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Based on the fully compressible Navier–Stokes equations, the linear stability of thermal
convection in rapidly rotating spherical shells of various radius ratios η is studied for a
wide range of Taylor number Ta, Prandtl number Pr and the number of density scale height
Nρ . Besides the classical inertial mode and columnar mode, which are widely studied
by the Boussinesq approximation and anelastic approximation, the quasi-geostrophic
compressible mode is also identified in a wide range of Nρ and Pr for all η considered,
and this mode mainly occurs in the convection with relatively small Pr and large Nρ .
The instability processes are classified into five categories. In general, for the specified
wavenumber m, the parameter space (Pr, Nρ) of the fifth category, in which the base state
loses stability via the quasi-geostrophic compressible mode and remains unstable, shrinks
as η increases. The asymptotic scaling behaviours of the critical Rayleigh numbers Rac
and corresponding wavenumbers mc to Ta are found at different η for the same instability
mode. As η increases, the flow stability is strengthened. Furthermore, the linearized
perturbation equations and Reynolds–Orr equation are employed to quantitatively analyse
the mechanical mechanisms and flow instability mechanisms of different modes. In the
quasi-geostrophic compressible mode, the time-derivative term of disturbance density in
the continuity equation and the diffusion term of disturbance temperature in the energy
equation are found to be critical, while in the columnar and inertial modes, they can
generally be ignored. Because the time-derivative term of the disturbance density in
the continuity equation cannot be ignored, the anelastic approximation fails to capture
the instability mode in the small-Pr and large-Nρ system, where convection onset is
dominated by the quasi-geostrophic compressible mode. However, all the modes are
primarily governed by the balance between the Coriolis force and the pressure gradient,
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based on the momentum equation. Physically, the most important difference between the
quasi-geostrophic compressible mode and the columnar mode is the role played by the
disturbance pressure. The disturbance pressure performs negative work for the former
mode, which appears to stabilize the flow, while it destabilizes the flow for the latter mode.
As η increases, in the former mode the relative work performed by the disturbance pressure
increases and in the latter mode decreases.

Key words: Bénard convection

1. Introduction

Thermal convection in a rapidly rotating system has been widely studied because of its
interesting mathematical properties (Jones, Soward & Mussa 2000) and its relevance to
the problems in geophysics and astrophysics. The investigation of the onset of linear
convection is of fundamental importance, which can provide an invaluable guide for
understanding the very complex behaviour in the nonlinear regime (Jones, Kuzanyan &
Mitchell 2009) and establishing asymptotic behaviour (Jones et al. 2000).

The Boussinesq approximation (Chandrasekhar 1961) has been widely used in
buoyancy-driven convection because of its convenience through which density variations
are neglected except in the buoyancy term of the momentum equation where the density
is assumed to be linearly dependent on the temperature. Roberts (1968) and Busse (1970)
developed the local asymptotic theory of the onset of rapidly rotating convection in a
Boussinesq sphere. The convection structure of columnar rolls with their axes aligned
with the axis of rotation is properly characterized by the Roberts–Busse theory. However,
their local theory of convection cannot predict the critical parameters, especially at small
Prandtl numbers (Zhang 1992). The Roberts–Busse theory was further developed and
the critical parameters given by the global theory of convection are in agreement with
the numerical results (Yano 1992; Jones et al. 2000; Dormy et al. 2004). The prograde
spiralling drifting columnar rolls modes (Hart, Glatzmaier & Toomre 1986; Zhang 1992)
and inertial oscillation modes mainly occurring in the equatorial region (Zhang & Busse
1987; Zhang 1993, 1994; Busse & Simitev 2004) were discovered and analysed at small
Prandtl numbers. It was found that the fundamental properties of convection are not
substantially influenced by the aspect ratio of the spherical shell (Zhang 1992).

Nevertheless, there is usually a large density variation in the radial direction in stars
and giant planets, so the Boussinesq approximation is no longer valid in these systems.
Since more computing power is required for fully compressible equations, the sound-proof
approaches were widely used for low-speed flows, such as the anelastic approximation
(Ogura & Phillips 1962; Gough 1969), to save computational costs. The onsets of
convection and nonlinear convection with large density variation in a rotating spherical
geometry were investigated with the use of the anelastic equations (Gilman & Glatzmaier
1981; Glatzmaier & Gilman 1981; Verhoeven, Wiesehöfer & Stellmach 2015). However,
Drew, Jones & Zhang (1995) investigated this problem at larger Taylor numbers and a
broader range of Prandtl numbers and found that the critical Rayleigh number (Rac) for
convection onset becomes negative at small Prandtl number and large Taylor number. By
replacing thermal diffusion with entropy diffusion in the anelastic model, Jones et al.
(2009) showed that the critical Rayleigh number is always positive for convection onset.

Recently, studies have been performed to investigate the rotating compressible
convection using the fully compressible equations. These studies have provided
knowledge regarding the applicability of the anelastic approximation in the description
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of compressible convection in different regimes. The instability for rotating compressible
convection in a plane layer geometry was investigated by Calkins, Julien & Marti (2015b)
for a unity Prandtl number. They compared the stability criteria of compressible and
anelastic ideal gases and found that the critical parameters given by compressible equations
approach those given by the anelastic equations in the adiabatic limit. However, for
small Prandtl numbers and rapidly rotating cases Calkins, Julien & Marti (2015a) found
that the time derivative of the density reaches a non-negligible level, indicating that the
anelastic approximation is not suitable. Verhoeven & Glatzmaier (2018) investigated linear
compressible convection within a Newtonian ideal gas in a rotating plane layer geometry,
and found that the anelastic approach breaks down when the sound-crossing time of the
computational domain exceeds the rotation time scale. Liu et al. (2019) studied the onset
of fully compressible convection in a rapidly rotating spherical shell by linear stability
analysis. A new quasi-geostrophic compressible mode was found at relatively small Prandtl
numbers and the anelastic approximation in their system breaks down in the small-Ra and
large-Nρ regime, where Nρ denotes the number of density scale height.

The convective instabilities in rapidly rotating spheres and spherical shells have been
well studied for Boussinesq fluids (Roberts 1968; Busse 1970; Soward 1977; Zhang 1992,
1994; Jones et al. 2000; Dormy et al. 2004; Sánchez, García & Net 2016b; Zhang,
Lam & Kong 2017), and rapidly rotating convection subject to large density stratification
has been commonly studied within the anelastic approximation (Gilman & Glatzmaier
1981; Drew et al. 1995; Jones et al. 2009). So far, the applicability of the anelastic
approximation to compressible convection is still in debate and relevant studies using
the unambiguous fully compressible equations are still rare. It has been shown that the
anelastic approximation is no longer accurate for marginally stable convection in the
rapidly rotating and small-Prandtl-number regime (Calkins et al. 2015a; Liu et al. 2019).
Further studies of the fully compressible convection modes are desirable. The fact that,
hitherto, the physical mechanisms governing the onset of compressible convection in
rapidly rotating spherical geometries have not been elucidated and that only a limited
parameter region has been considered provides a motivation for the present work. In this
study, the influence of the radius ratio on the onset of fully compressible convection
in rotating spherical shells is investigated systematically. More importantly, we perform
quantitative and qualitative analyses based on the linearized perturbation equations and
the compressible Reynolds–Orr equation to gain a better physical understanding of the
different modes, as well as the influence of the radius ratio.

The remainder of this study is organized as follows: the mathematical formulation of
the problem is presented in § 2. In § 3, firstly, the influence of the radius ratio on the onset
of convection based on the fully compressible equations is presented in detail. Secondly,
the critical parameters at different radius ratios are discussed and compared for a wide
range of parameters. Thirdly, the linear perturbation equations are employed to study the
mechanical mechanisms for the different modes, as well as the influence of the radius ratio.
Finally, for different radius ratios, a kinetic energy analysis based on the Reynolds–Orr
equation is presented to reveal the flow instability mechanisms for the columnar mode and
the quasi-geostrophic compressible mode. In § 4, we summarize the findings and conclude
the paper.

2. Mathematical formulation of the problem

A spherical shell of depth d = ro − ri is considered to be filled with ideal gas rotating
uniformly with a constant angular velocity of Ω , where ro and ri denote the radius of
the spherical shell’s outer and inner boundaries (the subscripts o and i indicate quantities
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at the outer and inner boundaries, respectively). The radius ratio η is specified as η =
ri/ro. Compared with the gravitational force (Busse 1970; Gilman & Glatzmaier 1981;
Horn & Aurnou 2018), the centrifugal force is assumed to be negligible for this problem.
Regardless of the sources of heat in the fluid layer, the velocity vector u, the density ρ, the
pressure p and the temperature T satisfy the following governing equations (2.1):

∂ρ

∂t
+ ∇ · (ρu) = 0, (2.1a)

ρ
Du
Dt

+ 2ρΩ × u + ∇p − ρg = μ

[
∇2u + 1

3
∇ (∇ · u)

]
, (2.1b)

ρcv

DT
Dt

+ p∇ · u = k∇2T + μΦ, (2.1c)(
cp − cv

)
ρT = p. (2.1d)

Here, the specific heats at constant pressure and volume cp and cv , dynamic viscosity μ

and thermal conductivity k are assumed to be constant. For an ideal gas, the ratio of the
specific heats γ = cp/cv is fixed at 5/3. The gravity field is g = −GMr/r3, where r is the
position vector, G is the gravitational constant and M is the effective mass within the shell
below the inner boundary. The viscous heating is μΦ with

Φ = ∂ui

∂xj

(
∂uj

∂xi
+ ∂ui

∂xj
− 2

3
δij∇ · u

)
. (2.2)

A polytropic basic state (Drew et al. 1995) under thermal and static equilibrium without
convection is adopted in this study

∇2T̄ = 0, ∇p̄ = −ρ̄g, p̄ = ρ̄1+1/n. (2.3a–c)

Here, n is the polytropic index. Once the physical quantity at the midpoint of the layer
rc = (ri + ro)/2 and the number of density scale heights Nρ = ln(ρ̄i/ρ̄o) which is used to
measure compressibility are determined, the basic state is confirmed and expressed as

T̄ = T̄cλ (r) , ρ̄ = ρ̄cλ (r)n , p̄ = p̄cλ (r)n+1 . (2.4a–c)

The subscript c means the quantities at rc. Here,

λ (r) = λa + λb
d
r
, n = GM(

cp − cv

)
T̄cλbd

− 1, (2.5a,b)

where

λa = 2λo − 1 − η

1 − η
, λb = (1 − λo) (1 + η)

(1 − η)2 , λo = η + 1
ηeNρ/n + 1

. (2.6a–c)

The entropy difference between ri and ro is

	s̄ = s̄i − s̄o = cpNρ

n + 1 − nγ

nγ
. (2.7)

The entropy difference 	s̄ becomes zero when the polytropic index n = 1.5, which
means the basic flow is isentropic (adiabatic) with non-vanishing density stratification.
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The linearized non-dimensionalized equations for infinitesimal disturbances superimposed
on the base state are written as

∂ρ′

∂t
+ ∇ρ̄ · u′ + ρ̄∇ · u′ = 0 (2.8a)

ρ̄
∂u′

∂t
+
√

PrTa
Ra

ρ̄ ẑ × u′ + ∇p′

ε
+ ρ′r

ε(1 − η)2r3 =
√

Pr
Ra

[
∇2u′ + 1

3
∇ (∇ · u′)] (2.8b)

ρ̄
∂T ′

∂t
+ ρ̄u′ · ∇T̄ + (γ − 1)p̄∇ · u′ = γ√

PrRa
∇2T ′ (2.8c)

λb(n + 1)(1 − η)2p′ = λnT ′ + λρ′, (2.8d)

where p′, T ′, ρ′, u′ are the infinitesimal disturbances of pressure, temperature, density and
velocity, respectively. Here, ẑ is the unit vector directed along Ω . The equations (2.8) are
non-dimensionalized with the following dimensional scales:

r ∼ d, U ∼
√

	s̄god
cp

, t ∼ d
U

,

ρ ∼ ρ̄c, T ∼ T̄c, p ∼ ρ̄cgod,

s ∼ cp, ν ∼ νc = μ

ρ̄c
, κ ∼ κc = k

cpρ̄c
.

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(2.9)

Here, go = |g(ro)| is gravitational acceleration at the outer boundary, ε = 	s̄/cp =
Nρ((n + 1 − nγ )/nγ ) is the dimensionless entropy difference and κ and ν are thermal
diffusivity and kinematic viscosity, respectively. The three dimensionless control
parameters, the Rayleigh number Ra, Taylor number Ta and Prandtl number Pr, in the
governing equations (2.8) are defined as

Ra = god3	s̄
κcνccp

, Ta =
(

2Ωd2

νc

)2

, Pr = νc

κc
. (2.10a–c)

Fully compressible Navier–Stokes equations are adopted without any approximation in
our model, and it is a complete model. The maximum value of density scale height Nρ is 5,
and the Ta is up to 1011 in our study. The range of Prandtl numbers is 0.1 � Pr � 1. Our
model allows a considerable variation of density, which the Boussinesq approximation
cannot, and it is still accurate in the rapidly rotating and small-Prandtl-number regime,
which is better than the anelastic approximation. In this study, a motionless and nearly
adiabatic basic flow with polytropic index n = 1.499 is considered and the isothermal
condition for the temperature T and the free-slip condition for velocity u are adopted
at the outer and inner boundaries. We analyse the problem in a spherical coordinate
system (r, θ, φ). For the convenience of numerical calculation, the horizontal velocity
divergence δ and radial vorticity ξ are used to replace the velocity in the longitude
and colatitude directions uθ , uφ (Chan et al. 1994; Cai, Chan & Deng 2011). Then, the
equations of the primitive variables (2.8) can be equivalently converted to the equations of
(ρ′, u′

r, δ, ξ, T ′, p′) (Liu et al. 2019). The variables χ = (ρ′, u′
r, δ, ξ, T ′, p′) are expanded
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Ta Rac mc ωc

Drew et al. (1995) 105 7109 13 −0.5074
Present 105 7116 13 −0.5068
Drew et al. (1995) 3 × 104 3809 10 −0.4250
Present 3 × 104 3813 10 −0.4246

Table 1. The comparison of critical parameters based on fully compressible equations for nearly
adiabatic flows (n = 1.499) and anelastic equations (Drew et al. 1995) for (η, Nρ, Pr) = (0.6, 5, 1). The
critical parameters are converted to our dimensionless form with the transformations: Ra = RaDNρ(1 −
η)2/(λbna), m = mD, ω = ωD√

Pr/Ra (the superscript D indicates dimensionless variables employed in Drew
et al. 1995).

in spherical harmonics

χ(t, r, θ, φ) =
L∑

l=0

l∑
m=−l

χm
l (t, r)Ym

l (θ, φ), (2.11)

where m is the azimuthal wavenumber, L is the maximal degree of triangular truncation,
and χm

l are complex coefficients. Normalized spherical harmonics are written as

Ym
l (θ, φ) =

√
2l + 1

2
(l − m)!
(l + m)!

Pm
l (cos θ) exp(imφ) (l � m � 0). (2.12)

Here, Pm
l are the associated Legendre functions of degree l and m. The linearized

fully compressible equations were spatially discretized using the Chebyshev collocation
method (Trefethen 2000) in the radial direction and spherical harmonic expansion in the
angular directions. With a normal mode expansion, a shift-invert preconditioner and the
Arnoldi algorithm were employed to solve the resulting eigenvalue problem (Sánchez,
Garcia & Net 2016a; Sánchez et al. 2016b). The detailed numerical procedures have been
elaborated and validated in our previous work (Liu et al. 2019). To validate our numerical
computations, the instability of nearly adiabatic flows (n = 1.499) is considered, and we
compare the critical parameters based on our fully compressible equations and the result
reported by Drew et al. (1995) which is based on the anelastic equations. The comparison
of the critical parameters and the critical eigenmodes are shown in table 1 and figure 1,
respectively. Our result is in good agreement with Drew et al. (1995), indicating the
reliability of our computations.

3. Results and discussions

The linear stability analysis for compressible convection in rapidly rotating spherical
shells is presented. For an ideal gas, when the specific heat ratio γ = 5/3, the adiabatic
polytropic index is na = 1.5. The nearly adiabatic base state under thermal and static
equilibrium with polytropic index n = 1.499 is considered. The maximum value of density
scale height Nρ = ln(ρ̄i/ρ̄o) is 5, which means the density ratio between the inner and
outer boundaries is up to 148. In this paper, the radius ratio η varies from 0.2 to 0.6 in order
to explore the influence of the radius ratio on the onset of convection in detail. Moreover,
the physical mechanisms for each instability mode will be presented and compared in a
quantitative way.
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(b)(a)

Figure 1. Distribution of ur of the critical eigenmodes in the equatorial plane for the case with
(η, Pr, Nρ, Ta) = (0.6, 1, 5, 105). (a) Critical eigenmode based on the anelastic equations, (b) critical
eigenmode based on the fully compressible equations.

3.1. The influence of the radius ratio on instability processes
The onset of rapidly rotating spherical convection has been wildly studied. The columnar
mode was predicted by Roberts (1968) and Busse (1970), and convective instability in
the form of prograde spiralling drifting columnar rolls was found for fluids of moderately
small Pr (Zhang 1992). For small Pr, the most unstable mode is the inertial mode (Zhang
& Busse 1987; Zhang 1993, 1994). In fully compressible convection with small Pr and
large Nρ , a new instability mode, named the quasi-geostrophic compressible mode, was
found in a rapidly rotating spherical shell with η = 0.4 (Liu et al. 2019). In a rapidly
rotating system, the instability modes have the characteristics of geostrophic balance due
to the Taylor–Proudman effect. And the third mode intrinsically depends upon the presence
of the time derivative of the density perturbation in the mass conservation equation. So it
is called the quasi-geostrophic compressible mode. Thus, in this section, we will study
the influence of η on instability processes, particularly the new instability mode, using
the linear stability analysis based on the fully compressible equations in rapidly rotating
spherical shells with different η.

We first study the onset of convection for different η, Pr and Nρ . For a fixed η, the
instability processes are found to be sensitive to the variations of Pr and Nρ . However, the
leading instability mode still is one of the three types of mode, i.e. the columnar mode,
the inertial mode and the quasi-geostrophic compressible mode. Although the radius
ratio significantly affects the stability characteristics of the base state for some parameter
combinations (Nρ, Pr), it should be noted that the quasi-geostrophic compressible mode
can be identified at all η.

Figures 2 and 3 show the spatial structures of different instability modes for the
parameter combination of (Ta, m) = (1010, 5) for η = 0.2 and η = 0.6, respectively.
The inertial mode is easy to distinguish because its disturbance occurs near the
outer shell, unlike the other two modes. Although the disturbances concentrate in the
neighbourhood of the tangent cylinder of the inner core for both the columnar mode and
the quasi-geostrophic compressible mode, these two modes can be distinguished according
to the critical Ra. In general, the critical Ra is larger than 104 for columnar modes and it is
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(e)

(b)(a) (c)

(d ) ( f )

(h)(g) (i)

Figure 2. The spatial structures of different instability modes at η = 0.2, Ta = 1010, m = 5. (a–c) The
columnar mode, Pr = 0.4, Nρ = 3.0, the critical Rayleigh number Rac = 8.816 × 105, critical frequency
ωc = −1.361; (d– f ) the inertial mode, Pr = 0.2, Nρ = 1.0, Rac = 1.308 × 105, ωc = −4.295; (g–i) the
quasi-geostrophic compressible mode, Pr = 0.1, Nρ = 3.0, Rac = 1.396 × 102, ωc = −42.34. (a,d,g) The
perturbed density ρ′. (b,e,h) Perturbed azimuthal velocity u′

φ . (c, f,i) The divergence of perturbed velocities
∇ · u′.

less than 103 for the quasi-geostrophic compressible modes. Usually, at a large Pr, the base
state loses stability by the columnar mode with a relatively high critical Rayleigh number
Rac.

With η = 0.2 and (Pr, Nρ) = (0.4, 3.0), the disturbance is in the form of spiralling
drifting columnar rolls, which are aligned with the axis of rotation due to a strong
Taylor–Proudman effect, as shown in figure 2(a). The Rac is approximately 8.816 × 105.
For small Pr and a certain intensity of density stratification, the inertial mode becomes
unstable first. Figure 2(b) shows the spatial structures of the inertial mode with
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Radius ratio dependency of the instability of convection

(e)

(b)(a) (c)

(d ) ( f )

(h)(g) (i)

Figure 3. The spatial structures of different instability modes at η = 0.6, Ta = 1010, m = 5. (a–c) The
columnar mode, Pr = 0.4, Nρ = 3.0, critical Rayleigh number Rac = 2.187 × 107, critical frequency
ωc = −0.123; (d– f ) the inertial mode, Pr = 0.1, Nρ = 1.0, Rac = 1.543 × 103, ωc = −7.70; (g–i) the
quasi-geostrophic compressible mode, Pr = 0.1, Nρ = 3.0, Rac = 5.029 × 102, ωc = −4.65. (a,d,g) The
perturbed density ρ′. (b,e,h) Perturbed azimuthal velocity u′

φ . (c, f,i) The divergence of perturbed velocities
∇ · u′.

(Pr, Nρ) = (0.1, 1.0) with strong disturbances located in the equatorial region. With
small Pr and large Nρ , the quasi-geostrophic compressible mode occurs, and its spatial
structures are shown in figure 2(c). We find that the disturbances concentrate in the
neighbourhood of the tangent cylinder of the inner core, and evident quasi-geostrophic
characteristics can also be found. However, although both the columnar mode and
the quasi-geostrophic compressible mode exhibit quasi-geostrophic characteristics, their
critical Rayleigh numbers are different by several orders of magnitude. For the columnar
mode, the divergence of velocities almost does not change along with the columnar rolls
except near the boundary. In contrast, the divergence of velocities changes sign where the
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convection rolls intersect the outer sphere for the quasi-geostrophic compressible mode.
The typical instability modes in a spherical shell with η = 0.6 are also shown in figure 3
for Ta = 1010 and m = 5. By comparing figures 2 and 3, it is easy to find that the structures
of the same mode for different η are quite similar. However, the parameter space in which
these modes dominate the instability is substantially affected by η.

Here, we present the influence of η on the instability processes in the parameter space
of (Nρ, Pr). The Prandtl number varies from 0.1 to 0.8, and both weak and strong density
stratification cases are considered with 0.01 � Nρ � 5. Since the instability processes are
rather complicated, including different mode switchings in a broad range of (Nρ, Pr),
for clarity, Liu et al. (2019) approximately classified the instability processes into five
categories, according to the variation of the maximal growth rate σ with Ra and the
dominant instability mode. In the following, we briefly introduce the five categories:

(i) With small Nρ and large Pr, the columnar mode loses stability first as Ra increases,
and the Rac is relatively high.

(ii) With increasing Nρ , the quasi-geostrophic compressible mode appears first at a
relatively large Pr, and the Rac is relatively low. With increasing Ra, this mode gains
stability again, while the columnar mode occurs at a relatively high Ra. This means
the base state undergoes the ‘stable → unstable → stable → unstable’ process.

(iii) With small Pr and a certain Nρ , the inertial mode loses stability as Ra increases. The
base state undergoes the ‘stable → unstable’ process.

(iv) At small Pr and moderate Nρ , the base state becomes unstable by the
quasi-geostrophic compressible mode first, which becomes stable with increasing
Ra. As Ra increases further, the inertial mode finally loses stability and dominates
the flow. This also means the base state undergoes the ‘stable → unstable → stable
→ unstable’ process.

(v) With small Pr and large Nρ , the base state loses stability at a relatively low Ra due
to the quasi-geostrophic compressible mode and keeps being unstable at higher Ra.

It should be noted that there are other more complex instability processes indicated by
the black crosses in the phase diagrams in addition to the above five instability processes,
in which the base state undergoes the process of ‘stable → unstable → stable’ many times
due to mode switching and eventually becomes unstable.

In order to compare with the results in Liu et al. (2019), four more different radius ratios
η = 0.2, 0.3, 0.5, 0.6 are considered. The phase diagrams of instability processes that are
represented by the above five categories in the parameter space of (Nρ, Pr) are given in
figure 4 for (Ta, m) = (108, 5) and in figure 5 for (Ta, m) = (1010, 10), respectively. For
both parameter combinations of (Ta, m), the phase diagrams at different η have certain
similarities in terms of the appearance of different types of instability processes. However,
in the phase diagram, η has a great influence quantitatively on the parameter space of
various modes.

In figure 4 for Ta = 108, category I occurs in the top and bottom left of the phase
diagram for all η, suggesting that, at large Pr, the columnar mode is still the most
important even with strong compressibility, and this kind of onset behaviour seems to
be insensitive to η. However, with Pr declining or Nρ increasing, instability processes for
convection onset become more complex, and are sensitive to η change. Category II occurs
in the middle right of the phase diagram and the extent of the parameter space increases
obviously with the increase of η. Category III occurs at small Pr and certain Nρ and the
influence of η on this category is rather complicated. For small η, category IV occurs at
medium Nρ and Pr. However, as η increases, the parameter space of (Nρ, Pr) for category
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0 1 2 3 4 5

0.2

0.4

0.6

0.8(a)

Pr

0 1 2 3 4 5

0.2

0.4

0.6

0.8(b)
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0.6

0.8(c)

Pr
+
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0.2

0.4

0.6

0.8(d )

NρNρ

Figure 4. The phase diagrams at different radius ratios of instability processes in the parameter space of
(Nρ, Pr) for specified wavenumber m = 5 and specified Taylor number Ta = 108 at (a) η = 0.2, (b) η = 0.3,
(c) η = 0.5, (d) η = 0.6. Five instability processes are represented by the symbols black squares � (I), red
left-pointing triangles � (II), purple rhombi � (III), green circles • (IV) and blue right-pointing triangles �
(V), respectively. The symbols black crosses +++ in (d) represent the more complex instability processes in the
present parameter space.

IV expands slightly and moves to small Pr and large Nρ . With small Pr and large Nρ , the
base state loses stability by category V, and this kind of behaviour is strongly influenced
by η. As η increases, the parameter space of (Nρ, Pr) for category V is reduced and this
instability process only occurs at very small Pr for large η.

In the phase diagrams in figure 5, there are some details that are different from those
for Ta = 108 in figure 4. For large η, category II occurs at the parameter space of large
Nρ and large Pr, where the instability process belongs to the category I for Ta = 108 in
figure 4. Besides, it can be found that the parameter space for category III is reduced for
all η compared with figure 4. It should be also noted that the phase diagrams have certain
similarities for all η. As η increases, the parameter space for category II expands and
parameter space for category V shrinks, which is the same as figure 4.

3.2. The influence of η on critical parameters
In this section, the instability of the base state to general disturbances is studied. As
previously mentioned, the instability process of the base state is complex at some
parameter combinations for a specific m. Here, we first define the critical parameter Rac,m
as the lowest Ra of convection onset for a specified m, leaving out possible ‘stable →
unstable’ and ‘unstable → stable’ processes at higher Ra. Then, the critical Rayleigh
number Rac for general disturbances is defined as the smallest Rac,m with respect to
different wavenumbers m, i.e. Rac = minm Rac,m. The critical wavenumber mc is obtained
corresponding to the specific Rac.
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+
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0.6
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+
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0.2
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0.6

0.8

Pr

Pr

Nρ Nρ
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(b)(a)
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Figure 5. The phase diagrams at different radius ratios of instability processes in the parameter space of
(Nρ, Pr) for specified wavenumber m = 10 and specified Taylor number Ta = 1010 at (a) η = 0.2, (b) η = 0.3,
(c) η = 0.5, (d) η = 0.6. Five instability processes are represented by the symbols black squares � (I), red
left-pointing triangles � (II), purple rhombi � (III), green circles • (IV) and blue right-pointing triangles �
(V), respectively. The symbols black crosses +++ represent the more complex instability processes in the present
parameter space.

For large Taylor numbers, Ta � 107, the scaling behaviour of Rac with Ta was found by
Calkins et al. (2015b). Liu et al. (2019) also found that the Rac and mc follow very similar
scaling laws with Ta for two different modes, i.e. the quasi-geostrophic compressible mode
and columnar mode, at η = 0.4. Here, the influence of η on the scaling behaviour of Rac
is further investigated. As shown in figures 4 and 5, for all η, a general trend is that the
columnar mode becomes unstable first at large Pr and the quasi-geostrophic compressible
mode becomes unstable first at very small Pr. Therefore, for clarity, we only consider the
smallest and largest radius ratios, i.e. η = 0.2, 0.6 and the largest and smallest Prandtl
numbers, Pr = 1, 0.1, and then the relationship between critical parameters (Rac, mc) and
Ta is presented.

Firstly, the critical parameters at Pr = 1 are studied for η = 0.2, 0.6. Figure 6 shows
Rac and mc as functions of Ta for different Nρ . In these cases, the instability is dominated
by the columnar mode. By comparing the critical parameters of different η, we find that
the change trends of Rac and mc with Ta at two different η are quite similar. It is seen that
Rac and mc increase as Nρ increases. The Rac increases as Ta increases, implying that the
stronger Taylor–Proudman effect suppresses the occurrence of convection. Besides, the
Rac satisfies certain scaling laws with Ta, and the scaling exponents are approximately 0.6
for most Nρ . Similarly, mc also increases as Ta increases, and satisfies certain scaling laws
with Ta. However, some differences between the two different η can also be identified.
For η = 0.2, the density stratification has little effect on Rac, while for η = 0.6, the Rac
increases with increasing Nρ . For η = 0.6, the scaling exponents for Rac and mc vary little
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Figure 6. (a,b) The critical Rayleigh numbers Rac (a,b) and the critical wavenumbers mc (c,d) as functions of
Ta at Pr = 1.0 for different Nρ at (a,c) η = 0.2 and (b,d) η = 0.6.

with Nρ , which is consistent with the results of η = 0.4 (Liu et al. 2019). The scaling
exponent of Rac for Nρ = 0.01 decreases to 0.45 at η = 0.2. Furthermore, it is noted that
Rac and mc at η = 0.6 are much larger than those at η = 0.2.

Next, we study the critical parameters at Pr = 0.1 for η = 0.2 and 0.6. Figure 7 shows
Rac and mc as functions of Ta for different Nρ . For this small Pr, the dominant mode
is the columnar mode only for small density stratification (Nρ = 0.01). For large Nρ

(Nρ � 2.0), the instability is dominated by the quasi-geostrophic compressible mode.
However, for Nρ = 1, the inertial mode sometimes becomes the dominant mode. There
are two dominated modes for Nρ = 1.0, so the mc does not increase monotonically with
increasing Ta in figure 7(c). Besides, the scaling laws of critical Rac and Ta are failed when
Nρ = 1.0 as figure 7(a,b) show. Except this special case, Rac increases as Ta increases
and satisfies certain scaling laws with Ta for the same instability mode. Besides, it is
seen that the scaling exponents of the columnar mode and quasi-geostrophic compressible
mode are very close, even though the corresponding Rac are quite different. For the
quasi-geostrophic compressible mode, the density stratification parameter Nρ has little
effect on Rac. For η = 0.6, mc satisfies certain scaling laws with Ta for the same mode,
but these scaling laws have not been found for η = 0.2, which might be attributed to the
very small values of mc. Moreover, it is also seen that the critical parameters Rac and mc
at η = 0.6 are much larger than those at η = 0.2, similar to the results at Pr = 1.

Finally, as mentioned above, there is a considerable difference between the critical
parameters for η = 0.2, 0.6. Therefore, the influence of η on the critical parameters is
investigated in detail. We calculate the Rac and mc for different radius ratios (0.2 � η �
0.6) at fixed Ta and Pr. Figures 8 and figure 9 show the influence of η on the critical
parameters at four parameter combinations (Ta, Pr) = (108, 1.0), (108, 0.1), (1010, 1.0),
(1010, 0.1). At Pr = 1.0, as shown in figure 8(a,c), the Rac increases as η increases. In
this case, the base state loses stability by the columnar mode. We can also find that the

925 A40-13

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 T

si
ng

hu
a 

U
ni

ve
rs

ity
, o

n 
07

 S
ep

 2
02

1 
at

 0
1:

36
:3

1,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

 h
tt

ps
://

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

70
1

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2021.701


B. Wang, S. Liu, Z.-H. Wan and D. Sun

101

102

103

104

105

106

101

102

103

104

105

106

Ta0.45

Nρ = 0.01
Nρ = 1.00
Nρ = 2.00
Nρ = 3.00
Nρ = 4.00

Rac Ta0.50

107 108 109 1010 1011

107 108 109 1010 1011

5

10

Ta

107 108 109 1010 1011

107 108 109 1010 1011

Ta

20

40

60

Ta0.16

Ta0.13

mc

(b)(a)

(c) (d )

Figure 7. (a,b) The critical Rayleigh numbers Rac (a,b) and the critical wavenumbers mc (c,d) as functions of
Ta at Pr = 0.1 for different Nρ at (a,c) η = 0.2 and (b,d) η = 0.6.

Rac becomes larger at a larger Nρ . At Pr = 0.1, the quasi-geostrophic compressible mode
is usually the most unstable mode for large Nρ . As shown in figure 8(b,d), the change
trend of Rac with η is similar to that at Pr = 1.0, i.e. the Rac increases with η. However,
different from the columnar mode, the effect of Nρ on Rac becomes much smaller for
the quasi-geostrophic compressible mode. In figure 9(a,c), it is further found that the mc
increases with η for Pr = 1.0. The larger Nρ is, the larger mc is. In figure 9(b,d), mc also
increases with η for Pr = 0.1, but the differences in mc for different Nρ become much
smaller.

In short, we illustrate that η has a significant influence on Rac and mc, which increase
with η for both the columnar mode and the quasi-geostrophic compressible mode. The
increase of η always tends to stabilize the flow to some extent.

3.3. Analysis based on linearized perturbation equations
As previously mentioned, there are very similar characteristics between the columnar
mode and the quasi-geostrophic compressible mode, as illustrated in figure 2. However,
their critical Rayleigh numbers are different by several orders of magnitude, and the two
modes occur in different parameter spaces (see figure 4), implying that two modes are
driven by different physical mechanisms. To gain more physical insights into the two
instability modes, the balance of the linearized perturbation equations, as well as the
influence of η, are considered in this section. It is well known that, in a rapidly rotating
system, the physical quantity usually varies weakly with the axis of rotation due to the
strong Taylor–Proudman effect. For the sake of analysis, a cylindrical coordinate system
(R, φ, z) with the centre of the sphere as the origin is established, where R is the distance
to the axis of rotation, φ is the azimuthal angle and z is the axial location along the axis of
rotation.
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Figure 8. Critical Rayleigh numbers Rac as functions of η for different Nρ at (a) Ta = 108, Pr = 1.0;
(b) Ta = 108, Pr = 0.1; (c) Ta = 1010, Pr = 1.0; (d) Ta = 1010, Pr = 0.1.
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Figure 9. Critical wavenumbers mc as functions of η for different Nρ at (a) Ta = 108, Pr = 1.0;
(b) Ta = 108, Pr = 0.1; (c) Ta = 1010, Pr = 1.0; (d) Ta = 1010, Pr = 0.1.
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Here, we mainly concern with the statistics of each term in the linearized perturbation
equations. For convenience, we use a set of variables F1∼3 to represent the terms in the
continuity equation (2.8a)

F1 = ∂ρ′

∂t
, F2 = ∇ρ̄ · u′, F3 = ρ̄∇ · u′. (3.1a–c)

The terms in the radial component of the momentum equation (2.8b) are represented by
F4∼9

F4 = ρ̄
∂u′

∂t
· r̂, F5 =

√
PrTa
Ra

ρ̄
(
ẑ × u′) · r̂, F6 = ∇p′ · r̂

ε
,

F7 =
√

Pr
Ra

(
∇2u′

)
· r̂, F8 = ρ′

ε(1 − η)2r2 , F9 = 1
3

√
Pr
Ra

(∇(∇ · u′)) · r̂,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.2)

and the terms in the energy equation (2.8c) are represented by F10∼13

F10 = ρ̄
∂T ′

∂t
, F11 = ρ̄u′ · ∇T̄, F12 = (γ − 1)p̄∇ · u′, F13 = γ√

PrRa
∇2T ′.

(3.3a–d)

For the three dominant instability modes, we studied the relative magnitudes of all
variables Fi=1∼13 as functions of R. By taking the average of F2

i in the φ and z directions
and calculating the square root, we can get the radial profiles of the surface averaged value
〈Fi〉S

R

〈Fi〉S
R =

(∫ 2π

0

∫
z
F2

i R dz dφ

)1/2 (∫ 2π

0

∫
z

R dz dφ

)−1/2

. (3.4)

Then, 〈Fi〉S
R is further normalized by the maximum value of

〈FS
i
〉
R for all values of R in

the same equation

〈Fi〉R = 〈Fi〉S
R

max
{〈F1〉S

R , 〈F2〉S
R , 〈F3〉S

R
} , i = 1 ∼ 3; (3.5a)

〈Fi〉R = 〈Fi〉S
R

max
{〈F4〉S

R , 〈F5〉S
R , . . . 〈F9〉S

R
} , i = 4 ∼ 9; (3.5b)

〈Fi〉R = 〈Fi〉S
R

max
{〈F10〉S

R , . . . 〈F13〉S
R
} , i = 10 ∼ 13. (3.5c)

Figure 10 shows 〈F1∼3〉R in the perturbed continuity equation for the three instability
modes with η = 0.2 and 0.6. By comparing the relative magnitude of each term
for different modes, we find that the term 〈F1〉R plays a very important role in the
quasi-geostrophic compressible mode which is negligibly small for all positions in
the columnar mode and inertial mode. For the quasi-geostrophic compressible mode, the
time derivative term of disturbance density is as important as the other two terms. The
magnitude of 〈F1〉R is comparable to that of 〈F3〉R in the case with η = 0.2. Similarly,
with η = 0.6, its magnitude is in general comparable to that of the term 〈F2〉R. This
clearly implies that the classical anelastic model is unable to capture the quasi-geostrophic
compressible mode.
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R

(d )(a)

(b) (e)

(c) ( f )

〈F1〉R

〈F2〉R

〈F3〉R

Figure 10. The radial profiles of 〈Fi〉R in the continuity equation for different instability modes at Ta =
1010, m = 5 for η = 0.2 and η = 0.6: (a,d) Pr = 0.8, Nρ = 3.0, the columnar mode (CM); (b) Pr =
0.2, Nρ = 1.0; (e) Pr = 0.1, Nρ = 1.0, the inertial mode (IM); (c, f ) Pr = 0.1, Nρ = 3.0, the quasi-geostrophic
compressible mode (QCM). Panels (a–c) η = 0.2, (d– f ) η = 0.6. The value of Rac for each case:
(a) 1.300 × 106; (b) 1.308 × 105; (c) 1.397 × 102; (d) 3.243 × 107; (e) 1.451 × 106; ( f ) 5.023 × 102.

Figure 11 shows 〈F4∼9〉R corresponding to the terms in the perturbed radial momentum
equation for the three instability eigenmodes as functions of R at Ta = 1010. For all the
instability modes, the three leading terms are the Coriolis force term 〈F5〉R, pressure
gradient term 〈F6〉R and buoyancy term 〈F8〉R, while the other terms are very small.
In terms of amplitude, the buoyancy term 〈F8〉R is much smaller than the terms 〈F5〉R
and 〈F6〉R, although it seems to be a little bit more important in the quasi-geostrophic
compressible mode, as illustrated in figure 11(c). In general, the radial momentum equation
is mainly governed by the actions of the Coriolis force and pressure gradient for all modes
due to rapid rotations.

Figure 12 shows 〈F10∼13〉R corresponding to the terms in the perturbed energy equation
for three instability eigenmodes as functions of R at Ta = 1010. In the columnar mode
and inertial mode, the two dominant terms are 〈F11〉R and 〈F12〉R in terms of magnitude,
and the time-derivative term of disturbance temperature 〈F10〉R and the disturbance
temperature diffusion term 〈F13〉R are small enough to be ignored, as illustrated in
figure 12(a,b). However, in the quasi-geostrophic compressible mode, the 〈F13〉R plays
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(b) (e)
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〈F6〉R
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〈F7〉R

〈F9〉R

Figure 11. The 〈Fi〉R in the radial momentum equation for different instability eigenmodes as functions of the
distance to the axis of rotation R at Ta = 1010, m = 5: (a,d) Pr = 0.8, Nρ = 3.0, the columnar mode; (b) Pr =
0.2, Nρ = 1.0, (e) Pr = 0.1, Nρ = 1.0, the inertial mode; (c, f ) Pr = 0.1, Nρ = 3.0, the quasi-geostrophic
compressible mode. Panels (a–c) η = 0.2, (d– f ) η = 0.6. Value of Rac for each case: (a) 1.300 × 106;
(b) 1.308 × 105; (c) 1.397 × 102; (d) 3.243 × 107; (e) 1.451 × 106; ( f ) 5.023 × 102.

a significant role. As shown in figure 12(c, f ), the magnitude of 〈F13〉R is comparable to
that of 〈F12〉R at η = 0.2, while it is even close to the leading term 〈F11〉R at η = 0.6.

In summary, we find two important terms that should be responsible for the
occurrence of the quasi-geostrophic compressible mode, i.e. the time-derivative term
of disturbance density F1 in the perturbed continuity equation and the disturbance
temperature diffusion term F13 in the perturbed energy equation. Figure 13 shows the
spatial distributions of normalized F1 and F13 for different modes at η = 0.6 and
Ta = 1010. In the columnar mode and inertial mode, their magnitudes in the whole
domain are quite small. However, in the quasi-geostrophic compressible mode, they have
comparable magnitudes to the leading term of the perturbed equation and exhibit the
quasi-geostrophic features. Similar to the spatial distribution of disturbance in figure 2,
they are also mainly concentrated in the neighbourhood of the tangent cylinder of the inner
core.

Next, to quantify the influence of η on the instability modes to a certain degree, the
relative magnitude of each term Fi in the perturbed equations (2.8) for different modes
is studied. Here, we calculated the root mean square (rms) of each term Fi over the whole
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〈F10〉R
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Figure 12. The 〈Fi〉R in the energy equation for different instability eigenmodes as functions of the distance to
the axis of rotation R at Ta = 1010, m = 5: (a,d) Pr = 0.8, Nρ = 3.0, the columnar mode; (b) Pr = 0.2, Nρ =
1.0; (e) Pr = 0.1, Nρ = 1.0, the inertial mode; (c, f ) Pr = 0.1, Nρ = 3.0, the quasi-geostrophic compressible
mode. Panels (a–c) η = 0.2, (d– f ) η = 0.6. CM: columnar mode; IM: inertial mode; QCM: quasi-geostrophic
compressible mode. Value of Rac for each case: (a) 1.300 × 106; (b) 1.308 × 105; (c) 1.397 × 102; (d) 3.243 ×
107; (e) 1.451 × 106; ( f ) 5.023 × 102.

space V

〈Fi〉V
rms =

√
1
V

∫
V
F2

i dV. (3.6)

The relative magnitudes of 〈Fi〉rms are mainly concerned, so 〈Fi〉rms in the continuity and
energy equations are normalized as follows:

〈Fi〉rms = 〈Fi〉V
rms / 〈F2〉V

rms , i = 1 ∼ 3; (3.7a)

〈Fi〉rms = 〈Fi〉V
rms / 〈F11〉V

rms , i = 10 ∼ 13. (3.7b)

Figure 14 shows 〈Fi〉rms in the continuity and energy equations for Ta = 1010, m = 5
and different instability modes. For the columnar mode and inertial mode, the relative
magnitudes of terms 〈F1∼3〉rms and 〈F10∼13〉rms vary little with η. However, in the
quasi-geostrophic compressible mode, we find the relative magnitudes show a strong
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Figure 13. The distribution of ∂ρ′/∂t (F1) and (γ /
√

RaPr)∇2T ′ (F13) normalized by the maximum values of
∇ρ̄ · u′ and ρ̄u′ · ∇T̄ for the critical eigenmodes at Ta = 1010, η = 0.6, m = 5: (a,d) Pr = 0.8, Nρ = 3.0, the
columnar mode; (b,e) Pr = 0.1, Nρ = 1.0, the inertial mode; (c, f ) Pr = 0.1, Nρ = 3.0, the quasi-geostrophic
compressible mode.

radius ratio dependency. In the perturbed continuity equation, 〈F1〉rms is increased with η.
Similarly, 〈F13〉rms is also increased with η in the perturbed energy equation. This implies
that, in the system with a larger radius ratio, it may be harder to find the unstable
quasi-geostrophic compressible mode over a wide range of Ra since it requires higher
intensities of F1 and F13, as shown in the phase diagrams (see figure 4).

3.4. The budget of kinetic energy and flow instability mechanism
To better understand the physical mechanism of the instability mode, the analysis of kinetic
energy transport is usually performed (Wanschura, Kuhlmann & Rath 1996; Wang et al.
2014; Liu et al. 2018). Here, we particularly study the differences of the flow instability
mechanisms governing the columnar mode and quasi-geostrophic compressible mode. We
attempt to understand why the former mode is often observed, whereas the latter mode is
not.

For the present fully compressible equations, the total disturbance kinetic energy K over
the entire space is defined as follows:

K =
∫

V

1
2 ρ̄u′ · u′ dV. (3.8)

Multiplying the linear momentum equation (2.8) by u′ and integrating over the volume
V occupied by the fluid, then the compressible Reynolds–Orr equation is obtained. The
details of the derivations can be found in Appendix A. The resulting energy-budget
equation for K is

Kt =
∫

V
ρ̄

∂u′

∂t
· u′ dV = Wp + ω1 + ω2 + B, (3.9)
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Figure 14. The root-mean-square of terms 〈Fi〉rms in the continuity equation normalized by 〈F2〉V
rms and in

the perturbed energy equation normalized by 〈F11〉V
rms for Ta = 1010, m = 5. CM: columnar mode (Pr =

0.8, Nρ = 3.0); IM: inertial mode (Pr = 0.1, Nρ = 1.0); QCM: quasi-geostrophic compressible mode (Pr =
0.1, Nρ = 3.0).

and

Wp =
∫

V

p′∇ · u′

ε
dV, B = −

∫
V

ρ′r̂ · u′

ε(1 − η)2r2 dV,

ω1 = −
√

Pr
Ra

∫
V

|∇u′|2 dV, ω2 = −1
3

√
Pr
Ra

∫
V
(∇ · u′)2 dV,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.10)

where Kt is the time rate of change of kinetic energy, Wp is the work done by the action of
disturbance pressure, B denotes the work done by the action of buoyancy force and ω1 and
ω2 are generally related to the viscous dissipation caused by shear and compressibility,
respectively.

Figure 15 shows the influence of η on the different terms in the Reynolds–Orr equation
(3.9) for the columnar mode and quasi-geostrophic compressible mode. It is found that
the term B always does a net positive work for the two modes and thus it is an important
source of instability since it converts gravitational potential energy into kinetic energy.
With this in mind, we use the term B to normalize the contributions of other terms.
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Figure 15. Budget of the kinetic energy at different radius ratios for Ta = 1010 and m = 5 for two critical
eigenmodes: (a) the quasi-geostrophic compressible mode, Nρ = 3, Pr = 0.1, (b) the columnar mode, Nρ = 3,

Pr = 0.8. Here, Wp, ω1, ω2 and B are all normalized by the buoyancy contribution B.
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Figure 16. Distribution of p′∇ · u′/ε normalized by the maximum value of ρ′r̂ · u′/ε(1 − η)2r2 for Ta = 1010,
m = 5 at η = 0.2 (a,b) and η = 0.6 (c,d) for two different modes: (a,c) Pr = 0.8, Nρ = 3.0, the columnar mode
(CM); (b,d) Pr = 0.1, Nρ = 3.0, the quasi-geostrophic compressible mode (QCM).

For the term WP, it is found that the disturbance pressure does a net positive amount
of work in the columnar mode, while it does a net negative work in the quasi-geostrophic
compressible mode. This suggests that the influence of disturbance pressure on instability
is fundamentally different for the two modes. The work done by the disturbance pressure
is positive, which tends to destabilize the flow in the columnar mode. On the contrary,
the work done by the disturbance pressure is negative, which tends to stabilize the flow
in the quasi-geostrophic compressible mode. In other words, in the columnar mode,
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(b)(a)

(c) (d )

Figure 17. Distributions of p′ (a,b) and ∇ · u′ (c,d) at Ta = 1010, η = 0.6, m = 5: (a,c) Pr = 0.8, Nρ = 3.0,
the columnar mode (CM); (b,d) Pr = 0.1, Nρ = 3.0, the quasi-geostrophic compressible mode (QCM).

there are two sources of instability, i.e. the action of the buoyancy force and the work
done by disturbance pressure. However, in the quasi-geostrophic compressible mode, the
action of the buoyancy force is the only source of instability. We guess this point might
be an important reason why the columnar mode is more frequently observed in rotating
compressible flows. Moreover, with increasing η, the term Wp becomes more important in
the quasi-geostrophic compressible mode, while its influence is decreased in the columnar
mode. In terms of magnitude, the dissipation effect of the major dissipation term ω1
is decreased with increasing η in the two modes. However, the influence of the second
dissipation term ω2 seems to be quite small and insensitive to an increase of η.

Figure 16 shows the spatial distribution of p′∇ · u′/ε normalized by the maximum value
of ρ′r̂ · u′/ε(1 − η)2r2 at η = 0.2 and 0.6 for the columnar mode and quasi-geostrophic
compressible mode. It is clear that p′∇ · u′/ε is mainly distributed in the region of drifting
columnar rolls aligned with the axis of rotation in both modes, and thus it is more widely
distributed in the columnar mode. The change of radius ratio has no qualitative effect.
Figure 17 further shows the spatial distributions of p′ and ∇ · u′ at η = 0.6. For the two
modes, it is found the difference in phase leads to the difference in sign of the term Wp. In
the columnar mode, p′ and ∇ · u′ have the same phase in most areas, leading to a positive
Wp. However, in the quasi-geostrophic compressible mode, the phases of p′ and ∇ · u′ are
almost opposite in a large portion of the domain, hence the term Wp does a net negative
work, which tends to stabilize the flow.
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4. Summary and conclusions

This study systematically investigates the influence of η on the instability processes
of fully compressible convection in rapidly rotating spherical shells. In particular,
we reveal the inherent mechanical mechanisms and flow instability mechanisms of
various modes quantitatively, as well as the detailed influence of η, by detailed
analysis based on the linearized perturbation equations and the Reynolds–Orr
equation.

Firstly, by investigating the instability processes of the base state for a specified m and
different η, it is found that the instability processes have a certain similarity for different η.
The most significant finding is that the range of parameters (Nρ, Pr) where the base state
loses stability by the quasi-geostrophic compressible mode and keeps unstable is reduced
as η increases. In general, at large Nρ , the base state loses stability by the quasi-geostrophic
compressible mode and gets stable again and finally becomes unstable by the columnar
mode or the inertial mode, and the range of parameters for this kind of instability process
is enlarged as η increases.

Secondly, we find that the critical parameters are significantly influenced by η. As η

increases, the Rac and mc increase with η, which means the increase of η tends to enhance
the flow stability. For the same instability mode, the asymptotic scaling behaviours of Rac
and mc with Ta can be observed, and the scaling exponents of the columnar mode and the
quasi-geostrophic compressible mode are quite close for different η.

Finally, the linearized perturbation equations and the Reynolds–Orr equation are
employed to reveal the mechanical mechanisms and flow instability mechanisms. In the
quasi-geostrophic compressible mode, the time-derivative term of disturbance density in
the continuity equation and the diffusion term of disturbance temperature in the energy
equation are found to be very crucial, which can be ignored in the columnar mode
and inertial mode, suggesting that the anelastic approximation would fail to capture
the quasi-geostrophic compressible mode due to the elimination of the time-derivative
term of disturbance density. In addition, the contributions of these terms become more
significant as η increases. The disturbance momentum equation is primarily governed
by the Coriolis force and pressure gradient irrespective of η for all instability modes
for the parameters considered. Based on the Reynolds–Orr equation, we find that, in the
quasi-geostrophic compressible mode, the disturbance pressure does a net negative work
instead of a net positive amount of work in the columnar mode. This finding indicates that
in the quasi-geostrophic compressible mode, the disturbance pressure tends to stabilize
the flow while it tends to destabilize the flow in the columnar mode. As η increases, in the
columnar mode, the relative work performed by disturbance pressure decreases and in the
quasi-geostrophic compressible mode increases. This may explain why in a system with a
larger η, the unstable quasi-geostrophic compressible mode is more difficult to find over a
wide range of Ra. In short, in the quasi-geostrophic compressible mode, the action of the
buoyancy force is the only source of instability, while there are two sources of instability
in the columnar mode, i.e. the action of the buoyancy force and the work performed by
the disturbance pressure. This may also explain why the columnar mode can frequently be
found.
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11772323, 91952103 and 11621202, the Fundamental Research Funds for the Central Universities, and the USTC
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Appendix A

Here, we present the derivation of the transport equation of perturbed kinetic energy of
fluid. For the fully compressible convection, the kinetic energy of fluid K can be written
as

K = 1
2ρu′ · u′ = 1

2(ρ̄ + ρ′)u′ · u′ ≈ 1
2 ρ̄u′ · u′. (A1)

Here, we only care about the flow in the linear instability stage, so the higher-order term
is ignored. The material derivative of kinetic energy is

DK
Dt

= ∂K
∂t

+ u′ · ∇K ≈ ∂K
∂t

= ρ̄u′ · ∂u′

∂t
. (A2)

Then, multiplying the momentum equation by u′, we can get

ρ̄
∂u′

∂t
· u′ = −

√
PrTa
Ra

ρ̄(ẑ × u′) · u′ − ∇p′

ε
· u′ − ρ′r

ε(1 − η)2r3 · u′

+
√

Pr
Ra

[
∇2u′ + 1

3
∇ (∇ · u′)] · u′

= p′∇ · u′

ε
−
√

Pr
Ra

|∇u′|2 − 1
3

√
Pr
Ra

(∇ · u′)2 − ρ′r · u′

ε(1 − η)2r3

+ ∇ ·
[
−p′u′

ε
+
√

Pr
Ra

∇u′ · u′ + 1
3

√
Pr
Ra

u′(∇ · u′)

]
. (A3)

Furthermore, to integrate the equation (A3) over the entire sphere shell V , one can obtain

∫
V

ρ̄
∂u′

∂t
· u′ dV =

∫
V

∇ ·
[
−p′u′ +

√
Pr
Ra

∇u′ · u′ + 1
3

√
Pr
Ra

u′(∇ · u′)

]
dV +

∫
V

p′∇ · u′

ε
dV

−
∫

V

√
Pr
Ra

|∇u′|2 dV −
∫

V

1
3

√
Pr
Ra

(∇ · u′)2 dV −
∫

V

ρ′r̂ · u′

ε(1 − η)2r2 dV. (A4)

Then, we can get the fully compressible Reynolds–Orr equation

Kt =
∫

V
ρ̄

∂u′

∂t
· u′ dV = Wp + ω1 + ω2 + B, (A5)
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where

Wp =
∫

V

p′∇ · u′

ε
dV;

B = −
∫

V

ρ′r̂ · u′

ε(1 − η)2r2 dV;

ω1 = −
√

Pr
Ra

∫
V

|∇u′|2 dV;

ω2 = −1
3

√
Pr
Ra

∫
V
(∇ · u′)2 dV.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A6)
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