nρ , the quasi-geostrophic columnar mode loses stability first; while for relatively
small Pr a new quasi-geostrophic compressible mode is identified, which becomes
unstable first under strong density stratification. The inertial mode can also occur
first for relatively small Pr and a certain intensity of density stratification in the
parameter range considered. Although the Rayleigh numbers Ra for the onsets of
the quasi-geostrophic compressible mode and columnar mode are different by several
orders of magnitude, we find that they follow very similar scaling laws with the
Taylor number. The critical Ra for convection onset is found to be always positive,
in contrast with previous results based on the widely used anelastic model that
convection can occur at negative Ra. By evaluating the relative magnitude of the
time derivative of density perturbation in the continuity equation, we show that the
anelastic approximation in the present system cannot be applied in the small-Ra and
large-Nρ regime.

Key words: buoyancy-driven instability, rotating flows

1. Introduction
Rotating thermal convection in spheres and spherical shell geometries is a classical

problem and has been studied extensively, due to the relevance to many geophysical
and astrophysical phenomena, as well as the fundamental issues of rotating fluid
dynamics. Although the convection in most applications is in the strongly nonlinear
regime, it is of great interest to study flows close to convection onset, which is

† Email addresses for correspondence: wanzh@ustc.edu.cn, dsun@ustc.edu.cn
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Fully compressible convection in a rotating shell 1091

an essential prerequisite to the understanding of complex nonlinear flow behaviours
(Jones, Soward & Mussa 2000; Jones, Kuzanyan & Mitchell 2009).

The Oberbeck–Boussinesq (OB) approximation is widely used in the studies of
buoyancy-driven flows, which assumes that the flow is incompressible and fluid
properties are constant except in the buoyancy term, where the density is linearly
dependent on the temperature (Chandrasekhar 1961; Zhang & Liao 2017). The
instabilities of OB convection in rapidly rotating spheres and spherical shells have
been studied extensively. At large Prandtl numbers, convection occurs in the form
of slowly drifting, quasi-geostrophic columnar rolls with small horizontal length
scales. Roberts (1968) and Busse (1970) proposed an asymptotic solution for this
convective instability. While the convection structure is properly characterized by the
Roberts–Busse theory, the critical parameters cannot be predicted accurately (Zhang
1992). Later the Roberts–Busse theory was further improved and the theoretical
prediction is in a good agreement with numerical computation (Yano 1992; Jones
et al. 2000; Dormy et al. 2004). The spiralling nature of columnar rolls was observed
at relatively small Prandtl numbers (Busse & Hood 1982; Zhang 1992), which plays
an important role in the generation of zonal flows by Reynolds stress (Jones, Rotvig
& Abdulrahman 2003; Rotvig & Jones 2006). At small Prandtl numbers, relatively
high-frequency inertial convection occurs first, which primarily takes place in the
equatorial region (Zhang & Busse 1987; Zhang 1994, 1995; Busse & Simitev 2004).
Recently, the rotating convection at even smaller Prandtl numbers was explored.
Axisymmetric (torsional) modes of convection were found to dominate the convective
instability at high Taylor numbers in the zero-Prandtl-number limit (Sánchez, Garcia
& Net 2016a; Zhang, Lam & Kong 2017).

Many convection phenomena in planetary and stellar systems occur under strong
density stratification (Guillot 1999a,b). Compressibility must be taken into account
appropriately in modelling these systems (Spiegel & Veronis 1960). Compared
with the fully compressible equations, it is often preferred to employ sound-proof
approaches for saving computational costs, which have been widely utilized in
the study of stratified flows (Drew, Jones & Zhang 1995; Busse, Zhang & Liao
2005; Jones et al. 2009, 2011; Brown, Vasil & Zweibel 2012; Lund & Fritts 2012).
In these simplified models, density variations due to compressibility are retained,
while acoustic waves, which are often dynamically unimportant to convection, are
filtered. The anelastic approximation is one of the most widely used sound-proof
approaches (Batchelor 1953; Ogura & Phillips 1962; Gilman & Glatzmaier 1981;
Jones, Roberts & Galloway 1990; Braginsky & Roberts 1995; Verhoeven, Wiesehöfer
& Stellmach 2015), and has been employed extensively in the study of rotating
compressible convection. Based on a linear, anelastic model, Glatzmaier & Gilman
(1981a) systematically studied the rotating compressible convection in a spherical
shell and observed the enhancement of convective velocity near the outer boundary
under strong density stratification. Glatzmaier & Gilman (1981b) further investigated
the effects of viscosity, conductivity, boundary conditions and convection zone depth
on the stability and structure of rotating compressible convection. Within the anelastic
approximation, Drew et al. (1995) found that compressible convection in a rotating
spherical shell can occur at negative Rayleigh numbers for large Taylor numbers and
small Prandtl numbers. Considering entropy diffusion rather than thermal diffusion in
the anelastic model, Jones et al. (2009) showed rigorously that the critical Rayleigh
number for convection onset is always positive.

Given the broad usage of sound-proof approaches, it is vital to estimate the
appropriateness of these simplified models in different flow systems. Recently, the
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applicability of the anelastic approximation in compressible convection systems has
received a lot of attention (Berkoff, Kersale & Tobias 2010; Lecoanet et al. 2014;
Calkins, Julien & Marti 2015a,b; Verhoeven et al. 2015; Verhoeven & Glatzmaier
2018). Calkins et al. (2015b) studied the linear stability of compressible convection
in a plane layer geometry with Prandtl number Pr = 1. They considered the
flows with/without rotation, and the results of fully compressible equations and
anelastic approximation were compared, showing that the critical parameters of
convection onset based on the fully compressible equations approach those of anelastic
equations in the adiabatic limit. Calkins et al. (2015a) investigated the instability of
rotating compressible convection in a similar plane layer geometry at lower Prandtl
numbers. The anelastic approximation was found to fail in the rapidly rotating and
small-Prandtl-number regime. Verhoeven & Glatzmaier (2018) further studied the
validity of sound-proof approaches of rotating compressible convection in a plane
layer geometry. The failure of the anelastic model for marginally stable convection
was confirmed, and the conditions for a safe application were clarified. Besides, by
some numerical test cases, it was shown that the anelastic model works well for both
the supercritical linear convection and fully nonlinear turbulent convection for the
parameters they considered.

So far, although the compressible convection in rotating spherical shells has been
studied extensively based on anelastic models, the relevant study based on the fully
compressible equations has not been reported to the best of our knowledge, and the
applicability of the anelastic approximation in such a convection system still needs
to be clarified. Thus, this study is devoted to investigating the stability characteristics
of compressible convection in a rapidly rotating spherical shell using linear stability
analysis based on the fully compressible equations, and the applicability of the
anelastic approximation is also evaluated quantitatively. It is found that the stability
characteristics of the motionless base state are sensitive to the Prandtl number
and the intensity of density stratification. For relatively small Prandtl number and
strong density stratification, a new quasi-geostrophic compressible mode is identified
which loses stability first, resulting in a sharp decrease of critical Rayleigh number of
convection onset. By evaluating the relative magnitude of the time derivative of density
perturbation in the continuity equation, it is found that the anelastic approximation
in the present system cannot be applied in the regime of small Rayleigh number and
strong density stratification.

The remainder of this paper is organized as follows. The model is described in
detail in § 2, including the governing equations and numerical approaches for linear
stability analysis. In § 3 the stability characteristics of rotating compressible convection
are presented, and then the validity of the anelastic approximation is discussed in § 4.
Finally, we summarize our findings in § 5.

2. Model description

We consider a spherical shell rotating uniformly with a constant angular frequency
Ω , as shown in figure 1. The flow region is confined between two spheres with radii
ri and ro, with radius difference d= ro− ri and radius ratio η= ri/ro. The subscripts i
and o indicate quantities at the inner and outer boundaries, respectively. The working
fluid is a perfect gas, and the dynamic viscosity µ and thermal conductivity k are
assumed to be constant. Considering the gravitational force due to the inner core
with effective mass M, the gravity field is g(r) = −GMr/r3 within the shell, where
G is the gravitational constant and r the position vector. In the rotating coordinate
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FIGURE 1. Schematic of rotating spherical shell.

system, assuming the centrifugal force is negligible compared with the gravitational
force, the velocity vector u, density ρ, temperature T and pressure p satisfy the fully
compressible Navier–Stokes equations, which read

∂ρ

∂t
+∇ · (ρu)= 0,

ρ

(
Du
Dt
+ 2Ω × u

)
+∇p− ρg=µ

[
∇

2u+
1
3
∇(∇ · u)

]
,

ρcv
DT
Dt
+ p∇ · u= k∇2T +µΦ,

(cp − cv)ρT = p,


(2.1)

where cp and cv are the specific heats at constant pressure and volume, respectively.
The ratio of the specific heats γ = cp/cv is fixed at 5/3 in this study, representing a
monoatomic ideal gas. Viscous heating is µΦ with

Φ =
∂ui

∂xj

(
∂ui

∂xj
+
∂uj

∂xi
−

2
3
δij∇ · u

)
. (2.2)

Equations (2.1) are complemented by a free-slip condition for the velocity u and an
isothermal condition for the temperature T at the inner and outer boundaries. In this
study, no heat sources are considered inside the shell, and convection is driven by the
buoyancy force due to the entropy difference between the inner and outer boundaries.

We consider a polytropic base state without convection, which is in thermal and
static equilibrium, satisfying (Drew et al. 1995)

∇
2T = 0, ∇p= ρg, p∼ ρ1+1/n, (2.3a−c)

where n is the polytropic index. The quantities of the base state are indicated by
overbars. Based on (2.3), we obtain the base state

T = Tcλ(r), ρ = ρcλ(r)
n, p= pcλ(r)

n+1, (2.4a−c)
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where the subscript c indicates quantities at the midpoint rc = (ro + ri)/2, and

n=
GM

(cp − cv)Tcλbd
− 1, λ(r)= λa + λb

d
r
. (2.5a,b)

Here,

λa =
2λo − η− 1

1− η
, λb =

(1+ η)(1− λo)

(1− η)2
, (2.6a,b)

where λo = λ(ro). The intensity of density stratification can be quantified by the
number of density scale heights Nρ = ln(ρ i/ρo), which is related to parameters
(η, n, λo) by

λo =
η+ 1

ηeNρ/n + 1
. (2.7)

Both λo and Nρ can be used to measure compressibility (Glatzmaier & Gilman
1981a; Drew et al. 1995). In the OB limit, λo → 1 and Nρ → 0, while in the
high-compressibility limit, λo→ 0 and Nρ→∞.

The entropy of the base state is s = cp((1/γ ) ln p − ln ρ). The entropy difference
between the inner and outer boundaries is

1s= si − so = cp Nρ
n+ 1− nγ

nγ
. (2.8)

For isentropic (adiabatic) flows with non-vanishing density stratification, the (adiabatic)
polytropic index na = 1/(γ − 1)= 1.5.

The dynamics of infinitesimal disturbances (ρ ′, T ′, p′, u′) superimposed on the base
state is governed by the linearized equations

∂ρ ′

∂t
+∇ · (λnu′)= 0,

λn ∂u′

∂t
+

√
Pr Ta

Ra
λn ẑ× u′ +

∇p′

ε
+

ρ ′r
ε(1− η)2r3

=

√
Pr
Ra

[
∇

2u′ +
1
3
∇(∇ · u′)

]
,

λn ∂T ′

∂t
+ λn u′ · ∇λ+ (γ − 1)λn+1∇ · u′ =

γ
√

Pr Ra
∇

2T ′,

λb(n+ 1)(1− η)2p′ = λnT ′ + λρ ′.


(2.9)

Here, ẑ is the unit vector directed along the rotation axis. Equations (2.9) are non-
dimensionalized using radius difference d, free-fall velocity U=

√
1sgod/cp, reference

time d/U, reference density ρc, reference temperature Tc, reference pressure ρcgod and
reference entropy cp, where go = |g(ro)|. The reference values of kinematic viscosity
and thermal diffusivity are νc = µ/ρc and κc = k/(cpρc), respectively. For simplicity,
the superscript (·)′ of disturbances are omitted in the following discussion.

The three dimensionless control parameters in the governing equations are the
Rayleigh number Ra, the Prandtl number Pr and the Taylor number Ta, which are
defined as

Ra=
god31s
κcνccp

, Pr=
νc

κc
, Ta=

(
2Ωd2

νc

)2

. (2.10a−c)
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Fully compressible convection in a rotating shell 1095

Besides, there is a geometric parameter, i.e. the radius ratio η = ri/ro. The
dimensionless entropy difference ε is related to Nρ and n as

ε ≡
1s
cp
=

Nρ(n+ 1− nγ )
nγ

. (2.11)

For adiabatic flows, we have ε = 0 and n = na (na = 1.5). Convection occurs in the
superadiabatic regime in the sense that ε > 0 and n< na.

We employ a spherical coordinate system (r, θ, φ), where r, θ and φ indicate radius,
colatitude and longitude, respectively. The velocity components along the (r, θ, φ)
directions are (ur,uθ ,uφ). For numerical treatment it is favourable to use the horizontal
velocity divergence δ and radial vorticity ζ rather than primitive variables (uθ , uφ)
(Chan et al. 1994; Cai, Chan & Deng 2011). In terms of (uθ , uφ) the variables (δ, ζ )
read

δ =

(
1
r
∂

∂θ
+

cos θ
r sin θ

)
uθ +

1
r sin θ

∂uφ
∂φ

,

ζ =

(
1
r
∂

∂θ
+

cos θ
r sin θ

)
uφ −

1
r sin θ

∂uθ
∂φ

.

 (2.12)

Then, we rewrite (2.9) in terms of (ρ, T, p, ur, δ, ζ ) as

∂ρ

∂t
+ nλn−1ur

dλ
dr
+ λn∇ · u= 0,

λn ∂ur

∂t
+Cr +

1
ε

∂p
∂r
+

ρ

ε(1− η)2r2
= τr,

λn ∂δ

∂t
+Cδ +

∇
2
Hp
ε
= τδ,

λn ∂ζ

∂t
+Cζ = τζ ,

λn ∂T
∂t
+ λnur

dλ
dr
+ (γ − 1)λn+1∇ · u=

γ
√

PrRa
∇

2T,

λb(n+ 1)(1− η)2p= λnT + λρ,



(2.13)

where

∇ · u=
1
r2

∂

∂r
(r2ur)+ δ,

∇
2
H =

1
r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1
r2 sin2 θ

∂2

∂φ2
.

 (2.14)

The expressions of Cr,δ,ζ and τr,δ,ζ pertaining to the Coriolis and viscous forces are
given in appendix A. The terms containing uθ or uφ in (2.13) can be expressed in
terms of δ and ζ , as shown in appendix B. The free-slip and isothermal boundary
conditions imply that

ur =
∂δ

∂r
=
∂ζ

∂r
= T = 0, at r= ri, ro. (2.15)
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The equations (2.13) are solved numerically by expanding the variables χ =
(ρ, T, p, ur, δ, ζ ) in spherical harmonics,

χ(t, r, θ, φ)=
L∑

l=0

l∑
m=−l

χm
l (t, r)Ym

l (θ, φ), (2.16)

where L is the maximal degree of triangular truncation, m is the azimuthal
wavenumber, and the coefficients χm

l are complex functions. The spherical harmonics
are normalized as

Ym
l (θ, φ)=

√
2l+ 1

2
(l−m)!
(l+m)!

Pm
l (cos θ) exp(imφ) (l > m > 0), (2.17)

where Pm
l are the associated Legendre functions of degree l and order m. For the

linear problem in the present study, eigenmodes with different azimuthal wavenumbers
are uncoupled. Besides, only non-negative wavenumbers need to be considered. Thus
a sequence of uncoupled eigenproblems parametrized by wavenumber m > 0 can be
obtained. Some useful equalities related to spherical harmonic expansion are shown
in appendix B. The Chebyshev collocation method is used in the radial direction
(Trefethen 2000). The eigenvalue problem resulting from numerical discretization is
solved iteratively by employing shift–invert preconditioners and the Arnoldi algorithm
(Sánchez et al. 2016a; Sánchez, García & Net 2016b).

Numerical convergence is verified for the linear stability analysis and the number
of Chebyshev collocation points and triangular truncation degree L are taken so that
the leading eigenvalue is computed with an accuracy of at least 10−4. In the study
of linear stability of rotating compressible convection in a plane layer geometry, the
critical parameters based on fully compressible equations approach those based on
anelastic equations in the adiabatic limit at Pr= 1 (Calkins et al. 2015b), while in the
rapidly rotating and small-Pr regime the anelastic approximation fails (Calkins et al.
2015a; Verhoeven & Glatzmaier 2018). To assess the reliability in the numerical
computation, we consider nearly adiabatic flows (n = 1.499) at relatively large Pr
and compare the critical parameters of convection onset based on fully compressible
equations with those based on anelastic equations reported in Drew et al. (1995),
which are given in table 1. Owing to the different non-dimensional scales used,
the transformations for the Rayleigh number Ra = RaDNρ(1 − η)2/(λbna) and the
frequency ω = ωD√Pr/Ra are employed (the superscript D indicates dimensionless
variables employed by Drew et al. (1995)). In addition, figure 2 shows the comparison
of critical eigenmodes. The results based on the two sets of equations are in good
agreement, indicating the reliability of our computation.

To examine the applicability of the anelastic model for compressible convection in
a rapidly rotating spherical shell, we consider nearly adiabatic flows (n= 1.499) under
rapid rotation (106 . Ta 6 1011) in a fixed configuration with η = 0.4. The effects
of compressibility are investigated with 0 < Nρ 6 5. We consider Pr values where
convection takes a non-axisymmetric columnar form under the OB approximation with
0.1 . Pr 6 10. In this Pr range, the breakdown of the anelastic approximation is
observed for compressible convection in a rotating plane layer (Calkins et al. 2015a;
Verhoeven & Glatzmaier 2018). The very small-Pr regime, where convection will be
dominated by the inertial modes (Zhang 1994), has not been explored in this study.
For given (Pr, Ta,Nρ), the stability characteristics of the base state are dependent on
Ra, and the critical Ra for convection onset is a function of (Pr, Ta,Nρ).
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Fully compressible convection in a rotating shell 1097

FIGURE 2. Distribution of ur of the critical eigenmodes in the equatorial plane for the
case with (η,Pr,Nρ,Ta)= (0.6, 1, 5, 105). The result on the left-hand side is based on the
fully compressible equations, while that on the right-hand side is based on the anelastic
equations (Drew et al. 1995).

Equations Ta Rac mc ωc

Drew et al. (1995) AE 105 7109 13 −0.5074
Present FC 105 7116 13 −0.5068

Drew et al. (1995) AE 3× 104 3809 10 −0.4250
Present FC 3× 104 3813 10 −0.4246

TABLE 1. Comparison of critical Rayleigh numbers Rac, critical wavenumbers mc and
critical frequencies ωc based on the fully compressible equations (FC) for nearly adiabatic
flows (n= 1.499) with those based on the anelastic equations (AE) in Drew et al. (1995)
for (η, Pr,Nρ)= (0.6, 1, 5).

3. Linear stability analysis
3.1. The base state

For a fixed configuration with η = 0.4, the motionless base state is dependent on
parameters (n, Nρ), as shown in (2.6) and (2.7). Entropy s is determined up to a
constant. The entropy profiles for Nρ = 5 and different n are depicted in figure 3(a). It
shows that the base state becomes isentropic as n→ na= 1.5. Figure 3(b) displays the
density profiles ρ for n= 1.499 and different Nρ . The intensity of density stratification
increases rapidly with Nρ . For Nρ = 5, the density ratio between the inner and outer
boundaries reaches up to 148.

3.2. Instability under weak density stratification
In this section, the convection onset under weak density stratification is considered
with Nρ fixed at 0.01. We first focus on the instability of the base state with respect
to the disturbance of specified wavenumber m. The corresponding critical Rayleigh
number is denoted as Rac,m. Then, the critical Rayleigh number Rac of the base state
with respect to general disturbances is obtained by a minimization process, namely
Rac =minm Rac,m.

Figure 4 shows the maximal growth rate σ of the base state with respect to the
disturbance of wavenumber m = 5 as a function of Ra for Pr = 0.1, Ta = 108 and
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FIGURE 3. (Colour online) The base state for η= 0.4. (a) The distributions of entropy s
for Nρ = 5 and different n. As n→ na = 1.5, the base state becomes isentropic. (b) The
distributions of density ρ for n= 1.499 and different Nρ .

ur uœ uÇ

ur uœ

ur uœ uÇ

ur uœ(b) (c)

0

-2

-4

-6

-8

101 103102 104

Ra

ß

(a)

0
-0.1

10 20
(÷ 103)

uÇuÇ

FIGURE 4. (Colour online) The maximal growth rate σ of the base state with respect
to the disturbance of wavenumber m = 5 as a function of Ra for Pr = 0.1, Ta = 108

and Nρ = 0.01. Negative and positive growth rates are denoted by blue triangles and
red circles, respectively. The inset is an enlarged view near the instability threshold.
(b,c) The two most unstable eigenmodes at Ra= 2.81× 104. Disturbance distributions on
the equatorial and meridional planes are shown in the first and second rows, respectively.
The φ location of the meridional section is marked by the horizontal radius. (b) The
most unstable eigenmode with complex growth rate 0.128− 0.531i. (c) The second most
unstable eigenmode with complex growth rate −0.060− 2.40i.
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FIGURE 5. (Colour online) (a) Critical Rayleigh number Rac, (b) critical wavenumber mc
and (c) critical frequency ωc as functions of Ta for Pr= 10, 1, 0.1 and Nρ = 0.01.

Nρ = 0.01. In this Ra range, the maximal growth rate increases monotonically with Ra.
We note that in the small-Ra limit the magnitude of growth rate |σ | decreases with Ra
and satisfies a certain scaling law, which will be shown in § 4. The two most unstable
eigenmodes near the instability threshold are depicted in figure 4(b,c), showing the
distributions of velocity perturbations on the equatorial and meridional planes. In
figure 4(b), the most unstable eigenmode is the typical columnar mode (Roberts
1968; Busse 1970; Zhang 1992; Zhang & Liao 2017). The columnar structure of
disturbance originates from a strong Taylor–Proudman effect (Proudman 1916; Taylor
1921). In figure 4(c), the second most unstable eigenmode is the typical inertial mode
with convection occurring in the equatorial region (Zhang 1994; Zhang & Liao 2017).
Generally, at relatively large Pr, the columnar mode becomes unstable first, while
the inertial mode is dominant for small Pr. Besides Pr, the type of dominant mode
is also dependent on Ta.

Now, we focus on the instability of the base state with respect to general
disturbances. Figure 5 gives the critical Rayleigh number Rac = minm Rac,m and
corresponding critical wavenumber mc and critical frequency ωc as functions of Ta
for Pr= 10, 1 and 0.1. It is found that Rac, mc and |ωc| increase with Ta for large
enough Ta. As Ta increases, the Taylor–Proudman effect is enhanced and convection
is suppressed. It is also observed that Rac and mc satisfy a certain power-law scaling
with respect to Ta. Lines of constant slope are included as guiding lines which
reasonably describe the scaling behaviours of critical parameters. It is of interest to
develop the asymptotic theory of convective instability for the fully compressible
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FIGURE 6. (Colour online) Critical eigenmodes with wavenumber m = 15 for
Pr= 10, 1, 0.1, Ta= 1010 and Nρ = 0.01: (a) Pr= 10, Rac = 8.820× 105, ωc =−0.224;
(b) Pr= 1, Rac= 5.390× 105, ωc=−0.688; (c) Pr= 0.1, Rac= 2.240× 105, ωc=−0.929.

model and compare the theoretical predictions with the numerical results, which are
outside the scope of this study. With the decrease of Pr, both Rac and mc decrease,
while the scaling exponents of Rac and mc seem to be insensitive to variation of Pr.
The anomaly in the variations of critical parameters at Pr= 0.1 in figure 5 is due to
the switching of dominant eigenmodes.

In the Pr range considered (0.1 . Pr 6 10), the columnar mode becomes unstable
first under strong rotation and weak density stratification. Considering the disturbance
of wavenumber m = 15, the critical eigenmodes for Pr = 10, 1, 0.1 and Ta = 1010

are shown in figure 6. It is found that these critical modes are quasi-geostrophic and
convection is localized in the tangent cylindrical annulus of the inner core coaxial
with the rotation axis. As Pr decreases, the disturbance spirally elongates in the
cylindrically radial direction, which is consistent with the observations under the OB
approximation (Zhang 1992). Physically, the spirally elongated structures of critical
convection at small Pr are related to the radial propagation properties of topographic
Rossby waves (Takehiro 2008, 2010).

3.3. Instability under strong density stratification
3.3.1. Variation of growth rate

In this section, the influence of density stratification on the instability of the base
state is studied. We first focus on studying the stability characteristics of the base
state with respect to the disturbance of specified wavenumber m. It is found that
the instability process is sensitive to the parameters (Pr, Nρ). Based on the variation
of maximal growth rate of the base state with Ra and the structures of critical
eigenmodes, we here classified the instability processes into five categories in general.
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FIGURE 7. (Colour online) Phase diagrams of the instability processes of the base state
in the parameter space of (Pr, Nρ) at (a) (Ta, m)= (108, 5) and (b) (Ta, m)= (1010, 15).
The instability processes are classified into five major categories. Categories I to V are
represented by black squares, red left-pointing triangles, purple rhombuses, green circles
and blue right-pointing triangles, respectively. Note that the instability processes indicated
by black crosses in (b) are more complex.

Figure 7 shows the phase diagrams of instability processes in the parameter space of
(Pr,Nρ) at (Ta,m)= (108, 5) and (Ta,m)= (1010, 15). We note that the results at the
two parameter combinations (Ta,m) are consistent with each other qualitatively, even
though the critical parameters between different categories are different quantitatively.
Therefore, we just discuss various instability processes in detail based on the results
at (Ta,m)= (1010, 15).

The typical variations of maximal growth rate σ of the base state with Ra at
different (Pr, Nρ) are shown in figure 8, illustrating the instability processes in
different categories. The structures of eigenmodes dominating different instability
transitions are shown in figure 9. The instability process in the first category occurs
at relatively large Pr and small Nρ , and the columnar mode loses stability first. As
an example, figure 8(a) shows the variation of σ with Ra at (Pr, Nρ) = (0.4, 1.5),
while the dominant eigenmode near the instability threshold is given in figure 9(a).
Compared with results under weak density stratification (Nρ = 0.01), it should be
mentioned that the intensification of density stratification produces a local maximum
of growth rate at moderate Ra and enhances the spiral nature of the critical convection
pattern. We also note that |σ | decreases with Ra when Ra is small enough, which
indicates certain scaling behaviours of the eigenpair with Ra, as will be shown in § 4.

At relatively small Pr, the maximum of the growth rate at moderate Ra increases
and becomes positive as Nρ increases. Correspondingly, a new unstable eigenmode,
referred to as the quasi-geostrophic compressible mode, appears because of compress-
ibility. Figure 8(b) shows the variation of σ with Ra at (Pr, Nρ) = (0.4, 4),
corresponding to the instability process in the second category. Figure 9(b) shows the
dominant eigenmodes for this instability transition. Owing to the emergence of this
new unstable eigenmode, convection occurs at a much smaller Ra compared with
that under weak density stratification. It is interesting that the unstable base state
gains stability at higher Ra. When Ra is further increased, another instability occurs
due to the unstable columnar mode. Thus, with the increase of Ra, the base state
undergoes the process of ‘stable → unstable → stable → unstable’. From figure 9(b),
we can observe that the new unstable eigenmode for the first instability transition is
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FIGURE 8. (Colour online) The maximal growth rates of the base state with respect to
the disturbance of wavenumber m= 15 as functions of Ra at different (Pr,Nρ), illustrating
the instability processes in different categories: (a) (Pr,Nρ)= (0.4, 1.5), instability process
in the first category; (b) (Pr, Nρ) = (0.4, 4), instability process in the second category;
(c) (Pr,Nρ)= (0.15, 0.8), instability process in the third category; (d) (Pr,Nρ)= (0.3, 3),
instability process in the fourth category; (e) (Pr,Nρ)= (0.2, 4), instability process in the
fifth category.

quasi-geostrophic with the disturbance concentrating in the tangent cylindrical annulus
of the inner core and varying weakly along the direction of rotation axis. The new
mode is also characterized by small horizontal length scales. The viscous force plays
an important role in the breaking of the rotational constraint for convection onset
(Zhang & Liao 2017). This is reflected by the presence of Ta in the asymptotic
scalings of the critical parameters, as will be shown below.

As stated in § 3.2, the columnar mode loses stability first under strong rotation
and weak density stratification. For relatively small Pr, it is found that the inertial
mode loses stability first under a certain intensity of density stratification. Figure 8(c)
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FIGURE 9. (Colour online) The dominant eigenmodes at different Ra, Pr and Nρ . (a) The
dominant eigenmode at Ra= 1.46× 106 for (Pr,Nρ)= (0.4, 1.5) with complex growth rate
0.00172− 1.37i. (b) The dominant eigenmode at Ra= 631.3 for (Pr, Nρ)= (0.4, 4) with
complex growth rate 0.0750− 20.8i. (c) The dominant eigenmode at Ra= 1.311× 105 for
(Pr,Nρ)= (0.15, 0.8) with complex growth rate 0.00935− 4.73i.

shows the variation of maximal growth rate of the base state with Ra at (Pr, Nρ)=
(0.15, 0.8), corresponding to the instability process in the third category. Figure 9(c)
shows the dominant eigenmode for the instability transition. The quasi-geostrophic
nature of the convection pattern is quite evident. By examining the distributions of
various quantities, particularly uφ , it is found that strong convection occurs near the
equatorial region. Disturbances spirally elongate along the cylindrically radial direction
and extend over a large part of the flow domain. In addition to the switching of
critical eigenmode, the intensification of density stratification also gives rise to a local
maximum of growth rate at moderate Ra.

At a larger Nρ the quasi-geostrophic compressible mode becomes unstable at
moderate Ra. Figure 8(d) shows the variation of σ with Ra at (Pr, Nρ) = (0.3, 3),
corresponding to the instability process in the fourth category. Thus, as Ra increases,
the base state loses stability due to the quasi-geostrophic compressible mode and
gains stability at higher Ra. As Ra is further increased, another instability transition
occurs, which is dominated by the inertial mode. For small Pr and a certain intensity
of density stratification, the base state loses stability due to the quasi-geostrophic
compressible mode and keeps being unstable at higher Ra. The variation of maximal
growth rate of the base state with Ra at (Pr, Nρ)= (0.2, 4) is shown in figure 8(e),
corresponding to the instability process in the fifth category.

At some parameter combinations (Pr, Nρ), the instability process of the base state
can be even more complicated than those mentioned before. Figure 10(a) shows the
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FIGURE 10. (Colour online) The maximal growth rates of the base state with respect to
the disturbance of wavenumber m= 15 as functions of Ra at (a) (Pr,Nρ)= (0.45, 5) and
(b) (Pr,Nρ)= (0.4, 4.5).

variation of maximal growth rate of the base state versus Ra at (Pr, Nρ)= (0.45, 5).
As Ra increases, the base state undergoes the process of ‘stable → unstable → stable
→ unstable → stable → unstable’. Moreover, at (Pr,Nρ)= (0.4, 4.5), the instability
transition even occurs four times as Ra increases, as shown in figure 10(b).

For a specified eigenmode, the disturbance structure also varies significantly along
with the change of growth rate. Figure 11(a) gives the two largest growth rates
of the base state as functions of Ra. It is observed that, in a certain range of Ra,
the difference between the two growth rates is evident and there is no switching
of the dominant eigenmode. The structures of dominant eigenmodes at different
values of Ra in this range are shown in figure 11(b–e). The base state loses stability
due to the quasi-geostrophic compressible mode, which is shown in figure 11(b).
Convection occurs in the neighbourhood of the tangent cylinder of the inner core. As
Ra increases, disturbance elongates in the cylindrically radial direction and the spiral
nature of the convection pattern becomes more evident, as shown in figure 11(c–e).
Strong disturbances are located in the equatorial region at large Ra. The variation of
disturbance structure can have an influence on the corresponding growth rate.

The instability processes discussed above occur at relatively large Ta and various
(Pr, Nρ). Next, we will investigate the stability characteristics of the base state at
different Ta for specified (Pr, Nρ), which demonstrates that the instability process
also depends on Ta. Figure 12 gives the maximal growth rates of the base state with
respect to the disturbance of wavenumber m = 5 as functions of Ra at different Ta
for three parameter combinations (Pr, Nρ). Under weak density stratification, as Ta
increases, the critical Rayleigh number Rac,m=5 becomes larger, while the trend in the
variation of the growth rate is qualitatively unchanged, as shown in figure 12(a). For
small Pr and a certain intensity of density stratification, the variation of Ta can change
qualitatively the instability process of the base state, as illustrated in figure 12(b,c).
Figure 12(b) shows the results at (Pr, Nρ) = (0.1, 3). Starting from a small Ta, the
critical Rayleigh number Rac,m=5 decreases rapidly as Ta is slightly increased, and the
instability of the base state is promoted. However, when Ta is large enough, Rac,m=5
increases with Ta. Along with the change of critical Rayleigh number, the structure
of the critical eigenmode also varies. We note that Rac,m=5 keeps being positive as
Ta varies. Figure 12(c) shows the results at (Pr,Nρ)= (0.3, 5). At small Ta, the base
state loses stability at relatively large Ra. When Ta is increased to a certain magnitude,
the quasi-geostrophic compressible mode becomes unstable at much smaller Ra. Thus,
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FIGURE 11. (Colour online) (a) The two largest growth rates of the base state with
respect to the disturbance of wavenumber m= 15 as functions of Ra at (Pr,Nρ)= (0.1, 1).
The largest and second largest growth rates are indicated by hollow and filled symbols,
respectively. (b–e) The dominant eigenmodes at different values of Ra: (b) Ra = 257,
(c) Ra= 513, (d) Ra= 1025 and (e) Ra= 1.638× 104.

with the increase of Ra, the base state undergoes the process of ‘stable → unstable →
stable → unstable’. The critical Rayleigh numbers for the two instability transitions
increase when Ta is further increased.

It is worth mentioning that, although Ta can significantly affect the stability
characteristics of the base state for some parameter combinations (Pr, Nρ), the
instability of the quasi-geostrophic compressible mode and the diversity of instability
processes are still universal at large enough Ta. As also demonstrated in figure 7, the
phase diagrams of the instability processes at two parameter combinations (Ta, m)
are qualitatively similar. It is observed that the parameter region for the instability
process in the third category is diminished for larger Ta. This is due to the fact that
the instabilities of the columnar mode and quasi-geostrophic compressible mode are
promoted relative to the inertial mode as Ta is increased.

3.3.2. Variations of critical parameters
In this section, we mainly study the instability of the base state with respect to

general disturbances and calculate the critical Rayleigh number Rac = minm Rac,m
and corresponding wavenumber mc and frequency ωc. We have shown that multiple
instability transitions of the base state may exist for specified parameters (Ta, m, Pr, Nρ).
For clarity, we here only consider the critical point with the smallest Ra, leaving out
possible re-stability and re-instability of the base state at higher Ra.

As mentioned above, in the large-Pr regime, the instability of the base state
is dominated by the columnar mode; see figure 7. Figure 13 shows the critical
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FIGURE 12. (Colour online) The maximal growth rates of the base state with respect to
the disturbance of wavenumber m = 5 as functions of Ra at different Ta and specified
(Pr,Nρ): (a) (Pr,Nρ)= (0.1, 0.01), (b) (Pr,Nρ)= (0.1, 3) and (c) (Pr,Nρ)= (0.3, 5).

parameters as functions of Ta at Pr = 10, 1 and different Nρ . We find that the
trends of variations of critical parameters with Ta and Nρ at these two Pr values
are similar. As Ta increases, all of Rac, mc and |ωc| increase monotonically. More
importantly, both Rac and mc satisfy certain scaling laws with Ta, based on which
we may extrapolate these critical parameters to higher Ta. The variation of Nρ has
only minor influences on the scaling exponents.

Figure 14 depicts the velocity distributions of critical eigenmodes on meridional
planes at Pr= 1, Ta= 1011 and different Nρ , showing that convection always occurs in
the neighbourhood of the tangent cylinder. The disturbances near the outer boundary
are diminished as Nρ increases, which is attributed to the constancy of dynamic
viscosity µ and thermal conductivity k in our model. As Nρ increases, the density of
the base state near the outer boundary is decreased, as shown in figure 3. Then, the
local kinematic viscosity ν = µ/ρ and thermal diffusivity κ = k/cpρ are increased,
enhancing the diffusion effects near the outer boundary. When the thermal diffusivity
κ is assumed to be constant, instead of k, convection tends to move towards the
equatorial region due to compressibility (Glatzmaier & Gilman 1981a; Drew et al.
1995; Jones et al. 2009).

In the small-Pr regime, the instability process of the base flow is sensitive to
parameters (Pr,Nρ). When Nρ is small, the columnar mode loses stability first, while
the quasi-geostrophic compressible mode becomes unstable first under strong density
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FIGURE 13. (Colour online) (a,b) Critical Rayleigh numbers Rac, (c,d) critical
wavenumbers mc and (e, f ) critical frequencies ωc as functions of Ta for different Nρ at
(a,c,e) Pr= 10 and (b,d, f ) Pr= 1.

stratification. At some Pr, the inertial mode occurs first under density stratification of
a certain intensity. The transition parameters (Prc, Nρ,c) between different categories
of instability process are dependent on Ta and the wavenumber m of the disturbance.
For clarity, we consider only the cases with relatively weak and strong density
stratification, corresponding to the critical columnar mode and quasi-geostrophic
compressible mode, respectively. Figure 15 shows the variations of critical parameters
with Ta at Pr = 0.3, 0.1, and figure 16 gives the maximal growth rates of the base
state with respect to the disturbance of wavenumber m= mc(Nρ) as functions of Ra
at Ta = 1010, showing the instability processes of the base state at corresponding
parameters. For small Nρ , the columnar mode occurs first. Similar to the results at
larger Pr, both Rac and mc satisfy certain scaling laws with Ta, and the decrease of Pr
has only minor influences on the scaling exponents. At large Nρ , the quasi-geostrophic

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 T

si
ng

hu
a 

U
ni

ve
rs

ity
, o

n 
02

 Ju
l 2

01
9 

at
 0

1:
29

:0
9,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/jf
m

.2
01

9.
43

6

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2019.436


1108 S. Liu, Z.-H. Wan, R. Yan, C. Sun and D.-J. Sun

ur uœ uÇ

ur uœ uÇ ur uœ uÇ

ur uœ uÇ(a) (b)

(c) (d)

FIGURE 14. (Colour online) Velocity distributions of critical eigenmodes on meridional
planes at Pr= 1, Ta= 1011 and different values of Nρ : (a) Nρ = 1, (b) Nρ = 2, (c) Nρ = 3
and (d) Nρ = 4.

compressible mode occurs first, and Rac decreases by several orders of magnitude. It
is interesting that Rac of the quasi-geostrophic compressible mode satisfies a scaling
law with Ta with a scaling exponent similar to that of the columnar mode. The
anomalous variations of critical parameters at (Pr,Nρ)= (0.3, 1) and relatively small
Ta originates from the switching of dominant eigenmodes. At Pr= 0.1, mc is relatively
small, and in the Ta range considered, the scaling relation between mc and Ta is not
so clear, different from that at a larger Pr.

4. Validity of anelastic approximation

Within the anelastic approximation, Drew et al. (1995) investigated the compressible
convection in a rotating spherical shell and found that convection can occur at negative
Ra for large (Ta, Nρ) and small Pr. In contrast, based on the fully compressible
equations, we find that the critical Rayleigh number is always positive in a similar
parameter space, implying the inapplicability of the anelastic approximation, although
the flow considered is nearly adiabatic with n= 1.499< na= 1.5. Considering that the
time derivative of density perturbation in the continuity equation is neglected under
the anelastic approximation, the applicability of the anelastic model can be evaluated
to some extent by measuring the relative magnitude of the time derivative of density
perturbation (denoted as ξ ) (Calkins et al. 2015a). The complete continuity equation
reads

∂ρ

∂t
+ ρ

∂ur

∂r
+

dρ
dr

ur +
2
r
ρur + ρδ = 0, (4.1)

with ρ = λn. Here ξ is calculated based on the dominant eigenmode. Considering the
symmetric structure of the dominant eigenmode, ξ is defined as

ξ =

∣∣∣∣∂ρ∂t

∣∣∣∣
e∣∣∣∣∂ρ∂t

∣∣∣∣
e

+

∣∣∣∣ρ ∂ur

∂r

∣∣∣∣
e

+

∣∣∣∣dρdr
ur

∣∣∣∣
e

+

∣∣∣∣2r ρur

∣∣∣∣
e

+ |ρδ|e

, (4.2)
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FIGURE 15. (Colour online) (a,b) Critical Rayleigh numbers Rac, (c,d) critical
wavenumbers mc and (e, f ) critical frequencies ωc as functions of Ta for different Nρ at
(a,c,e) Pr= 0.3 and (b,d, f ) Pr= 0.1.

where | f |e is the maximum of | f | on the equatorial plane and is used to measure the
magnitude of f .

We consider the disturbance of wavenumber m= 15. Figure 17 shows the variations
of ξ with Ra at (Pr, Ta) = (0.1, 1010) and different Nρ . It is observed that ξ is
increased with the decrease of Ra, and the intensification of density stratification
increases ξ significantly, indicating that the anelastic approximation is less applicable
in the small-Ra and large-Nρ regime. This is consistent qualitatively with the
observations of rotating compressible convection in a plane layer geometry that,
although the anelastic model can fail for marginally stable convection, it works well
for supercritical convection at higher Ra (Verhoeven & Glatzmaier 2018). It is of
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FIGURE 16. (Colour online) The maximal growth rates of the base state with respect to
the disturbance of wavenumber m=mc(Nρ) as functions of Ra at Ta= 1010 and different
values of Nρ : (a) Pr= 0.3 and (b) Pr= 0.1.
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FIGURE 17. (Colour online) The relative magnitudes ξ of the time derivative of density
perturbation in the continuity equation as functions of Ra at (Pr, Ta) = (0.1, 1010) and
different Nρ .

interest to further examine the applicability of the anelastic model for small-Pr,
rapidly rotating, compressible convection in the high-Ra cases.

In the following, the stability characteristics of the base state are considered in
the small-Ra regime. The complex growth rate and disturbance magnitudes of the
dominant eigenmode are obtained as functions of Ra. Considering the disturbance
of wavenumber m = 5, the results for Pr = 0.1, Ta = 106 and Nρ = 4 are shown in
figure 18. It is found that the complex growth rate and disturbance magnitudes satisfy
scaling laws with respect to Ra:

(σ , ω, |ur|e, |uφ|e)∼O(Ra0.5), |p|e ∼O(1), |T|e ∼O(Ra1). (4.3a−c)

Normalization is employed for disturbance magnitudes such that |ρ|e= 1. The scaling
behaviours are universal with respect to parameters (Pr, Ta, Nρ, m) in the small-Ra
limit. By inspecting the disturbance out of the equatorial plane, it is found that uθ is
of the same order as ur and uφ .
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FIGURE 18. (Colour online) (a) Disturbance magnitudes and (b) complex growth rates of
the dominant eigenmode of wavenumber m= 5 as functions of Ra in the small-Ra limit
for Ta= 106, Nρ = 4: (a) results for Pr= 0.1; and (b) variations of −σ

√
Pr and −ω

√
Pr

for Pr= 10, 1, 0.1.

Based on the scaling laws with Ra, the complex growth rate and disturbances are
rescaled as

ρ̃ = ρ, (σ̃ , ω̃, ũr, ũφ, ũθ)= Ra−0.5(σ , ω, ur, uφ, uθ), p̃= p, T̃ = Ra−1T.
(4.4a−d)

Using the rescaled quantities in the linear equations (2.9) and neglecting higher-order
terms of Ra as Ra→ 0, we can scale Ra out of (2.9) and obtain

∂ρ̃

∂ t̃
+∇ · (λnũ)= 0,

√
Pr Ta λn ẑ× ũ+

∇p̃
ε
+

ρ̃r
ε(1− η)2r3

=
√

Pr
[
∇

2ũ+
1
3
∇(∇ · ũ)

]
,

λn ũ · ∇λ+ (γ − 1)λn+1∇ · ũ=
γ
√

Pr
∇

2T̃,

λb(n+ 1)(1− η)2p̃= λρ̃.


(4.5)

In the simplified equations (4.5), there is no time-derivative term in the momentum
and temperature equations, while the time derivative of the density perturbation is
non-negligible in the continuity equation. Thus, for specified ε or n, the anelastic
approximation is inapplicable when Ra is small enough. We note that the decrease
of −σ in the small-Ra limit does not indicate that the base state becomes less stable.
When the time scale is chosen appropriately in this limit, the rescaled growth rate σ̃ ,
as shown in (4.4), approaches a finite negative value as Ra→ 0, indicating that the
disturbance decays at a finite damping rate in the small-Ra limit.

In (4.5), the equation for temperature perturbation T̃ is decoupled from the other
equations, and the density perturbation is directly related to the pressure perturbation.
By some manipulations, a closed set of equations for ũ can be obtained:

√
Pr
∂

∂ t̃

[
√

Ta λn ẑ× ũ−∇2ũ−
1
3
∇(∇ · ũ)

]
=

1
ελb(n+ 1)(1− η)2

∇[λ∇ · (λnũ)] +
r

ε(1− η)2r3
∇ · (λnũ). (4.6)
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From (4.6) it is found that the rescaled complex growth rate σ̃ + iω̃ is proportional
to Pr−0.5 in the small-Ra limit. This is confirmed by linear stability analysis based on
the full equations, as shown in figure 18(b). The distributions of velocity perturbations
are independent of Pr. Since the coupling between thermal perturbations and velocity
perturbations is dependent on Pr, the relative magnitudes of velocity perturbations
with respect to thermal perturbations vary with Pr.

Overall, in the study of linear rotating compressible convection in a spherical
shell, we demonstrate that the anelastic approximation becomes less applicable in the
small-Ra and large-Nρ regime. In the small-Ra limit the time derivative of the density
perturbation is non-negligible, so that the anelastic model cannot be applied.

5. Summary

In this study, the stability characteristics of nearly adiabatic compressible convection
in a rapidly rotating spherical shell are studied systematically by linear stability
analysis based on the fully compressible Navier–Stokes equations, while the
applicability of the anelastic approximation is also evaluated.

By investigating the stability characteristics of the base state with respect to the
disturbance of specified wavenumber, it is found that the instability process is sensitive
to Pr and to the intensity of density stratification. For large Pr and relatively weak
density stratification, the columnar mode becomes unstable first; while for small Pr
and strong density stratification, the new quasi-geostrophic compressible mode is
identified, which loses stability first. The inertial mode can also occur first for small
Pr and a certain intensity of density stratification. Although the critical Rayleigh
numbers of the quasi-geostrophic compressible mode and columnar mode are different
by several orders of magnitude, similar scaling behaviours of these critical quantities
with Ta are observed.

Here, the critical Ra for convection onset is always positive, in contrast with
previous results of the anelastic model that convection can occur at negative Ra. By
measuring the relative magnitude of the time derivative of density perturbation in the
continuity equation, it is found that the anelastic approximation is not suitable for
the case with small Ra and large density stratification. When Ra is small enough,
the complex growth rate and disturbance magnitudes satisfy certain scaling laws with
Ra. In addition, we find that in the small-Ra limit the time derivative of the density
perturbation is non-negligible, which limits the application of the anelastic model.

In this study, we focused on studying the linear stability characteristics of
compressible convection in a rapidly rotating spherical shell based on the fully
compressible equations and evaluated the applicability of the anelastic approximation.
It is of interest to examine the applicabilities of other sound-proof approaches
(Chenoweth & Paolucci 1986; Durran 2008; Verhoeven & Glatzmaier 2018) and to
extend the linear analysis to the nonlinear regime to investigate the bifurcation nature
of convection onset and fully nonlinear convection at higher Ra.
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Appendix A
The terms Cr,δ,ζ pertaining to the Coriolis force in the ur, δ and ζ equations of

(2.13) read

Cr =−

√
Pr Ta

Ra
λnuφ sin θ,

Cδ =−

√
Pr Ta

Ra
λn

(
−

1
r
∂ur

∂φ
−

uφ sin θ
r
+ ζ cos θ

)
,

Cζ =

√
Pr Ta

Ra
λn

(
sin θ

r
∂ur

∂θ
+

2ur cos θ
r

−
uθ sin θ

r
+ δ cos θ

)
.


(A 1)

The terms τr,δ,ζ pertaining to the viscous force in (2.13) read

τr =

√
Pr
Ra

(
∇

2ur +
1
3
∂2ur

∂r2
+

2
3r
∂ur

∂r
−

8ur

3r2
+

1
3
∂δ

∂r
−

2δ
r

)
,

τδ =

√
Pr
Ra

(
1
3
∂

∂r
∇

2
Hur +

10
3r
∇

2
Hur +

4
3
∇

2δ −
1
3
∂2δ

∂r2
+

4
3r
∂δ

∂r
+

2δ
r2

)
,

τζ =

√
Pr
Ra

(
∇

2ζ +
2
r
∂ζ

∂r
+

2
r2
ζ

)
.


(A 2)

Appendix B
In the spherical harmonic expansion of a function χ(t, r, θ, φ) as shown in (2.16),

the coefficients of spherical harmonics Ym
l are χm

l . Below are some useful expressions
for the expansion coefficients [L · χ ]ml of L · χ , where L is a linear operator:

[∇
2
Hχ ]

m
l =−

l(l+ 1)
r2

χm
l ,

[∇
2χ ]ml =

[
∂2

∂r2
+

2
r
∂

∂r
−

l(l+ 1)
r2

]
χm

l ,

[cos θ · χ ]ml = cm
l+1χ

m
l+1 + cm

l χ
m
l−1,[

sin θ ·
∂χ

∂θ

]m

l

= (l− 1)cm
l χ

m
l−1 − (l+ 2)cm

l+1χ
m
l+1,


(B 1)

where

cm
l =

(
l2
−m2

4l2 − 1

)1/2

. (B 2)

We note that the expansion coefficients of terms containing uθ and uφ in (2.13) can
be expressed in terms of the expansion coefficients of δ and ζ :

[sin θ · uθ ]ml = r
[
−

cm
l

l
δm

l−1 +
cm

l+1

l+ 1
δm

l+1 +
im

l(l+ 1)
ζm

l

]
,

[sin θ · uφ]ml = r
[
−

cm
l

l
ζm

l−1 +
cm

l+1

l+ 1
ζm

l+1 −
im

l(l+ 1)
δm

l

]
.

 (B 3)
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