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Abstract

In this work, we show that for a certain class of threefolds in positive
characteristics, rational-chain-connectivity is equivalent to supersingular-
ity. The same result is known for K3 surfaces with elliptic fibrations. And
there are examples of threefolds that are both supersingular and rationally
chain connected.

1 Introduction

The goal of this article is to generalize the following result to a certain class of
threefolds in positive characteristics.

Theorem 1.1. ([9], Problem 12, p.11 and p.12) Let k be an algebraically closed
field in positive characteristic. If a K3 surface X over k admits an elliptic
fibration, then X is supersingular if and only if any two points on X can be
connected by a chain of finitely many rational curves.

To generalize Theorem 1.1 to threefolds, it is natural to consider the class
of threefolds with K3-fibrations. There are examples of Calabi-Yau threefolds
with smooth proper K3-fibrations over P1

k constructed by Stefan Schröer in [23],
which are both supersingular and unirational (Theorem 3.1 and Theorem 3.3).
In this article, we will show that supersingularity is equivalent to rational-chain-
connectivity for a broader class of threefolds that are generalizations of Schröer’s
examples.

1.1 Preliminaries

To state our results, we first fix some conventions. Let k be an algebraically
closed field of characteristic p > 0. By a Calabi-Yau n-fold X, we mean a
smooth, projective k-scheme of dimension n such that Hi(X,OX) = 0 for 0 <
i < n and that ωX ' OX . When n equals two, a Calabi-Yau 2-fold is a K3
surface. And when n is one, a Calabi-Yau 1-fold is just an elliptic curve.
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Definition 1.2. Let X be a smooth projective variety over a perfect field k
in characteristic p > 0. Let W = W (k) be its Witt vectors. Denote by K the
fraction field of W . We say that X is supersingular if the slope [0, 1) part of
Hi

rig(X/K) is vanishing for all i > 0. And we say that X is Hi-supersingular is

the slope [0, 1) part of Hi
rig(X/K) is vanishing.

Remark 1.3. Note that for a smooth and proper variety X over a perfect field
k with char k > 0, we have the isomorphism between rigid cohomology and
crystalline cohomology

Hi
rig(X/K) ' Hi

cris(X/W )⊗W K,

as F -isocrystals, for every i (see [4], 1.1, p.687). Moreover, the slopes of
Hi

rig(X/K) and Hi
cris(X/W ) are defined by applying the Dieudonné-Manin clas-

sification Theorem (see [3] p.94, or [1], 1.1.2, or [8]) to the F -isocrystals Hi
rig(X/K)

and Hi
cris(X/W )⊗W K respectively. Thus, both of these two cohomology theo-

ries give the same slopes. Since we consider only the slopes of cohomologies, in
the rest of this article, we will use rigid cohomology and crystalline cohomology
equivalently.

Remark 1.4. Let n be the dimension of X. Some authors use the definition
that X is supersingular if it is Hn-supersingular as in our definition (see [27],
Definition 13, p.8). And, for a Calabi-Yau n-fold X, Hn-supersingularity is
equivalent to saying that the formal group ΦnX(Gm) of X has infinite height, see
Corollary II.4.3 of [3] and p.98 of [11].

One of the reasons for the study of supersingularity is its connection with
unirationality for K3 surfaces conjectured by Artin, Shioda, etc.

Conjecture 1.5. (Artin, Rudakov, Shafarevich, Shioda) Let k be an alge-
braically closed field in characteristic p > 0. A K3 surface over k is super-
singular if and only if it is unirational.

This conjecture holds for Kummer surfaces when p ≥ 3 and for any K3
surfaces when p = 2. Note that any Kummer surface has an elliptic fibra-
tion. Motivated by Schröer’s examples, we make the following definition for
K3-fibrations.

Definition 1.6. Let X be a smooth and projective threefold over a field k.
We say that π : X → P1

k is a K3-fibration if π is smooth, proper and for every
s ∈ P1

k the geometric fiber X
κ(s)

is a K3 surface.

On the other hand, in Theorem 1.1, the condition equivalent to supersin-
gularity is the rational-chain-connectivity of the K3 surface. In general, let X
be a variety over a field k. Recall that a tree of rational curves C on X is a
k-morphism uC : C → X where C is a proper, geometrically connected curve of
arithmetic genus zero at worst nodal, defined over a field extension kC of k, and
every irreducible component of CkC is rational. We say that two distinct points
x1 and x2 on X, not necessarily closed, are connected by the tree of rational
curves C if they are in the image of CkC → Xk → X. Moreover, we say that C
is a rational curve if CkC is irreducible and rational.
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Definition 1.7. Let X be a variety over a field k. We say that X is rationally
chain connected (resp. rationally connected) if every pair of distinct general
points x1, x2 on X, including non-closed points, is connected by a tree of rational
curves (resp. by a rational curve).

Note that Definition 1.7 agrees with Definition (3.2) in [15], p.199, since we
include non-closed points in the definition. When k is an uncountable alge-
braically closed field, rational-chain-connectivity (resp. rational-connectivity)
is equivalent to that every pair of two distinct very general closed points can be
connected by a connected tree of rational curves (resp. by a rational curve), see
[15], Proposition (3.6), p.201.

Now, we can state our main theorem.

Theorem 1.8. Fix an algebraically closed field k with char k ≥ 3. Let X
be a smooth, projective threefold over k with a K3-fibration. Denote by k(t)
the function field of P1

k. Suppose that Xk(t) is a Kummer surface. Then, the
following are equivalent:

(i) the slopes of H2
rig(X/K) are all 1,

(ii) X is supersingular,

(iii) X is rationally chain connected.

In particular, if X is supersingular, then X is uniruled.

1.2 Outline of the article

In Section 2, we show that rationally chain connected K3 surfaces are unira-
tional if we assume Conjecture 1.5 (Corollary 2.6). In Section 3, we go over
the constructions of Calabi-Yau threefolds in Schröer’s article [23] and show
that they are all unirational (Theorem 3.1 and Theorem 3.3). Section 4 is the
technical part about crystalline cohomology, which is used to show that every
K3 fiber will be supersingular if we assume the total space is supersingular
(Proposition 4.2). Finally, in Section 5, we give the proof of Theorem 1.8.

Acknowledgement: The author is very grateful to his advisor Prof. Jason
Michael Starr for his consistent support during the proof. The author really
appreciates the help of Dingxin Zhang in the proof about crystalline cohomology.
The author also thanks the anonymous referee for the comments to improve the
first version of this article.

2 Rationally chain connected K3 surfaces

The definition of rational-chain-connectivity directly leads to following result.

Theorem 2.1. ([15], Theorem (3.13.1), p.206) Let X be a rationally chain
connected variety over an algebraically closed field k. Then, A0(X) ' Z.
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There are several notions of supersingularity for K3 surfaces in literatures
which are all equivalent.

Definition 2.2. Let X be a K3 surface over an algebraically closed field. We say
that X is Shioda-supersingular if its Picard rank is 22. And X is called Artin-
supersingular if the height of its Artin-Mazur formal Brauer group is infinity,
that is, h(B̂r(X)) =∞.

The following result characterizes Shioda-supersingularity and Artin-supersingularity
in terms of the slopes of crystalline cohomology.

Theorem 2.3. ([17], Theorem 2.3) Let X be a K3 surface over an algebraically
closed field k in odd characteristic. Denote by W = W (k) the ring of Witt
vectors of k. Then, the following are equivalent:

(i) X is Shioda-supersingular.

(ii) X is Artin-supersingular.

(iii) For all i, the F-crystal Hi
cris(X/W ) is of slope i/2.

(iv) The slope [0, 1) part of H2
cris(X/W ) is vanishing.

Therefore, we just say that a K3 surface X is supersingular if it satisfies one
of the conditions in Theorem 2.3.

Fix a perfect field k with characteristic p > 0. We cite the following result
about vanishing of slope [0, 1) part of rigid cohomology.

Theorem 2.4. ([10], Theorem 1.1, p.188) Let X be a smooth projective variety
over a perfect field k of characteristic p > 0. Let K(X) be the function field of
X. If the Chow group of 0-cycles A0(X ×k K(X)) is equal to Z, then the slope
[0, 1) part of Hi

rig(X/K) is vanishing for i > 0.

As a direct consequence, we have the following theorem.

Theorem 2.5. Let X be a rationally chain connected K3 surface over an alge-
braically closed field of characteristic p ≥ 3. Then, X is supersingular.

Proof. Since X is rationally chain connected, X ×k K(X) is rationally chain
connected. Thus, the result follows from Theorem 2.4 and Theorem 2.1 since
the slopes of rigid cohomology and crystalline cohomology agree on X.

We note that, when p = 2, a K3 surface is supersingular if and only if
it is unirational (combine the results in [22], [21], [2] and [18]). It is known
that unirational surfaces are supersingular ([25], Corollary 2, p.235). However,
Theorem 2.5 shows that a much weaker condition is sufficient to obtain the
supersingularity for K3 surfaces, i.e., rational-chain-connectivity. This leads us
to consider the equivalence of supersingularity and rational-chain-connectivity
for higher dimensional varieties, for example, threefolds. As we will see in
Section 3, this is true for the Calabi-Yau threefolds constructed in [23] since
they are unirational.

As a corollary of Theorem 2.5, we have the following result.
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Corollary 2.6. Let X be a K3 surface over an algebraically closed field k of
characteristic p ≥ 3. Assume that Conjecture 1.5 is true. Then, the following
are equivalent:

• X is supersingular;

• X is unirational;

• X is rationally connected;

• X is rationally chain connected.

In particular, these conditions are all equivalent if X is a Kummer surface.

Proof. Suppose that X is rationally chain connected. Then, by Theorem 2.5,
X is supersingular. Thus, X is unirational if Conjecture 1.5 holds for X, so
X is rationally connected. Hence X is rationally chain connected. Moreover,
Conjecture 1.5 holds when X is a Kummer surface and char k ≥ 3 ([26], Theorem
1.1, p.154), so the conditions are all equivalent for Kummer surfaces.

3 Schröer’s examples

In this section, we review the constructions of Schröer’s examples and show
that they are unirational. Note that by construction these examples exist only
in characteristics two and three.

Fix an algebraically closed field k of characteristic p > 0. Let A be a su-
perspecial Abelian surface, that is, A is a two-dimensional Abelian variety iso-
morphic to the product of two supersingular elliptic curves ([23], p.1583); here
supersingular elliptic curves are defined as in [24], p.145. Denote X ′ by the va-
riety A×k P1

k. As explained in [23], fix an integer n ≥ 1 and an exact sequence

0→ OP1
k
(−n)

r,s

−→ O⊕2P1
k
→ OP1

k
(n)→ 0 (†)

given by two homogeneous quadratic polynomials r, s ∈ H0(P1
k,OP1

k
(n)) without

common zeros. Let H ⊂ X ′ be the relative radical subgroup scheme of height
one whose p-Lie algebra is isomorphic to OP1

k
(−n) ⊂ O⊕2P1

k
([23], p.1583). Then,

the quotient X = X ′/H has ωX = OX if p = 3 and n = 1, or p = 2 and n = 2
([23], Corollary 3.2, p.1584). And the quotient X is an Abelian scheme over P1

k,
whose fibers Xt, t ∈ P1

k, are supersingular Abelian surfaces.

3.1 Characteristic three case

Now, take p = 3 and n = 1 in (†) as in [23], Section 4, p.1584. Construct Z → P1
k

as the quotient of X by the involution [−1]. Denote by f : X → Z the quotient
P1
k-morphism. For every t ∈ P1

k, the fiber Zt is a singular Kummer surface with
16 singular points that are rational double points of type A1. Let D ⊂ Z be the
schematic closure of the union of singular points. Then, the blowing up Y → Z
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of Z with center D gives a smooth Calabi-Yau threefold, and the geometric
fibers Yt, t ∈ P1

k, are supersingular Kummer K3 surfaces ([23], Proposition 4.1
and Proposition 4.2, p.1585).

Theorem 3.1. Keep the notations in [23], Section 4, p.1584. The Calabi-Yau
threefold Y constructed above is unirational.

Proof. Since X ′ → X is a homomorphism of group schemes, we have the com-
mutative diagram

X ′ //

f ′

��

X

f

��

Z ′ // Z

where Z ′ is the quotient of X ′ by [−1], and Z ′ → Z is surjective. Note that Z ′

is a constant family of singular Kummer surfaces. Blow up the singular locus
of Z ′ and Z to get Y ′ and Y . There is a domaint rational map from Y ′ to Y .
The smooth threefold Y ′ is a constant family of Kummer K3 surfaces. By [26],
Theorem 1.1, p.154, the Kummer surface associated to a supersingular Abelian
surface is unirational when char k > 2. Thus, there is a rational dominant map
from P2

k ×k P1
k to Y ′. Since the variety P2

k ×k P1
k is rational, Y ′ is unirational.

Therefore, Y is unirational.

Remark 3.2. By [23], Proposition 8.1, p.1590, the Artin-Mazur formal group
of the Calabi-Yau threefold constructed in [23], Section 4 and Section 7, is iso-

morphic to the formal additive group Ĝa, whose height is infinity. Therefore,
Theorem 3.1 gives examples of H3-supersingular Calabi-Yau threefolds (see Re-
mark 1.4) that are unirational when char k = 3. Moreover, by Theorem 2.4, Y
is supersingular as defined in Definition 1.2.

3.2 Characteristic two case

Let k be an algebraically closed field of characteristic 2. Let E be the supersingu-
lar elliptic curve given by the Weierstrass equation x3 = y2+y. Take a primitive
third root of unity ζ ∈ k. The automorphism ϕ : E → E via (x, y) 7→ (ζx, y)
gives an action of G = Z/3Z on E. The action has three fixed points, (0, 0),
(0, 1) and ∞. Consider the supersingular Abelian surface A = E ×E, endowed
with the action of G via φ = (ϕ,ϕ). The morphsim φ : A → A has 9 fixed
points, which correspondes to the singularities on A/G. Note that A/G is a
proper normal surface over k.

Let X ′ be A×k P1
k. Take p = 2 and n = 2 in (†). The quotient X = X ′/H

has ωX ' OX . The fiberwise action of G on X ′ → P1
k descends to a fiberwise

action on X → P1
k. Set Z = X/G and let Y → Z be the minimal resolution of

singularities. Then, Y is a Calabi-Yau threefold in characteristic two, and every
geometric fiber Yt of Y → P1

k has Picard number ρ(Yt) = 22.

Theorem 3.3. Keep the notations as above ([23], Section 7, p.1589). The
Calabi-Yau threefold Y constructed above is unirational.
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Proof. Let x be the origin of A. Since A is smooth, ÔA,x is isomorphic to

k[[u, v]] as k-algebras, where u, v is a regular system of parameters of ÔA,x.
Denote by m the maximal ideal of OA,x. As remarked in Proposition 5.1, [23],
p.1585, the action of φ on m/m2 is given by the multiplication by ζ. So φ maps
u to ζu and v to ζv in m/m2. Thus, OA,x/G is not Gorenstein. Then, the
corresponding singular point of x on A/G is not a rational double point since
rational double points are Gorenstein. By [12], Theorem 2.11, p.10, A/G is a
rational surface. Then, the same argument as in Theorem 3.1 shows that the
Calabi-Yau threefold Y is unirational.

4 K3 fibrations

Let f : X → Y be a smooth proper morphism of smooth schemes over a perfect
field of characteristic p > 0. Let K be the field of fractions of W (k). In [20]
Theorem (3.1), p.800, Ogus constructed F-isocrystals denoted by Rif∗OX/K on
Y that satisfies the following characterizations ([20], Remark (3.7.1), p.803):

(1). the formation of Rif∗OX/K is compatible with any base change Y ′ → Y ,

(2). the fiber of Rif∗OX/K over a closed point y of Y is

Hi
cris(Xy,OXy

/W (κ(y)))⊗Q.

However, from the original construction in [20], it is not obvious that there
exists a Leray spectral sequence

Ei,j2 = Hi
rig(Y,Rjf∗OX/K)⇒ Hi+j

rig (X). (†)

When Y is a smooth affine curve, k = k̄, and f : X → Y admits a semi-stable
compactification X → Y of proper, smooth k-schemes, [19] Remark 2.8, p.14,
proves the existence of such a spectral sequence by using A. Shiho’s theory of
log convergent cohomology.

In the rest of this section, let k be an algebraically closed field of charac-
teristic p > 0, K be the field of fractions of W (k). Let π : X → P1

k be a
smooth, projective morphism over k. Denote by E i the convergent F-isocrystals
Riπ∗OX/K on P1

k as discussed above. Then we have that

a) for any perfect-field-valued closed point t : Spec(F )→ P1
k, t∗E i = Hi

rig(Xt)
(rigid cohomology over the field W (F )[1/p]), cf. [20], Remark (3.7.1),

b) there exists a Leray spectral sequence, which is (†) above,

Ei,j2 = Hi
rig(P1

k, Ej)⇒ Hi+j
rig (X) (∗)

Note that our hypotheses, smooth and projective, are much stronger than semi-
stable as needed in [19] Remark 2.8.

Lemma 4.1. In the situation above, the convergent F-isocrystals E i are trivial.
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Proof. Since P1
k admits a lift P1

K , a convergent isocrystal E on P1
k is the same

as a (necessarily integrable) connection (Ean,∇) on the rigid analytic space
P1,an
K . With some translation between formal and rigid geometry, this assertion

is precisely Proposition 1.15 of [20].
Since P1,an

K is smooth and proper, the rigid analytic GAGA theorem (cf.
[16]) implies that Ean comes from an algebraic vector bundle E. If we can
show that E already has an algebraic connection, then choosing a connection
on E amounts to choosing an End(Ean)-valued 1-form on P1,an; the connection
is thereby necessarily algebraic by applying GAGA again.

Hence, one needs to show that a vector bundle E on P1
K admits an algebraic

connection, given that Ean admits a connection. This follows from the fact that
in both rigid and algebraic geometry, only trivial vector bundles on P1 allow
connections.

Finally, the algebraic connection (E,∇) can be defined on a field that is
finitely generated over Q since K is of characteristic zero, so we can embed
this field into C. Recall that every connection on P1

C is flat. Then, since P1
C is

simply connected, the flat connection (E,∇) must be trivial by Riemann-Hilbert
correspondence ([7] Theorem 2.17, p.12, and [14] Remark 4.9.2, p.63).

Proposition 4.2. Let X be a smooth and projective threefold over an alge-
braically closed field k in characteristic p > 0. Assume that X admits a K3-
fibration and the slopes of H2

rig(X) are all 1, then all the geometric fibers of π
are supersingular K3 surfaces.

Proof. By the K3 hypothesis, E1 = E3 = 0. Thus in the spectral sequence (∗),
E2,1

2 = E0,3
2 = E0,1

2 = E1,1
2 = 0. By Lemma 4.1, E2 is a constant crystal. Recall

that the rigid cohomology of A1 with respect to the constant isocrystal is trivial
([13] Remark 23.1.3, p.353). By Mayer-Vietoris sequence for rigid cohomology
([28], Theorem 7.1.2, p.963), it follows that

E1,2
2 = H1

rig(P1
k, E2) = 0.

By Property a) and the constancy of E2, all the k-valued fibers S of π have the
same rigid cohomology. Thus

E0,2
2 = H0

rig(P1
k, E2) = H2

rig(S).

It follows from the above vanishing that the spectral sequence (∗) degenerates
at E2. Thus H2

rig(X) maps surjectively onto H2
rig(S) for any fiber S of π. Since

all the slopes of H2
rig(X) are 1, it follows that any k-valued fiber S of π is a

supersingular K3 surface. The assertion for any geometric fiber then follows
from Grothendieck’s specialization theorem, spelled out in our needed form in
by Theorem 2.1 of [5].

5 Proof of the main theorem

We first show that if a family of varieties over P1 admits a section then the
rational-chain-connectivity of the generic fiber implies that the total space is
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also rationally chian connected.

Proposition 5.1. Fix an algebraically closed field k. Let π : X → P1
k be a flat,

proper morphism from an irreducible variety X. Denote by K the function field
of P1

k. Assume that XK is irreducible, rationally chain connected, and there is
a section of π. Then, X is rationally chain connected.

Proof. We can assume that k is an uncountable algebraically closed field, see [15]
(3.2.5), p.199. Since π is flat, it is equidimensional. So, from [15] (3.5.1), p.201,
there are countably many closed subvarieties Si ⊆ P1

k such that Xs is rationally
chain connected if and only if s ∈ ∪Si. By our hypothesis, the generic point of
P1
k is in Si. However, the only closed subvariety of P1

k containing the generic
point is the whole P1

k, hence Xs is rationally chain connected for each s ∈ P1
k.

Since Xs is proper, any two closed points can be connected by a chain of rational
curves, see [6], Remark 4.22.(2), p.100. Then any two closed points of X can
be connected by the section of π and chains of rational curves on the fibers.
Therefore, X is rationally chain connected by [15] (3.6.1), p.201.

Now we give the proof of Theorem 1.8.

Proof. (iii)⇒ (ii). If X is rationally chain connected, then the slopes of H2
cris(X)

are all 1 by Theorem 2.1 and Theorem 2.4.
(ii) ⇒ (i) is trivial.
(i) ⇒ (iii). Suppose that the slopes of H2

cris(X) are all 1. Let π : X → P1
k be

the K3-fibration. By Proposition 4.2, all the geometric fibers of π are supersin-
gular K3 surfaces. In particular, X

k(t)
is a supersingular Kummer surface. By

[26] Theorem 1.1 on p.154, X
k(t)

is unirational, so rationally connected. Since

the Kummer surface Xk(t) is the minimal resolution of a quotient of an Abelian
surface over k(t) under the involution, Xk(t) has a k(t)-point, which gives a
section of π. Therefore, by Proposition 5.1, the total space X is rationally chain
connected.

Finally, by [15], (3.3.4), p.200, X is uniruled.

Remark 5.2. Theorem 1.8 also applies to the following situation. Let k be
an algebraically closed field with char k ≥ 3. Let X be a smooth, projective
threefold over k with a K3-fibration. Denote by k(t) the function field of P1

k.
Assume that X → P1

k has a section and Conjecture 1.5 holds. Then, X is
rationally chain connected if and only if the slopes of H2

cris(X) are all 1 if and
only if it is supersingular.
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(1998), p. 683-715.

[5] Richard Crew, Specialization of crystalline cohomology . Duke Math. J.,
53(3), 1986, 749–757.

[6] Olivier Debarre, Higher Dimensional Algebraic Geometry, Universitext,
Springer; 2001 edition (June 26, 2001).
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