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Abstract

We introduce the notion of pseudo-Néron model and give new examples
of varieties admitting pseudo-Néron models other than Abelian varieties.
As an application of pseudo-Néron models, given a scheme admitting a
finite morphism to an Abelian scheme over a positive-dimensional base,
we prove that for a very general genus-0, degree-d curve in the base with
d sufficiently large, every section of the scheme over the curve is contained
in a unique section over the entire base.
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1 Introduction

The main results of this article are Theorem 1.3 and Theorem 1.11 in subsec-
tion 1.1. We compare our results with other theorems in literatures in subsec-
tion 1.2. The geometric idea to prove Theorem 1.3 is given in subsection 1.3.

1.1 Main results

The starting point of this work is a theorem in [7], where Tom Graber and
Jason Michael Starr prove the theorem of restriction of sections for families
of Abelian varieties (see Theorem 1.2). To state their theorems, we cite the
following definition from [7].

Definition 1.1 ([7], p.312). Let k be an algebraically closed field. Fix a gener-
ically finite, generically unramified morphism u0 : S → Pn

k . We define

• an u0-line is a curve in S of the form S ×Pn
k
L for a line L ⊂ Pn

k ;

• an u0-conic is a curve in S of the form S ×Pn
k
C for a plane conic C ⊂ Pn

k ;

• an u0-line-pair is a curve in S of the form S ×Pn
k
L, where L = L1 ∪ L2

for a pair of incident lines in Pn
k ;

• an u0-smooth-curve is an irreducible smooth curve in S of the form S×Pn
k

C0 for a smooth curve C0 ⊂ Pn
k ;

• an u0-curve-pair of degree-(d + 2) is a connected curve in S of the form
S×Pn

k
C, where C = C0∪C1 is a pair of curves in Pn

k intersecting transver-
sally at a single closed point such that C0 is a genus zero, smooth curve
of degree d, and C1 is a smooth conic;

• an u0-planar surface is a surface in S of the form S ×Pn
k
Σ for a 2-plane

Σ ⊂ Pn
k .

Note that, by Bertini’s theorem, for a sufficiently general line, conic, and
plane, the corresponding u0-line, u0-conic, and u0-planar surface will be smooth.
By abuse of notations, we will just say line, conic, line-pair, curve-pair, planar
surface, and smooth curve in S instead of u0-line, u0-conic, u0-line-pair, u0-
curve-pair, u0-planar surface, and u0-smooth-curve.

Let k be an uncountable algebraically closed field. We say a subset of a
scheme is general, resp. very general, if the subset contains an open dense
subset, resp. the intersection of a countable collection of open dense subsets.
We say that a property of points in a scheme holds at a general point, resp. at
a very general point, if the set where the property holds is general, resp. very
general.

Now, we state the main theorem in [7] as following.
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Theorem 1.2 ([7], Theorem 1.3, p.312). Let k be an uncountable algebraically
closed field. Let S be an integral, normal, quasi-projective k-scheme of dimen-
sion b ≥ 2. Let A be an Abelian scheme over S. For a very general line-pair C
in S, the restriction map of sections

Sections(A/S) → Sections(AC/C)

is a bijection. The theorem also holds with C a very general planar surface in
S. If char k = 0, this also holds with C a very general conic in S.

In this article, we prove that there exists a broader class of varieties for
which Theorem 1.2 holds for higher order curve-pairs and smooth curves as in
the following theorem.

Theorem 1.3. Let k be an uncountable algebraically closed field of character-
istic zero. Let S be an integral, normal, quasi-projective k-scheme of dimension
b ≥ 2. Let X be a smooth S-scheme admitting a finite morphism f : X → A
to an Abelian scheme A over S. Let e be the fiber dimension of Iso(A) where
Iso(A) is the isotrivial factor of A (see Definition-Lemma 3.15). Let d ≥ 0 be
an even integer.

Then, for d > 2e − 2, every section of XC over a very general genus-0 and
degree-(d+2) curve-pair or a very general genus-0, degree-(d+2) smooth curve
C is the restriction of a unique global section of X over S.

Remark 1.4. LetX → S be a finite type morphism of locally Noetherian schemes
where S is integral. Denote by K the function field of S. Then a rational point
of the generic fiber XK is the same as a rational section of X → S. When
X → S is an Abelian scheme, every rational section is a section on the whole S,
which also holds when X admits a finite morphism to an Abelian scheme over
S. Thus, the Theorems above claim that we can detect rational points of XK

over the function field K by restricting X → S to a very general curve in S.

In [7], the authors first prove the theorem of restriction of sections for line-
pairs. To prove that the result also holds for smooth conics, Néron model is
applied to deform line-pairs to smooth conics. We also need this technique in
our Theorem 1.3, so we give the definition of Néron models as following.

By a Dedekind scheme, we always mean an irreducible, Noetherian and
normal scheme of dimension one. Let S be a Dedekind scheme with function
field K. Let XK be a smooth and separated K-scheme of finite type. We say
that X is an S-model of XK if X is an S-scheme with generic fiber isomorphic
to XK . A Néron model of XK is an S-model satisfying a universal property
of extending morphisms. This extends the smooth variety XK to a family of
smooth varieties over S. The precise definition is the following.

Definition 1.5 ([2], Def.1.2/1, p.12). Let XK be a smooth and separated K-
scheme of finite type. A Néron model of XK is an S-model X which is smooth,
separated, and of finite type, and which satisfies the following universal property,
called the Néron mapping property :

For each smooth S-scheme Y and each K-morphism uK : YK → XK there
is a unique S-morphism u : Y → X extending uK .
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From the uniqueness of the morphism extension, it is easy to see that a
Néron model is unique as soon as it exists. If XK is an Abelian variety over K,
then the existence of Néron model is proved in the survey book [2]. However,
the Néron model of an Abelian variety is not necessarily an Abelian scheme over
the Dedekind scheme S (see [2], Theorem 1.4/3, p.19).

Theorem 1.6 ([2], Theorem 1.4/3, p.19). Let XK be an Abelian variety over
K. Then XK admits a Néron model X over S.

The main application of Néron models in the proof of Theorem 1.2 is Lemma
4.13 in [7], p.323. However, going over the proof, it is easy to see that only the
existence of extensions of morphisms is needed, and this is also the case for many
other applications of Néron models. This leads us to weaken the definition of
Néron mapping property, and consider a weak version of Néron model.

Definition 1.7. Let X be a flat scheme of finite type over S. We say X has
the weak extension property if for every smooth morphism Z → S and every
K-morphism uK : ZK → XK , there exists an S-morphism u : Z → X extending
uK .

Definition 1.8. Let XK be a smooth, finite type K-scheme. Suppose that X
is a flat and finite type scheme over S with generic fiber XK . We say that X
is a pseudo-Néron model of its generic fiber if X satisfies the weak extension
property.

Remark 1.9. In Definition 1.7, the extension u of uK is not necessarily unique;
however, if X is separated, then the extension is unique. In Definition 1.8, we
do not require that X is normal or regular since after an étale base change
T → S, XT is not necessarily normal or regular. And, we stress that, unlike
Néron models, pseudo-Néron model is usually not unique since it can be not
smooth over S.

By [2] Proposition 1.2/8, we know that every Abelian scheme over S satis-
fies the weak extension property. Moreover, from Theorem 1.6, every Abelian
variety has a Néron model, and hence a pseudo-Néron model.

If a smooth variety XK admits a finite morphism to an Abelian variety AK ,
then XK admits a pseudo-Néron model as we will prove in Theorem 2.5. Besides
the application of pseudo-Néron model to prove Theorem 1.3, it is natural to
ask:

Question 1.10. Is there any other class of varieties, besides Abelian schemes,
Abelian varieties and finite covers of Abelian varieties, satisfying the weak ex-
tension property or admitting pseudo-Néron models?

In the first part of this article (Section 2), we give a positive answer to
this question. It turns out that the existence of pseudo-Néron models is closely
related to the non-existence of rational curves on the variety (Corollary 2.8).
Our new example of pseudo-Néron models is the following, which will be proved
as Corollary 2.16.
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Theorem 1.11 (New Examples). Let k be an uncountable algebraically closed
field. Let S be a Dedekind scheme of finite type over k with function field K
(e.g., S is a smooth curve over k). Let d be an integer prime to char k. Suppose
that H ⊂ Pn

k is a very general smooth hypersurface of degree d ≥ 2n−1. Let XK

be a smooth K-variety admitting a finite morphism to H ×Spec k SpecK ⊂ Pn
K .

Then XK has a pseudo-Néron model over S. In particular, every smooth K-
subvariety of H ×Spec k SpecK has a pseudo-Néron model.

In the second part of this article (Section 3), we will use pseudo-Néron models
to restate the Lemma 4.13 in [7] in a more general set up and prove the main
result, Theorem 1.3.

1.2 Review of theorems about sections

Now, we give a brief review of theorems about sections in literatures and com-
pare our main result, Theorem 1.3, with these results.

A complex variety V is said to be rationally connected if two general points
of V can be joined by a rational curve ([14], Definition 3.2, p.199). In [8], it is
proved that an one-parameter family of rationally connected complex varieties
has a section.

Theorem 1.12 ([8], Theorem 1.1, p.57). Let f : X → B be a proper morphism
of complex varieties with B a smooth curve. If the general fiber of f is rationally
connected, then f has a section.

Definition 1.13 ([9], Def.1.2, p.672). Let π : X → B be an arbitrary morphism
of complex varieties. By a pseudosection of π we will mean a subvariety Z ⊂ X
such that the restriction π|Z : Z → B is dominant with rationally connected
general fiber.

In [9], the authors prove the converse of Theorem 1.12 as following.

Theorem 1.14 ([9], Theorem 1.3, p.672, [7], Theorem 1.1, p.311). Let π :
X → B be a proper morphism of complex varieties. If π admits a section when
restricted to a very general sufficiently positive curve in B, then there exists a
pseudosection of π.

However, the theorem asserts only the existence of a pseudosection of π; it
does not claim any direct connection between the sections of XC → C over very
general curves C and the pseudosection. So the following question is asked in
[7] and [9].

Question 1.15 ([7], Conjecture 1.2, p.311, [9], Section 7.1, p.689). If π : X → B
is a morphism of complex varieties, then for a very general, sufficiently positive
curve C ⊂ B, does every section of the restricted family XC = π−1(C) → C
take values in a pseudosection?

On the other hand, in Theorem 1.14, the genus and degree of the very general
curve depend on the relative dimension of π (see the statement of theorem in
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[9], Theorem 1.3, p.672). The genus and degree can grow enormously fast with
respect to the relative dimension of π : X → B. So it is natural to ask the
following question.

Question 1.16 ([9], Section 7.3, p.689). Can we eliminate the dependence of
the family of curves on the relative dimension of π in Theorem 1.14?

The answer of this question is “no”. The detailed proof can be found in
[22]. A sketch of the argument could also be found in [9], Section 7.3. Then, a
further question is the following.

Question 1.17. If the dependence in Theorem 1.14 can not be eliminated, how
fast do the genus and degree of the family of curves grow?

One extreme special case of Question 1.15 and Question 1.16 is that X is an
Abelian scheme over B. In this case, since the fibers contain no rational curves,
every pseudosection is a rational section, and every rational section is everywhere
defined. Then, Theorem 1.2 gives positive answers to both Question 1.15 and
Question 1.16 when X is an Abelian scheme over B.

When X is a smooth scheme admitting a finite morphism to an Abelian
scheme A over B, Theorem 1.3 gives a positive answer to Question 1.15 and
Question 1.17. The genus of curves is zero as in Theorem 1.2. And, the degree
of the curves grows at a linear rate with respect to the relative dimension of the
isotrivial factor of the Abelian scheme.

1.3 Idea of the proof

The idea to prove Theorem 1.3 is quite geometric. For a very general point
b ∈ S and a very general genus-0, degree-d, smooth curve m containing b, there
will be a subset Bd,b in Ab (we actually take Bd,b in Iso(A)b, see subsection 3.6)
such that Theorem 1.3 does not hold for sections over m that map b to points in
Bd,b. We call this subset the bad set, see subsection 3.3.3 and subsection 3.6 for
precise definitions. However, if we attach a very general conic ℓ to m at a very
general point on m, the bad set Bd+2,b for the curve-pair m ∪ ℓ has dimension
strictly less than the dimension of Bd,b. Therefore, if we increase the degree of
the curve by attaching more conic curves, the bad set will be empty, and so
Theorem 1.3 holds for every section over the very general curve.

Acknowledgement: The author is very grateful to his PhD thesis advisor
Professor Jason Michael Starr for introducing this problem, his consistent sup-
port during the proof and his writing for the Appendix A. The author especially
wants to thank Professors Aise Johan de Jong and Tom Graber for helpful com-
ments in earlier drafts of this article. The author also thanks the anonymous
referees for many helpful suggestions to improve this paper.
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2 Pseudo-Néron Model

2.1 Basic properties

In this section, we will assume that S is a Nagata Dedekind scheme and K is
its function field. Recall that every scheme of finite type over a field is Nagata.
By a variety, we mean a scheme that is finite type over a field.

Lemma 2.1. Suppose that S = SpecR is an affine Nagata Dedekind scheme.
Let YK be a smooth, finite type K-scheme and Y be a normal pseudo-Néron
model over S. Let XK be a smooth K-scheme with a finite K-morphism f :
XK → YK . Then there exists a flat normal S-scheme X admitting a finite
morphism g : X → Y which extends f .

Proof. It suffices to prove the case when f is surjective and Y = SpecA is
affine. Denote by SpecAK the generic fiber YK where AK = A ⊗R K, and
SpecBK = f−1(SpecAK). We claim that there exists a finite A-algebra C such
that BK = C ⊗R K. The field Frac(BK) is a finite field extension of Frac(AK)
since BK is finite over AK . Let B′ be the integral closure of A in Frac(BK). We
have the ring A is Nagata ([16], Prop.8.2.29(b), p.340, and Def.8.2.30, p.341),
and hence B′ is finite over A ([16], Def.8.2.27, p.340). Now, take C = BK ∩B′.
Then since A is Noetherian we have C is finite over A, and by construction C
is the integral closure of A in BK . It is easy to check that BK = C ⊗R K.

Lemma 2.2. Let Y be a separated, flat S-scheme of finite type satisfying the
weak extension property. Suppose that X is an integral S-scheme with a finite
S-morphism f : X → Y . Then X satisfies the weak extension property.

Remark 2.3. The Dedekind scheme S does not have to be Nagata in this lemma.

Proof. We can assume that S, X and Y are affine. Let Z be an irreducible
smooth S-scheme with generic fiber ZK and a K-morphism uK : ZK → XK .
Since Y satisfies the weak extension property, fK◦uK extends to an S-morphism
g : Z → Y . Denote by ζ one of the generic points of codimension one irreducible
subsets of Z. Then, since Z is normal, OZ,ζ is a discrete valuation ring. And
we have the following commutative diagram

SpecK(Z) !!

""

X

f

""

SpecOZ,ζ
!!

uζ

##✉
✉

✉
✉

✉
Y

Moreover, by the properness of the morphism f , there exists a unique morphism
uζ : SpecOZ,ζ → X making the diagram commute. Since Z is locally of finite
type over S, the morphism uζ can be extended to a neighborhood V of ζ in
Z. We denote this morphism by uV : V → X. Checking every open affine
SpecC in V , since Z is an integral scheme, we have that the generic fiber of the
morphism from SpecC to X is the same as the restriction of uK . Moreover,
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suppose that there are two codimension one points ζ1 and ζ2, and they are giving
two extensions V1 → X and V2 → X respectively. Since f is separated, it is
easy to see that these two morphisms agree on every open affine in the overlap
V1 ∩ V2 because they have the same generic fiber. Therefore, the morphism uK

can be extended to a rational map defined over every condimension one point
on Z. Hence, by [2] Lemma 4.4/2, since X is affine, this rational map is actually
defined everywhere.

Remark 2.4. Let C denote the category of normal S-schemes with finite mor-
phisms. Then the lemma above asserts that normal S-schemes with the weak
extension property form a fully faithful subcategory of C.

Theorem 2.5. Let S be a Nagata Dedekind scheme with generic point SpecK.
Let XK be a smooth scheme admitting a finite K-morphism to a smooth, sepa-
rated, finite type K-scheme YK which has a normal pseudo-Néron model Y over
S. Then XK has a normal pseudo-Néron model X over S.

Proof. Take an affine cover of S. By Lemma 2.1, we can construct models of
XK over these affine bases. We can glue these models to be an S-model X of
XK over the whole S because the process of taking integral closure is unique
up to a unique isomorphism and compatible with localization. Then, since X
admits a finite S-morphism to Y , Lemma 2.2 shows that X satisfies the weak
extension property.

This theorem gives us a strategy. Suppose that S is a Nagata Dedekind
scheme. Then every time we have a class of smooth varieties admitting normal
pseudo-Néron models, by considering smooth varieties with finite morphisms to
the varieties in this class, we will get a new class of varieties admitting nor-
mal pseudo-Néron models. As a first result, we know that all smooth varieties
admitting finite morphisms to Abelian varieties have normal pseudo-Néron mod-
els. In particular, every smooth subvariety of an Abelian variety has a normal
pseudo-Néron model.

2.2 Application of rational curves

In [15], Qing Liu and Jilong Tong prove theorems about Néron models of smooth
proper curves of positive genus, see [15], Theorem 1.1, p.7019, for details. In our
situation, their result ([15], Prop.4.13, p.7031) in the higher dimensional case
can be used to construct new examples of varieties admitting pseudo-Néron
models. We start with the basic notion of rational curves as following.

Definition 2.6 ([15], p.7031). Let V be a variety over an algebraically closed
field k. We say that V contains a rational curve if there is a locally closed
subscheme of V which is isomorphic to an open dense subscheme of P1

k.

If V is proper over k, then every morphism from an open dense subset of
P1
k can be extended to the whole P1

k. Moreover, by Lüroth’s theorem, our
definition is the same as the existence of a nonconstant morphism from P1

k to V
([14], Definition 2.6, p.105).
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Proposition 2.7 ([15], Prop.4.13, p.7031). Let S be a Dedekind scheme with
function field K. Let XK be a smooth proper variety over K. Suppose XK has
a proper regular S-model X such that no geometric fiber Xs, s ∈ S, contains a
rational curve. Then the smooth locus Xsm of X is the Néron model of XK .

Note that the regularity of X in the proposition above is only used to apply
[15] Cor.3.2. Thus, in the case of pseudo-Néron models, the same proof gives
the following corollary.

Corollary 2.8. Let S be a Dedekind scheme with function field K. Let XK be
a smooth proper variety over K. Suppose XK has a proper and flat S-model
X such that no geometric fiber Xs, s ∈ S, contains a rational curve. Then X
satisfies the weak extension property, i.e., X is a pseudo-Néron model of XK .

The following lemma is well-known.

Lemma 2.9. Let k be an algebraically closed field. Let f : X → Y be an étale
surjective k-morphism of proper k-varieties. If X does not contain any rational
curve, then Y does not contain any rational curve.

Lemma 2.9 gives an immediate application of Corollary 2.8 as following.

Corollary 2.10. Let X be a proper pseudo-Néron S-model of XK such that
no geometric fiber contains rational curves, as in Corollary 2.8. Suppose that
Y is a proper S-scheme with smooth generic fiber YK and there exists an étale
surjective S-morphism f : X → Y . Then Y is a pseudo-Néron model of YK .

There are many varieties which do not contain any rational curve. One of
the typical examples is very general hypersurfaces of large degrees. We cite the
following result.

Theorem 2.11 ([20], Theorem 1.2). Let k be an uncountable algebraically closed
field. For d ≥ 2n−1, a very general hypersurface X ⊂ Pn

k of degree d contains no
rational curves, and moreover, the locus of hypersurfaces that contain rational
curves will have codimension at least d− 2n+ 2.

We will apply the following lemma to prove Theorem 2.14.

Lemma 2.12. Let R be a Nagata DVR with fraction field K and residue field k.
Suppose that X is a proper scheme over R with nonempty fibers. If Xk contains
no rational curves, then XK also contains no rational curves.

Definition 2.13. Let R be a DVR with fraction field K and E = R× ∪ {0}.
Let H be a hypersurface in Pn

K . We say that (H, f) is a unitary hypersurface if
the defining equation f of H has coefficients in E.

Theorem 2.14. Let R be a Nagata DVR with fraction field K. Suppose that
the residue field k is uncountable and algebraically closed, and d is an integer
prime to char k. Then, there exist unitary hypersurfaces of degree d ≥ 2n− 1 in
Pn
K admitting Néron models.
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Proof. Suppose that XK = V+(f)K ⊂ Pn
K is a unitary hypersurface defined by

an irreducible homogeneous polynomial f of degree d in n+ 1 variables. Since
all the nonzero coefficients of f are in the group of units of K, there is no term
in f vanishing in the residue field of R, so the specialization Xk = V+(f)k is a
hypersurface of degree d in Pn

k . Conversely, every hypersurface of degree d in
Pn
k arises as a specialization of some unitary hypersurface of degree d in Pn

K .

Set N =
!
n+d
d

"
−1. Let M be the space of unitary hypersurfaces in Pn

K . The
argument above gives a surjective map of parameter spaces F : M → PN

k by
sending (XK , f) to its specialization Xk. Let U be an intersection of countably
many open dense subsets of PN

k such that every member in U is smooth without
rational curves. Take XK ∈ F−1(U) a K-point. By Lemma 2.12, there is no
rational curve on XK . Let X = V+(f) ⊂ Pn

R be the R-model of XK .
Since f is irreducible, X is an integral hypersurface. Thus, X is flat over

SpecR and every nonempty fiber is irreducible of dimension n−1([16], Cor.4.3.10,
p.137). By [10] Théorème (12.2.4) (in [10], tome 28, p.183), also XK is smooth
over SpecK sinceXk is smooth. Consequently, every fiber ofX is smooth andX
is flat over R, then X is a smooth R-scheme ([2], Prop.2.4/8, p.53). Therefore,
by Lemma 2.12 and Proposition 2.7, X is the Néron model of XK .

This theorem gives a direct corollary in the geometric setting as following.

Corollary 2.15. Let k be an uncountable algebraically closed field. Let S be a
Dedekind scheme of finite type over k with function field K (for example, S is a
smooth curve over k). Let d be an integer prime to char k. Then, a very general
smooth hypersurface of degree d ≥ 2n − 1 defined over k in Pn

K has a Néron
model. In particular, the Néron model of such a hypersurface is the constant
family over S.

Note that we say a K-scheme X is defined over k if there exists a k-scheme
Y such that X is isomorphic to Y ×Spec kSpecK (see [14], Definition 1.15, p.19).
Combining Theorem 2.5 and Corollary 2.15, we get the following corollary.

Corollary 2.16. Keep the notations of Corollary 2.15. Let XK be a smooth
K-variety admitting a finite morphism to a very general smooth hypersurface
of degree d ≥ 2n − 1 defined over k in Pn

K . Then XK has a normal pseudo-
Néron model over S. In particular, every smooth subvariety of a very general
hypersurface of degree d ≥ 2n− 1 in Pn

K , where the hypersurface is defined over
k, has a normal pseudo-Néron model.

From this Corollary, we see that there are many smooth varieties admitting
normal pseudo-Néron models over a smooth curve defined over an uncountable
algebraically closed field. In the situation of Corollary 2.16, we cannot control
the regularity of other fibers except XK . It is a normal model of XK , but in
general not a Néron model in the sense of Definition 1.5. Moreover, the variety
XK is not necessarily defined over k, unlike the constant case in Corollary 2.15.
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2.3 Base change properties

In this section, we collect some base change properties of pseudo-Néron models;
the proofs are straightforward and left to the readers. The next lemma shows
that pseudo-Néron models commute with étale extension of the base scheme,
which is the analogue of [2] Prop.1.2/2 (c) for Néron models.

Lemma 2.17. Let S be a Dedekind scheme with function field K and XK be
a smooth K-variety with pseudo-Néron model X over S. Suppose that S′ is
another Dedekind scheme with S′ → S étale and the function field of S′ is K ′.
Let XS′ = X ×S S′ and XK′ = XK ×SpecK SpecK ′ be its generic fiber. Then
XS′ is a pseudo-Néron model of XK′ .

The following lemma is an analogue of [2] Prop.1.2/4. However, since a
pseudo-Néron model is not unique, we can not have the converse direction as in
[2] Prop.1.2/4.

Lemma 2.18. Let S be a Dedekind scheme with function field K, X finite type
over S and it is a pseudo-Néron model of its generic fiber. Then, for each closed
point s ∈ S, the OS,s-scheme Xs = X ×S SpecOS,s is a pseudo-Néron model of
its generic fiber.

Proof. Use limit arguments ([2], Lemma 1.2/5) and Lemma 2.17.

Definition 2.19. Let S be a Dedekind scheme and let X be an S-scheme sat-
isfying the weak extension property. We say that X satisfies the weak extension
property universally if for any S′ a Dedekind scheme and for any finite type
morphism S′ → S, X ×S S′ → S′ also satisfies the weak extension property.

Definition 2.20. Let S be a Dedekind scheme with function field K. Let XK

be a smooth, finite type K-scheme, and let X be a pseudo-Néron model of XK .
We say that X is a universal pseudo-Néron model of XK if X satisfies the weak
extension property universally.

Lemma 2.21. Keep the notations and hypotheses as in Corollary 2.8. Then,
X is a universal pseudo-Néron model of XK .

Lemma 2.22. Let S be a Nagata Dedekind scheme with function field K. Let
XK be a smooth and separated scheme of finite type over SpecK. If XK has
a proper S-model satisfying the weak extension property universally, then XK

contains no rational curve.

Proof. We can assume that S = SpecR for some discrete valuation ring R. If
XK contains a rational curve, limit argument shows that there exists a discrete
valuation ring T in K dominating R with fraction field L and residue field l, and
a finite morphism fL : P1

L → XL. Since X is a universal pseudo-Néron model,
XT also satisfies the weak extension property. Then fL extends to a finite T -
morphism fT : P1

T → XT . Thus, P1
T satisfies the weak extension property, which

is a contradiction by [2], Example 5, p.75.

11



Remark 2.23. Let XK be a smooth, separated, finite type K-scheme, and let X
be a proper S-model of XK . The results above give us the following picture:

(i) no rational curve in any geometric fiber,

(ii) universal pseudo-Néron model,

(iii) no rational curve in the geometric generic fiber.

Then, (i)⇒(ii)⇒(iii).

3 Theorem of Restriction of Sections

3.1 Higher dimensional pseudo-Néron model

We will need the notion of higher dimensional pseudo-Néron model which gen-
eralizes Definition 4.10 in [7].

Definition 3.1. ([7], Definition 4.10) Let S be an integral, regular, separated,
Noetherian scheme of dimension b ≥ 1. A flat, finite type morphism X → S has
the weak extension property if for every triple (Z → S,U, sU ) of

(i) a smooth morphism Z → S,

(ii) a dense, open subset U ⊂ S,

(iii) and an S-morphism sU : Z ×S U → XU ,

there exists a pair (V, sV ) of

(i) an open subset V ⊂ S containing U and all codimension 1 points of S,

(ii) and an S-morphism sV : Z×S V → X whose restriction to Z×SU is equal
to sU .

Definition 3.2. Let S be an integral, regular, separated, Noetherian scheme
of dimension b ≥ 1. Let K be the function field of S, and XK be a smooth,
finite type K-scheme. A flat, finite type S-scheme X is called a pseudo-Néron
model of XK if XK is isomorphic to its generic fiber and X satisfies the weak
extension property as in Definition 3.1.

By a limit argument, it is easy to see that Definition 3.1 (resp. Defini-
tion 3.2) agrees with Definition 1.7 (resp. Definition 1.8) when S is a Dedekind
scheme and X is separated over S. Now, we prove the corresponding results for
Lemma 2.1, Lemma 2.2 and Theorem 2.5.

Lemma 3.3. Suppose that S is an integral, regular, separated, Noetherian Na-
gata scheme of dimension b ≥ 1 with function field K. Let YK be a smooth
K-variety and Y be its normal pseudo-Néron model over S. Let XK be a smooth
K-variety with a finite K-morphism f : XK → YK . Then, there exists a flat,
normal S-scheme X admitting a finite morphism g : X → Y which extends f .

12



Proof. Since S is Noetherian, we can cover S by finitely many affine open sub-
sets. As we assume that S is Nagata, the same proof of Lemma 2.1 gives the
extension as claimed.

Lemma 3.4. Keep the same hypotheses of S as in Lemma 3.3. Let Y be a
separated, flat S-scheme of finite type satisfying the weak extension property.
Suppose that X is an integral S-scheme with a finite S-morphism f : X → Y .
Then X satisfies the weak extension property.

Proof. Let U be a dense open subset of S, and let Z be a smooth S-scheme
with a U -morphism tU : ZU → XU . Composing this morphism with fU gives
a U -morphism sU : ZU → YU . Since Y satisfies the weak extension property,
there exists an open dense subset V in S containing all the codimension one
points, and an extension sV : ZV → YV of sU . Up to replacing S by V , we can
assume that V is the whole S. Cover S and Y by open affines as in Lemma 2.2,
then the same proof as in Lemma 2.2 completes the proof.

Therefore, combining the two lemmata above and the proof of Theorem 2.5,
we get the following theorem.

Theorem 3.5. Keep the same hypotheses of S as in Lemma 3.3. Let XK be a
smooth K-scheme admitting a finite K-morphism to a smooth, separated variety
YK which has a separated, normal pseudo-Néron model Y over S. Then XK

has a normal pseudo-Néron model X over S.
The result also holds if XK and YK are replaced by some XU and YU defined

over a dense open subset U of S.

Moreover, Corollary 4.12 in [7] and Theorem 3.5 give us the following corol-
lary.

Corollary 3.6. Let W be an integral, regular, separated, Nagata Noetherian
scheme of dimension b ≥ 1. Let S be a dense open subset of W , and let X be a
scheme admitting a finite morphism to an Abelian scheme over S. Then, there
exists an open subset #S of W containing S and all codimension one points of W
such that there exists a normal pseudo-Néron model #X over #S whose restriction
over S equals X.

3.2 Bertini’s theorems for higher order curves

Recall that a scheme X is called algebraically simply connected if for every
connected scheme Y , and every surjective finite étale morphism f : Y → X, the
morphism f is an isomorphism ([4], p.97). In this section, by a scheme over a
field k or a k-scheme, we mean a scheme that is of finite type over k.

Theorem 3.7 ([17], Proposition 3.1). Let k be a field of characteristic zero.
Let X be a smooth, algebraically simply connected variety over k. Let N be a
normal, connected and quasi-projective k-scheme. Let h : N → X be a projec-
tive k-morphism. If the closed subscheme Nh of N where h is not smooth has
codimension at least 2, then the geometric generic fiber of h is connected.
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We include the proof here for completeness.

Proof. Let u : #N → X be the finite part of the Stein factorization of h. Since
Nh has codimension at least two, #Nu also has codimension at least two. Since
X is smooth, u is étale by the Purity Theorem ([11], X, Section 3). Since X is
algebraically simply connected, u is an isomorphism. Therefore, h has connected
fibers.

Proposition 3.8. Let k be a field of characteristic zero. Let X be a smooth, ir-
reducible k-scheme that is algebraically simply connected. Let Y be an irreducible
quasi-projective k-scheme. Let M be a normal, irreducible, quasi-projective k-
scheme. Let (h, g) : M → X ×k Y be a k-morphism such that h is projective
and surjective, and g is dominant and flat with irreducible geometric generic
fiber. Let Z be an irreducible k-scheme. Let f : Z → Y be a finite, surjective
k-morphism. Denote by ν : N → Z×Y M the normalization of the fiber product
Z ×Y M . Denote by h′ : N → X the composition of h and the projection from
N to M . If the closed subscheme of N where h′ is not smooth has codimension
at least 2, then the geometric generic fiber of h′ is connected.

N
ν !!

$$❍
❍❍

❍❍
❍❍

❍❍
❍

h′

!!

Z ×Y M !!

""

Z

f

""

M
(h,g)

!!

h
%%▼

▼▼
▼▼

▼▼
▼▼

▼▼
▼ X ×k Y !!

pr1

""

Y

X

Proof. Since the geometric generic fiber of g is irreducible and Z is irreducible,
also the normalization N is irreducible, see the proof of [23], Proposition 3.1.
Then the statement reduces to Theorem 3.7 because h′ is projective.

Definition 3.9. Let Y be a regular locally Noetherian scheme. Let f : Z → Y
be a finite surjective morphism that is generically étale. The closed subscheme
R inside Z where f is not étale is called the ramification locus of f . The closed
subscheme B = f(R) of Y is called the branch locus of f .

Note that, by Zariski’s purity theorem ([16], Exercise 8.2.15(c), p.347), the
branch locus B of f is either empty or pure of codimension one if f generically
separable. In particular, this holds when char k = 0 and Y is a smooth k-scheme.

Theorem 3.10. Let k be an algebraically closed field of characteristic zero. Let
Z be a normal k-scheme. Let f : Z → Pn

k be a finite surjective morphism that is
generically étale. Then, for a general smooth curve C ⊂ Pn

k , the inverse image
f−1(C) is a smooth curve.

Proof. This follows from Kleiman-Bertini’s Theorem ([12], Theorem III.10.8).
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Theorem 3.11. Let k be an algebraically closed field of characteristic zero. Let
f : Z → Pn

k be a finite surjective morphism from a normal irreducible variety.
Then, for a general genus-0, degree-d smooth curve C in Pn

k , the inverse image
f−1(C) is connected.

Proof. Keep the notations in Proposition 3.8. Let Y be the projective space
Pn
k . Let X be the non-stacky locus inside the stack of genus-0, degree-d stable

maps from nonsingular curves to Pn
k . In other words, X is the maximal open

subscheme of this stack. Denote by Mord(P1
k,Pn

k ) the scheme of morphisms
of degree d from P1

k to Pn
k , which is an open subset of the projective space

P = P((Sdk⊕2)n+1), see [4], p.38-39. Also Mord(P1
k,Pn

k ) has codimension two
in P , and hence Mord(P1

k,Pn
k ) is algebraically simply connected. Also, there is

a canonical morphism Mord(P1
k,Pn

k ) → X that dominates X. A general fiber of
this morphism is isomorphic to PGL2(k), which is connected. Consequently, the
scheme X is algebraically simply connected. Let M be the universal family of
curves over X, and let h be the universal morphism. Denote by g the projection
from M to Y . Then, the geometric generic fiber of g is irreducible.

To complete the proof, we need to prove that the singular locus of h′ inside
N has codimension at least 2. Since the singular locus of Z has codimension
at least two in Z, we can assume that Z is nonsingular. Let D ⊂ X be the
subset that parameterizes genus-0, degree-d stable maps whose images in Pn

k

are not transversal to the branch locus of f . Then D has codimension one in X.
Thus, away from D, the fibers of h′ are everywhere smooth (by looking at the
tangent spaces). Moreover, for a genus-0, degree-d nonsingular curve C that is
not transversal to the branch locus, the singularities of the fiber of h′ over [C]
occur only over the intersection points of the curve with the branch locus, and
this is codimension one in the fiber. Thus, the total codimension of singular
locus of h′ in N is at least two. By Proposition 3.8, for a general genus-0,
degree-d nonsingular curve C in Pn

k , the inverse image f−1(C) is connected.

Corollary 3.12. Let k be an algebraically closed field of characteristic zero. Let
f : Z → Pn

k be a finite surjective morphism from a normal irreducible variety.
Then, for a general genus-0, degree-d smooth curve C in Pn

k , the inverse image
f−1(C) is smooth and irreducible.

Theorem 3.13. Let k be an algebraically closed field of characteristic zero. Let
Z be a normal k-scheme that is not necessarily connected. Let f : Z → S be a
finite surjective morphism to a smooth, connected, quasi-projective k-scheme S
where S admits a finite, generically étale morphism to an open dense subset of
Pn
k , u0 : S → Pn

k . Then, for a general genus-0, degree-d smooth curve C in S
(see Definition 1.1), the restriction map of sections

Sections(Z/S) → Sections(ZC/C)

is bijective.

Proof. Shrinking S if necessary, we can assume that f is étale. Also, we can
assume that Z is connected. By taking a normal projective compactification of
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Z, Corollary 3.12 shows that for a general genus-0, degree-d curve C the inverse
image f−1(C) is an irreducible and smooth curve. If deg(f) is strictly greater
than one, then there is no section for f ([24], Prop.5.3.1, p.165). Since f is
flat, deg(f |f−1(C)) equals deg(f) ([16], Exercise 5.1.25(a), p.176). Thus, there
is no section for f |f−1(C) neither. If deg(f) is one, then the restriction map of
sections is trivially bijective.

3.3 Notations and Set up

In the rest of this paper, we will assume that S is a smooth, quasi-projective
k-variety of dimension≥ 2, where k is an uncountable algebraically closed field
of characteristic zero. And we fix a generically finite dominant morphism u0 :
S → Pn

k so that we can talk about lines and line-pairs, or curves and curve-pairs
in S (see Definition 1.1). Note that, without changing any of the results, we
can shrink S to a dense open subset and assume further that u0 is a finite, étale
morphism onto a dense open subset of Pn

k .

3.3.1 Isotrivial quotient and spaces of sections

Recall that an Abelian scheme over S is defined as a proper and smooth S-
group scheme with connected fibers. Theorem 1.2 gives the result for restriction
of sections over line-pairs for families of Abelian varieties. We hope to generalize
Theorem 1.2 to schemes X admitting a finite morphism to some Abelian scheme
A over S. Unfortunately, in this situation, the trick of taking boundaries fails to
apply on X (cf. [7], Lemma 4.3, Lemma 4.4 and Lemma 4.5). So the isotrivial
factor of A gives moduli of sections (see Remark 3.46), and hence we have to
consider curves of higher degrees instead of line-pairs. The process of the proof
will involve the application of pseudo-Néron models.

We first fix some notations to clarify the situation. Let A be an Abelian
scheme over S, and f : X → A a finite S-morphism. There exists an open
dense subset V ⊂ S and a finite étale Galois cover p : V ′ → V such that the
pullback of A to V ′ is isogenous to a product of a strongly nonisotrivial family
of Abelian varieties and a trivial family (see the proof of Theorem 4.7 in [7]).
We can assume that V = S, and denote V ′ by S′.

Notation 3.14. By [7], Corollary 3.7, p.317, there exist

• an Abelian k-variety A0, an S′-morphism of Abelian schemes,

v0 : S′ ×k A0 → S′ ×S A,

such that (A0, v0) is a Chow S′/k-trace of S′ ×S A,

• a strongly nonisotrivial Abelian scheme Q over S′ with vQ : Q → S′ ×S A
an S′-morphism of Abelian schemes, and

• an isogeny of Abelian schemes over S′,

ρiso := v0 × vQ : (S′ ×k A0)×S′ Q → S′ ×S A.
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Since A0 ×k S′ is projective over S′, the Weil restriction RS′/S(A0 ×k S′)
exists ([2], Theorem 7.6/4, p.194). Moreover, since S is a normal scheme, it is
geometrically unibranch. Thus, A is projective over S ([21], Théorème XI 1.4).
Therefore, the Weil restriction RS′/S(A ×S S′) also exists. We can check that
the functorial morphism

RS′/S(v0) : RS′/S(A0 ×k S′) → RS′/S(A×S S′)

is a closed immersion (see the discussion after Theorem 6.2 in [3]).

Definition-Lemma 3.15. Let A → RS′/S(A×SS
′) be the functorial morphism

of S-schemes, which is a closed immersion since A is separated over S ([2], p.197).
The isotrivial factor Iso(A) of the Abelian scheme A over S is the fiber product
of A and RS′/S(A0 ×k S′) over RS′/S(A ×S S′). In other words, the following
diagram is Cartesian

Iso(A) !!

""

RS′/S(A0 ×k S′)

RS′/S(v0)

""

A !! RS′/S(A×S S′).

It is easy to check that Iso(A) is a closed Abelian subgroup scheme of A over
S, and the fiber dimension of Iso(A) → S is just dimA0.

Remark 3.16. By Poincaré’s complete reducibility theorem, there exists a mor-
phism of S-schemes π : A → Iso(A) such that the composition

Iso(A)−−−−−→A
π

−−−−−→ Iso(A)

is an isogeny on the generic fiber of Iso(A) → S. We call such a morphism π an
isotrivial quotient of the Abelian scheme A. For the rest of this article, we fix
an isotrivial quotient π : A → Iso(A). Denote by ρ : Iso(A) → S the structure
morphism of Iso(A). If b is a point in S, we will denote the fiber of Iso(A) over
b by Iso(A)b.

Notation 3.17. Let Sectionspb(A/S) (resp. Sectionspb(X/S)) be the set of sec-
tions of A (resp. X) over S such that every section in the set maps b ∈ S to
p ∈ Iso(A) via π : A → Iso(A) (resp. π ◦ f).

Notation 3.18. Take a smooth, projective compactification W of S. Let #A →
W0 be the Néron model of A → S where W0 is an open dense subset of W
which contains all the codimension one points of W . Let A → W be a projective
morphism whose restriction over W0 equals #A.

Every section of A over S gives a unique rational section of A → W , whose
maximal domain of definition contains all the codimension one points of W
since A has a Néron model. Conversely, let τ be a rational section of A → W .
The maximal domain of definition of τ contains S since every geometric fiber
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of A → S does not contain any rational curve ([6], Proposition 6.2, p.1234).
Thus, the set of rational sections of A → W bijectively corresponds to the set
of sections of A → S.

There is a Chow variety parameterizing cycles in A. The Chow variety has
countably many irreducible components. There is an open subset of this Chow
variety parameterizing cycles Z ⊂ A such that Z → W is birational. Then,
this variety is the parameter space for rational sections of A → W . By the
correspondence of rational sections of A → W and sections of A → S as above,
also this is the parameter space for sections of A → S. Denote by this parameter
space Sec(A/S). Every irreducible component of Sec(A/S) is quasi-projective
over k.

The fiber product Sec(A/S)×k S parameterizes the pairs ([σ], b) where σ ∈
Sections(A/S) and b ∈ S. Let prev : Sec(A/S)×kS → S be the projection to S,
i.e., mapping ([σ], b) to b. Denote by Secb(A/S) the product Sec(A/S) × {b}.
Let Σ : Sec(A/S) ×k S → A be the universal section over Sec(A/S). Then
the morphism Σb := π ◦ (Σ|Secb(A/S)) : Secb(A/S) → Iso(A) maps each [σ], a
section σ of A over S, to (π ◦ σ)(b) ∈ Iso(A). Therefore, Secb(A/S) is also a
space parameterizing pairs ([σ], p), a closed point p ∈ Iso(A) and a section of
A over S, σ ∈ Sections(A/S), such that σ(b) = p. Denote by Secpb(A/S) the
fiber of Σb over a point p ∈ Iso(A)b. Similarly, we can define Secb(X/S) and
Secpb(X/S).

3.3.2 Curves and curve-pairs

Take a smooth, projective compactification W of S such that there is a projec-
tive, surjective morphism W → Pn

k extending u0 : S → Pn
k . Let X be a scheme

over S such that it admits a pseudo-Néron model #X over an open subset #S,
containing S, and the complement of #S in W has codimension at least two, e.g.,
X admits a finite morphism to an Abelian scheme A over S, cf. Corollary 3.6.

Definition 3.19. An 1-pointed, genus 0, degree d+2, k-curve-pair C = (s, [m], t, [ℓ])
in W is a projective, connected, reduced, nodal curve of arithmetic genus 0 and
degree d+ 2 (see Definition 1.1) such that

• C = m ∪ ℓ where m is a smooth curve of genus 0, degree d, ℓ is a smooth
conic, and m intersects with ℓ transversally at a closed point t,

• the marked point s ∈ m is a nonsingular closed point of C.

Notation 3.20. Let M≤2

0,1(W,d+ 2) be the stack over k:

T ,→

$
%&

%'

isomorphism classes of flat, projective families AT → T of

genus zero, degree d+ 2, 1-pointed, reduced, embedded curves

in W , at worst curve-pairs, see Definition 3.19

(
%)

%*

where T is a k-scheme. Moreover, if the marked point on every curve is a fixed

point b ∈ W , we denote the stack by M≤2

0,1(W,d+ 2; b).
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Remark 3.21. Our notations are motivated by [1] and [5], but the curves we
consider have at most two irreducible components. Also, if d > 2, the marked
point is always on the irreducible component that is not a smooth conic.

Notation 3.22. Denote by ∂M≤2

0,1(W,d + 2) (resp. ∂M≤2

0,1(W,d + 2; b)) the

substack of M≤2

0,1(W,d+ 2) (resp. M≤2

0,1(W,d+ 2; b)) of 1-pointed curve-pairs.

Keep the notations in Definition 3.19 and Notation 3.20, the marked point
s ∈ C defines an evaluation morphism

ρev : ∂M≤2

0,1(W,d+ 2) → W, (s, [m], t, [ℓ]) ,→ s

whose fiber over b ∈ W is just ∂M≤2

0,1(W,d+ 2; b).

Notation 3.23. Denote by M0,1(W,d) the stack over k:

T ,→

$
%&

%'

isomorphism classes of flat, projective families BT over T

of pairs (s, [m]) of genus zero, degree d, smooth, embedded

curve m ⊂ W with a marked point s ∈ m

(
%)

%*

where T is a k-scheme. If the marked point is a fixed closed point b ∈ W , we
denote the stack by M0,1(W,d; b). Similarly, denote by M0,0(W, 2) the stack of
smooth embedded conic curves; note that there is no marked points on conics.

There are forgetful morphisms from ∂M≤2

0,1(W,d+ 2):

δ1 : ∂M≤2

0,1(W,d+ 2) → M0,1(W,d), (s, [m], t, [ℓ]) ,→ (s, [m]),

δ2 : ∂M≤2

0,1(W,d+ 2) → M0,0(W, 2), (s, [m], t, [ℓ]) ,→ [ℓ].

Notation 3.24. As substacks of M≤2

0,1(W,d+ 2) and ∂M≤2

0,1(W,d+ 2), denote

the open locus of genus-0, degree-(d + 2) curves or curve-pairs contained in #S
(resp. S) by M≤2

0,1(#S, d + 2) and ∂M≤2

0,1(#S, d + 2) (resp. M≤2

0,1(S, d + 2) and

∂M≤2

0,1(S, d + 2)). Similarly, we can define the substacks of M≤2

0,1(W,d + 2; b)

and ∂M≤2

0,1(W,d+ 2; b) for curves or curve-pairs contained in #S and S.

Remark 3.25. Taking the maximal open subschemes of the stacks in Nota-
tion 3.24, we can assume that they are all schemes over k. Then, the scheme

M≤2

0,1(W,d+2) is an integral and smooth k-scheme and the locus ∂M≤2

0,1(W,d+2)

is an integral, smooth divisor in M≤2

0,1(W,d+ 2).

Notation 3.26. Suppose that ∂M≤2

0,1(S, d+2)RS ⊂ ∂M≤2

0,1(S, d+2) is the subset
parameterizing very general genus zero, degree-(d+ 2) curve-pairs C in S such
that the restriction of sections

Sections(A/S) → Sections((A×S C)/C) (†)
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is bijective. Denote by M0,1(S, d)
RS ⊂ M0,1(S, d) the subset parameterizing

very general genus-0, degree-d smooth curves such that (†) is bijective. We will

prove the existence of ∂M≤2

0,1(S, d + 2)RS and M0,1(S, d)
RS for d ≥ 2 an even

integer in Corollary 3.41. Similarly, for a fixed very general closed point b ∈ S,

we can define ∂M≤2

0,1(S, d+ 2; b)RS and M0,1(S, d; b)
RS.

3.3.3 Bad sets in parameter spaces

Now we define the bad set for sections and curve-pairs. The fiber product

∂M≤2

0,1(S, d + 2) ×ρev,S,prev (Sec(A/S) ×k S), see the notation at the end of
Notation 3.18 and the notation after Notation 3.22, parameterizes the pairs of
sections and curve-pairs ((b, [m], t, [ℓ]), ([σ], p)) where σ is a section of A over S
mapping b to p and the marked point on the curve m is a point b ∈ S.

For a pair of closed points b ∈ S, p ∈ Iso(A)b, let σ be a section of A over S
that maps b to p. Denote by C = m ∪ ℓ a curve-pair in S where m is a smooth
curve, ℓ is a conic. Consider the following two properties,

(i) Sectionspb(A/S) → Sectionspb((A×S C)/C) is bijective;

(ii) Sectionspb((X ×A,σ S)/S) → Sectionspb((X ×A,σ S ×S ℓ)/ℓ) is bijective,

where the maps of the sets of sections are restrictions and the fiber product
X ×A,σ S comes from the section σ from S to A mapping b to p.

Definition 3.27. The subset

Bad(d+ 2) ⊂ ∂M≤2

0,1(S, d+ 2)×ρev,S,prev (Sec(A/S)×k S)

such that either (i) is false or (ii) is false is called the bad set of sections and
curve-pairs. Denote by Bad(d+ 2; b) the fiber of Bad(d+ 2) over b ∈ S, and we
call Bad(d+ 2; b) the bad set of sections and curve-pairs marked by b.

Remark 3.28. The subset Bad(d + 2; b) is contained in ∂M≤2

0,1(S, d + 2; b) ×k

Secb(A/S). Denote by φ1 and φ2 the projections from Bad(d+2; b) to ∂M≤2

0,1(S, d+
2; b) and Secb(A/S). The composition of φ2 and Σb (see Notation 3.18) gives

φ3 : Bad(d+ 2; b) → Iso(A)b, by {(b, [m], t, [ℓ]), ([σ], p)} ,→ p.

Definition 3.29. Denote by Bad(d+2; b, p) the fiber of φ3 over p ∈ Iso(A)b. If

{(b, [m], t, [ℓ]), ([σ], p)} ∈ Bad(d+ 2; b, p),

p is called a bad point for the curve-pair (b, [m], t, [ℓ]), and σ is called a bad
section for (b, [m], t, [ℓ]). Otherwise, (b, [m], t, [ℓ]) is called good for the section
σ ∈ Sectionspb(A/S). If (b, [m], t, [ℓ]) is good for every section in Sectionspb(A/S),
the point p is called a good point for (b, [m], t, [ℓ]).

20



Remark 3.30. Fix a closed point b ∈ S, and a closed point p ∈ Iso(A)b. By
Theorem 3.13, there is a subset U ⊂ M0,0(S, 2) parameterizing very general
points in M0,0(S, 2) such that for each [ℓ] ∈ U and each σ ∈ Sectionspb(A/S)
the property (ii) holds. Then, Bad(d + 2; b, p) is contained in the complement
of the subset

(δ−1
2 (U) ∩ ∂M≤2

0,1(S, d+ 2; b)RS)×Spec k Secpb(A/S).

Definition 3.31. An irreducible smooth curve C with a marked point b ∈ S
is called good for a section σ in Sectionspb(A/S) if the following two properties
hold

(i) Sectionspb(A/S) → Sectionspb((A×S C)/C) is bijective,

(ii) Sectionspb((X ×A,σ S)/S) → Sectionspb((X ×A,σ S ×S C)/C) is bijective,

where the maps of the sets of sections are restrictions and the fiber product
X ×A,σ S comes from the section σ from S to A. And p is a good point for
(b, [C]) if (b, [C]) is good for every section in Sectionspb(A/S).

The same construction as for curve-pairs shows that there is a subset Bad(d)
in the fiber product ofM0,1(S, d) and Sec(A/S)×kS over S via evaluation maps
such that Bad(d) parameterizes smooth curves and sections making either (i)
false or (ii) false. Also, for fixed closed points b ∈ S and p ∈ Iso(A)b, Bad(d; b, p)
is contained in a countable union of closed subsets.

Remark 3.32. Strictly speaking, we should use different notations for bad sets
of curve-pairs and smooth curves since they are in different parameter spaces.
Since in our proof of Theorem 1.3 every family of curves is clear from context,
we apply the same notation Bad and just indicate the degrees of the curves.

3.3.4 Universal curves and universal sections

Notation 3.33. Let CM(W ) ⊂ M≤2

0,1(W,d+ 2; b)×k W be the universal family

of curves over M≤2

0,1(W,d+ 2; b). Denote the open subset of universal family of

curves in #S (resp. S) by CM(!S) (resp. CM(S)).

Notation 3.34. Fix a closed point b ∈ S and p ∈ Iso(A)b. Denote by Hp
b the

scheme parameterizing sections γ of XC → C where C is a curve parameterized

by M≤2

0,1(S, d+ 2; b) and γ maps b to p via π ◦ f .

Equivalently, we have the following diagram, where Φ is the composition of

the structure morphism of Hp
b over M≤2

0,1(S, d + 2; b) and the open immersion

M≤2

0,1(S, d+ 2; b) → M≤2

0,1(#S, d+ 2; b) and all squares are Cartesian.
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Hp
b ×M≤2

0,1(
!S,d+2;b)

CM(!S) ×!S
#X !!

""

#X ×!S CM(!S)
!!

""

#X

""

Hp
b ×M≤2

0,1(
!S,d+2;b)

CM(!S)

""

!! CM(!S)
!!

""

#S

Hp
b

Φ !!M≤2

0,1(#S, d+ 2; b)

We note that Hp
b is locally of finite type over M≤2

0,1(#S, d + 2; b), and hence
over k, but may have infinitely many irreducible components. Every irreducible

component of Hp
b is quasi-projective over M≤2

0,1(#S, d+ 2; b).

Notation 3.35. There is a universal section of Hp
b ×M≤2

0,1(
!S,d+2;b)

CM(!S)×!S
#X →

Hp
b ×M≤2

0,1(
!S,d+2;b)

CM(!S). We compose it with the top row of the diagram above,

and denote the morphism by

, : Hp
b ×M≤2

0,1(
!S,d+2;b)

CM(!S) → #X,

which factors through the inclusion X → #X.

3.4 Restrictions of Sections for Abelian Schemes

3.4.1 Main pseudo-Néron model theorem

In this subsection, we prove the key theorem that applies pseudo-Néron models
to the problem of restriction of sections. The proof is similar to Lemma 4.13
of [7], but we prove a relative version of this result, i.e., for fixed b ∈ S and
p ∈ Iso(A)b. The proof of the following lemma is left to the readers.

Lemma 3.36. Let X → S be a morphism locally of finite type of regular Noethe-
rian schemes. Let Z be a codimension one regular closed subscheme of X, and
suppose that Z → S is smooth. Then, there exists an open subset U of X that
contains Z such that U → S is smooth.

Recall that W is a smooth, projective compactification of S.

Theorem 3.37. Suppose that:

• X is smooth, projective over S,

• X has a pseudo-Néron model #X over an open dense subset #S ⊂ W , where
#S has codimension at least two in W , and

• every geometric fiber Xs for s ∈ S does not contain any rational curve.
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Then, sections of X → S over genus-0, degree-(d + 2) smooth curves special-
ize to sections over genus-0, degree-(d + 2) curve-pairs. More precisely, any

irreducible component H0 of Hp
b which dominates M≤2

0,1(#S, d + 2; b) also dom-

inates ∂M≤2

0,1(#S, d + 2; b). That is, the intersection of the image Φ(H0) with

∂M≤2

0,1(#S, d+ 2; b) contains a dense open subset of ∂M≤2

0,1(#S, d+ 2; b).

Proof. As in [7], we consider the diagram:

C∂M(W )
!!

""

CM(W )
!!

""

W

∂M≤2

0,1(W,d+ 2; b) !!M≤2

0,1(W,d+ 2; b)

where C∂M(W ) is the universal family of curve-pairs with nodes of curve-pairs

deleted so that C∂M(W ) → ∂M≤2

0,1(W,d + 2; b) is smooth. Also, the morphisms
CM(W ) → W and the composition C∂M(W ) → W are smooth.

Since H0 is quasi-projective over M≤2

0,1(#S, d+2; b), we can choose a compact-

ification H of H0 such that H is normal and Φ extends to a proper surjection

Φ : H → M≤2

0,1(W,d + 2; b). Thus, D := Φ
−1

(∂M≤2

0,1(W,d + 2; b)) is nonempty,

and we may assume that D is irreducible. Since H is normal, it is regular at a
general point of D. Set Dred as the reduced structure of D. Denote by H

reg
the

regular locus of H. By the generic smoothness theorem, there is a dense open

V ⊂ Dred ∩H
reg

such that Φ : Dred → ∂M≤2

0,1(W,d+ 2; b) is smooth on V .

Denote by CH the base change CM(W ) ×M≤2
0,1(W,d+2;b)

H. Then, CV → W is

smooth; CV → CH is an immersion and V is contained in the regular locus of
H. We summarize the objects in the following diagram (cf. [7], p.324).

CV

""

!!

%%▼
▼▼▼

▼▼▼
▼▼▼

▼▼▼
CH

'
!!❴❴❴

""

&&%%
%%
%%
%%
%%
%%

#X

""

C∂M(W )
!!

""

CM(W )
!!

""

W

∂M≤2

0,1(W,d+ 2; b) !
"

!!M≤2

0,1(W,d+ 2; b)

V !!

Φ&&&&&&

''&&&&&&

D !
"

!!

Φ❙❙❙❙❙❙❙❙

((❙❙❙❙❙❙❙❙

H

Φ▼▼▼▼▼▼

))▼▼▼▼▼▼

By Lemma 3.36, there exists a maximal open subset U of CH containing CV
such that U → W is smooth. The universal section , (see Notation 3.35) gives
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a rational map U !!" X, which is marked as the dashed arrow from CH to #X
in the diagram above. Denote this rational map also by ,.

Now, let +W ⊂ W be the image of U → W . By construction, +W contains
an open dense subset of the image of C∂M(W ) in W . Shrinking S if necessary,

also we can assume that +W contains S. Since #X is a pseudo-Néron model of
X over #S, U !!" #X is well-defined outside a codimension two subset W c of +W
by the weak extension property. Also, by construction, the closed point b ∈ S
is not contained in W c. Therefore, W c can be avoided by a general smooth
curve or curve-pair in S that passes through b ∈ S. This gives an open dense
subset U ′ of U such that U ′ contains an open dense subset of C∂M(W ) and ,

is well-defined on U ′. As a consequence, every curve-pair intersecting an open
subset of C∂M(S) with nodes deleted can be lifted. Moreover, since there is
no rational curve on every geometric fiber of X → S, any morphism from a
punctured curve-pair to X can be extended to the node by [7] Remark 4.14,
p.323. Since Hp

b parameterizes the space of genus zero, degree-(d + 2) curves
that can be lifted (Notation 3.34), an open subset of V is contained in H0, i.e.,

H0 also dominates ∂M≤2

0,1(W,d+ 2; b).

Remark 3.38. Technically, the assumption that the characteristic of k is zero is
required to apply the generic smoothness theorem.

3.4.2 Inductive pseudo-Néron deformation step

Now we prove the existence of the subset ∂M≤2

0,1(S, d+2)RS of ∂M≤2

0,1(S, d+2),
see Notation 3.26. That is, the subset parameterizing very general genus zero,
degree-(d+ 2) curve-pairs C such that the restriction

Sections(A/S) → Sections((A×S C)/C)

is bijective. In [7] (see Theorem 1.2), it was proved that this subset exists if C
is a very general line-pair. And since we work over a field of characteristic zero,
the same is true for a very general smooth conic by using the pseudo-Néron
model (Theorem 1.2). The following inductive step gives the relative version
of Theorem 1.2 for very general genus-0, degree-(d+ 2) curves, and curve-pairs
with fixed b ∈ S, p ∈ Iso(A)b.

Corollary 3.39. Fix b ∈ S and p ∈ Iso(A)b closed points. Suppose that for a
very general genus-0, degree-(d+ 2) curve-pair C = m ∪ ℓ, where ℓ is a smooth
conic, every section in Sectionspb(XC/C) is the restriction of a unique section in
Sectionspb(X/S), see Notation 3.17. Then, for a very general genus-0, degree-
(d + 2) irreducible smooth curve containing b, every section over this curve
mapping b to p is the restriction of a unique section of X over S.

Proof. Since k has characteristic zero, f : X → A is generically unramified.
Thus, up to shrinking S, we assume that f is finite and unramified. Let Y be
the scheme parameterizing sections of X over S mapping b to p. Then, because

f is unramified, Hp
b has reduced fibers over M≤2

0,1(S, d + 2; b). Moreover, there
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is a M≤2

0,1(S, d + 2; b)-morphism Υ : M≤2

0,1(S, d + 2; b) ×k Y → Hp
b that maps

{[C1]}×{[σ]} to [σ|C1 ] for each [C1] ∈ M≤2

0,1(S, d+2; b) and [σ] ∈ Y. The image
of this morphism is a union of irreducible components of Hp

b .

Suppose that there exists an irreducible component ofHp
b dominatingM≤2

0,1(S, d+
2; b) such that a generic section parameterized by this component is not a restric-
tion of a section of X over S. By Theorem 3.37, this irreducible component also

dominates ∂M≤2

0,1(S, d+2; b). But then by hypothesis this component intersects

with the image of Υ, which contradicts that the fibers of Hp
b → M≤2

0,1(S, d+2; b)
are reduced.

Lemma 3.40. Suppose that every section of A over a very general genus-0,
degree-d, irreducible, smooth curve is contained in a unique section of A over S.
Then, for very general points b′ and b′′ in S and for a very general conic ℓ con-
taining b′ and a very general genus-0, degree-d curve m containing b′′ such that ℓ
and m intersect at a very general point b, every section in Sections(Am∪ℓ/m∪ℓ)
is the restriction of a unique section in Sections(A/S).

Proof. Fix very general points c′ and c′′ in S. Denote by M ′ the space of conics
ℓ ⊂ S passing through c′, and M ′′ the space of genus-0, degree-d curves m ⊂ S
containing c′′. Let p′, resp. p′′, be a closed point in the fiber Ac′ , resp. Ac′′ .
Let γ be a section in Sections(Am∪ℓ/m ∪ ℓ) that maps (c′, c′′) to (p′, p′′).

Denote by C ′, resp. C ′′, the universal family of curves over M ′, resp. M ′′.
Denote by u′

S : C ′ → S and u′′
S : C ′′ → S the cycle morphisms. There

are only countably many sections in Sectionsp
′

c′ (A/S), resp. Sectionsp
′′

c′′ (A/S),
see Lemma 3.43. Denote by (Σ′

i′)i′∈I′ , resp. (Σ′′
i′′)i′′∈I′′ , the images of these

countably many sections. For each i′ ∈ I ′, resp. i′′ ∈ I ′′, the fiber product
Ω′

i′ := C ′ ×u′
S ,S Σ′

i′ , resp. Ω
′′
i′′ := C ′′ ×u′′

S ,S Σ′′
i′′ , is a (C ′, u′

S)-multisection, resp.
(C ′′, u′′

S)-multisection, of A over S, see Definition A.3. Set r = 2dim(S) − 2
as the transversal dimension, see Definition A.4 (vii). Fix an embedding from
M ′, resp. M ′′, into a projective space. The transversal Grassmannian G′ is
the Grassmannian parameterizing r-dimensional linear subvarieties N ′ of M ′,
and similarly define G′′ for M ′′, see Definition A.4 (vii). Then, for every
(N ′, b′) ∈ G′ ×Spec k S, (Ω′

i′)i′∈I′ gives a countable collection of multisections
(Ω′

M ′,N ′,b′,i′)i′∈I′ of A over S, see Notation A.8 and Lemma A.11. Similarly, for
each (N ′′, b′′) ∈ G′′×Spec k S, the multisections (Ω′′

M ′′,N ′′,b′′,i′′)i′′∈I′′ are defined.
For each pair (N ′, N ′′) ∈ G′×Spec kG

′′, consider the 2-pointed bi-gon (C ′
t′ ∪b

C ′′
t′′ , b

′, b′′) parameterized by a point t′ ∈ N ′, resp. t′′ ∈ N ′′, whose curve C ′
t′

contains b and b′, resp. whose curve C ′′
t′′ contains b and b′′ (see the statement

of Lemma A.11). Take m ∪ ℓ as a 2-pointed bi-gon (C ′
t′ ∪b C

′′
t′′ , b

′, b′′). Then,
by Theorem 1.2 and the Bi-gon Lemma (Lemma A.11), for a very general pair
(N ′, N ′′, b′, b, b′′) in G′ ×Spec k G′′ ×Spec k S ×Spec k S ×Spec k S, γ comes from a
unique section of A over S.

Corollary 3.41. Let S be a smooth, quasi-projective k-scheme of dimension
b ≥ 2. Let A be an Abelian scheme over S. For a very general curve-pair
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C = m ∪ ℓ in S such that the degree of m is even, ℓ is a smooth conic, the
restriction map of sections

Sections(A/S) → Sections(AC/C)

is a bijection. This also holds for C a very general genus-0, irreducible, smooth
curve of even degree in S.

Proof. Take X = A in Corollary 3.39. In Lemma 3.40, take m as a conic curve.
Then by Theorem 1.2 and Lemma 3.40 the result holds for a very general m∪ ℓ.
Next, use Corollary 3.39 to deform m ∪ ℓ to a very general genus-0, irreducible
smooth curve of degree 4. Attach a very general conic to this curve at a very
general point and apply Lemma 3.40 and Corollary 3.39 again. Then, the result
follows by induction.

3.5 Moduli of bad points caused by Iso(A)

Lemma 3.42. Let A and B be two Abelian varieties over an algebraically closed
field k. Then, there are at most countably many homomorphism of Abelian
varieties from A to B.

Proof. Take a very ample sheaf L on A ×k B. For every homomorphism u :
(A, 0) → (B, 0), the graph Gu in A ×k B has a Hilbert polynomial P (t) with
respect to L. Let HomP

k (A,B) be the scheme parameterizing homomorphisms
from A to B with Hilbert polynomial P (t). By [18], (iii), p.39, the Zariski tan-
gent space of HomP

k (A,B) at [u] is isomorphic to the k-vector space of global sec-
tions of E := Homk(T

∨
B,0, k)⊗k I0, where I0 is the ideal sheaf defining the origin

0 ∈ A. Therefore, H0(A, E) = 0 and [u] is an isolated point of HomP
k (A,B).

Lemma 3.43. Let C be a smooth curve in S. Then, for fixed b ∈ C and
p ∈ Iso(A)b closed points, there are at most countably many sections of X (resp.
A, resp. Iso(A)) over C that map b to p. And there are at most countably many
sections of X (resp. A, resp. Iso(A)) over S that map b to p.

Proof. It suffices to prove the statement for the Abelian scheme A since X → A
is finite and Iso(A) is a closed subscheme of A. First suppose that A = A0 ×k S
is a constant family for some Abelian variety A0 over k. By taking the Jacobian
Jac(C) of C, the result follows from Lemma 3.42. If A is not a constant family
of Abelian varieties, then by a finite, étale and Galois base change S′ → S we
have an isogeny of Abelian S′-schemes,

ρiso : (A0 ×k S′)×S′ Q → A×S S′

where A0 ×k S′ is a constant family of Abelian varieties over S′ and Q is a
strongly nonisotrivial Abelian scheme over S′. Recall that there are at most
countably many sections of Q over S′ ([7], Lemma 3.6, p.316). Combine the con-
stant family case and the strongly nonisotrivial case, the result follows from di-
agrams chasing. Finally, by replacing the Jacobian of a smooth curve by the Al-
banese variety of S ([19], Theorem 5.7.13, p.141), the result for Sectionspb(X/S),
resp. Sectionspb(A/S), resp. Sectionspb(Iso(A)/S) follows immediately.
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Lemma 3.44. Fix closed points b ∈ S, p ∈ Iso(A)b. Let σ be a section in
Sectionspb(A/S). Recall Definition 3.29 and Definition 3.31 for good curves for
sections.

(1). For a very general smooth conic ℓ and a very general genus-0, degree-d curve
m containing b with d ≥ 2 such that ℓ and m intersect at a very general point,
every section in Sectionspb(Xm∪ℓ/m∪ ℓ) that maps to σ|m∪ℓ is the restriction of
a unique section in Sectionspb(X/S) that maps to σ if m ∪ ℓ is good for σ.

(2). Let C be a very general genus-0, degree-d, irreducible smooth curve marked
by b with d ≥ 2. Then, every section in Sectionspb(XC/C) that maps to σ|C is
the restriction of a unique section in Sectionspb(X/S) that maps to σ if C is good
for σ.

(3). Conversely, if p is a bad point for a very general irreducible smooth curve C,
then there exists a section in Sectionspb(XC/C) that cannot be extended uniquely.

Proof. (1). Let fσ : X ×A,σ S → S be the finite morphism arising from
base change of f by σ. Denote by XS the fiber product X ×A,σ S. Denote
gσ : XS → X to be the base change of σ by f . For any two different sections
in Sectionspb(X/S), the intersection in X maps in S to a proper closed subset of
S. Moreover, there are at most countably many sections in Sectionspb(Xm/m).
For any two distinct such sections, the intersection in X maps, via the struc-
ture morphism of X, to a proper closed subset of S. Denote by S0 ⊂ S the
complement of all these closed subsets.

Take c ∈ S0 as the intersection point ofm and ℓ. Let γ ∈ Sectionspb(Xm∪ℓ/m∪
ℓ) such that f ◦ γ is contained in the section σ in Sectionspb(A/S). Then form
the following diagram.

m ∪ ℓ

γ

**

$$

γ0

❋❋
❋❋

++
❋❋

❋❋

XS
fσ

!!

gσ

""

S

σ

""

X
f
!! A

π !!

""

Iso(A)

ρ
,,②②
②②
②②
②②
②

S

Since XS is the fiber product of X and S via f and σ, every section of fσ over
S (resp. over m∪ ℓ) arises from a unique section of X over S (resp. over m∪ ℓ).
Thus, γ gives a section, γ0, of fσ over m ∪ ℓ such that gσ ◦ γ0 = γ. Since m ∪ ℓ
is good for σ, γ0|ℓ is contained in a unique section of fσ over S, say, τ . Then,
gσ ◦τ is a section of X over S such that f ◦gσ ◦τ = σ. By construction, (gσ ◦τ)|ℓ
equals gσ ◦ (γ0|ℓ), which is γ|ℓ. Let γ1 be the restriction of gσ ◦ τ on m. Suppose
that γ1 ∕= γ|m, then γ1(c) = gσ ◦ τ(c) = γ(c) is in the intersection of the images
of γ1 and γ|m. Since γ1 is also a section of X over m mapping b to p, c is in the
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complement of S0, contradicting the choice of c. Therefore, γ1 equals γ|m, and
γ extends to a unique section of X over S, which is gσ ◦ τ . The statement (2)
follows from the same proof as (1).

(3). Suppose that p is a bad point for C. For every two distinct sections in
Sectionspb(A/S), the intersection of their images in A maps to a proper closed
subset of S. Remove these countably many closed subsets from S. Denote this
subset by S◦. Take C such that S◦ ∩ C ∕= ∅ and a section τ ∈ Sectionspb(A/S)
such that C is bad for ([τ ], p). Since p is a bad point, there exists a section γ of
X over C mapping b to p such that either γ0 cannot be extended, the extension
is not unique, or f◦γ cannot be extended. If f◦γ cannot be extended, γ does not
have an extension. If γ0 cannot be extended, then γ cannot be extended. If the
extension is not unique, these different extensions of γ0 give distinct extensions
of γ as in the proof of the first part.

Corollary 3.45. Fix a very general point b ∈ S and a point p in Iso(A)b.
Then, for a very general conic ℓ and a very general genus-0, degree-d curve
m containing b with d even and d ≥ 2 such that ℓ and m intersect at a very
general point, every section in Sectionspb(Xm∪ℓ/m ∪ ℓ) is the restriction of a
unique section in Sectionspb(X/S).

Proof. Consider the subset S0 as in Lemma 3.44. For a very general b, and very
general m ∪ ℓ, the restriction of sections

Sectionspb(A/S) → Sectionspb(Am∪ℓ/m ∪ ℓ)

is bijective by Corollary 3.41.
For every σ in Sectionspb(A/S), there is a general family of smooth conic

curves N2(σ) such that every section of fσ over ℓ extends to a unique section
of fσ by Bertini’s theorem (Theorem 3.13). Take a very general conic ℓ that
is contained in N2(σ) for every σ ∈ Sectionspb(A/S). Also, take the smooth
conic ℓ such that it intersects with m at some c ∈ m ∩ S0. Now, for every
section γ ∈ Sectionspb(Xm∪ℓ/m ∪ ℓ), f ◦ γ is contained in a unique section
σ ∈ Sectionspb(A/S). Therefore, by Lemma 3.44 (1), γ is contained in a unique
section of Sectionspb(X/S).

Remark 3.46. For a fixed p ∈ Iso(A)b, Corollary 3.45 claims the existence of
good curve-pairs for sections in Sectionspb(A/S). However, such a good curve-
pair might be bad for other choices p0 ∈ Iso(A)b. And as we vary the point p0,

the bad sets Bad(d + 2; b, p0) might sweep out the moduli space ∂M≤2

0,1(S, d +
2)×ρev,S,prev (Sec(A/S)×k S), see Definition 3.27. To resolve this problem, we
have to increase the degree of curve-pairs (Theorem 1.3).

3.6 Proof of the Main Theorem

Now, we can give the proof of Theorem 1.3.

Proof. Recall that the integer e is the fiber dimension of Iso(A) → S. If e equals
zero, then Theorem 1.3 holds for a very general smooth conic, i.e., a genus-0,
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degree-(d+2) curve-pair with d = 0. This follows immediately from [7], Lemma
3.6, p.316, and the same proof of Lemma 3.44 (2). So, in the rest of the proof,
we assume that e ≥ 1. Let C1 be a very general conic curve containing a very
general point b1 ∈ S. Let B2,b1 be the image φ3(Bad(2; b1)), i.e., the set of
bad points p1 ∈ Iso(A)b1 for C1. By Corollary 3.45, B2,b1 is a proper subset of
Iso(A)b1 . Take C2 a very general conic intersecting with C1 at a very general
point c2. Take a very general point b2 on C2. Denote by ∆′

2(C1 ∪ C2, b1) the
union of the images of C1 ∪ C2 under bad sections σ of A over S mapping
b1 to some p ∈ B2,b1 . Let ∆2(C1 ∪ C2, b1) be the image of ∆′

2(C1 ∪ C2, b1)
in Iso(A) under π. Then, ∆2(C1 ∪ C2, b1) is contained in ρ−1(C1 ∪ C2) and
∆2(C1 ∪C2, b1)∩ Iso(A)b1 equals B2,b1 . Define ∆2(C1 ∪C2, b2) in the same way
for points in B2,b2 .

By choosing C2, c2 and b2 very generally, ∆2(C1 ∪ C2, b2) ∩ Iso(A)b1 will
intersect B2,b1 transversally. Moreover, since C1 ∪c2 C2 is very general, we may
assume that

Sections(A/S) → Sections(AC1∪c2C2/C1 ∪c2 C2)

is bijective by Corollary 3.41.
Let p be a point in B2,b1 , but not in ∆2(C1 ∪ C2, b2). Let σ be a section in

Sectionspb1(A/S). If σ(b2) does not belong to B2,b2 , (b1, [C1], c2, [C2]) is good for
σ. If σ(b2) is in B2,b2 , then σ(b1) is in ∆2(C1 ∪ C2, b2), which contradicts the
choice of p. Thus, (b1, [C1], c2, [C2]) is good for every section in Sectionspb1(A/S),
and p is a good point for this marked curve-pair. Now, take a point p in the set
∆2(C1 ∪ C2, b2) ∩ Iso(A)b1 , but not in B2,b1 . Denote by γ a section of X over
C1 ∪ C2 mapping b1 to p. Let p2 be the image of γ(b2) in Iso(A). Let σ be a
section of A over S extending f ◦ γ. Since p is not in B2,b1 , (b2, [C2], c2, [C1]) is
good for ([σ], p2). By Lemma 3.44 (1), γ extends to a unique section of X over
S mapping b2 to p2 and b1 to p. Denote by B′

4,b1
the set of points in Iso(A)b1

such that for each p ∈ B′
4,b1

the restriction of sections

Sectionspb1(X/S) → Sectionspb1(XC1∪c2C2/C1 ∪c2 C2)

is not a bijection. By the argument above, B′
4,b1

is contained in the intersection
of ∆2(C1 ∪C2, b2) and B2,b1 . Therefore, dimB′

4,b1
is strictly less than dimB2,b1 .

Let C1,2 be a very general, genus-0, degree-4, irreducible, smooth curve
containing b1. By Corollary 3.39 and Lemma 3.44 (3), the bad set of points
B4,b1 for (b1, [C1,2]) is contained in B′

4,b1
. Attach a very general smooth conic

C3 to C1,2 at a very general point c3. Then inductively, we get a decreasing
sequence of dimensions

dimB2,b1 > dimB′
4,b1 ≥ dimB4,b1 > dimB′

6,b1 ≥ dimB6,b1 > · · · .

Then, for d > 2e− 2 an even number, B′
d+2,b1

for (b1, [m], c, [ℓ]), a very general
genus-0, degree-(d+ 2) curve-pair, is empty, and hence every section of X over
m ∪ ℓ is the restriction of a unique section. And, by Corollary 3.39, this is also
true for very general irreducible smooth curves of genus-0, degree-(d+ 2).
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Appendix A The Bi-gon Lemma

Let k be an algebraically closed field. In the statement of the Bi-gon Lemma,
also k will be uncountable. Let B be an irreducible, quasi-projective k-scheme
of dimension ≥ 2.

Definition A.1. For every k-morphism of locally finite type k-schemes, f :
R → S, for every integer δ ≥ 0, the δ-locus of f , Ef,≥δ ⊆ R, is the union of all
irreducible components of fibers of f that have dimension ≥ δ. The δ-image of
f , Ff,≥δ ⊆ S, is the image under f of Ef,≥δ.

Lemma A.2 ([12], Exercise II.3.22, p.95). For every locally finite type mor-
phism f and every integer δ ≥ 0, the subset Ef,≥δ of R is closed. If also f is
quasi-compact, resp. proper, then the subset Ff,≥δ of S is constructible, resp.
closed.

Definition A.3. For every proper, surjective morphism ρ : Y → B, for every
pair (T,w) of an integral scheme T and a dominant, finite type morphism,

w : T → B,

a (T,w)-multisection of ρ is a pair (Ω, v) of an irreducible scheme Ω and a
proper morphism v = (vY , vT ),

v : Ω → Y ×B T, vY : Ω → Y, vT : Ω → T,

such that vT is surjective and generically finite. Since v is proper, also the
image (v(Ω), v(Ω) ↩→ Y ×B T ) is a (T,w)-multisection of ρ. This is the image
multisection of (Ω, v). If w equals IdB , we just say (Ω, v) is a multisection
of ρ.

For every pair ((Ω′, v′), (Ω′′, v′′)) of (T,w)-multisections, denote the fiber
product of v′ and v′′ by

(π′ : Pv′,v′′ → Ω′, π′′ : Pv′,v′′ → Ω′′), v′ ◦ π′ = v′′ ◦ π′′.

The special subset Sv′,v′′ of the pair is the closed image in T of Pv′,v′′ .

Definition A.4. (i). For an integral, quasi-projective k-schemeM , a family of
smooth, proper, connected curves over M is a smooth, proper morphism,

uM : C → M,

whose geometric fibers are connected curves.

(ii). For every open immersion

ι : C → C

whose image is dense in every fiber of uM , the composite morphism uM = uM ◦ι
is a family of smoothly compactifiable curves over M .
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(iii). A family of curves to B is a pair (M,u) of an integral, quasi-projective
k-scheme M and a proper morphism u = (uB , uM ),

u : C → B ×Spec k M, uB : C → B, uM : C → M,

such that uM is a family of smoothly compactifiable curves over M .

(iv). The family of curves to B is connecting, resp. minimally connecting,
if the following induced k-morphism is dominant, resp. dominant and generically
finite,

u[2] : C ×M C → B ×Spec k B, pri ◦ u[2] = uB ◦ pri, i = 1, 2.

By definition, both uM ◦pr1 and uM ◦pr2 are equal as morphisms from C×MC to
M ; denote this common morphism by #uM . Denote by #u[2] the induced morphism

(u[2], #uM ) : C ×M C → B ×Spec k B ×Spec k M.

(v). A connecting family of curves to B is a Bertini family if for every integral

k-scheme #B and for every finite, surjective k-morphism φ : #B → B, the induced
morphism #B ×B C → M has integral geometric generic fiber. Denote by Mφ

the maximal open subscheme of M over which #B ×B C has integral geometric
fibers.

(vi). An integral closed subvariety N of M is transversal if the following
family of curves to B is minimally connecting,

(N, u× IdN : C ×M N → B ×Spec k M ×M N).

Such a subvariety is φ-Bertini if N intersects the open subscheme Mφ of M .

(vii). The transversal dimension is d := 2dim(B) − 2. Fix an embed-
ding M → Pn

k of the quasi-projective k-scheme M . For every integer e with
0 ≤ e ≤ d, the transversal Grassmannian Ge is the open subscheme of the
Grassmannian parameterizing linear subvarieties H of Pn

k such that N = M ∩H
is a nonempty, e-dimensional linear section of M .

Lemma A.5. For every connecting family of curves (M,u), for every integer
e with 0 < e ≤ d, a general point of Ge parameterizes a linear section N of M
that is geometrically integral.

Proof. This follows from a Bertini Connectedness Theorem, [13], Théorème 6.10.

Lemma A.6. For every connecting family (M,u), for every integer e with
0 ≤ e ≤ d, a general point of Ge parameterizes a linear section N of M such

that the induced morphism u
[2]
N is generically finite, where uN is the morphism

u × IdN . Assume further that (M,u) is a connecting, Bertini family of curves

to B. Then, for every finite, surjective k-morphism φ : #B → B, every general
N ∈ Gd is transversal and φ-Bertini.
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Proof. Generic finiteness of u
[2]
N is proved by induction on e. The base case is

when e = 0. Since the family is connecting, the morphism u is generically finite
to its image. Thus, the morphism #u[2] is generically finite to its image. The
1-relative locus E of #u[2] is a proper, closed subset of C ×M C. For the induced
morphism,

#uM |E : E → M,

the 2-relative locus E≥2 of this morphism is a closed subset of E. Since E is
a proper closed subset of C ×M C, and since the geometric generic fiber of #uM

is irreducible, the proper closed subset E≥2 is disjoint from this fiber. Thus,
the image F≥2 of E≥2 in M is a constructible subset that does not contain the
generic point, i.e., it is not Zariski dense. Denote by Mo the open subset of M
that is the complement of the closure of the image of F≥2. For every singleton
N of a closed point of Mo, the restrictions to N of #u[2] and u[2] are equal; refer

to this common restriction by u
[2]
N . Since #u[2] is generically finite on the fiber

over N by construction, also u
[2]
N is generically finite. This establishes the base

case.
For the induction step, assume that the result is proved for an integer e

satisfying 0 ≤ e < 2dim(B)− 2. Then for a general linear subvariety N of M of

dimension e, the image of u
[2]
N has dimension e+2 < 2dim(B). Thus, the image

is not Zariski dense. Since u[2] is dominant, a general point of B ×Spec k B is
contained in the image of u[2] over a general point of M , say m. Let N ′ be the
intersection ofM with the span of N andm. Then N ′ is a linear subvariety ofM
of dimension e+1. By Lemma A.5, for N general and for m general, the linear

section N ′ is geometrically integral. Thus, the image of u
[2]
N ′ is a geometrically

integral scheme that is strictly larger than the image of u
[2]
N . Thus, the dimension

of the image of u
[2]
N ′ is strictly larger than the dimension of the image of u

[2]
N .

Since u
[2]
N is generically finite, and since N ′ has dimension precisely 1 larger

than the dimension of N , also the image of u
[2]
N ′ has dimension precisely 1 larger

than the dimension of the image of u
[2]
N . Thus, also u

[2]
N ′ is generically finite to

its image.

In particular, for e equals d, since u
[2]
N is generically finite and the domain and

target both have the same dimension, the image of u
[2]
N contains a nonempty

Zariski open subset of B ×Spec k B. By hypothesis, B ×Spec k B is integral.
Thus, the image contains a dense Zariski open subset of B×Spec k B. Therefore
(N, uN ) is a minimally connecting family, i.e., N is transversal.

Finally, if the connecting family (M,u) is also Bertini, the open subscheme
Mφ contains the generic point of M , and hence this open subscheme is dense.
Therefore, a general N intersects Mφ.

Lemma A.7. For every minimally connecting family of curves to B,

(M,u : C → B ×Spec k M), uB : C → B, uM : C → M,

for every (C, uB)-multisection (Ω, v) of ρ, see Definition A.3, the scheme Ω×MC
is irreducible, and the following composition #vΩ,M is a multisection of ρ relative
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to B ×Spec k B
pr1−−→ B,

Ω×M C
v×IdC−−−−→ Y ×B C ×M C

IdY ×u[2]

−−−−−−→ Y ×B B ×Spec k B.

Proof. Since the morphism
uM : C → M

is flat with integral geometric fibers, the following base change morphism is flat
with integral geometric fibers,

prΩ : Ω×M C → Ω.

Since Ω is irreducible, and since prΩ is flat with integral geometric generic fiber,
also Ω×M C is irreducible.

Denote by vC : Ω → C and vY : Ω → Y the morphisms such that v =
(vC , vY ) : Ω → C ×B Y . Since vC is surjective and generically finite, and since
uM is flat, also the following morphism is surjective and generically finite,

vC × IdC : Ω×M C → C ×M C.

Since (M,u) is minimally connecting, the following morphism is dominant and
generically finite,

u[2] : C ×M C → B ×Spec k B.

Thus, the composition is dominant and generically finite. This composition
equals the composition of #vΩ,M with the morphism

ρ× IdB : Y ×Spec k B → B ×Spec k B.

Thus, the morphism #vΩ,M is a multisection of ρ.

Notation A.8. Keep the notations in Lemma A.7. Fix an embedding from M
to a projective space. Suppose that N is a transversal linear section of M .

(1). Denote by CN (resp. ΩN ) the fiber product C ×M N (resp. Ω×M N).

(2). The morphism uB : C → B (resp. uM : C → M) induces a morphism
uB,N : CN → B (resp. uM,N : CN → N). Denote by uN the morphism u× IdN .

(3). Denote by (ΩN , vN : ΩN → Y ×B CN ) the (CN , uB,N )-multisection of ρ
induced by the (C, uB)-multisection (Ω, v) of ρ.

(4). As in Lemma A.7, the (CN , uB,N )-multisection (ΩN , vN ) of ρ gives a
multisection of ρ relative to pr1 : B×Spec kB → B. We denote this multisection
of ρ relative to pr1 : B ×Spec k B → B by #vΩ,M,N .

(5). For each b ∈ B, denote by #vΩ,M,N,b the restriction of #vΩ,M,N to the fiber
of pr2 : B ×Spec k B → B over b. Denote by ΩM,N,b the image of #vΩ,M,N,b in Y .
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For every pair of connecting families of curves to B,

(M ′, u′ : C ′ → B ×Spec k M ′), u′
B : C ′ → B, u′

M ′ : C ′ → M ′,

(M ′′, u′′ : C ′′ → B ×Spec k M ′′), u′′
B : C ′′ → B, u′′

M ′′ : C ′′ → M ′′,

denote by G′, resp. by G′′, the open subscheme of the Grassmannian pa-
rameterizing d-dimensional linear sections N ′ of M ′, resp. N ′′ of M ′′, where
d = 2dim(B)− 2; by Lemma A.6, there is a dense open subscheme of G′, resp.
of G′′, parameterizing linear sections of M ′, resp. of M ′′, that are transversal.

Lemma A.9. (a). For every pair of connecting families of curves to B as
above that are Bertini families, for every pair

(Ω′, v′), (Ω′′, v′′)

of a (C ′, u′
B)-multisection of ρ and a (C ′′, u′′

B)-multisection of ρ, for a general
pair (N ′, N ′′) ∈ G′ ×Spec k G′′, the families (N ′, u′

N ′) and (N ′′, u′′
N ′′) are mini-

mally connecting families of curves to B.

(b). Also, for a general pair (b′, b′′) ∈ B ×Spec k B, the family (N ′, u′
N ′), resp.

(N ′′, u′′
N ′′), is a Bertini family for each irreducible component of Ω′′

M ′′,N ′′,b′′ ,
resp. of Ω′

M ′,N ′,b′ .

Proof. The first assertion follows from Lemma A.6. For (b), by Lemma A.7,
each of (Ω′

N ′ ×N ′ C ′
N ′ , #vΩ′,M ′,N ′) and (Ω′′

N ′′ ×N ′′ C ′′
N ′′ , #vΩ′′,M ′′,N ′′) is a pr1-

multisection of ρ. Thus, for general (b′, b′′) ∈ B ×Spec k B, the restriction of
the pr1-multisection Ω′

N ′ ×N ′ C ′
N ′ , resp. Ω′′

N ′′ ×N ′′ C ′′
N ′′ , to the pr2-fiber over

b′, resp. over b′′, maps dominantly and generically finitely to B, i.e., each of
the finitely many irreducible components of the restriction is a multisection of
ρ. By Lemma A.6, for N ′′ general applied to the finitely many irreducible com-
ponents of Ω′

M ′,N ′,b′ , the family (N ′′, u′′
N ′′) is transversal and Bertini relative

to Ω′
M ′,N ′,b′ . Similarly, for N ′ general, the family (N ′, u′

N ′) is transversal and
Bertini relative to Ω′′

M ′′,N ′′,b′′ .

Lemma A.10. Assume that k is algebraically closed and uncountable. With
the same hypotheses as in Lemma A.9, for a countable family of (C ′, u′

B)-
multisections, (Ω′

i′ , v
′
i′)i′∈I′ , with pairwise distinct images in Y ×B C ′, resp. for

a countable family of (C ′′, u′′
B)-multisections, (Ω′′

i′′ , v
′′
i′′)i′′∈I′′ , with pairwise dis-

tinct images in Y ×B C ′′, if (N ′, N ′′) ∈ G′×Spec k G
′′ and (b′, b′′) ∈ B×Spec k B

are very general, then for every (i′, i′′) ∈ I ′ × I ′′, the conclusion in Lemma A.9
holds for (Ω′

i′ , v
′
i′) and (Ω′′

i′′ , v
′′
i′′).

Proof. For each (i′, i′′), by Lemma A.9, there exists a dense open Wi′,i′′ of
G′×Spec kG

′′×Spec kB×Spec kB parameterizing (N ′, N ′′, b′, b′′) such that Lemma
A.9 holds. Thus, for every (N ′, N ′′, b′, b′′) in the countable intersection ∩(i′,i′′)Wi′,i′′ ,
the conclusion of the lemma holds for every (Ω′

i′ , v
′
i′) and (Ω′′

i′′ , v
′′
i′′).

Lemma A.11 (The Bi-gon Lemma). With hypotheses as in Lemma A.10, for a
very general (N ′, N ′′, b′, b, b′′) in G′×Spec kG

′′×Spec kB×Spec kB×Spec kB, for
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a very general 2-pointed bi-gon (C = C ′
t′ ∪b C

′′
t′′ , b

′, b′′) parameterized by a point
t′ ∈ N ′, resp. t′′ ∈ N ′′, whose curve C ′

t′ contains b and b′, resp. whose curve C ′′
t′′

contains b and b′′, the only sections σ of ρ over C whose restriction to C ′
t′ is in

an irreducible component Ω′
M ′,N ′,b′,i′,0 of some Ω′

M ′,N ′,b′,i′ and whose restriction
to C ′′

t′′ is in an irreducible component Ω′′
M ′′,N ′′,b′′,i′′,0 of some Ω′′

M ′′,N ′′,b′′,i′′ are
those that come from global sections Ω′

M ′,N ′,b′,i′,0 = Ω = Ω′′
M ′′,N ′′,b′′,i′′,0 over B.

Proof. Let W denote the countable intersection of Wi′,i′′ inside G′ ×Spec k

G′′×Spec kB×Spec kB as in the proof of Lemma A.10. Let (N ′, N ′′, b′, b′′) be an
element of W . Consider the countable collection of images (Ω′

M ′,N ′,b′,i′)i′∈I′ and
(Ω′′

M ′′,N ′′,b′′,i′′)i′′∈I′′ of ρ as closed subschemes of Y . Without loss of generality,
we assume that every Ω′

M ′,N ′,b′,i′ , resp. every Ω′′
M ′′,N ′′,b′′,i′′ , is irreducible. For

every pair (i′1, i
′
2) of distinct elements of I ′, the special subset Si′1,i

′
2
associated to

Ω′
M ′,N ′,b′,i′1

and Ω′
M ′,N ′,b′,i′2

is a proper closed subset of B, and similarly for the

special subset Si′′1 ,i
′′
2
associated to every pair (i′′1 , i

′′
2) of distinct elements of I ′′.

Finally, for every i′ ∈ I ′ and every i′′ ∈ I ′′, the special subset Si′,i′′ associated
to Ω′

M ′,N ′,b′,i′ and Ω′′
M ′′,N ′′,b′′,i′′ is a proper closed subset except in those cases

where Ω′
M ′,N ′,b′,i′ equals Ω

′′
M ′′,N ′′,b′′,i′′ .

Choose b to be a very general point of B that is contained in none of these
special subsets that are proper closed subsets of B. The matching condition at b
for a section σ implies that σ(C) is contained in Ω′

M ′,N ′,b′,i′ = Ω′′
M ′′,N ′′,b′′,i′′ for

unique Ω′
M ′,N ′,b′,i′ and Ω′′

M ′′,N ′′,b′′,i′′ in their respective countable multisections.
By Lemma A.10, for every i′ ∈ I ′, if the restriction of ΩM ′,N ′,b′,i′ over C ′′

t′′

has a section, then the multisection ΩM ′,N ′,b′,i′ is a global section. Similarly,
for every i′′ ∈ I ′′, if the restriction of ΩM ′′,N ′′,b′′,i′′ over C

′
t′ has a section, then

the multisection ΩM ′′,N ′′,b′′,i′′ is a global section. Thus, for every section σ as
in the previous paragraph, Ω′

M ′,N ′,b′,i′ = Ω′′
M ′′,N ′′,b′′,i′′ is a global section.
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