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Ainf HAS UNCOUNTABLE KRULL DIMENSION

HENG DU

Abstract. Let R be a non-discrete rank one valuation ring of charac-
teristic p and let OE be any discrete valuation ring, we prove the ring of
OE-Witt vectors over R has uncountable Krull dimension without as-
suming the axiom of existence of prime ideals for general commutative
unitary rings.

1. Introduction

Let R be a perfect non-discrete valuation ring over Fp and let OE be a
discrete valuation ring, define A = WOE

(R), the ring of OE-Witt vectors
over R as in [FF, §1.2], i.e., elements in A can be regarded as holomorphic
functions in variable π, for any uniformizer π of OE . The main result of this
paper is:

Theorem 1. A has uncountable Krull dimension.

Note that the result of the above theorem for the equal characteristic
case, i.e., A = R[[T ]] with R a rank one non-discrete valuation ring, is due
to Kang-Park [KP, Theorem 10]. The result that A is infinite-dimensional is
due to Arnold [Arn] for the equal characteristic case. In the mixed charac-
teristic case, there are conjectures on the Krull dimension of A by [Ked] and
[Bha, Warning 2.24], then proved to be infinite by Lang-Ludwig [LL]. We
want to note that all proofs we mentioned above make use of the existence
of prime ideals for general commutative unitary rings, whose proof relies on
Zorn’s Lemma, or equivalently, the axiom of choice. In fact, it is known
that the existence of prime ideals for general commutative unitary rings
is strictly weaker than the axiom of choice in Zermelo-Fraenkel axiomatic
system by [Hal]. Our approach to Theorem 1 is different; we will give an
explicit construction of an uncountable chain of prime ideals in A without
assuming the axiom of the existence of prime ideals.

The main inputs in our proof are the functions s 7→ vs(f) for elements f
in A. Here {vs}s≥0 is a collection of valuations on A associated to a family
of Gauss norms on A, and those Gauss norms are crucial for the study
of the (adic) geometry of A. When R is perfectoid, the geometry of A is
one of the main topics in recent developments in p-adic Hodge theory, and
has been studied by Fargues-Fontaine[FF], Kedalaya-Liu[KL], Scholze[Sch],
Bhatt-Scholze-Morrow[BMS], etc. The function s 7→ vs(f) we use in this
paper was studied in the work of Fargues and Fontaine, and they can show
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for a fixed f ∈ A, the function s 7→ vs(f) is a piecewise-linear concave
increasing function with integer slopes. For some f , there could be a subtle
complexity of the function s 7→ vs(f) when s approaches to 0. We are going
to define a chain of prime ideals by resolving part of the subtlety; we are
going to group elements f in A by the rate of convergence of the functions
s 7→ vs(f) at 0.

We will review some basic facts of the function s 7→ vs(f) and its relation
with the Newton polygon of f in section 2. In section 3, we will give a
construction of a chain of prime ideals in A using the function s 7→ vs(f).
Then we will show the prime ideals we defined are properly ordered by the
totally ordered set [0, 1]. To show this, we need to construct elements f in
A and estimate the rate of convergence of s 7→ vs(f) at 0 using a lemma we
prove in section 2. In the end of this paper, we show all prime ideals we
construct are fixed by the Frobenius action on Spec(A).

Acknowledgements. We thank Jaclyn Lang and Judith Ludwig for their
paper on the related topic. The author got the idea of this paper when he
prepared a student colloquium talk based on their paper. We also thank the
organizer Zachary Letterhos and all audiences in his talk. We thank Pavel
Čoupek, Tong Liu, Linquan Ma, Dongming She, and Yifu Wang for their
interests and reading an early draft of the paper.

2. Family of valuations on A

Fix a perfect non-discrete valuation ring R in characteristic p, and let v
be the valuation map to R ∪ {∞}. Fix a discrete valuation ring OE , let
A = WOE

(R) be the ring of OE-Witt vectors over R. For any uniformizer
π ∈ OE, one can show the projection A → R = A/(π) admits a unique
multiplicative section [−], which is independent of the choice of π. Moreover,
use the theory of strict π-rings, one can show that every elements f ∈ A has
an unique π-expansion:

f =
∑

i≥0

[ai]π
i.

Remark 1. (1) We will allow OE = Fp[[T ]] and in this case A = R[[T ]].
Actually, as been mentioned in [LL, Remark 3.3], all methods we
are going to use work for A = R[[T ]] for any non-discrete valuation
ring R . In fact, we will only use the Frobenius structure on A in
Proposition 5.

(2) We will not assume R to be complete with respect to the valua-
tion, since to establish the properties we need, we can always regard

elements in A as elements in WOE
(R̂) via A ⊂ WOE

(R̂).

Fix a positive real number s, for any element f =
∑

i≥0[ai]π
i ∈ A, define

vs(f) = inf
i
{v(ai) + is}.
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One can show that for f in A, and t ≥ s > 0, then vt(f) ≥ vs(f) ≥ 0, and
vs(f) = ∞ if and only if f = 0. Define

v0(f) = lim
s→0

vs(f).

Proposition 1 ([FF] §1.4). For s ≥ 0, we have

vs(fg) = vs(f) + vs(g), vs(f + g) ≥ min{vs(f), vs(g)}

for all f, g ∈ A. And we have for f =
∑

i≥0[ai]π
i ∈ A,

v0(f) = inf
i
v(ai).

2.1. Relation with Newton polygons. Fix f ∈ A, let N (f) be the New-
ton polygon of f . Recall that N (f) is defined to be the nonnegative convex
piecewise-linear decreasing functions from R≥0 to R ∪ {∞} determined by
the boundary of the decreasing convex hull of the set {i, v(ai)}. For a con-
vex piecewise-linear decreasing function F from R≥0 to R ∪ {∞}, we say
x is a node of F if F(x) < ∞ and F is not differentiable at x, i.e., either
limt→x− F(t) = ∞ or ∂−F(x) 6= ∂+F(x), where ∂−F(x), ∂+F(x) are the
left and right differentials of F at x. Note that it is easy to see that if n is
a node of N (f) then N (f)(n) = v(xn).

For a convex piecewise-linear function F from R≥0 to R∪{∞} that is not
identically equal to ∞, we define its Legendre transform L (F) to be

L (F) : R≥0 → R ∪ {−∞}

t 7→ inf{F(x) + tx |x ∈ R≥0}

It is easy to see that L (F) is also piecewise-linear. And when F is nonneg-
ative and decreasing, we have the infimum in the above definition can be
taken over the set of nodes of F . In particular, fix a nonzero f ∈ A, we have

L (N (f))(t) = inf{N (f)(x) + tx |x ∈ R≥0}

= inf{N (f)(x) + tx |x ∈ N}

= vt(f).

Moreover, by studying the nodes of N (f), one can show:

Proposition 2 ([FF]§1.5). Fix a nonzero f in A, the function t 7→ vt(f) is
equal to the Legendre transform of N (f). More explicitly, let {ni} be the set
of nodes of N (f) and let −si be the slope of N (f) on the interval (ni, ni+1)
(with the convention that sm = 0 if there are only finitely many nodes and
nm is the maximal node). Then L (N (f)) is the unique piecewise-linear
function from R≥0 to R such that

(1) L (N (f))(0) = v0(f),
(2) L (N (f)) has slope ni+1 on the interval (si+1, si),
(3) L (N (f)) has slope n1 on the interval (s1,∞).
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Figure 1. N (f) and its Legendre transform L (N (f)).
L (N (f)) can be very complex when s → 0.

Corollary 1. Under the notions in Proposition 2, and further assume that
limi→∞ sini+1 = 0 or there are only finitely many nodes, then

N (f)(ni) = −sini + L (N (f))(si).

Proof. From last proposition or Figure 1, we have

N (f)(ni) =
∑

j≥i

sj(nj+1 − nj) + v0(f)

=

m−1∑

j≥i

sj(nj+1 − nj) + v0(f) if nm is the maximal node,

L (N (f))(si) =
∑

j≥i

(sj − sj+1)nj+1 + v0(f)

=
m−1∑

j≥i

(sj − sj+1)nj+1 + v0(f) if nm is the maximal node.

From Abel’s lemma on summation by parts, we have

m∑

j=i

sj(nj+1 − nj) = (smnm+1 − sini)−
m−1∑

j=i

(sj+1 − sj)nj+1.

When nm is the maximal node, the above equation make sense since sm = 0
under our convention, and the left hand side equals to N (f)(ni) − v0(f).
When there are infinitely many nodes, let m go to infinity, we get the for-
mula. �
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Remark 2. (1) For smooth functions, Legendre transform is related to
integration by part, and Corollary 1 can be regarded as a discrete
version of that.

(2) There are counterexamples that limi→∞ sini+1 = 0 is not satisfied.

3. construction of a chain of primes

Define p = {f ∈ A | v0(f) > 0} and m = {
∑

i≥0[ai]π
i | v(ai) > 0 for all i}.

It is easy to see p ⊂ m and both are prime ideals using Proposition 1.

Lemma 1. We have

m = {f | lim sup
t→0+

L (N (f))(t)

t
= ∞}.

Proof. We are going to show their compliments are the same. If f /∈ m,
then N (f) ≡ 0 for t ≫ 0, so N (f) has only finitely many nodes and slopes.
From Proposition 2, we have there is a neighborhood of 0 where L (N (f))

is linear and limt→0
L (N (f))(t)

t
converge to the slope.

On the other hand, from Proposition 2, we have L (N (f))(t)
t

= ni +
bi
t

on the interval (si, si−1), where bi is the y-intercepts of the linear func-
tions on each interval. Because L (N (f)) is concave, we have bi > 0.

lim supt→0+
L (N (f))(t)

t
≥ lim supi ni. Then if we assume lim supt→0+

L (N (f))(t)
t

to be finite, then lim supi ni is finite which means there can be only finite
many nodes and slopes. Besides, L (N (f))(0) = v0(f) has to be 0. We have
in this case there is a node n such that v(an) = v0(f) = 0, in particular, f
is not in m. �

Definition 1. For any real number λ ∈ (0, 1], let

pλ = {f | lim sup
t→0+

L (N (f))(t)

tλ
= ∞},

we have p1 = m by the previous lemma and we set p0 = p.

Proposition 3. All pλ defined as above are prime ideals, and if 1 ≥ µ >
λ ≥ 0, we have pλ ⊂ pµ.

Proof. Can be deduced easily from the fact L (N (f))(t) = vt(f) and proper-
ties in Proposition 1. We only show the compliments of pλ are multiplicative
closed here and leave the readers to check pλ are ideals and pλ ⊂ pµ.

Let f, g are two elements in A and not in pλ. Then we have both L (N (f))(t)
tλ

and L (N (g))(t)
tλ

have finite supremum limit at 0. Since we have

L (N (fg))(t)

tλ
=

L (N (f))(t)

tλ
+

L (N (g))(t)

tλ

from L (N (f))(t) = vt(f) and Proposition 1. So lim supt→0+
L (N (fg))(t)

tλ
can

not be infinity when t approaches to 0.
�
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4. A constructive proof of the main theorem

From the construction in the last section, to show there is an uncountable
chain of primes in A between p and m, it is enough to show for all λ < µ
between 0 and 1, we have pλ ( pµ.

For any real number a > 1, let Fa be the piecewise-linear function on
R≥0, such that Fa(i) =

∑
j≥i j

−a for all i ∈ N and has nodes at every
positive integer. Since the valuation group of R is non-discrete, we can find
a fa ∈ A, such that N (fa)(0) = ∞ and |N (fa)(i)−Fa(i)| < e−i for i ∈ N>0.
Moreover, we can choose fa so that N (fa) has nodes at all positive integers,
and let −si be the slope of N (fa) on the interval (i, i+1). Since si converge
to 0 as i goes to infinity, we have for any λ ∈ (0, 1),

(I) lim sup
t→0+

L (N (fa))(t)

tλ
≥ lim sup

i→∞

L (N (fa))(si)

sλi
.

On the other hand, for t ∈ [si+1, si], we have

L (N (fa))(t) ≤ L (N (fa))(si) and tλ ≥ sλi+1.

In particular,

(II) lim sup
t→0+

L (N (fa))(t)

tλ
≤ lim sup

i→∞

L (N (fa))(si)

sλi+1

.

For a > 1, we have the estimation:

|si − i−a| < 2e−i

and use a standard estimation of
∑

j≥i j
−a, we have

(a− 1)−1i1−a − e−i < N (fa)(i) < (a− 1)−1(i− 1)1−a + e−i.

In particular, one can use these to check limi→∞ si(i+1) = 0 and v0(fa) = 0.
So we can apply Corollary 1 to fa to get

(III) L (N (fa))(si) = isi +N (fa)(i).

Proposition 4. For all λ < µ between 0 and 1, choose a > 1 satisfying
a−1
a

= λ, then we have fa ∈ pµ but fa /∈ pλ.

Proof. From (I)(II)(III) and the above estimations, for any ν ∈ (0, 1), we
have

lim sup
i→∞

aiaν+1−a

a− 1
≤ lim sup

t→0+

L (N (fa))(t)

tν

and

lim sup
t→0+

L (N (fa))(t)

tν
≤ lim sup

i→∞

i1−a + (a− 1)−1(i− 1)1−a

(i+ 1)−aν
.

Let ν = λ and µ respectively, and the result follows from a direct computa-

tions of the two limits we use to bound lim supt→0+
L (N (fa))(t)

tν
. �
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The Frobenius structure. Recall A has an automorphism ϕ coming from
the Frobenius on R which will induce an automorphism ϕ∗ on Spec(A).

Proposition 5. The primes ideals {pλ}λ∈[0,1] are fixed by ϕ∗.

Proof. We have

vt(ϕ
−1(f)) = inf

i
{
1

p
v(ai) + it} =

1

p
inf
i
{v(ai) + ipt} =

1

p
vpt(f).

This is the same as

L (N (ϕ−1(f)))(t) =
1

p
L (N (f))(pt).

Then from Definition 1, we have ϕ−1(pλ) = pλ �
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