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A PRISMATIC APPROACH TO (¢, é)—MODULES AND F-CRYSTALS

HENG DU AND TONG LIU

ABSTRACT. We give a new construction of (¢, G)-modules using the theory of prisms
developed by Bhatt and Scholze. As an application, we give a new proof about the
equivalence between the category of prismatic F-crystals in finite locally free Op-modules
over (Ox ), and the category of lattices in crystalline representations of G, where K is
a complete discretely valued field of mixed characteristic with perfect residue field. We
also generalize this result to semi-stable representations using the absolute logarithmic
prismatic site defined by Koshikawa.
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1. INTRODUCTION

Let K be a complete discretely valued field of mixed characteristic with perfect residue
field k. Fix a separable closure of K of K and let Gx be the absolute Galois group of
K. The study of stable lattices in crystalline representations of G plays an important
role in number theory. For example, in many modularity lifting results, one wants to
understand liftings of mod p representations of the Galois group of a number field F' to
Galois representations over Z,-lattices with nice properties when restricted to the Galois
groups of F, for all places v of F. And a reasonable property at places over p is that
the representation of the Galois group of the local field is crystalline. There are various
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theories about characterizing Gi-stable lattices in crystalline representations, for example,
theory of strongly divisible lattices of Breuil(cf. [Bre02]), Wach modules(cf. [Wac96] and
[Ber04]), Kisin modules(cf. [Kis06]), Kisin-Ren’s theory(cf. [KR09]) and the theory of

~

(¢, G)-modules(cf. [Liul0]). The theories above state that one can describe lattices in
crystalline representations using certain linear algebraic data over certain commutative
rings A.

In a recent work of Bhatt-Scholze[BS21], they give a different characterization of the
category of lattices in crystalline representations. To explain their result, let Og be the
ring of integers in K, and they consider the absolute prismatic site (O ), which is defined
as the opposite category of all bounded prisms over Ok and equipped with the faithfully flat
topology. Let O) be the structure sheaf over (Ox )y, and T C O) be the ideal sheaf of the
Hodge-Tate divisor, then O, carries a p-action coming from the d-structures. A prismatic
F-crystal in finite locally free Op-modules over (O )y is defined as a crystal 9t over
(Ok)p in finite locally free Op-modules together with an isomorphism (¢*9))[1/Z)] ~
Mp[1/Zp]. The main result in [BS21] is the following:

Theorem 1.0.1. ([BS21, Theorem 1.2] and Theorem [{.1.10) There is an equivalence of
the category of prismatic F'-crystals in finite locally free Op-modules over (Ok)) and the
category of Galois stable lattices in crystalline representations of G .

To relate the result of Bhatt-Scholze with previous works of characterizing lattices in
crystalline representations using linear algebraic data, one should first realize the base
rings A used in those theories as certain prisms (A, I) over Ok . Then one should expect
that evaluating the prismatic F-crystals on (A, I') should recover the corresponding theory.
For example, in the theory of Kisin [Kis06], he uses the base ring A = & := W (k)[u] with
d(u) = 0, and if one fixes a uniformizer @ of Ok which is a zero of an Eisenstein polynomial
E € W(k)[u], then it is well-known that (A, (E)) is the so-called Breuil-Kisin prism which
is inside (Ox ). And Kisin was able to attach any lattice 7" in a crystalline representation
of Gk a finite free A-module together with an isomorphism (¢*9M)[1/E] ~ M[1/E]. Now,
if 91, is the prismatic F-crystal attaching to 7" under Theorem [L.0.T] then Bhatt-Scholze
show that the evaluation of 9, on (A, (E)) recovers Kisin’s theory (cf. Theorem 1.3 of
loc.cit.).

The first question answered in this paper is whether and how one can recover the theory

of (¢, G)-modules from the prismatic F-crystals characterization of Bhatt-Scholze. The cat-
egory of (¢, G)—modules, roughly speaking, consisting of pairs (9, pom), é), where (9, o)
is a Kisin module, and G is a Gx-action on 931@67@7% that commutes with gy and satisfying
some additional properties. Here Risa subring of A;,¢ that is stable under ¢ and G, where
Aipr = W(O%) introduced by Fontaine, and there is a surjection 6 : Ay := W(O%) — (/’)%
However, the period ring R introduced by Liu is not known to be p-adically complete or
not, and it is even harder to determine whether it can be shown up as a prism. So in
order to relate the theory of (¢, é)-modules with the category of prismatic F-crystals of
Bhatt-Scholze, we develop a theory of prismatic (¢, G’)—modules, in which theory the ring

R is replaced by Agf ), a subring of A;,¢ constructed as certain prismatic envelope in §2.31

The first result of this paper is about the theory of prismatic (¢, @)—modules. We can
show similar to the classical (¢, G)—module theory, there is an equivalence between the
category of prismatic (¢, G)—modules and lattices in semi-stable representations of Gg.

Moreover, (Ag), (E)) is indeed a prism in (Og)y, it admits a map (4, (E)) — (Ag), (E))
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of prisms, and carries an action of Gx. For a Gg-stable lattice T in a crystalline rep-
resentation, if 91, is the prismatic F-crystal attaches to T', then evaluating 9t) on the

morphism (4, (E)) — (Aéf), (E)) recovers the prismatic (p, G)-module attaches to T. We

can also show the map Aéf) — Ainr 5 Ay factor through 7%, so the theory of prismatic
(¢, G’)—modules recovers the classical theory. The ring Aéf ) is simpler than R in many ways,
although it is still very complicated and non-noetherian, it is more explicitly described and
is p-adic complete. In particular, our new theory can be used to fix the gap [Liu07] indicated
by [Gao21l, Appendix B].

The second attempt made in this paper is to provide a new approach to the equivalence
between the category of prismatic F-crystals and the category of lattices in crystalline
representation established by Bhatt and Scholze as in Theorem [[LO.Il That is, using the
known equivalence between lattices in semi-stable representations and prismatic (i, G‘)—
modules, we will establish a functor from the category of prismatic (¢, é)-modules that
correspond to crystalline representations to prismatic F-crystals, and show this functor is
an equivalence.

To be more precise, let T be a G g-stable lattice in a crystalline representation with
positive Hodge-Tate weights, let (A, E) be the Breuil-Kisin prism, and let (A?), (E)) (resp.
(A®) (E))) be the self-product (self-triple-product) of (4, (E)) in (O) A- Then evaluating

prismatic F-crystals on the diagram (A, (E)) a, (A? (E)) & (A, (E)) induces an equiv-
alence of the category of prismatic F-crystals and Kisin modules with descent data, that is
pairs (9, o), f) where (9, pon) is a Kisin module and

fMee, AY ~Mee,;, AP

is an isomorphism of A-modules that is compatible with ¢ and satisfies cocycle condition
over AG), Using this, to establish an equivalence between prismatic (¢, G’)—modules that
correspond to crystalline representations and prismatic F-crystals, it remains to find certain
correspondence between the G-action and the descent isomorphism f. We will show the
descent isomorphism can be obtained by taking the Gg-action of the (i, a)-module at a
specific element. To be more precise, fix a Kummer tower Ko, = (Jo7; K (w,) used in the
theory of Kisin, where {w,, },, is a compatible system of p™-th roots of wy = w, and let L be
the normalization of K, inside K. Choose 7 € G := Gal(L/K) satisfying 7(w,,) = (pnwn
such that {(,n} is a compatible system of primitive p"-th roots of 1, then our slogan is
that the descent isomorphism corresponds to the 7-action on the Kisin module 91 inside
TV ® Ajns where 7 € G is any lifting of 7 under the quotient map Gx — G.

To sketch our idea, first we have the maps u — [@’] and v — [r(w@”)] defines two
morphisms of (A, (E)) to (Ajs, Ker8). By the universal property of (A, (E)), these two
maps induce a morphism (A®) (E)) — (Ajus, Kerf). We can show this map is injective,
and the embedding factors through Agf), which is the base ring used in our prismatic (¢, é)-
module theory. That is, we have a chain of subrings A ¢ A® ¢ Agf) of A;n¢, such that
7(A) is also contained in A®). We can show a prismatic (¢, é)—module corresponds to a
crystalline representation if and only if the coefficients of the 7-action on 9 in TV ® Aj.¢
lie inside A®. And once this is proved, the 7-action will induce an isomorphism:

frMes, A® 2 Meg AP,

We will see f, gives the descent isomorphism. As a result, we give a new proof for Theo-

rem [L.OT]
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An advantage of our approach is that our new method can be easily generalized to the

semi-stable representations cases. It turns out that the prism (Ag ), (E)) is isomorphic to
the self-coproduct of (A, (E)) in the category of logarithmic prisms over Ok defined by
Koshikawa[Kos21]. Using the equivalence between prismatic (¢, G’)—modules and lattices
in semi-stable representations of Gx. we will show in §5l the following generalization of

Theorem [L.OT] for semi-stable representations.

Theorem 1.0.2. (Theorem [5.0.18) There is an equivalence of the category of prismatic
F-crystals in finite locally free O)-modules over (OK)Alog and the category of Galois stable

lattices in semi-stable representations of G .

Another interesting and natural question one can ask is whether Theorem [L.O.] and
Theorem can accommodate more general base rings. Motivated by our strategy, it
seems to us that the answer should be affirmative if a suitable theory of (¢, é)—module can
accommodate more general base rings, for example, if the base ring R is a complete DVR
with imperfect residue field that admits a finite p-basis. We are working on such direction
and hopefully will report our progress in the future. So part of our paper, for example, §

do allow specific general base rings.

Acknowledgments. It is our pleasure to thank Hui Gao, Wansu Kim, Teruhisa Koshikawa,
Zeyu Liu, Yong Suk Moon, Peter Scholze, Koji Shimizu, Yupeng Wang, Zhiyou Wu and
Min Yu for comments and conversations during the preparation of this paper.

2. RING STRUCTURES ON CERTAIN PRISMATIC ENVELOPE

Recall that K is a completed discrete valuation field in mix characteristic (0,p) with
ring of integers of Ok and prefect residue field k. Write W = W (k). Let w € Ok be a
uniformizer and E = E(u) € W{u| be the Eisenstein polynomial of w. Let C, be the p-adic
completion of K, and Oc, be the ring of integers. Let Ry be a W (k)-algebra which admits
Frobenius lift ¢ : Ry — Rop. Set R := Ro @) Ox. We make the following assumptions
for Ry and R:

(1) Both Ry and R are p-adically complete integral domains, and Ry/pRy = R/wR is

an integral domain;

(2) Let Ry =W (ty,... . tm). Ry is a Ro-formally étale algebra with p-adic topology;

(3) Ry admits a Frobenius lift such that Ry — Ry defined in (2) is ¢-equivalent.

(4) The k-algebra Ry/pRy has finite p-basis in the sense of [dJ95, Definition 1.1.1].
Our main example is Ry = Ry = W (k). We will not use the finite p-basis assumption until
§4. The following are other examples of Ry:

Ezample 2.0.1. (1) Ry = W(k)(tY, ... tE1) with o(t;) = ¢

(2) Ry = W (k)[t] with ¢(t) =t or (14 ¢)P — 1.

(3) Ry is an unramified complete DVR with imperfect field x with finite p-basis. See

g6l for more discussions.

We reserve ;(-) to denote i-th divided power.

2.1. Construction of A?). Let A =6 = Ry[u] and extend ¢ : A — A by o(u) = uP. Tt
is well-known that (A, F) is a prism and we can define a surjection 6 : A — R via u — w.
We have Kerf = (E(u)). Let A := Ro[u] and define ¢ and 6 : A - R := Og ®w Ro
similarly. We set

A®2 = A[[y — 2,851 —11,.--,8m — tm]], A®3 = A[[y - T, W —T, {Si — i, — ti}j:l,...,m]]-
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Note that A2 (resp. A®3) is A ®z, Afresp. A ®z, A ®z, A)-algebra by v ® 1 — z,
l®ur—yand 1@t — s (resp. 1®@1®@u+— wand 1 ®1®¢t; — r;). So in this way,
we can extend Frobenius ¢ of A, which is compatible with that on A to A®2 and A®3,
Set J?) = (E,y —x,{si — ti}i=1,..m) C A®2 and JO) = (Eyy — z,w — x,{s; — tj,r; —
titi=1,..m) C A3, Clearly, we have A@)i/,](i) ~ R for i = 2,3. And we have A@’Q/(p, E)
(resp. A@’?’/(p, E)) is a formal power series ring over the variables §—2, {5;—t; }i=1,.._m (resp.
§—T,0—T,{8 — ti,7 — titi=1,..m), so (A, (E)) — (A@, J@) satisfies the requirements
of in [BS22, Prop. 3.13], and we can construct the prismatic envelope with respect to this
map, which will be denoted by A®_ More precisely, A ~ ABI {%}2, here {-}{ means
freely adjoining elements in the category of (p, E(u))-completed J-A-algebras. We will see
AW j =2 3 are the self product and triple product of A in category X A in §411

2.2. The ring A,(ﬁ&x. Now we set tg = x, sop = y and

Si—iandZO_Z_y—x_So—to
" E E

Zj =

Note that A® are A-algebras via u > z.

Definition 2.2.1. Let Opyax be the p-adic completion of the A-subalgebra of A[%] generated
byp 'E. And let Ag&x be the p-adic completion of the A-subalgebra of Alz;, %;j =0,...,m]
generated by p~*E and {vi(zj)}i>1,j=o0....m-

We first note that Ag&x is an A@—algebra via (sj —t;) = Ez;,j = 0,...,m. Write
L A®2 Ag&x for the structure map. By construction, it is easy to see that AEI%;X C

Ro[%][[E, zj,j =0,...,m]. In particular, Ag&x is a domain and any element b € AEI%;X can

o [oe) m
be uniquely written as > -+ > by i 11 Yi; (2j) with by i, € Omax and by, 5, — 0
i0=0  im=0 j=0
p-adically when ig+ - - - 4+ 4, — 00. Our next aim is to define ¢ on Ag&x. For this, we need
a little preparation.

Lemma 2.2.2. c:= @ € Omax and ¢ € Opax.

Proof. We have A is a é-ring, and F is a distinguished element, so in particular
¢(E)/p=co+ EV/p

o —1 i
where ¢ = §(E) € A*. So ¢ = ¢(E)/p € Omax, and ¢t =c5* 3 % € Omax- O
i=0

Now we define ¢(z) = p(29) = % and ¢(z;) = %. Since
ool gy —ab (@B e & p—i Z<P>
)=F———=¢c ——=¢ ——F+—— =¢ 2P E2) ) /p
o)=L - - >ariwey (1)

P
=t E a; 2",
i=1
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where a; € W(k;)[[m]][%] C Omax C A2, and c is a unit in Opay, we have o(z) € AR,
Then

mlp@) = B = 2t 3 gty
=1
2)

is in A2 The argument for ¢(z;) for j > 1 need a little more details. Note that ¢(t;) =
¢+ pd(t;) with o(t;) € Ry by our assumptions. Tt is clear that §(s;) — d(t;) = (s; — tj));
with \; € A®2_ Using that (sj —t;) = Ezj, so

_tp
) =c! % z
(1) o(25) = ( D L+ E iAj)

The same argument as that for ¢(zg) also shows that v,(z;) € Ag;x, for j=1,.

Since any element b € AP, can be uniquely written as z Z iy oo H %](zj)
10=0 im=0 j

with biy. i, € Omax and by, . — 0 p-adically when ¢g + -+ + i, — 00, thls allows
(2)

to extend Frobenius map ¢ on A to a ring map ¢ : Amax — AEI%;X by sending u — uP,

zZ %, o(z) = %, and 7;(z;) — 7i(¢(z;)) as the above.

Jim,

Remark 2.2.3. The ring map ¢ : Aﬁﬁ&x — Aﬁﬁ&x is not a Frobenius lift of Ag&x/p because
o(E/p) — (E/p)P & pAR),. In particular, AL is not a d-ring.

Recall that A&?&X is an A®2-algebra via map ¢ : A®2 Af{‘i&x. The above construction of
Frobenius ¢ on Afﬁ&x is obviously compatible with «¢.

Our next goal is to show that ¢ induces a map A@) Ag&x so that A® is a subring of

Ag&x which is compatible with p-structures and filtration. We need a little preparation.
Write 3, = §"(z) with d9(2) = z = 30, and Ay = W (k)[u].
Lemma 2.2.4. »
(5”(EZ) = bnﬁn + Z az('n)ﬁiz—l'
i=0
where al(-n) € Aol30,---,3n—2] so that a,(,") € Ay and for 0 <i < p—1 each monomials of
(n)

a; ' contains a factor 5? for some 0 < j < n — 2. Furthermore, by,11 = pd(b,) + bh, and

by = pd(FE) + EP.
Proof. Given f € Ag[z1,...,xn], if each monomials of f contains xl for some j and [ > p

then we call f good. For example, f = z{zg + 2x1x2+ So we need to show that a( " ¢
Aol30,- - ,3n—2] is good. Before making induction on n, we discuss some propertles of
good polynomial. It is clear that the set of good polynomials is closed under addition and
multiplications. Note that
i _ Lo o i 1 i pi : =)\
@ 06 = el ) = 3 (s ) - o) = 3 ()0l
j=1

In particular, given an f € Aofso, ... 3ml, 3(30f) = [P8(30n) + 30 (f) + pS(3h)3(f) is a
good polynomial in Af30,...,3m+1]. Using the fact that d(a + b) = d6(a) + 6(b) + F(a,b)

where FI(X,Y) = %(Xp +YP - (X +Y)P) = Z (7)/pX'YP~", together with the above
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argument of §(37f), it is not hard to show that if g € Ag[30,...,3m] is good then d(g) €
AOBO) I 73m75m+1] is also gOOd'
Now we make induction on n. When n = 1, we have
§(Ez) = EP31 + 2PS(E) + pé(E)s1 = (pd(E) + EP)31 + 0(E)2F

Then by = pdé(E) + EP, a;g,l) =4(F) € AJ and agl) =0 for 1 <i <p—1 are required. Now
assume the formula is correct for n, then

P P P
§HL(Ez) = 8(bngn + > al5i 1) = 6(buzn) + 60> 35 1) + Flbusn, > a5t 1)),
i=0 7=0 =0

Clearly, F'(bp3n, z a 3n 1)) = i with a( n) being good. An easy induction shows

p o
that 5(2 ai 3;_1) = Eé(aﬁ 3L 1) + f with f € Agl30,---,3n-1] being good. Since

B s52) = (@ P850 ) G2 +90(55 )0, by sing Formla o 6(5,_,) in
@) and that ag " is good implies that §(a; (n )) is also good we conclude that for 0 < i < p—1,

Z 6 3n 1 Z alﬁn

1=0

)

with a; € Ap[30,- - ,3n—1] being good polynomials. Using that aén € A, we compute that

b .
(5(a§,n)3n )= Z:OBZQ)% with 8, € pAg and B € Aol30, - - - ,3n—1] being good for 1 < j <p—1.

Now we only need to analyze 6(b,3,), which is 6(b,)3h + Whine1 + pS(bn)jnr1. SO byr1 =
pd(by)+bh and aénﬂ) = 8(by,) + Bp. Since d(by,) € A, we see that a(nH) 8(bn)+ By € AS
as required. O

Let A® = A@Q[Zj]g = A@’z[é”(zj),n > 0,j = 0,...,m] and natural map « : A®
A(z)[%] (we do not know « is injective at this moment).

Lemma 2.2.5. Fori >0 and j =0,1,...,d, there exists fi;(X) € A@)[X] such that, as

elements ofA [5] via o : A® A(Q)[p],

%i(25) = fij(%)-

ZP

m and ¥

n

o 4. It suffices to

Proof. Write z = z; for simplicity, and let J(z) = =J07%
—_———
n

show that for each n > 1, we have 3"(z) = fn(%) inside //l(vz)[%] for some f,(X) € @[X]

For an element z € A[§%(2)];>0, we say that z has d-order < nifx € > 0<j<n A[{6(2) Yo<i<n] ¥ (2),

namely, if  can be written as a sum of monomials such that each term is divisible by §7(2)
for some 0 < j < n.
We claim that the following two equations hold for each n > 1:

(1) We have

(3) 5(2) = vF"(2) + Pn<§> n E?pdnén(z)
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for some v, € A%, d,, € A, and P,(X) € (A[6'(2)]i>0)[X] such that each coefficient
of P,(X) has d-order <n — 1.
(2) We have

@ ) = a2+ Qo ()

for some pp—1 € A% and Q,—1(X) € (A[6°(2)]i>0)[X] such that each coefficient of
Qn—1(X) has d-order < n — 1.

We prove claims (1) and (2) by induction. For n = 1, since
d(Ez) = 2P0(E) + (pd(E) + EP)o(z)
and 6(E) € 6%, we have
_ EP

3(z) = —3(2) + o(B) ™! ) ) (2)-

By easy induction, we also have ¢°(Ez) € (Ez)A for each i > 1. So claim (1) holds. Claim
(2) holds for n =1 trivially with Qy(X) = 0.

Suppose that claims (1) and (2) hold for 1 < n < m. We will verify claims (1) and (2)
for n = m + 1. We first consider claim (2). Since each coefficient of P,,(X) has J-order
<m-1, % = pp_l(%)p, and Equations (3] and (4]) hold for 1 < n < m, applying 7(-) to
Equation (@) for n = m yields

() = b ) + @ ()

for some Q,,(X) € (&[8%(2)];>0)[X] such that each coefficient of Q,,(X) has J-order < m.
This proves the claim (2) for n = m + 1.

We now consider claim (1) for n = m + 1. By the above Lemma for n = m + 1 and that
by, = pay, + B EP for some «a;, € A* and 3, € A (via an easy induction on n), we have

5m+1 (EZ)

Umy10™ L (2) =
p

m m 5 (Sm 1 m m
S — p(; +1() (+1’75 pzag +1) (5

As noted above, we have 6™ (Ez) € (Fz)A. Furthermore, by the condition on almt ),

the last term . 0 §m+1)

p(él( z))P for some 0 <[ < m — 1. Thus, by applying Equations (8] and () for 1 <n < m,

we see that claim (1) also holds for n = m + 1 with vp,41 = m1+1a,(, ),um and dy,11

<.

(6™(2))7 is a linear combination of terms involving 7(d'(z)) =

a;llﬂ Bm+1. This completes the induction and prove the lemma, . O
0

Remark 2.2.6. In the above proof, by equation (@), we even have for each i,j >
7 (87 (2)) = f(%) for some f € A@[X].

An easy induction by (B]) implies that a(6™(z)) € € A®2 {Vi(25) biz0,5=1,...m> %] C Ag&x,

which satisfies equations in Lemma [2.2.4] by replacing 3n by «(d"(z)) inside A&?&X It is
(2)

clear that ¢ is still Frobenius compatible (because both A®2 and Apax are domains). Since

E = p;, ¢ is a continuous for (p, E')-topology on A( ) and p-topology on Afngx. Finally, we

2)

construct a ring map ¢ : A2 AI(nax so that ¢ is compatible with Frobenius.
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Our next goal is to show that ¢ is injective. Define Fil* Afngx[ ] = EZAEH;?\X[ ]. For any

subring B C Ag&x[ ], set

Fil'! B := BN Fil' A® BN EA2)

max[ ] max[ ]
Let D, be the p-adic completion of R[v;(2;),i > 0;j =0,...,m].

Proposition 2.2.7. (1) EEE)/E = R[i(2),1>0;5=0,...,m].

(2) A®/E~D..

(3) v is mjectwe

(4) Fil' A® = EA®),

(5) A® are flat over A fori=2,3.
Proof. (1) By definition, A@) — A@[z](.n),n >0;j=0,...,m]/J where mod J is equiv-
alent the following relations (note that zp = 2): Fz = (x —y),Ez; = sj — t;,0(2 (n)) =

n+1 n n n n . P —yP T

zj(. ) (Ez) = ™y — xz,é (Ezj) = 6™(sj — tj). Since §(z — y) = % and
8(sj—t;) = “D(Sj_tj);(sj_tj) , it is easy to prove by induction that 6" (z —y) and 6™ (s; —t;)
always contains a factor (r—y), s;—t; and hence 0" (z—y),d(sj—t;) =0 mod E. Therefore
0"(Ezj) =0 mod E. By Lemma 2.2.4] we see that

P
punz](-") =— Zagn)(z](-n_l))i mod E and pz](-l) = zf mod F
i=0

- agn) mod F and p, = 5(;”) mod E € Of. Using that a},") € A, and

i < p—1 are good in the sense that they contains factor of (z (l))p for some

l=0,. — 2, we easily see by induction that A®) /E = Ry"(zj),n > 0;5 =0,...,m].
But it is Well known that R[y"(z;),n > 0;j =0,...,m|] = R[yn(z]) n>0;7=0,. ]

Now we show that the natural map ¢ : A® Ag;x[ | induced by 04(5”(2])) is injec-

tive. Note that A® is the direct limit of EE) = A®2[{5’( i) }iz1,...m,j=0,...m]. A similar

argument similar as above show that A® ),/ E injects to AE [ |/JE =D, [ ]. Since A®),,

is E-separate and Aﬁnix is a domain, this implies that A( ),, injects to Asn&)lx[%]. So ;l(?)

(2)

injects to Amax Vvia ¢.

(2) Since A® is (p, E)-completion of A®) [, we have a natural map from 7 : AP /E - D,.
The surjectivity of z is straightforward ai//l@) is also p-complete. To see injectivity, given an
sequence f, so that f,.1— fn € (p, E)"A® and f,, = Eg, for all n, we have to show that g,
is a convergent sequence in A®). Since E(gny1—gn) = S0 oP'E"'h; with h; € A®?). Then
E|p"h,,. Since A®) )/E has no p-torsion, we have E|h,, and write h,, = Eh!,. Since A is a

1 . .
domain as it is inside the fraction field of A®2, we see that g, 11—gn = p"h,,+ z ptEM i,
i=0
Hence g, converges in A® as required.

1Indeed, AP s derived (p, E)-completion. Since ;1\(2/)/E is Zp-flat, then derived completion coincides
with the classical completion, which is used here.
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(3) It is clear that Agax[ |/E ~ D, [ ]. So the map ¢ mod E(u) induces an injection

D, — DZ[E]' So for any x € Ker(r), we see that = Ea for some a € A®). As AR, s
E-torsion free and A is E-complete, we see that z = 0 as required.

(4 ) By the definition of Fil' A®), we see that EA® c Fil' A®) and A®)/Fil' A® injects
to Amax[ |JE =D, [ ]. But we have seen that A®?) /E = D, injects to D,. Then Fil' A®) =
EA®).

(5) Both A® and A®) are obtained by the construction of [BS22, Proposition 3.13],

which implies that they are (p, E)-complete flat over A. Since A is Noetherian, by [Sta20),
Tag 0912], we have both A®) and A®) are A-flat. O

Corollary 2.2.8. (1) Fil! A®) = E'A?),
(2) A® are bounded prisms for i =2,3.

Proof. These follow that A?)/EA®?) ~ D, which is Z,-flat. For (2), we have A®) and A®)
are (p, E)-complete flat over A, so boundedness follows from (2) in [BS22, Lemma 3.7]. O

Lemma 2.2.9. A® is a closed subset inside Af{‘i&x

Proof. We need to show the following statement: Given x € A(z), if x = p"y with y €
Ag&x then z = Zp" iRty with z; € A() Indeed, since A JE ~ Ag&X/Fill, there

=

eXists xo,wl € A() so that © = p"xy + Fwy;. Then Fwi € p"Agzlx. Write Fw; =
p" E Z fij7i(25), we see that fi; = > o aijlg—ll € Fil' Opax. So it is easy to see that
1=0j= -
p"E~ 1fij € p" 'Omax and then w; = p"'z; with z; € Aﬁﬁ&x. Then we may repeat the
n o —
above argument to wy, and finally x = > p" ' E'z; with z; € A®) as required. O
i=0
(2)

Now we realize A®?) as a subring of Apmax via t. We need to introduce some auxiliary
rings. By the description of elements in Aﬁﬁ&x, we deﬁne S be the subring of Ag&x as follow

Py i = (L) | 0 € 4@,

>0

And when p = 2, we define S = A(2)[[ET4]] simiarly. We will have ScSc Aﬁﬁ&x. Viewing
S and S as subrings of Ag&x, we give them the filtration induced from Ag&x. The following
lemma is crucial for later applications and we thank Yong Suk Moon for many useful

comments to improve many details in the proof.

Lemma 2.2.10. Fiz h € N, then we have

(1) We have @(Agngx) cSc Aﬁngx, and when p = 2, we have gp(g) cSc g;
(2) x € Fil" § S if and only if x can be written as

with a; € A?). N N
(3) when p > 2, there is a hg > h such that o(Fil™S) c A®) + EFMFiII™T S for all
m > ho,’
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(4) when p =2, then x € Fil" S S if and only if x can be written as
Ei
-yl
i>h 2l4]

with a; € A?; R R
(5) when p = 2, there is a hg > h such that o(Fil™S) c A®) + EFMFiII™ S for all
m > hg.

Proof. For (1), any a € Aggx, we can write
[ee) [e'e) [ee) E I m
0= 3 Y s () Tl
i0=0  im=01=0 P/ i
where a;,,.. 4,1 € A and a;,.. ;.. 1 — 0 p-adically when Zj ij +1 — oo. Thanks for Lemma
1 ~
2.2.3] we see that bi, i, 1 = ¢ ((%) IT5%0 %3(%‘)) € 5. S0 p(a) = 3 ig,...pi 1Dig,.sim.l

converges in S.
For the claim in (1) for p = 2, we have 4,0(%2) = (B2 +20)2)2 = %4 + 2b for some
b,b' € A. And for a =3}, a,(b;)p) € S, we have

4 .
Zgo (a;) ZCU 2b)" 7 ( Z Zgo (as)eqi( (20)"~ (%)]

>0 >0 7>0 \ i=j

for some ¢;; € Z. So we have ¢(a) € S.
For (2), the if part is trivial. For the other direction, any = € Fil* S, we have

as element in S. And if we also have x € Fil® A,(ﬁ;x[ | = EhAgzix[ ], this implies for

ap = Yy, a Lij is in Fil® A(2)[ ]. This implies pLZJaO € Fil" A® = FPA®). That is
0<i<h PP

ap =p “L3ERp for some b € A®). So x is of the given form. The proof for (4) is similar.
For (3), we have by (2), x € Fil™ S, x can be written as

And use the fact ¢(E) = EP + pb for some b € A®), we have

i

CZ] N i N hy

i>m j=0 i>m > | J p Ly i>mo<j<| 4 J p

with bij e A®).
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. ; b;; EPG—3) pi
In particular, we have 37>, 370 i KEEHR 4
= I1=Z1ly pLEJ

to find hg such that whenever m > hg, ¢ > mand 0 < j < L%J, we have

is inside A®). To prove (3), it is amount

DS —wa”( " e 3

iZmo<j<| 1]

The claim follows if we can find kg > h such that w € Sand p(i—j)—h > m+1 for

p P
allm > ho, i >mand 0 < j <[] |, That is Lp N4> |2 | and p(i—j)—h > m+1 for
all 4, ,m in this range. And solve this we have it is enough to choose hg > max{h, 2 g)h(;i)gl 1,

which is valid for p > 2. R
Statement in (5) is similar to (3). Any = € Fil™ S,  can be written as

El
xr = Z A ——
i>m 2l4]

We have p(E) = E? + 2b for some b € A®) | so
: p2(i—j)—h9j

¢ bi; B2 b;
ZZso(ai)chT_ZZ JE - +Z > B e

i>m 7=0 7,>m]>|_ | z>m0<]<|_ |

Similar to the argument in (3), it is amount to find hg such that whenever m > hg, i > m
and 0 < j < [£], we have [(i —j) — %]+ > |4] and 2(i — j) —h > m + 1. It is enough to
choose hg > 2(h + 2). O

If A is a ring then we denote by My(A) the set of d x d-matrices with entries in A.

Proposition 2.2.11. Let Y € Md(Agle) so that E"Y = Bp(Y)C with B and C in
Mg(A®) then Y is in Mg(A®[3]).

Proof. First, we claim that there is a constant s only depends on h, such that the entries
of p*Y is in S. By (1) of Lemma 2210, entries of E"Y are in S. So for each entry a of Y,
00 ) .
we can write Ela = 3 ai% with a; € A®). Tt is clear that E"p'a = o' + E" 3" a; E; "
i=0 i>h
so that o’ € A®). Therefore, a’ € Fil" A® = EMA®) by Corollary ZZ8. So write a/ = E"b,
we have pPha = b + > a; Ei:; " In particular, we see that p?*a € S, this proves our claim.
i>h
When p = 2, then we may repeat the above argument and we can assume p°Y is in My(S).
Let R =S when p > 2 and R = S when p = 2, then we may assume Y is inside My(R).
Then we claim there is another constant r only depends on h, such that for each entry a of
m

Y, there is a sequence {b;};>1 in A® such that we have a — S bE € Fil™*! R. Note that

i=0
m .
once this is known, we will have Y b; E* converges to an element b in A® anda—b=0
i=0

since it is in Fil"™* R for all m € N.
So it remains to show our claim. When p > 2, let hg be the integer in (3) of Lemma[2.2.10]
then it is easy to show there is a constant r only depends on hg (so only on h) and sequence
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{bi}?il such that for each entry a of Y/ := p"Y, we have
ho
a—Y bE €Fil" R,
i=0
Now we show our claim by induction, assume for each entry a in Y, there is a sequence
{b;}1", such that,

m
a—Y bE €Fil" R,
i=0
for some m > hg. So we can write Y/ as

Z }/ZEZ + Zm—l—la

=0
with V; € Mg(A®) and Z,+1 € My(Fil™ ™! R). Writing X, = S.1° ViE?, then EM"Y’ =
Bo(Y')C implies

E"Zpi1 = Bo(Xpn)C — E"X,, + Bo(Zyi1)C.

By (3) in Lemma 210, we have Bo(Zyy1)C = Apy1 + E'Bpy1, with A, € Mg(A®)
and By, 1 € My(Fil"™*2 R). One can check Bo(X,,,)C—E" X+ Apy1 € My(Film+ AQ),
so Bo(X,,)C — E"X,, + Ay = EM™HY, ) with Yy € Mg(A®). And we have
Y — Zg’:gl Y;E' = By,11 € Mg(Fil™*2 R) as required.

At last when p = 2. We know we can assume Y is inside Md(§ ). Then repeat the above
arguments by replacing (3) in Lemma 2210 with (5), we can also prove our claim. O

2.3. The ring A( ). We assume that R = Ok in the following two subsections. For our
later use for semi-stable representations, we construct Aéf) as the following: Define ¢ on
W (k)[z, 9] by p(z) = 2F and ¢(y) = (1+9)P—1 and set w = £. Set Ag) = W(k)[z, p]{w}5
where A means (p, E)-completion. Similarly, we define Agf) = W(k)[x, 0,5]]{%, 415, with
the d-structure on W (k)[z, 9, 3] given by d(z) =0, p(n) = (y+1)P—1 and p(3) = (3+1)P—1.

Define A2 to be the p-adic completion of W (k)[z, v][w, %, vi(w),i > 0]. It is clear that

st,max
o0
for any f € Ast)max can be written uniquely a = Y fiv;(w) with f; € Opax and f; — 0
=0
p-adically. For any subring B C Agt)max[p], we set Fil' B := BN E’Agt)max[ | and D,, the

p-adic completion of Og[y;(w),i > 0].

It turns out that A®) and Agf ) share almost the same properties by replacing z with w.
So we summarize all these properties in the following:

(2)

st,max"

Proposition 2.3.1. (1) One can extend Froebnius from A to A
(2) (2)

(2) There exists an embedding v : Ay’ — A max S0 that v commutes with Frobenius.
(3) A2 N E@Ai?maxm BAY.

(4) AL /B = Dy = A/ Fl' AD

(5) Agt is closed in Aét)max

(6) Agf and Agt) are flat over A, and in particular they are bounded.

(7) Proposition[2.2.11 holds by replacing AP, and A® by Ag ) and Agt)max respectively.
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Proof. All previous proof applies by noting the following difference

1. /p) . pol p EPwP
2y 12 i _ 1 1 —1
B¢ pz<i>n ‘ ;U <i>/p+c p

i=1

Also 6(y) = E n’ ( ) /p always contains y-factor and this is a key input for the analogy of

Lemma WM

For the boundedness of Agt), we have

W(k)[x,9,5]/(p, E) = (O /p)[D3]
@) ;

so {v,3} form a (p, E)-complete regular sequence, and by [BS22 Proposition 3.13], Ay’ is
also A-flat, and this implies A(t) is bounded by (2) in Lemma 3.7 of loc.cit.. O

Note that A®2 = W(k)[z,y] € W(k)[z,v] via y = 2(y + 1) or equivalently y = £ — 1.
It is clear that this inclusion is a map of d-rings. By the universal property of prismatic

(2)

envelope to construct A, the inclusion induces a map of prisms o : A® — Agt

. Since
z = zw, we easily see that AQ, Ag)max So A®) ¢ Ag) via . We will see that A(?)

(resp. A( )) is the self product of A in category X, (resp. (X, MX)AIOg) in §4.1] and §4l

Then the existence of o : A®) — Aéf) can be explained by the universal property of self
product. See §0l for details.

To simplify our notation, let Bs(t2 ) (resp. Bs(f ), B®_ BG)) be the p-adic completion of
ADF) Gesp. ADF), AD[L), AO[)).
Lemma 2.3.2. (1) AY ¢ BY ¢ BY[L] and A® ¢ B® ¢ BOL] for i =2,3.

2) B n AP = AD and B 0 AQ)[L] = 4@

Proof. Here we only prove the case A while the proofs for Ag), A®) and A(t) are almost
the same.

By Proposition 2227, A®) is a subring of Aﬁﬁ&x C Ko[z,z]. So A® and hence A(2)[%]
is an integral domain. Then B®@ has no p-torsion: Assume that z € B® so that pz = 0.
Suppose that =, € A(2)[%] so that x = x,, mod p". Then pz,, =0 mod p”A(z)[%]. Since
A(Q)[%] is domain, z,, = 0 mod p"~!. Hence z = 0. As B® has no p-torsion, we see
that B® ¢ B(2)[%]. To see the natural map A — B® is injective, it suffices to show
that A® /pA®) injects to A(z)/pA(z)[%] = B®/pB®. Clearly, this is equivalent to that
A(2)/pA(2) has no u-torsion. Note that A®?) is obtained by taking prismatic envelope of
A®2 — W (k)[x, z] for the ideal I = (z). As mentioned before, we can apply [BS22, Prop.
3.13] to our situation. So A® is flat over A and hence A® /pA®? has no u-torsion as

desired.

Now we can regard B and A® [%] as subrings of B(z)[%]. In particular, B® N A(2)[%]
makes sense and contains A). For any z € B N A®) [%], if ¢ A® but pr € A®. Then
the image of y = pz inside A®) /pA®) is nonzero but the image of y in B /pB®) is zero.
This contradicts to that A(Q)/ pA® injects to BX) /pB (2). So such z can not exist and we
have B®) 0 A®) [%] = A® as required. O

y BS22, Lem. 3.9], any prism (B, J) admits its perfection (B, J)perf = (Bperfs J Bpert)-
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Remark 2.3.3. In [BS22], the underlying 6-ring of (B, J)pert is denoted by (Bs, JBs ), and
Bpert is defined as the direct perfection of B in the category of d-rings. In this paper, we
write Bperf as the (p, J)-adic completion of colimy, B, which also coincides with the derived
(p, I)-completion of colimy,B (cf. Lemma 3.9 of loc.cit.).

Lemma 2.3.4. We have (A(z))porf and (Ag))perf are A-flat.

Proof. We have seen that A®?) is A-flat via i;. And it is easy to see ¢ on A is flat. Since
11 is a 0-map, so we have ™ oi; = i1 0 ™ which is flat. So colim¢A(2) is flat over A. In
particular, we will have Aperf is (p, E)-complete flat over A. Now since A is Noetherian, by

[Sta20, Tag 0912], we have (A(2))perf is A-flat. The proof for (Agf))perf is the same. O

2.4. Embedding A® and Agf) to Ajy. Let Ajyr = W(O%p), then there is a surjection

0 : Aint — Oc, and Kerf = (E). And let B:{R be the ker #-adic completion of Ainf[%].
Definition 2.4.1. Let A, be the p-adic completion of the Aing-subalgebra of B(;FR gener-
ated by E/p.

It can be easily seen that p(E/p) := o(E)/p € Acris C Amax is well-defined and it extends
the Frobenius structure on Aj,s to an endomorphism on A y.

Let {wy, }n>0 be a compatible system of p"-th roots of wy = w and {{, }»>0 be a compati-
ble system of p"-th roots of 1. Write @” := {@y }n>0,¢" = {Ca}ns0 € O(bcp and let u = [@’],
€ = [¢"], v = eu and p = e—1 be elements inside Aj,¢. We can regard W (k)[z, ] as a subring
of Ajn via & +— u and y — v. Consider 2’ = 45¥ € Ainf[%]. Since u — v = u(e — 1) is clearly
inside Ker(#) and Ker(0) = FAj,s, we conclude that 2z’ € Ajys. Hence we have a natural

map (of d-rings) ¢4 : 2472/) — Ajnr via z — 2/, which naturally extends to ¢4 : A 5 A
because (p, F)-topology of A®) matches with the weak topology of Ajn¢. Similarly, we have

map of d-rings i : Agf) = Aprviaz—uandy—e—1and w+— %

Remark 2.4.2. Once we know that A is self-product of A inside X A with X = Spf(Ok)
as explained in .11 The map ¢4 can be constructed as the following: First we fix an
embedding A — Ajr by sending = — u = [@’]. Then A — Ay by = — v = eu is
another map of prisms. By universal property of A®@) | these two maps extends to a map
vat A® 5 Ay Clearly, the map ¢4 : A®) — A.¢ depends on choice of @’ = (Wn)n>0
and ¢’ = (Cn)n>0. Also ta is a special case of LE/2) defined by (I4) in §431 Indeed if

v([w’]) = [¢°][w”] then ¢4 = LEY2). Similarly comment also applies to tg.

Proposition 2.4.3. There is a unique embedding AEI%;X —— Apax  such that

W (k)[z,y] — At

i J

Aggx —— Apax —— B(J{R

commutes. Furthermore, Fil* BJR N Ag&x = Fil* Ag&x. The same result holds when Ag&x 18
(2)

st,max"

replaced by A

Proof. In the following, we only treat the case of A®

st.max while the proof of AEI%;X is the
same by noting that z = uw in Aj,.
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The uniqueness is clear. To show the existence of the embedding, it is enough to show
vi(w) € Apax for all ¢ > 1.

It is a well-known fact that A,y is isomorphic to the p-adic completion of Ainf[%], and
Anax[1/p] is a Banach Q,-algebra, which is the completion of Ajy¢[1/p] under the norm
|-|,-1 such that

|#]p-1 = sup{p™"|zn|ep, }
n

where © = 3 o[zn]p" € Aine[1/p]. And we have for x € Anax[1/p], € Apax if and only
if |x|,-1 < 1. Moreover |-|,-1 is multiplicative. So now it is enough to show for z = ~;(w)
considered as an element inside Apax[1/p], we have [zP~!|,-1 < 1. To show this, we have
by [BMSI8, Proposition 3.17], & := u/¢ =1 (u) is a generator of Ker with u = ¢ — 1. In
particular, w = p/E = ap~ ' (1) € Aips with a € AX;. And we can check WP~ = cu® inside
O, = Aing /pAing, with ¢ a unit. So wP~! = au® + bp with a,b € Ay, and

1 (au® + bp)*
(ah)p—1

Using the fact v, (i!) < 513, one can show each term in the binomial expansion on the right

hand side of the equation has |-|,-1-norm less or equal to 1, so in particular, |xp_1|p71 <1.

To prove that Fil’ B:{RﬂAg?maX = Fil’ Aéi)max, it suffices to show that EB:{RﬂAg?maX[%] =
EAgi)max[%]. By Proposition 2.7, we reduces to prove that the map

st,max

0: Dy = A? [%]/E L BLJ/E=C,

is injective. Let f(w) = > ;5 aivi(w) € Ker with a; € Ok limits to 0 p-adically. Then

f(wo) = 0 with wg = O(w) = (%) € Cp. Note vp(wp) > 1% because it is well-known
-1
o
p%l. Since we are aiming to show that f = 0, without loss of generality, we can assume that
K contains p; = »-/p. Note that vy (i!) < 1%’
which is in Og(w). By Weierstrass preparation theorem, wy is algebraic over K unless

f =0. By Lemma below, wy := §(w) € C, is transcendental over K and hence f =0. O

is another generator of kernel § : Aj,; — Og, and then v,(wo) = v,(A(¢ ™ (€)—1)) =

we conclude that 22 is a root of f(piw)

Lemma 2.4.4. wy = 9(%) is transcendental over K.

Proof. If wy is contained in an algebraic extension L over K, we define Lo oo = J,, L(wy).
For g € G, ., we will have

) = glwo) = wo = ().

0(g(

Since G, . fix E, 9(%) = 0. This implies g(e — 1) — (e— 1) € Fil> BI;. Recall for
t =loge, t—(e—1) € Fil®> Bj,, so we have g(t) —t € Fil> BJ;. But this can’t be true. Since
Lo, can only contain finitely many p™-th roots of 1, for g € G, ., g(t) = c(g)t satisfying
c(g) € Q, and c(g) # 1. This implies g(t) —t = (c(g) — 1)t € Fil' Bf; \ Fil* Bj;. O

Corollary 2.4.5. The natural maps 14 : A® — Ay and vy : Agf) — Ainr are injective.
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To summarize, we have the following commutative diagram of rings inside B:{R:

A AP A

| I |

ARl —— A

st,max Ama&( .

3. APPLICATION TO SEMI-STABLE (GALOIS REPRESENTATIONS

In this section, we assume that R = Q. We explain how to use the period ring A
and Ag) to understand lattices in crystalline and semi-stable representations. Roughly

) to replace R in the theory of (¢, é)—modules

speaking, we are going to use A and Ag
developed in |Liul0].

Let Koo = U2, K(wn), G := Gal(K /Ky ) and Gk := Gal(K/K). Recall that A =
& = W(k)[u]. Let S be the p-adic completion of W (k)[u, Z-,i > 1], which is the PD
envelope of W (k)[u] for the ideal (E). It is clear that S C Opax. We define ¢ and Fil’ on
S induced that from those on Opayx, in particular, Fil' S = SN EiOmaX[%]. Note that A

embeds to Ay via u — [wb] is not stable under Gi-action but only on Gy -action. For
any g € G, define g(g) = 9% Tt is clear that (g) = €9 with a(g) € Z,. We define two

u
differential operators Ng and Vg on S by Ng(f) = %u and Vg(f) = %. We need Vg to
treat crystalline representations.

3.1. Kisin module attached to semi-stable representation. Fix A > 0, a Kisin mod-
ule of height h is a finite free A-module 9 with a semi-linear endomorphism gy : I — M
so that coker(1 ® ¢gy) is killed by E", where 1 ® @gn : MM* := A @, 4 M — M is lineariza-
tion of ¢gp. Note here we are using classical setting of Kisin modules used in [Liul0] but
it is good enough for this paper. The following summarizes the results on Kisin modules
attached to Gi-stable Z,-lattices in semi-stable representations. The details and proofs of
these facts can be found in [Liul0].

Let T be a G'ig-stable Zj,-lattice inside a semi-stable representation V' of G’ with Hodge-
Tate weights in {0,...,h}. Let D := D%(V) = Homg, g (V, Bst) be the filtered (o, N)-
module attached to V and Dg := K ®k, D. Then there exists a unique Kisin module
M := M(T') of height h attached to T so that

(1) Homy 4(M, Aing) ~ TG -
(2) There exists an S-linear isomorphism

1
Ls - S[]—g] Rp,A M~ D QW (k) S
so that tg is compatible with ¢ on the both sides.
(3) ts also induces an isomorphism Filh(S[%] Ry, AM) ~ Fil*(D ®w (k) S). The filtration
on the both sides are defined as following:
1 1 1
Fﬂh(S[]—)] ®Rp 4 M) 1= {x € S[];] R4 M|(1 @ pon(z)) € Fil" S[;] ®4 sm} .
To define filtration on D := S Q) D, we first extend the monodromy operator
Np (resp. Vp) on DtoDby Np=1®Np+Nsg®1 (resp. Vp = 1@ Np+Vg®1).
Then we define Fil’ D by induction: set Fil® D = D and

Fil'D := {x € D|Np(z) € Fil' ' D, f(x) € Fil' D}
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where fo : D — D is induced by S — Ok via u — w.

Remark 3.1.1 (Griffith transversality). From the construction of Fil’ D, we see that Np(Fil' D) C
Fil'~! D. This property is called Griffith transversality.

We only use Vp when Np = 0, that is, when V is crystalline. In this case, it is clear
that Np = uVp. So it is clear that Vp(Fil’ D) C Fil'~! D.

For ease of notations, we will write N = Np and V = Vp in the following. Let TV :=
Homgz,, (T, Z,) and VVi.=TV ®z, Qp denote the dual representations. Then there exists an
Ajns-linear injection

(5) ton : Aint @4 M — TV @7z, A,

which is compatible with G-actions (G, acts on 9 trivially) and ¢ on both sides. Ap-
plying S®, 4 and using 15 := S ®, a Lo, we obtain the following commutative diagram

S®q, Aton

Acrls[ ] ®<p A om VV ®Zp Acris
2lAcris®SLS
& \Y
Acris ®W(k) D Vv ®Zp Acris

where the second row « is built by the classical comparison
By ®K, D4 (V) ~ VY ®q, B,
and « is Gi-stable on the both sides. The left side of « is defined by

Vax € D,Vg € Gk, g( ZNZ x)7;(log(e(g)))

Therefore, if we regard IMM* := A ®, 4 M as an A-submodule of vV Rz, Agis via injection
t* =S ®g A ta, one can show that:

(6) Vg € G,z € M* g(x ZND 2)7i(log((9)))-
When V is crystalline, or equivalently, Np = 0, we have ([LL21}, §8.1])

(7) Vg € G,z € M, g(x ZVD x)7yi(ug(g))-

3.2. Descent of the Gi-action. Let us first discuss the G g-action on M C T ®z, Aint
via toy in (@) in more details. We select an A-basis ey, ..., eq of M so that p(eq,...,eq) =
(e1,...,eq)2A with A € My(A). Then there exists a matrix B € My(A) so that AB = BA =
E"I;. For any g € Gk, let X, be the matrix so that

gler,...,eq) = (e1,...,eq) Xy

In this section, we are interested in where the entries of X, locates.

Theorem 3.2.1. The entries of X, are in A . If V is crystalline and g(u) —u = Ez then
X, € My(A®).
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First, it is well-known that W((CII’,) ® 4,

inf

Since G g-actions and p-commutes, we have

Q‘@(Xg) = ng(Ql).

tom is an isomorphism. So X, € Md(W((CII’,)).

Define
Fil" 9 := {z € M*|(1 ® om)(z) € E"M}.

Since 9 has E-height h, it is easy to show that Fil® 9* is a finite free A-module and Fil” D
is generated by Fil® o*.

To be more precise, let {ef := 1®e;,7 = 1,...,d} be an A-basis of M*. It is easy to
check that (ai,...,aq) = (€},...,e%)B is an A-basis of Fil" 0%, and it is also an S[%]—

basis of Fil" D. So for any g € G, we have g(a;) = 3 N'(a;)vi(log(e(g))). By Griffith
i=0
transversality in Remark B.I.It N (Fil' D) C Fil'"! D, we have,

i gle i log(e(9)) yi
® ZN ) B (D) | 5™ iy ) (B ED)
i>h
Since N?(a;)E* € Fil" D, 7;(E) in Opax and w™ — 0 inside AP e see that glag,...,aq) =

st,max>
(01,...,0q)Yy with Y, € Aét)max[p]

In the case that V' is crystalline, using ([7l), we have

h o0
i) = Zvi(()éj)Ei%(%(g)) + Zvi(aj)%(E)(ugég))i
i=0

i>h

If g is chosen so that g(u) —u = Ez then, a similar argument can shows that g(ay,...,aq) =
(a1,..., 0q)YyY with VY € ARL[2).

Now g(ef,...,€)) = (e},...,€))¢p(Xy). Using similar arguments, we see that p(Xg)’s
entry are in Agt)max[;] and Ag&x[%] respectively. Since (o,...,aq) = (€],...,e5)B, we
conclude that

p(Xg)9(B) = BYj.

Using the formula that 2p(X,) = X,g(2A) and AB = BA = E"I,;, we conclude that
Y, = (Lg?))th. Write r = M. We claim that r is a unit in Aéf). Indeed, Lg) =

E(ge(i‘;()g)) =S EO (u)% is again inside A( ), where E() means the i-th derivative
i=0
(2)

of E. And it is easy to show g(F) is also a distinguished element Ag’, so by [BS22, Lemma
2.24], r is a unit. Similarly, when g(u) —u = Ez, we will have r = @ € (A®)*. Hence
(9) E"X, = r7"Ap(X,)g(B).

Now we can apply Proposition 22T and Proposition 23311 (5) to the above formula, we
conclude that for g € Gg (resp. g € Gk such that g(u) —u = Ez and V is crystalline), we
have X, has entries in Agf) [%] (resp. A® [%])

To complete the proof of Theorem [B.2.1], it suffices to show that entries X, are in Agf)
(resp. A®)). Unfortunately, the proof to remove “%” is much harder, which needs §4.2] and

§4.3l For the remaining of this subsection, we only show that the proof of Theorem [3.2.1]
can be reduced to the case that g = 7 for a special selected 7 € Gg.
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Lot L= U Kuo(Gpr), Ki = U, K(Gn), G = Gal(L/K) and Hy = Gal(L/Kn). If
n=1

p > 2 then it is known that G' ~ Gal(L/K~) x Hg with Gal(L/K=) =~ Z,. Let T be a

topological generator of Gal(L/Kj~). We have 7(u) = €*u with a € Z);. Without loss of

generality, we may assume that 7(u) = eu. If p = 2 then we can still select 7 € G so that

7(u) = eu and 7, Hg topologically generate G. Pick 7 € Gk a lift of 7. Clearly, we have
T(u) —u = E-z.

Proposition 3.2.2. For g = 7, the entries of X4 are in Ag), and if further V is crystalline,

then X, € Mg(A®).
Lemma 3.2.3. Proposition [3.2.2 is equivalent to Theorem [F.21l.

Proof. Since G is topologically generated by 7 and Hg. So Gk is topologically generated
by Go and 7. And we have 7(u) —u = (¢ — 1)u = Ez. Now if X; has coefficient in Agf)
and X, = I for all g € G then to show that X, € Ag) for all g € G, it suffices to show
that X-p» converges to I inside Md(Agt)) Since A(t) is closed in A by Proposition

st,max
231 (5), it suffices to show that Xy converges inside Agt )max Since Xy = (7 E))’"Y and

Y, is defined by (8), we easily check that X:,» converges to I in Ag?max by using that
e(7P") converges to 0 in (p, e — 1)-topology. The proof for the crystalline case is similar by

replacing Aéf ) with A®), O
So it remains to prove Proposition 3.2.2] to complete the proof of Theorem B.2.11 We

will prove Proposition B.2.2] in §4.31 Briefly speaking, for ¢ = 7, we have shown that the
linearization of the g-action defines a w-equivariant isomorphism:

1 1
fg:M®a,, Aéf) [5] ~MQa Aéf)[]—)]

of Agf) [%]-modules, and since g(u) —u = Ez and V is crystalline, f, defines a ¢-equivariant
isomorphism:

1 1
fo: Mg, AP [E] ~ Mo AD [];]

of A )[ ]-modules. Here ¢; : A — Aéf) (resp. 1, : A — A?)) is defined by u — g(u).
On the other hand, by [Wu21l, Theorem 5.6], we will see the g-action on TV ® W((CII’,) also
descent to a y-equivariant morphism ¢ of B®@_modules, and recall that B® the is p-adic

completion of A2 [%] Then by comparing ¢ and f; using the technique developed in §4.2]
we will deduce Proposition 3.2.2] from Lemma [2.3.2]

Remark 3.2.4. Our original strategy to prove Theorem B.21]is to show A(2)[ ] N W((Cb) =
Agt) (resp. AC )[5] N W(O%p) = A®). This is equivalent to that A /p, A /p injects in

(C;,. Unfortunately, it does not work out though we can show A(2) /D, Agt /p injects in (C;,.

3.3. Relation to (p,G)-modules. In this subsection, we show that the base ring R for

the theory of (¢, G) modules can be replaced by A( )

(2)

of (¢, é) modules with new base ring Ag’. Since the idea of this new theory is almost the
same as that of the old one, We will use classical to indicate we are usmg the theory over
R. For example, when we say classical (¢, G)-module, it means a (p, G)-module over R.

. To this end, this builds a new theory
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Recall L = |J Koo((pn), G := Gal(L/K) and Hg := Gal(L/K.). Let m be the maximal

n=1

ideal of O(I’cp and set I, = W(m) so that Ay,¢/I,. = W (k). For any subring B C Ajys
set [,B = BNI,. Lett=loge, t) =y ()(%) where i = (p — 1)§(i) + r(i) with
0 <r(i) < p— 1. Recall that R = Aing N Rk, where

{Z fzt ) ,fi € S[ l,fi—0 p—adically} .

=0

Lemma 3.3.1. (1) As a subring of Aing, Agf) 15 stable under G -action and the G-
action factors through G.
(2) AD /1AL = W k).
(3) I, A® c uA?,
(4) e(4f)) c R.

Proof. (1) It is clear that the Gx-action is stable on W (k)[u,e — 1]. Since A(t) is (p, E)-
completion of W (k)[u,e — 1][6?(w),i > 0], to show that Ag) is Gg-stable, it suffices to
show that g(w) € Aéf) (because g and § commutes, if g(x) € Aéf) then so is g(d(z))). Now
Fw = e —1, we have g(E)g(w) = g(e — 1) = €9 — 1. Then g(w) = %Ea(g_l. By [BS22,
Lemma 2.24], E/g(F) is a unit in Aéf), then g(w) € Ag).

(2) It is clear that both u,e — 1 are in I;. Hence w € I because Ew =€ —1 € I and

E =p mod I,. For any x = io:p’[xl] € Ajns, x € I if and only of x; € m. Then it is
i=0
easy to check that §(I;) C I, and consequently all §(w) € I. So LrAéf ) is topologically
generated by u,y = € — 1,0 (w),i > 0 and hence Ag)/LrAg) = W (k) as required.
(3) I A@ is topologically generated by u,v = eu, {6°(z)},7 > 0. And (3) follows from
z = uw and §"(2) = u?" 5" (w).
(4) Since Agt) C Agt)max, it suffices to show that @(Agt)max) C Rk,. Since ¢(Opax) C

A[[b;p]] C S, it suffices to show that ¢(v,(w)) € Rk,. Note that p(F) = pr withv € A[[%]]X
and 7;(e — 1) € Rg,. And we have

plw) = oy <o 1>§ (()) e~y

which is a polynomial with coefficients in Z and in variables v~! and v;(e—1)’s. In particular
©(vn(w)) € Rk, by basic properties of divided powers. O

Definition 3.3.2. A (finite free) (¢, G)-module of height h is a (ﬁnzte free) Kisin module
(9, pom) of height h together with an A( )_semi-linear G-action on M := Agt) ®AIM so that

(1) The actions of ¢ and G on M commutes;
(2) 9t C MHx;
(3) G-acts on im/I*Agf) trivially.
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)_
)_

The category of (¢, @)—modules consists of the above objects and morphism of two (¢, G
modules is morphism of Kisn modules that commutes with actions of G. Given a (¢, G
modules M := (M, ¢, é), we define a Zy-representation of G,
f(iﬁ) = HOHIA(Q) <p(Ag) ®a M, Ainf).

st 2

Since cp(A( )) C R, given a (¢, G)-module M = (M, o, G)-defined as the above, (9N, )

together G-action on R ®p,4 M is a classical (p, G)—modules M. It is easy to check that

T(M) = T(M,) := Homp (R D 4 M, Ainf)-

Theorem 3.3.3. The functor T induces an anti-equivalence between the category of (¢, é)—
modules of height h and the category of Gk -stable Z,-lattices in semi-stable representations
with Hodge-Tate weights in [0, ..., h].

Proof. Given an (¢, G)-module M = (M, ¢, ), M, is a classical (¢, G)-module. So f(ﬁ) =
T (5)\10) is a lattice inside semi-stable representation with Hodge-Tate weights in [0, ..., A].
Conversely, given a lattice in semi-stable representation T with Hodge-Tate weights in
[0,..., R, following the proof for the existence of classical (¢, G')-module M so that T(E)Aﬁ) =
T, it suffices to show that for any g € G, g(M) C Agt) @4 M, here M and A( ) R4 M are

regarded as submodules of TV ®z, Aint Via ton in (B]) and uses the G -action on TV ®z, Aint-
This follows Theorem B.2.1] O

Now let us discuss when f(ﬁ) becomes a crystalline representation. Recall that 7
is a selected topological generator of Gal(L/Kj~), and we have 7(u) = eu and 7, Hg
topologically generate G.

Corollary 3.3.4. Select 7 € G as the above. Then f(ﬁ) 1s crystalline if and only if
(M) ¢ A® @4 M.

Proof. Clearly for the selected 7, we have 7(u) —u = Ez. If T := f(ﬁ) is crystalline then
Theorem B2 proves that 7(M) € A @4 M. Conversely, Suppose 7(M) C AZ) @4 M.
Then we see that (7—1)9 C uAin; @49 by LemmalB3.11(3). And we have this is enough to
show that T (53\1) is crystalline. For example, We will have 9t ®4 (A mf[ |/p) has a G -fixed
basis given by a basis of 9%, where the ideal p is defined as p := Upene™ ( )Amf[ ] C Amf[ ].

Then one can prove by the same method in [Ozel8, Thm. 3.8] or directly use [Du21
Theorem 4.2.1] that T is crystalline. (]

Remark 3.3.5. Though Agt) is still complicated, for example, it is not noetherian, A( Vi

( )

still better than old R: at least it has explicit topological generators. Furthermore, Ay’ is
p-adic complete. This can help to close the gap in [Liu07] mentioned in [Gao21l, Appendix

BJ. Indeed, as indicated by Remark B.0.5 loc.cit., if R can be shown to be p-adic complete
)

st

then the gap in [Liu07] can be closed. So by replacmg R by A
(|[Gao21] provides another similar way to close the gap).

we close the gap of [Liu07]

4. CRYSTALLINE REPRESENTATIONS AND PRISMATIC F-CRYSTALS

In this section, we reprove the theorem of Bhatt and Scholze on the equivalence of
prismatic F'-crystal and lattices in crystalline representations of G and complete the
proof of Theorem B.2.11 We start to discuss some general facts on the absolute prismatic
site (which allows general base rings).
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4.1. Prismatic F-crystals in finite projective modules. Let R = Ry Qw Og =
Ry[u]/E as in the beginning of §2 and X = Spf(R) with the p-adic topology.

Definition 4.1.1. The (absolute) prismatic site X) of X is the opposite of the category of
bounded prisms (A, I) that are (p,I)-completed together with a map R — A/I, and a mor-
phism of prisms (A, I) — (B, J) is a covering map if and only if A — B is (p, I)-completely
faithfully flat.

Define the following functors:
Op: (A T) — A,
and for all h € N, let
I} (A1) = I
It is known in [BS22] that these are sheaves on X ). We will also use Op[1/Zp]) to denote
functor assign (A, I) to the p-adic completion of A with I inverted.

Now we verify A® (resp. A®)) constructed in §2.11is indeed self (resp. triple) product
of Ain X). We mainly discuss the situation of A® while the proof of A®) is almost the
same. Recall that A = Ro[u] = W (t1,..., tm)[u].

First we want to make a remark on the existence of nonempty self-coproduct in the cate-
gory of prisms over R. We thank Peter Scholze for answering our question on Mathoverflow.
And we just repeat his answer here. Let (4;,I;) for i = 1,2 that are prisms over R, let
Ay = A1®ZPA2 where the completion is taken for the (p, I, I3)-adic topology. Let J be the
kernel of the map:

Ay — Al/Il XRr AQ/[Q.

Let (A, I) be the prismatic envelope of (A1,I1) — (Ao, J), one can check this is the initial
object in the category of prisms over R that admits maps from (A;, I;) such that the two
R — A;/I; — AJI agree. Also we want to note that in general, we don’t know if the
boundedness of (A1, ;) and (Ag, [2) will imply the boundedness of their coproduct. But
we have seen A® and A®) are indeed bounded by Corollary 228

To start, note that there exists a W-linear map s : A —>AA®2 induced by u — y and
t; — s;. We claim that is uniquely extends to iy : A — A®? which is compatible with
d-structures. Indeed, consider the following commutative diagram

A" o 482, J@)

~ .
S 2
~
~
v AN

B AR (p, S

A

Here 49, = i mod (p, J?)" and iy is induced by A — A/(p, E) ~ A®2/(p, J2)). Since
in(u) =y = x4 (y—x) and is(t;) = s; = t; + (s; —t;), we see that the above (outer) diagram
commutes. Since A is formally étale over A by (p,u)-adic topology, we conclude that there
exists a unique map igp : A — A®2 /(p, J@)" s0 that the above diagram commutes. Since
A®? jg (p, J (2))—complete, there uniquely exists is : A — A®? which extends is. To see iy
is compatible with §-structures. it suffices to show that ¢ ois = i3 0 9. But both of ¢ o9
and i 0 ¢ extend AB% A a%2 Again by formally étaleness of A over A, we see that
@ oiy =iz0¢. Hence we obtain a map 1 ®is : A®z, A — A®2 Define %2 : A ®z, A— R
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via 092(a ® b) = 0(a)f(b). By the construction of iz, we have the following commutative
diagram
1®ig

A®y A—2 > AB2
-
R~ A®2 /7@

Let A®2 be the (p, ker(6%?))-completion of A®? := A®z, A. Hence 1® iy induces a map i
from the A®2 to A®? because A®? g clearly (p, J (2)) complete. To treat A®3 we construct
i3 A— A®3 by extending i3 : A — A®3 by sending u +— w and t; — r;. The same method
shows that i3 is compatible with J-structure and we obtain a map 1®iz @3 : A®3 _y A®3
with A®3 : A®y, A®z, A. Similarly, we obtain a natural map i3 : A®3 5 A3,

Lemma 4.1.2. For s =2,3, i : A®s 5 ABS gre isomorphisms.

Proof. We need to construct an inverse of is. We only show for iy and the proof for 73 is

the same. Let ¢ : A®2 5 492 be the A-linear map by sending y —x+— 1®u—u® 1 and
sj—tj—1®t; —t; ® 1. Clearly g is well-defined because 1 ®u—u®1and 1®t; —t; ®1
are in Ker(0%2). Since ia(u) = y and ig(t;) = s, iz 0 g is identity on A®2_ Now it suffices
to show that h := g o1y is identity. Write K = (p, Ker(#%?)). Note that we have map

A Rz, A A2 M 482 induced by h which we still call it h. Now we have the following
commutative diagram

Ay A—L08 L (Aw, A)/K

T \\\\modK" T
¢ h m:(;K;\k
Ay, AL md K (Ao, 4)/Km

where h,, is induced by h mod K™. We see that both A, and mod K™ on the dashed
arrow can make the diagram commute. Then by the formal étaleness of A over A, we
conclude that h, = mod K" and h is the identity map. O

Proposition 4.1.3. A® and A®) is self-product and triple product of A in Xp-

Proof. In the following, we only treat the case of A?) while the proof for A®) is the same.
We need to prove that for any B = (B, J) in X,

HOIanpp (A(2), B) = HOH]XZPP (A, B) X HomXpr (A, B).

By the above lemma, we have natural maps A®z, A — A2 ~ 482, Combined with natural

map A®2 5 A®) a5 A?) s the prismatic envelope of A®? for the ideal J ), we have map
a: ARz, A— A® which is compatible with d-structures. Then « induces map

5 : HOIanpp (A(2),B) — Hoszpp (A, B) X HOIanpp (A, B)

To prove the surjectivity of 3, given f; € Homx, (4, B) for i = 1,2, we obtain a map
f1® fa: A®z, A — B. It is clear that (f; ® f2)(K€I‘(9®2)) C J. Since B is (p, J)-derived

complete, f ® fo extends to a map fiQfs : A%2 ~ A®2 _, B which is compatible with
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S-structures, Hence fi® fo is a morphism of d-algebra. Finally, by the universal properties
of prismatic envelope, f1® fo extends to a map of prisms f1® A2 A®@ — B as required.

Finally, we need to show that ( is injective. It suffices to show that A-algebra struc-
ture map i1 : A — A® and i+ A 2482 A®) hoth are injective. Since all rings
here are (p, E)-complete integral domains, it suffices to check that 41,7 mod (p, E) are
injective. By Proposition 2Z.22.7] we see that i1 mod (p, E) is R/pR — R/pR[{7i(2;)}], so
it is injective. By the construction ¢, and s, we see that 7, mod (p, E) is the same as
A/(p,E) — A@’z/(p, J@) — A®) /(p, E), which is same as R/pR — R/pR[{7i(z;)}]. So it
is injective. O
Remark 4.1.4. When R = Ok is a complete DVR with perfect residue field k, we know a
priori, the self-product A® of (A, (E)) in X ) can be constructed as the prismatic envelope
of (A, (E)) = (B, I), where B is the (p, E(u), E(v))-adic completion of W (k) [u] @z, W (k)[v]
and [ is the kernel of the map:

B — AJ(E) @ AJ(E) = R.

On the other hand, W (k) is formally étale over Z, for the p-adic topology, so for all
(C,J) € X), the map W (k) — R — C/J lifts uniquely to a map W (k) — C. In particular,
for all (C,J) € X, C has a natural W (k)-algebra structure. So when we construct the

self-product, we can also consider A as the prismatic envelope of (A, (E)) — (C,J),
where C' is the (p, E(u), E(v))-adic completion of A®yy ) A and J is the kernel of the map:

C— A/(E)®r A/(E) =R.
We have C' ~ W (k)[u,v], J = (E(u),u —v) and A®) =W (k)[u, v] {45 }}.

Definition 4.1.5. (1) A prismatic crystal over X in finite locally free O)-modules
(resp.  Op[1/1]-modules) is a finite locally free Op-module (resp. Op[1/1])-
module) M such that for all morphisms f : (A, I) — (B, J) of prisms, it induces
an isomorphism:

Fp g = Mp (A1) ®a B =My =My ((B,J))

(resp. [y 4 = Mp((A, 1) @apyny BlL/T]) =My 5= M) (B, J))).

(2) A prismatic F'-crystal over X ) of height h in finite locally free O ) -modules is a pris-
matic crystal M in finite locally free O)-modules together with a po,-semilinear
endomorphism oo, of the Op-module My : M) — M) such that the cokernel of

the linearization ©*IMp — M) is killed by ",

Proposition 4.1.6. If the sheaf represented by (B,I) in Shv(X)) covers the final object
* in Shv(X)), d.e., for any (C,J) in X, there is a (P,J) lies over (B,I) and covers
(C,J). Also assume that the self-coproduct B®@ and self-triple-coproduct B®) of (B,I) are
inside X, i.e., they are bounded. Then a prismatic crystal M) over X in finite locally
free O p-modules is the same as a finite projective module MM over B together with a descent

data v : M @;, B B® ~m ®is,B B® satisfies the cocycle condition. Here ij : B — B®
(j = 1,2) are the two natural maps.

Proof. First let 9 be a prismatic crystal in finite projective modules. Define M = M ) ((B, 1)),
and the descent data comes from the crystal property:

P My, p BY ~My (B, 1) ~Mey, p BP.
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Now given (9, ¢), then for any (C,.J) in X, we need to construct a finite projective module
over C. We choose the (P,J) as in the assumption, let Mp = M ®@p P, and consider the
following diagram:

P fi
|7
B ., B® f2

1

B— P

A~

C

C

Here (PC(?), J) is the self-coproduct of (P, J) in the category of prisms over (C,.J), and the
existence of ( , J) is from [BS22, Corollary 3.12], where they also show that Péz) is the
derived (p,J)-completion of P ®F P and (P((j ), J) is bounded. As a bounded prism over

(C,J), (Pé ), J) is naturally inside X, so f exists by the universal property of B®_ 8o if
we take the base change of ¢ along f, we get

s (M BY) @per ; PC = (M@0 BY) @per P
which is the same as an isomorphism:

Yo mp®pflp()N9ﬁp®pf2P()

Similar arguments will show ¢ satisfies the cocycle condition. And 9tp descents to a finite
projective module over C' by [AB21l Proposition A.12]. O

Remark 4.1.7. We want to note that the structures of finite nonempty coproducts in the
category of bounded prisms over a prism (A, I') is much simpler compared with the structure
of finite nonempty products in the category (R/A)) (cf. [Bhal8l Lecture V, Corollary 5.2]).

Lemma 4.1.8. The prism (A, (E)) defined in §21| covers the final object  in Shv(Xy) in
the sense of Proposition [.1.6. And A®) and A®) are bounded.

Proof. The proof is similar to [AB21 Lemma 5.2.8], we need to show for R defined as in
§2.71 there exists a quasi-syntomic perfectoid cover of R. We will construct this perfectoid
cover similar to [Kim14l §7.1].

First recall we have R = Og ®w Ry, and we fix a compatible system {w,}n,>0 of

p™-th roots of a unifgrmizer wo of O inside F. Let IA(OO be the p-adic completion of
UnK (w,), we know K is perfectoid. Use Ro[u] to denote A/(p) = R/(w) = Ro/(p)[u],
and let Ro [ul)es to be the u-adic completion of the direct perfection of Ro[u], it can be

checked directly that (Ro[u ul g1/l Ry [ul)ert) is a perfectoid affinoid K?!_-algebra, by tilt

equivalence, there is a corresponded perfectoid affinoid I?oo—algebra. More explicitly, let
Ry = W (Ry [[u]]gerf) w0, 10 O . Then Ry is naturally an R-algebra, and we claim it
Koo b oo

is a quasi-syntomic cover of R.
To show this, by [Kim14) §7.1.2], we have

R = (Ro®w O )®ZpZ (T, P
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where T; € Ry is any lift of a p-basis of Ry/(p). We have O — O %.. 18 a quasi-syntomic
cover so by (2) of [BMS19, Lemma 4.16], R — RO@WOKX, is also a quasi-syntomic cover.

And we have S = Z,(T; oo> is a quasi-syntomic ring, this can be seen by constructing a
perfectoid quasi-syntomic covering of it, so by Lemma 4.34 of loc.cit., we have the complex
Lsz, € D(S) has p-complete Tor amplitude in [~1,0]. In particular, Z, — Zp~<Ti_p )
is also a quasi-syntomic cover, so applying (1) in Lemma 4.16 of loc.cit., R — Ry is a
quasi-syntomic perfectoid cover.

The boundedness of A®) and A®) is from (2) in Corollary 228 O

Corollary 4.1.9. Assume the the base X = Spf(R) satisfies the condition in {3, and let A,
A and A be defined as in §21), then a prismatic F-crystal My, ¢, ) in finite locally
free Op-modules of height h over X is the same as a Kisin module (M, on) of height h
over A with a descent datum

fMmea, AY ~ Moy, A?
that compatible with the o-structure and satisfies the cocycle condition over A®).

Theorem 4.1.10. ([BS21, Theorem 1.2]) Let T' be a crystalline representation of Gg over
a Zy-lattice of Hodge-Tate weights in [0, h], then there is a prismatic F-crystal My (T') over
X ), of height h over X such that M ((A, E)) is the Kisin module associated to T'. Moreover,
the association of T — M) (T') induces an equivalence of the above two categories.

We will prove this theorem in §.31

Remark 4.1.11. Theorem [.T.T0] was first established by Bhatt-Scholze in [BS21, Theorem
1.2]. The harder direction of [BS21, Theorem 1.2] is to show for all Z,-lattices inside
crystalline representations of Gk, one can attach a prismatic F-crystal. Using the theory
of (¢, G)—modules, we have shown in §3.2] given a crystalline representation of G over a
Zy-lattices T', we can attach a Kisin module 9t and a descent data?

1 1
fr M@y, AP [5] ~ M@y, AP [5]

comes from the 7-action. We just show this is a ¢-equivariant isomorphism, and we need to
show it gives rise to a descent data over A . As we have mentioned in Remark B.2.4] we can
not find a direct ring theoretic proof of this. Our idea is to use result of [Wu2l] or [BS21],
Corollary 3.7]: the underlying Galois representation 7' gives a descent data over A(2)[%]£.
To finish our proof, we need to compare this descent data with fz over A(z)[%]g[%]. This
lead us to develop a “prismatic” (p, 7)-module theory in the next subsection, where we will

have Lemma @212 and Lemma F.2.16] to help us compare descent data over A [%];,\ and
2) 1 LIATL] o : b

Al )[E]p [5] via an evaluation map to W(Oﬁ)'

4.2. (¢, 7)-modules and prismatic F-crystals. In this subsection, we make some prepa-

rations to prove Proposition B.2.2] and Theorem E.I.I0l So we restrict to the case that
R = O is a complete DVR with perfect residue field.

Definition 4.2.1. An étale p-module over A[1/E]} is a pair (M, o) such that M is a

finite free module over A[l/E];,\, and o 1S an isomorphism

o " M= AL/EN @p ap/mp M~ M

2Strict1y speaking, §3.2] only constructs an isomorphism but have not checked that it satisfies cocycle
condition, which will be proved in §4.3
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of A[1/E]})-modules. And we define an étale p-module over A[1/E]}[1/p] to be a @-module
over A[1/E]}[1/p] such that it is obtained from an étale p-module over A[1/E]) by base
change.

An étale p-module over A[1/E]) (resp. A[l/E|}[1/p]) with descent data is a triple
(M, orm,¢), such that (M, o) is an étale p-module over A[1/E]) (resp. A[1/E]}[1/p]),
and c is an isomorphism

¢: M®an/ppn B? = M@ mp.0, BY

(resp. ¢: M @anygipnpa BP /P = M ®ap/ep/m.0 B [1/p])

that compatible with the @-structure and satisfies the cocycle condition over B®) (resp.

B(?’)[%]). Here for j = 1,2, i; : A[1/E]} — B®) is the map induced from i; : (A, (E)) —

(AP (B)).

Remark 4.2.2. Tt is the main result in [Wu21] and [BS21) §2] that there is an equivalence of
the category of lattices in representations of Gx and the category of prismatic F-crystals in
finite locally free O, [1/1] ;\—modules over Ok . Also by [BS21l Proposition 2.7], one can show
prismatic F-crystals in finite locally free O [1/1])-modules is the same as étale p-modules
over A[1/E]} with descent data.

The aim of this subsection is to use the ideas in [Wu2l] and [KL19, §5.5] show that
étale p-modules over A[1/E]) (resp. A[1/E])[1/p]) with descent data are equivalence to
Repz, (Gk) (resp. Repr(GK)). More importantly, for all v € G, we will construct an
evaluation at v map

e, B® - w(L)
and use it to study p-equivariant morphisms between finite free B and B®)[1/p]-modules.
We will see the evaluation at 7 map will play a crucial role in our proof of Proposition
and the Theorem [.I.10] below.

Recall in §3:3} we define L = |J Kuoo((pn), G == Gal(L/K) and Hg := Gal(L/K).

n=1
Moreover, we define K~ to be the p-adic completion of U,>0K ((yn), and we let L to be
the p-adic completion of L. It is clear that A[l/E]) C W (L?)Hx. Recall the following
definition and theorem in |Carl3]:

Theorem 4.2.3. An étale (o, T)-module is a triple (M,@M,é) where
o (M, pnm) is an étale p-module over A[1/El);
o G is a continuous W (L?)-semi-linear G-action on M := W (L") @any/ep M, and
G commutes with OM; R R
e regarding M as an A[1/E])-submodule of M, we have M C MHx.
Then there is an anti-equivalence of the category of étale (¢, T)-modules and Repy, (Gk),

such that if T corresponds to (M, pr, G), then
TV = (M @y gy W(C)P="

One of the basic facts used in the theory of étale (¢, 7)-modules developed in [Carl3]
is that Gal(f)/f(loo) ~ Zp, and we write 7 to be a topological generator of Gal(L/K )
determined by 7(w,) = (ynwy, as the discussion before Corollary B.3.4l Also G is topolog-
ically generated by 7 and Hp, so in particular, the G-action on M is determined by the
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action of 7 on M inside M. As discussed before, we will provides a direct correspondence
of the category of étale (o, 7)-modules and the category of étale p-modules over A[1/E]}
with descent data. Moreover, we will construct an evaluation at = map:

e- : B® 5 w(D),

and show that the 7-action on M inside M is given by the base change of the descent data
along e;.

Remark 4.2.4. In [Wu2ll, Theorem 5.2], they prove a similar equivalence but for étale (¢, I')-
modules. The theory of étale (p,I')-module is defined for the cyclotomic tower K~ over
K while the theory of étale (¢, 7)-modules is defined using the Kummer tower K.,. We
will use a lot of ideas and results developed in [Wu2l] when proving our claims in this
subsection. The main difficulty in our situation is that the Kummer tower K, is not a
Galois tower over K. To deal with this, we have to use the idea in [KL19, §5.5]. Roughly
speaking, we will take the G/\alois closure L of K., then prove results over I:, then descent
back to K using the fact K, = LHx

One should be able to construct the evaluation map in the content of [Wu2l] the same
way as we define in this subsection. This map will give a more direct correspondence of the
descent data and the I'-actions on étale (¢, I")-modules.

By [BS22, Lem 3.9], any prism (B, J) admits a map into its perfection (Bperf, J Bperf)-
The following theorem ([BS22, Thm 3.10]) is the key to understand perfect prisms.

Theorem 4.2.5. (A,I) — A/I induces an equivalence of the category of perfect prisms
over O with the category of integral perfectoid rings over Ok .

Let (A, (F)) be the Breuil-Kisin prism defined in §2.1 we have
Lemma 4.2.6. A, W((’)I}(m).

Proof. Exactly the same as the proof of [Wu2ll, Lemma 2.17] O

Lemma 4.2.7. Let Perfdg be the category of perfectoid K-algebras, then Perfdyx admits
finite non-empty coproducts.

Proof. Let R and S be two perfectoid K-algebras, it follows from [KL15, Corollary 3.6.18]
that the uniform completion (R®x S)* of the tensor product (R®x S) is again a perfectoid
K-algebra, and it is easy to show this is the coproduct of R and S in the category of
perfectoid K-algebras. O

For i € Nsg, let (A, (E)) (resp. (Ainf(0£)(i), (E))) denote the i-th self-coproduct of
(A, (E)) (resp. (Aint(O;),(E))) in the category of prisms over Ok, where Aj,;(O;) :=
W(O"L) The following is a description of (A(i))perf[l/E];)\ and (Ainf(Oi)(i))perf[l/E]l/)\.

Lemma 4.2.8. Let IA((&,) (resp.' ﬁ(i)) be the i-th self-coproduct of Koo (resp. ﬁ) in Perfdy,
then (AD)pert[1/Elp = W((KS)) (resp. (Aus(Op)D)pet [L/Elpy = W ((LD))).

Proof. We will only prove the lemma for (A®)..¢[1/ E];, and the case for (A, (O i)(i) Jpert[1/E])
is similar.

We use similar arguments as in [Wu2ll, Lemma 5.3]. Fix i, first we can show (A(i))porf
is the i-th self-coproduct of (Aper, (E)) in the category of perfect prisms over O, i.e.

(AD) et = (Aperr)? . By Theorem E25, Lemma A28l and [Wu2ll, Proposition 2.15], if

perf*
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we let S = (A®),¢/E, then S[1/p] is the i-th self-coproduct of K+ in the category of
perfectoid K-algebras. Now we have

(AD)pert [1/ ]y = W(S)[1/[")]) = W(S'[1/="]) = W((S[1/p])) = W((ELY).
O

Remark 4.2.9. There is another way to view IA(éé) in terms of diamonds over Spd(K, Ok)
which is used in the proof of [Wu2ll Lemma 5.3], that there exist a ring of integral elements

Aé?’Jr in I?C()?, such that we have

(10) Spa(l?é?, IA{Q’JF)O = Spa(kom]:?;_o)o XSpd(K,0) + ++ XSpd(K,0k) Spa‘(kom[?:o)o'

i-copies of Spa(Keo ,KCTO)<>

And similar results hold for L. Using this description and the fact that functor from
perfectoid spaces over Spa(K,Ok) to diamonds over Spd(K,O) is an equivalence, we
have L) has a natural action of G* coming from the action on the diamond spectrum.
Since LHx = I?oo, we have

%

PN . . H o ;
Spa(K(, R == (Spa(L, 05)° x ... xspaucor) Spa(l, 05)°) " = (Spa(LO, LO+)*) k.
That is, (L®)Hk = K.

Now we use ideas in [Wu2l] and [KL19, §5.5] to study étale p-modules over A[1/E])
with descent data. We will show this category is the same as generalized (p,I")-modules
in the work of Kedlaya-Liu. The following is a quick review of Example 5.5.6 and 5.5.7 in
IKL19].

Firstly, one has L0 ~ Cont(éi_l, i}), here Cont means the set of continuous functions.
One can see this fact from the proof of [Wu2ll, Theorem 5.6]. When i = 2, we choose the
two canonical maps i1, 19 : L— ﬁ(2), corresponds to 71, jo : L— Cont(é, f)) given by

(11) gi() sy = y(x)  and - ga(x) iy = @

From Remark 2.9} there is a natural action of G2 on L®. One can check this corre-
sponds to the G*-action on Cont(G, L) given by:

(01,02)(£)(7) = 02f (03 ' y01).

Remark 4.2.10. We interchange the roles of j; and js comparing with the isomorphism
defined in [KL19, Example 5.5.6], so the G2-action is different from that in Example 5.5.7
of loc.cit., we will see this definition is more convenient when relating the descent data with
the semilinear group actions.

One can show Cont(G, —) commutes with tilting and the Witt vector functor, as been
discussed in [Wu2ll, Lemma 5.3], so in particular, we have

W ((LD)) ~ Cont(G~*, W (L)).

For i = 2, we still use j; and js to represent the two canonical maps from W(ﬁb) to
Cont(G, W (L?)) that comes from (II]). The above isomorphism also is compatible with the
action of G2, so we have

(12) W ((K@)") ~ Cont(G, W(ﬁb))H%

o0

We prove the following lemma for our later use.
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Now let M be an étale p-module over W ( [?(';O) with a descent data:
Ui MByyz 5, WIERDY) 2 M Sy gy 5, WKL)

~

as étale p-modules over W((Kc(g))b) and satisfies cocycle condition over W((I?ég))b) Using
([I2)), we have 9 is the same as a descent data:

(13)  ¢:M S (R2) Cont(G, W (£")k ~ M Oy (o) ja Cont(G, W (L") .

For each v € G, we have an evaluation map é, : Cont(G, W (L")) — W(L") given by
evaluating at v. Using (I)), one can check &, o jo : W(K2) — W(L) is given by the
natural embedding and &, 0j; : W(K2,) — W (L") is given by @ — ~(x). So for each v € G,
if we tensor (I3]) against the evaluation map €y, we get an isomorphism:

. Thy ~ - b

And similar to the classical Galois descent theory, the cocycle condition for ¢ implies {1, }
satisfies

1/107 =15 0 U*%-
Hence {1, }, defines a continuous semilinear action of G on M := M Dy (v W (L’). One
can check for v € Hy, we have the composition

W(K2) 25 W((KQ)) — Cont(G, W (1)) 25 W (L)
is the natural embedding W (K, b ) e W(L?) for k = 1,2. And using the cocycle condition,
one can show 1, = id for v € Hg, so in particular, M C MU Conversely, given a

semilinear action of G on M such that M c M¥x {1y} defines a descent data 1) over
Cont(G, W (L)% if and only if the semilinear action is continuous. In summary, we have

Theorem 4.2.11. (1) The category of étale p-modules over A[1/E} with descent data

over A(z)[l/E]Q is equivalent to the category of étale (@, T)-modules over A[1/E]};

(2) Given a descent data f of an étale p-module M over A[1/E]}, and v € G, we can
define the evaluation f. of f at vy, defined by the base change of f along

ey : AD[/ED — (AP per[1/ BN 2 W(LP),
which defines an isomorphism:

fy i M®apyppe, W) = M@ ap gy W(L)

P
where T, @ A[1/E]) — W(L") & W(L). Suppose that (M, f) corresponds to a
ZLy-representation T' of Gk, then f, corresponds to the semilinear action of v on
M inside M ®A[1/E] W((CZ,) ~TV® W((CZ,). Moreover, two descent data f,g are
equal if and only if fr = g-.
Proof. The discussion above the theorem establishes the equivalence between the category
of étale p-modules over Apere[1/E]) with descent data over (A@) o1/ E]) is equivalent
to the category of étale (¢, 7)-modules over A[1/E]}. Now (1) follows [Wu2ll, Theorem
4.6] which shows that the category of étale -modules over B[}])) is equivalent to the
category of étale p-modules over Bperf[%];,\ for bounded prism (B, I) satisfying ¢(I) mod p

is generated by a non-zero divisor in B/p. Then it just remains to prove the last statement
in (2). Actually one can check (2) by chasing all the functors used in (1), and use the fact
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that for any étale (¢, 7)-module, the G-action on M is determined by the T-action on M.
However, this can also been seen directly from the following lemma. O

Lemma 4.2.12. Given two finite free étale p-modules M, N over A®) [1/E], and two

morphisms f,g : M — N of étale p-modules over A(2)[1/E]£. Let f,,g- be the base
changes of f, g along the map

2 ~

. . H .
er: AD[1/EN — (AQ), . [1/E]) ~ Cont <G, W((L<2>)b)) <o W),
Then f = g if and only if fr = g-.

Proof. We take the natural base change of f and g along AP[1/E]) — (A®),e[1/E]),
we get two morphisms ¢ and 1’ between étale p-modules over (A®)) . ¢[1/ E]5. Since the
base change functor between étale p-modules over A)[1/ E]} and (AP o1/ E]} is an

equivalence of categories, it reduces to show that 1 = v’ if and only if their base change

along
2

6 (A )pee[1/E]) =~ Cont (€ W(LOP)) " WD)

is equal. Since M and A are finite free, it is enough to show the evaluation map:
~ ~ H?2 ~
&, : Cont <G,W((L(2))")> K W@y

. A H?
is injective. Suppose h € Cont (G, W((L@))b)) " satisfies h(r) = 0, then

(o1,02)(h)(T) = ogh(oy ' 1o1) =0
for (01,02) € H%. Since G is topologically generated by Hy and 7, we get h = 0. O

Now we give the Q-isogeny versions of Theorem [L.2.11] and Lemma 212l Recall that
the étale (¢, 7)-modules over A[1/E]} [%] is equivalent to the category of Q,-representations

of G, and recall the following definition of étale (¢, 7)-modules over B[1/.J]; [%] for a prism
(B ,J ) eX A

Definition 4.2.13. An (globally) étale p-module M over B[l/J]Q[%] is a (finite projective)

w-module over B[l/J]Q[%] that arises by base extension from an étale p-module B[1/J];).

From this definition, we immediately deduce the following result from [Wu21, Theorem
4.6]

Proposition 4.2.14. For any prism (B,J) € X) satisfying ¢(J) mod p is generated by

a non-zero dwisor in B/p, the base change functor defined by B[l/J]Q[%] — Bperf[l/J];)\[%]
induces an equivalence between the category of étale p-modules over B[l/J];,\[%] and the
category of étale p-modules over chrf[l/J]Q[%].

And similar to Theorem 21T and Lemma [£.2.12] we have

Theorem 4.2.15. The category of étale p-modules over A[l/E]ZA,[%] with descent data

over A(2)[1/E]I§[%] is equivalent to the category of étale (p,T)-modules over A[l/E]Q[%].
Moreover,
Cont (G, W(ﬁb)[%])h@f ~ W(f?g?)b[%].
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For v e G, we can define the evaluation map

&, : Cont (G,W(E")[Z—l)]) R W(ﬁb)[%}].

And given a descent data f of an étale p-module M over A[l/E];\[%], and v € G, we can

define the evaluation f. of f at -y, defined by the base change of f along

er + AP B[] (A )putl1/ED ) 2 W,

which defines an isomorphism:

a1 Aol
M@ apyEA 1 /) 0 W(Lb)[g] ~ M ®an/E)[1/5) W(Lb)[g]
where T, : A[l/E]Q[%] — W(ﬁb)[%] = W(ﬁb)[%] If (M, f) corresponds to a Q,-representation
V of Gk, then f, corresponds to the semilinear action of v on M inside V¥ ® W((CII’,)[l/p].
Moreover, two descent data f,qg are equal if and only if fr = g,.

Lemma 4.2.16. Given two finite free étale p-modules M, N over A?) [1/E]£[%] and two

morphisms f,g : M — N of étale o-modules over A(2)[1/E]$[%]. Let fr,g- be the base
changes of f,g along the map

er s APL/E] = (Al B = Cont (G.W (LD )™ S WD)

Then f = g if and only if fr = g-.

Proof. The proofs are exactly the same as the proof of Theorem [£.2.11] and Lemma [£.2.12],
plus the following fact that

1 R |
[]_9]) = Cont (G7 W(L )) [_]7

Cont (é, W (L) p

which can be shown by the compactness of G. O

4.3. Proofs of Proposition and Theorem We keep the assumption that
R = Ok is a mixed characteristic complete DVR with perfect residue field in this subsection,
and keep our notations in §2.1.

Let us first prove Proposition using Lemma [2.3.2] and results in §£21 First, we give
a different interpretation of the “evaluation map”:

N ~ H? &y ~
eyt AD1/E] — (A®), o [1/E]) ~ Cont (G, W((L(2))b)) S WL

in Theorem EEZIT when restricted on A®) . Recall that we fix a compatible system {z,, }, of
p"-th roots of a uniformizer w € Ok, this defines a map of prisms ¢ : (A, (E)) — (Aint, (E))
maps u to [wb], and given a v € G, we define ¢, to be the composition of ¢ with ~ :
(Aing, (E)) = (Aint, (E)) where the second map is defined as a — y(a). Since (E) C Ajns
is equal to Ker(f) and 6 is Gg-equivariant, v is a well-defined map of d-pairs. By the

universal property of A®), we can define a map of prisms ng) (AP (E)) = (A, (E)) so
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that the following diagram commutes:

(4,(B)) —2— (A®,(B)) «+—2— (A,(E))

a9 » lw :

(Aint, (£))

We have LE/2) induces a morphism Zgyz) : A(2)[1/E];,\ — W((CZ). We claim for all v € G, ZE,2)
is the same as the

AQ[1/BY = (AD) e [1/E]) ~ Cont <G W((ﬁ”)"))H%{ S W) o W(C).

To see this, by the universal property of direct perfection, we have (I4]) factorizes as:

(4,(E)) b (A (B)) ¢ (A,(E))
(Apert, (B) —— s (AD )y, (B)) 2 (Apart, (E))
, e ,

(A, (E))

So ZE,2) has a factorization
AD[/E)) = (AD)pere[1/E]) — W(CT)).

We just need to check L/T(2) induces the evaluation map

(A®) e [1/EJp = Cont (G, W((E@))"))H%{ L W(E) < W(T).

And this follows from the isomorphism of (A(2))perf[1/E];)\ ~ W((Kg))b), then one check
directly for ji, jo defined in (II)), &, 01 : Apert[1/E]) — W (L") is equal to the map induced

from ¢/ and &, 0ja : Apert[1/E]y — W (L") is equal to the map induced from /. In particular,
we have a commutative diagram:

2

A2 Ajnt

w i

A@[/EN —— (AD),([1/E]) <2 W(E?) —— W(T).

Now we can prove Proposition [3.2.2]

Proof of Proposition[3.2.2. First we pick v = 7 that is a preimage of 7 under the map
Gk — G, we have y(u) —u = Ez and L%Z) defined as above is the embedding defined in

§2.41 by Remark In particular, composing the embedding A® < A;.¢ defined in §24]
with Ajp — W((CZ,), one get the evaluation map

2
HK

(AD) e [1/Elp = Cont (G,W ((LD))) " =5 W(L) = W(C).
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restricted on A®).
Keep the notations as in §3.2] and let M4, = W((CZ) ®aMand M =~ Me4 A[1/E].

By Theorem E21T] and Theorem IZ3) recall we use B® = A®[L1])) and B = Ag)[%]g
to simplify our notations, we have there is a descent data

c: Mgy @ A/E) i B® — My D A/ED i B

of My over B@ that corresponds to the representation 7. And the semilinear action of
7 = T on My, is given by the evaluation c,, that is, we have the linearization of the
T-action is defined by

et W(C)) ®z,,a1/E) Ma =~ W(C}) ®; ap/ppy Ma.
By base change ¢ along B — B(z)[%], we get a B(z)[%]—linear p-equivariant morphism:
1 1
¢ MA@ E1p i B [g] = Ma®an/pp 7, B(Z)[E]'

On the other hand, from the discussions after Proposition B.2.2] 7-action also defines a
p-equivariant morphism

1 1
friMey, AP [E] ~ M4 Aéf’[;].

We will see in Proposition EZ3.0] below that f; actually descents to a B(?)[1/p]-linear mor-
phism. Assuming this fact, then if we base change f7 along A(2)[%] — W(CZ,)[%], we will
have fz® W((CE,) [%] = ¢, since the way we define fz is by taking the 7-action. From the dis-

cussion at the beginning of the proof and Lemma FL.2.16] we have f; = ¢ as a B® [%]—linear
2)[1 2)71
pi BP[G) and Ma @41 05, BP [

We fix a basis {e;} of M, for j = 1,2 let {eg} be the basis of M4 ® , 7, B(2)[%] defined by

isomorphism between M4 ® 4 /5

eg = ¢; ® 1 and the tensor is via A — A[1/E]) 2y B@[1/p]. So we can interpret f; = ¢ as
matrix using this two basis, this matrix is X3 from this definition, so it has coefficients inside
Ag)[%] by the discussion before Proposition 3.2.21 On the other hand, X5 has coefficients
in B® ¢ Bs(f ) since ¢ is defined by the B®)-linear map ¢. So by Lemma [2.3.2], we have X5
)

has coeflicients inside Agf . The same argument shows when 7' is crystalline, then X; has
coefficients inside A®). O

Proposition 4.3.1. Base change along B® — Ag)[l/E]ZA, defines an equivalence of cate-
gories of étale p-modules over B® and Ag) [1/E]$ and an equivalence of categories of étale

w-modules over B®[1/p] and Ag)[l/E];,\[l/p].

Proof. By [Wu2l, Theorem 4.6], we just need to show the same result after perfections, we
will show (A(2))p0rf = (Aéf ))porf in Lemma [B5.0.13] using the logarithmic prismatic site. [

Now, let us prove Theorem LT.I0 by first producing a functor 7 from prismatic F-
crystals in finite O)-modules to lattices inside a crystalline representation. For prism A4,
we use ip : A — A@ or A®) for natural map from A to k-th factor of A® or A®). The
notation iy : A® — A®) has the similar meaning.

By Corollary A.1.9] given a prismatic F-crystal ), we obtain a Kisin module (901, on)
of height h together with descent data f : M ® 4, A®) ® Aio A®@ 50 that f satisfies
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the following cocycle condition i13 ® f = (i3 ® f) o (12 ® f), where ig ® f is the base
change of f along ir;, and f also compatible with the @-structure on the both sides of f.
Note that the existence of f follows from the crystal property of 9 ):

(16) femMoas AR =My (AP, (E)) =M@, AP

We let M =M@ A[l/E]) and ¢ = f ® 42 B®@)_ then (M, ¢) is an étale p-module with
descent data, which corresponds to a Z,-representation of G'x. Moreover the semilinear
action of G on MK 4 W((C;E,) comes from {c, } eq . using the evaluation maps. If we define

f’\/ : Ainf ®L7,A M — Ainf ®L,A m
as the base change of f along L-(y2), then by (I5), we have ¢, = f,. The Gg-semilinear action

commutes with ¢ as f does. For any v € Gk, we have v(A) C W (k)[u,e—1] C Ag) C Ajns-

Therefore, the Gg-action on the A, ® 4 MM defined the above factors through Agf ) ®4 M.

~

We claim that Gg-action on 0t := Agf ) ® A 9 defines a (¢, G)-module which corresponds
to a crystalline representation.

First, for v € Goo, 7(A) = A in Ajys, we conclude L-(y2) : A® 5 A;r satisfies ng) 0] =
LE/2) o i9. In particular, for any v € G and j = 1,2, using (I6]) and the crystal property of
M), f, comes from the base change of (I6]) along L-(y2) : A® — A, ¢ in particular, we have

fr M Aing ~ Mp ((Ajng, Ker 0)) ~ M@ Aipng.

Since LE/2) 04 = LE/2) o2, we have f, = id which means I C (ﬁ)Gw. Similarly, Gg acts on

A,L,(f)oil A,L.(YQ)OZ'Q

5)\1/ I, corresponds the base change of f along
§e) -
AP 2 Ay — W (k)
where the last arrow is the reduction modulo W (m) (m is the maximal ideal of O(bcp). One
can check for all v € Gi and j = 1,2, we have

1% L(Z) =
AL A® 2y Ay — W(E)

are all equal to A — W(k) — W (k) with the first arrow given by u ~ 0. The above
map induces a morphism of prisms (4, (E)) — (W(k), (p)), then using (I6) and the crystal

condition of M), we can similarly prove that G acts on 9/I-trivially, so (M, pom, Gx) is
a (¢, G)-module. Furthermore, T'(9M) is crystalline by Corollary 3341 and Theorem F2.11

Remark 4.3.2. In §5, we will consider a category consisting of modules with descent data,
and similar arguments about the triviality of the Galois actions can be shown directly using
the cocycle condition of the descent data. We summarize this fact in the following easy
fact.

Lemma 4.3.3. Let q : (A®,(E)) — (B,J) be a map of prisms satisfying q o i1 = q o iz,
then for any descent data f over A®), the base change of f along q is the identity map.

To show the fully faithfulness of this functor, first let (90, f), (M, f') be two Kisin mod-
ules with descent data f, f’ respectively. Suppose that there exists a map a : T((O, f)) —
TV, f)) as lattices of crystalline representations, then from our construction of 7 and
Theorem[3.3.3] o is induced from a map & : (9N, oy, Gm) — (M, o, ng/) between (¢, é)-
modules. The faithfulness of 7 follows the fact that A — A[1/E]} induces a fully faith-
ful functor between Kisin modules over A and étale p-modules over A[1/E] from [Kis06,
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Proposition 2.1.12]. On the other hand, & gives morphisms ¢&; : im®A,i1A(2) — W'@A,ilA(z)
and &g : M® 44, A@ o ® Aio A®) | If we view A and A as subrings of Ay using dia-
gram (I4]), then the following diagram commutes by the fact that & : M — D is compatible
with 7-action.

Moas, AD —L s Moy, A?

Ja Jo

M @4, A Ly M @4, A

Thus we produces a morphism between (90, f) and (9, f'), i.e. T is also full.

It remains to show the functor 7T is essential surjective. Given a lattice T in a crystalline
representation of Gg, let 9 be the corresponded Kisin module, it suffices to construct
a descent data of M over A, We have shown in our proof of Proposition that if
we view A as a subring of Ay via L7(~_2), then X defines a y-equivariant isomorphism
fM®a, A@) ~ o ® Ao A® of A _modules. We also show the base change of f along
A® — B® is equal to the descent data c of the étale p-module My = M Q4 All/E])
that corresponds to G'i-action on 7. In particular, ¢ : M@ 44, B®) ~ MR A, B gatisfies
the cocycle condition. By Lemma 232, A® (resp. A®)) injects into B® (resp. B®),
so we have f also satisfies the cocycle condition. In particular, (91, f) together produce a
primatic F-crystals in finite free O)-module by Corollary . T.9l

Remark 4.3.4. Given an étale p-module (M4, o a1,,¢) over A[1/E]) with descent datum c,
we call (M4, o ,,c) is of finite E-height if M 4 is of finite E-height, i.e., if there is a finite
free Kisin module (90, pan) of finite height and defined over A such that 9 ®4 A[1/E]) ~
My as g-modules. Since (M4, pa,) is the étale p-module for T'|q_ , our definition of
finite E-height is compatible with the one given by Kisin under the equivalence in (1) of
Theorem A2.171

We expect same arguments in the proof of Proposition will be used to study rep-
resentations of finite E-height. Similar result has been studied using the theory of (¢, 7)-
modules by Caruso. For example, in the proof of [Carl3, Lemma 2.23], Caruso shows for
representations of finite F-height, the T-actions descents to &, np -, Which is a subring of
Ainr closely related to Z(f)(B (2)) N Ajng, where 7 is a preimage of 7 in G .
Remark 4.3.5. We can also establish the compatibility of our Theorem .T.10] the theory
of Kisin and [BS21, Theorem 1.2]. Given a lattice T in a crystalline representation of Gg
with non-negative Hodge-Tate weight, and let 9t be the Kisin module corresponds to 7" in
[Kis06], and let 9 (reso. QJT’A) be the prismatic F-crystal corresponds to TV under [BS21],
Theorem 1.2] (resp. T under Theorem EL.I.10]). Note that we need to take T since in the
work of Bhatt-Scholze, the equivalence is covariant. By our construction of M, , we have
EDI’A((A, (E))) ~ M. By [BS21, Remark 7.11], M) ((A, (E))) ~ M. Next we need to show

the descent data over A constructed respectively are the same. By Corollary 245 we
just need to show they are the same as descent data of étale p-modules over A®)[1 /E],
but they are the same by our 7-evaluation criteria in Lemma [4.2.12]



A PRISMATIC APPROACH TO (¢, G)-MODULES AND F-CRYSTALS 38

5. LOGARITHMIC PRISMATIC F-CRYSTALS AND SEMI-STABLE REPRESENTATIONS

In this section, we will propose a possible generalization of Theorem [Z.T.10] to semi-stable
representations using the absolute logarithmic prismatic site. The main reference of this
subsection is [Kos21]. We will restrict ourselves to the base ring R = Ok, a complete
DVR with perfect residue field. And we give R the log structure associated to the prelog
structure o : N — R such that a(1) = w is a uniformizer in R, i.e., let D = {w = 0}, then
the log structure on X = Spf(R) is defined by

Myx = Mp < Ox where MD(U) = {f S Ox(U) ’ f‘U\D S OX(U\D)}
Let us introduce the absolute logarithmic site over (X, Mx).

Definition 5.0.1. [Kos21l, Definition 2.2 and Definition 3.3]
(1) A biog-ring is a tuple (A, 6, : M — A, d1og : M — A), where (A,0) is a §-pair and
a 15 a prelog-structure on A. And d1og satisfies:
(] (510g(€) = 0,
o 3(a(m)) = a(m)Pdu(m),
® Jiog(mn) = Oiog (M) + di0g (1) + POlog(M)016g(n) for all m,n € M. And we will
simply denote it by (A, M) if this is no confusion. Morphisms are morphisms
of d-pairs that compatible with the perlog structure and dog-stucture.
(2) A dog-triple is (A, I, M) such that (A,I) is a 6-pair and (A, M) is a iog-ring.
(3) A biog-triple (A, I, M) is a prelog prism if (A,I) is a prism, and it is bounded if
(A, I) is bounded.
(4) A bounded prelog prism is a log prism if it is (p,I)-adically log-affine (cf. [Kos21l
Definition 3.3]).
(5) A bounded (pre)log prism is integral if M is an integral monoid.
(6) A diog-triple (A, I, M) is said to be over (R,N) if A/I is an R-algebra and there is
a map M — N of monoids such that the following diagram commutes.

M A
| |
N > R Al

All b10g-triples over (R,N) form a category. Similarly, we can define the category
of prelog prisms over (R,N) and the category of bounded log prisms over (R,N)®.

Remark 5.0.2. If A is an integral domain, or more general if a(M) consists of non-zero
divisors, then ), is uniquely determined by ¢ if exists. In particular, morphisms between
such djg-rings are just morphisms of d-rings.

Remark 5.0.3. Note that in this paper, for a -pair (A, I), we always assume A is (p, I)-adic
complete, but in [Kos21], non-(p, I)-adic completed djg-triples are also been studied. By
Lemma 2.10 of loc.cit., we can always take the (p, I)-adic completions of the d-pair (A, I)
and the Jjpg-structure will be inherited.

Proposition 5.0.4. [Kos21l Corollary 2.15] Given a bounded prelog prism (A,I, M), one
can associate it with a log prism

(A, I,M)* = (A, I, M*)

Remark 5.0.5. When we deal with log prisms in this paper, we will always take it as the log
prism associated with some prelog prism. And by the above proposition, we know taking
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the associated log prism does not change the underlying J-pair. Moreover, it is a general
fact that (A, I, M)* is integral if (A, I, M) is a integral.

Definition 5.0.6. The absolute logarithmic prismatic site (X, MX)Alog is the opposite of
the category whose objects are

(1) bounded log prisms (A, I, M) with integral log structure,

(2) maps of formal schemes fa : Spf(A/IA) — X,

(3) the map fa satisfies

(Spf(A/TA), faMx) — (Spf(A), Ma)*

defines an exact closed immersion of log formal schemes.

A morphism (A, I,M4) — (B,I,Mp) is a cover if and only if A — B is (p,I)-complete
faithfully flat and the pullback induces an isomorphism on log structure. We define the
structure sheaf OAlog on (X, MX)Alog by (A, I,My) — A.

There is a variant of the about definition that we will also use in this subsection, we
define (X, MX)?Aerf be the full subcategory of (X, Mx)p _ Whose objects are (A, I, My4)
log 0

with A perfect.

Remark 5.0.7. Our definition of the absolute logarithmic prismatic site is different from
[Kos21, Definition 4.1]. First, we need to consider the absolute prismatic site, not the
relative one. Furthermore, we use the (p,I)-complete faithfully flat topology compared
with the (p, I)-complete étale topology. Also we require the log-structures to be integral.

Proposition 5.0.8. (X, MX)Al forms a site.
og
Proof. Similar to [BS22l, Corollary 3.12], we need to show for a given diagram
(07I7MC) —— (A717MA) *b> (B717MB)

in (X, Mx) Doy such that b is a cover, then the pushout of b along c is a covering. From the

argument in loc.cit., we known for the underlying prisms, the pushout of b along c is the
(p, I)-completed tensor product D = C®4B, and (D, I) is a bounded prism covers (C,I)
in the (p, I)-complete faithful flat topology. And we give D the log structure Mp defined
by viewing Spf(D) as the fiber product via [Ogul8, Proposition 2.1.2], then (C, M¢s) —
(D, Mp) is strict morphism by Remark 2.1.3 of loc.cit., so in particular, Mp is integral
since M¢ is. For the same reason,

(Spf(D/ID), fpMx) — (Spf(D), Mp)*

is strict since it is the base change of a strict morphism. It is an exact closed immersion
since pushout of a surjective map of monoids is again surjective. O

Ezample 5.0.9. [Kos21l, Example 3.4]

(1) Let (A, (F)) be the Breuil-Kisin prism, then we can define a perlog structure to
(A, (E)) given by N — A;n +— u", one have (A, (E),N)* is in (X, MX)AIOg, where
(3) in Definition follows from the prelog structures N — R — A/(E) and
N — A — A/(FE) induce the same log structure.

(2) For any prism (B, J) over (A, (E)), it has a natural prelog structure N — A — B,

and similar to (1), (B, J,N)% is in (X, MX)Abg'



A PRISMATIC APPROACH TO (¢, G)-MODULES AND F-CRYSTALS 40

(3) A special case of (2) is that (B, J) = (Apert, (£)), the perfection of (A, (£)). One has
the prelog structure in (2) can be directly defined as 1+ [@’]. And (4, (E),N)* —
(B, J,N)® is a covering of log prisms in (X, MX)Alog'

Actually, all logarithmic structures of log prisms in (X, Mx) Doy is the log structure
associated to a prelog structure defined by N. We thank Teruhisa Koshikawa for letting us
know the following lemma.

Lemma 5.0.10. For any log prism (B,J,Mp) inside (X, MX)Abg’ (B,Mp)* admits a
chart N = B defined by n — u'y for some up € B satisfying up = w mod J.
Proof. For any log prism (B, J, M) inside (X, MX)A]og’ we have

(Spf(B/J), fpMx) — (Spf(B), Mp)*
defines an exact closed immersion of log formal schemes. So by the proof of [Kos21l Propo-
sition 3.7], if we let N%/J = I'(Spf(B/J),N%) for the prelog structure N — O — B/J
induced from the given prelog structure on O, then the fiber product Mp x NE»/JN is a chart

for (B, Mp)®. Moreover, since we assume Mp to be integral, we have (Spf(B/J), f;Mx) —
(Spf(B), Mp)® is a log thickening with ideal J in the sense of |[Ogul8| Definition 2.1.1.],
and one can show Mp XNg,, N~Nx (1+J). Now (1+J)*=(1+J),so

N—)NX(l—FJ)ZMBXNg/JN—)B

is also a chart for (B, Mp)®. And the prelog structure given by n — u}; for some up € B
satisfying the image of up in B/J coincides with the image of w under O — B/J. O

In the rest of this subsection, we will try to generalize results we proved in §4.11§4.3] for
the logarithmic prismatic site.

Lemma 5.0.11. (1) For (A,14,Ma)*, (B,Ip,Mp)* € (X, MX)Alog such that Ma, Mp
are integral and (A, My) — (A/I4,N) and (B, Mp) — (B/Ip,N) are exact surjec-
tive, there is a prelog prism (C, Ic, Mc) with integral log structure that is universal
in the sense that the diagram

(A, Tpg,My) — (C,Ic,M¢) «— (B,Ip, Mp)
1s nitial in the category of diagrams
(A, Ig,My) —— (D,Ip,Mp) «— (B,Ip, Mp)
of prelog prisms over (R,N), and (D, Mp) — (D/Ip,N) is an exact surjective.

(2) If (C,1¢) in (1) is bounded, then (C,Ic, Mc)® is the product of (A, 14, Ma)® and
(B, I, Mp)* inside (X, MX)Alog'

3) If (A, 14, Ma)%, (B, 15, Mg)® in (1) are in (X, Mx )P, and let (Cyet, Ic) be the
A p
log

perfection of (C,Ic) defined in (1). Let (Cpert, Ic, Mc) be the prelog prism with
prelog structure induced from C'. Then (Cpert, Ic, Mc)® is the product of (A, 14, M)*

and (B, I, Mp)® in (X, Mx)}" .
log

Proof. Let (A, Ia,Myu),(B,Ig,Mp) € (X, MX)Alog’ define Cy to be the (p,Ia,Ip)-adic
completion of A @y ) B and let J be the kernel of

Coy — A/IA®RB/IB.
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Then (Cy, J, Mg x Mp) is a dog-triple over (A, 4, M4). And we have (Cy, J, Ma x Mp) —
(Co/J,N) is surjective. Then we can apply [Kos21l Proposition 3.6] to get a universal prelog
prism (C, Ic, M¢) over (A,Ia,Ma) and (B, I, Mpg) and satisfies (C, M¢) — (C/J,N) is
exact surjective. Just recall in the proof of [Kos21l, Proposition 3.6], we first construct
a Ojg-triple (C’,J’, M(,) which is universal in the sense that it is a djog-triple over both
(A, T4, M4) and (B, I, Mp) satisfying C’/J" is over A/I4 and B/Ip as R-algebra and
(C",M},) — (C'/J',N) is exact surjective. Then we take the prismatic envelope with
respect to (A, 14) — (C',J') to get (C,I¢). Then we can check such (C, I, M¢) satisfies
the universal property. For (2), when (C, I¢) is bounded, the fact that (C, I, Mc)® is the
product of (A, T4, M4)* and (B, Ip, Mp)* inside (X, MX)Alog follows from Proposition 3.7
of loc.cit.. For (3), we have (Cperf, Ic) is automatic bounded, and one can check (Cper, Ic)
is universal using exactly the same proof of Proposition 3.7 of loc.cit.. O

We thank Koji Shimizu for the following lemma on A( ),

Lemma 5.0.12. Let (A,1,N)* be the Breuil-Kisin prism defined in (1) of Fxample [5.0.9,
then the self-product (resp. self-triple product) of (A, I,N)* in (X, MX)Alog exist. Moreover,
if we let (A2 I, M?)® (resp (AB) T, M3)®) be self-product (resp. self-triple product) of
(A, I,N)%, then Al ~ A fori=2,3.

Proof. By our construction in Lemma [F.0.11] (A‘?, I, M) is the prelog prismatic envelope
(C, I, M) with respect to

(A, (E),N) = (Cy, J,N?) and (Cy/J,N?) = (R,N)

where Cyp = Wu,v], J = (E(u),u — v) with the prelog structure given by 5 : (1,0)
u,(0,1) = v. The prelog prismatic envelope is constructed using the technique of exact-
ification: consider 7 : (Cy,N?) — (R = C/J,N) where the map between log structures is
given by meg : N x N = N;(m,n) — m + n, here 7, is surjective but not exact, so to
constructsthe exactification of 7 : (C,N?) — (R,N) (cf. [Kos21, Construction 2.18]), first
we have the exactification of g is

oa:M? 5N givenby (m,n)—m+n,
where M? = {(m,n) € Z x Z|m+n € N}. Since M? is generated by (—1,1), (1,—1), (0,1)
and (1,0), one has the exactification of 7 is

(W( )Nu, v]][z u](pj,) J M% 0 (1,0) = u, (0,1) = v, (1, 1) v %,(_1,1) o %)

where J' := ker(W (k)[u,v][%, %] — R).
We have the (p, J')-adic completion of W (k)[u,v][2, %] is W (k)[u, 2 — 1]. Then take
prismatic envelope of (4, (E)) — (W (k)[u, = — 1], (£, 2 — 1)). One can check

v / u— 2)
W T~ 1L = A
directly from the definition of A( ).
Similarly, we can show A ~ Aét) which is also bounded. O

The following is one of our key observations.

Lemma 5.0.13. We have (A<2>)perf o~ (A(2))perf-
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Proof. Let uy,us be the image of u under the two natural maps i; : Apers — (A(2))perf for
j=1,2. We claim that ug/u; is inside (A(2))p0rf.

Firstly, we have already shown Apes ~ W(@" ) and u = [w °], here @’ = (w,) with
{@n}n>0 being a compatible system of p"-th roots of @ inside Op _» and (o) € Ob

oo

via the identification Ob ~ limg 0 Opp . Let S = (A@) o/ (E ), this is an integral
perfectoid ring over Ok in | the sense of [BMSlS] We have S* ~ (A®)) ..¢/(p). For j = 1,2,
» =wu; mod (p) € S”, then we have u; = [w]b] for j =1,2.

define w; =
Recall in § 2.1}, we have z = yzg‘; in A®). Since E(z) = 2° mod p, we have z(1+2¢12) =

y mod p. If we denote ¢ : — (A®)) ¢ the natural map, then «(z) = u; and t(y) = uz

in our definition, and u1(1 +u$"t(2)) = ug mod p inside S = éi)rf /(p). This is the same

as whpu = wh with g = (1+u§4(2)) mod pin S°. So we have [u|u; = [u][w}] = [w5] = ua,
which proves our claim.
Now by symmetry, u; /us is also inside (A®)) e, 50 ug/ug is a unit in (A®) e, So we

can give (A(2))perf a prelog structure

ot M? = (A@) e with (1,—1) = L, (=1,1) = —2,(1,0) — uy, (0,1) — uy

ug (31
with the monoid M? defined as in the proof of Lemma F.012] then ((A®), e, (E), M?)?
is in Xzorf
log

One can check the maps i1,is : (A, (E)) — (A® (E)) = ((A®)pet, (F)) induce i1, iz :
(Aperts (E),N) = ((A®)erp, (E), M?) of prelog prisms. So by Lemma E0I2 there is a
unique map (A I, M?) — ((A®)) s, (E), M?), which factors through ((A®) e, (E), M?).

So it induces a map ((A?)pert, (), M?) = ((A®) ot (E), M?) inside chrf On the other
log

hand, by the universal property of A, we know there is a map (A(2))p £ — (A2 >)perf fits
into the coproduct diagram in Xzerf, which is the full subcategory of X containing perfect
prisms.

One can check the composition 7 : ((A(2))perf, (E)) — ((A<2>)perf, (E)) — ((A(2))perf, (E))
satisfies n o i; = ij on for i1,ig : (Aperts (E)) = ((A®)pert, (E)). Such a map is unique
inside Xzerf, S0 N = id((A@))perf,(E))-

On the other hand, the composition

77/ : ((A<2>)pcrf7 (E)7 M2)a - ((A(2))porfa (E)7 M2)a - ((A<2>)perfa (E)a M2)a

satisfies 7 o 1 = 4} o for 41,45 : (Apert, (£),N)* — (A2 et (E), M?)* induced from
i i o (A (E),N) = (A® (E),M?). Such map is also unique inside Xperf, son =
og
id((A<2>)pcrf,(E),M2)a- So in particular we have (A<2>)perf ~ (A( ))perf. O
Theorem 5.0.14. The category of étale p-module over A[l/E]Q with o descent data over
Agf) [1 /E];)\ 1s equivalent to the category of lattice in representations of G . Moreover, for
all v € é, we can define the evaluation map

e : ADN/E] - W(L)

such that Lemma[{.2.19 is still valid. Moreover, the Q-isogeney version of this theorem also
holds.
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Remark 5.0.15. The above theorem should be related to the étale comparison theorem in
the log prismatic settings, which has not been studied in [Kos21] yet.

Moreover, we have a log version of Lemmal[4.1.§ also holds. We thank Teruhisa Koshikawa
for hints of the following result.

Proposition 5.0.16. The sheaf represented by (A, (E),N)® covers the final object * in in
Shv((X, MX)Alog)'

Proof. For any log prism (B, J, Mp), by Lemma [5.0.10] we can assume (B,J, Mp)* =
(B, J,N)?, with prelog structure defined by n +— v} with up = @ mod J.

Using deformation theory, we have there is a unique W (k)-algebra structure for B, and
we define C' = Blu][%E ,J;]{"B/“ 1}6, where the completion is taken for the (p, J)-adic
topology. Similar to the proof of Lemma [5.0.12] we have (C,JC,N)® is the product of
(A, (F),N)* and (B, J,N)% inside (X, MX)Alog‘ Moreover, we have B — C'is (p, J)-complete
flat by [BS22, Proposition 3.13]. It remains to show that (B, J) — (C,J) is a covering, i.e.,
B — C'is (p, J)-complete faithfully flat. Let

o B, Lyt

be the non-complete version of C' that we have the (p, J)-adic completion of C™¢ is C'. Now
we just need to show the flat ring map B/(p,J) — C/(p,J) = C™/(p, J) is also faithful.
We claim that C/(p, J) is free over B/(p,J). One has JC = E(u)C, and (p,J) = (p, E) =
(p,J,E) in C. So C/(p,J) = C"/(p,J) is equal to
up u

Blul[=Z, EW( 2),i > 0]/ (p, JE,Ez = %B _ 1,5"(%3 — 1)) = 6i(E2),i > 1) .

After modulo (p, J), the above is the direct limit of
i i UB i
B/(p, D' (2)]/ (8(5 = 1)) = 8'(B2) mod (., J))
for ¢ > 0.

Now we use Lemma 2.2.4] to compute §'(“2 — 1) = §*(Ez) mod (p, E, J). We keep the

notations in Lemma2:24] by induction, we have b, = 0 mod (p, E). Using that al(, 7 ¢ AL,
. ) p—1 )
0" (%8 —1) = 6"(Ez) mod (p, E,J) gives a relation (z_1)? = > dg- )(zi_l)J where z; = 3;
§=0

mod (p, J, E) and dy) € B/(p,J)[z0, 21, -, 2i—2]. In summary, we have

cwnﬂza@mezm/ ()P =Y a (z),i > 1

which is free over B/(p, J). O

Definition 5.0.17. (1) A prismatic crystal over (X, ]\4_><)A10g in finite locally free (’)Alog_
modules is a finite locally free (’)Alog—module My such that for all morphisms f
(A, I,My) — (B, J,Mp) of log prisms, it induces an isomorphism:

FrMy 4= Mp((A, I, Ma)) ©4 B =My g =My (B, J, Mp))
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(2) A prismatic F-crystal over (X, MX)Abg of height h (in finite locally free OAlog_
modules) is a prismatic crystal My in finite locally free Oﬁlog—modules together
with a o Brog -semilinear endomorphism oo, of the Oﬁlog—module Mp My — My,

such that the cokernel of the linearization ©*IMy — My is killed by IZ.

In particular, with help of Theorem [(.0.14] and Proposition (.0.16] a direct translation
of proofs in §4.3 with A® replaced by Agf) shows the following theorem.

Theorem 5.0.18. The category of prismatic F-crystals over (X, MX)Alog of height h is

equivalent to the category of lattices in semi-stable representations of G i with Hodge-Tate
weights between 0 and h.

6. SOME DISCUSSIONS ON BASE RINGS

In this section, we show that our base ring assumed at the beginning of §2 covers many
situations of base rings used in [Kim14] and [Bri0§].

Let K be complete DVR with perfect residue field k, and let Ky = W[%] with W = W (k),
fix a uniformizer w € Ok and E(u) € W[u] a minimal polynomial of @ over Ky. Let R
be a normal domain and satisfies that R is a p-complete flat Og-algebra that is complete
with respect to J-adic topology, for an ideal J = (w,t1,...,tq) of R containing ww. We also
assume R = R/(w) is a finite generated k-algebra with finite p-basis discussed in [dJ95,
§1.1].

Lemma 6.0.1 ([Kim14] Lemma 2.3.1 and lemma 2.3.4). (1) In the above setting, there
is a p-adic formally smooth flat W -algebra Ry equipped with a Frobenius lift vy such
that R = Ry/(p). Moreover let Jy be the preimage of J inside Ry, then Ry is Jo-
adically complete, and under this topology, Rq is formally smooth.

(2) Ro/(p) = R/(w) lifts to a W-algebra morphism Ry — R and the induced O -
algebra morphism Ok Qw Ry — R is an isomorphism. Moreover this isomorphism
18 continuous with respect to the Jy-adic topology.

Let (Ro,¢R,) denote a flat W-lift of R/(w) obtained from the above lemma. And we
will have Jy = (p,t1,...,tq) € Ro, and we write J = (f,...,%3) C R.

Definition 6.0.2. Let Ry be a p-complete Zy,-algebra, we say Ry satisfies the “refined almost
étalenes” assumption, or simply RAE assumption, if Qr, = ®" Rodl; with T; € Rf.
Where g, is the module of of p-adically continuous Kdhler differentials.

The following are examples of Ry and R which satisfy assumptions of Lemma [6.0.1] and
RAE assumption.

Ezample 6.0.3. (1) If R/(w) is a completed noetherian regular local ring with residue

field k, then Cohen structure theorem implies R/(w) = k[Z1,...,%4]. In this case,
Ry = W]x1,...,z4] and Jo = (p,x1,...,24). Then R = W{zy,...,z4]u|/E, with
E € W{u] is a Eisenstein polynomial.

(2) Let Ry = W(k)(t£',... t£1) and Jo = (p), in this example, R = k[iy",... 75 is
not local.

(3) An unramified complete DVR (R, p) with residue field &k so that [k : k] < co.

(4) Note the the Frobenius liftings in Lemma is not unique. In (2) we can choose
©Rr,(t;) =t In (1), we can choose the pp,(z;) = 2 or g, (z;) = (x; + 1)P — 1.



A PRISMATIC APPROACH TO (¢, G)-MODULES AND F-CRYSTALS 45

Let Ry be p-complete algebra which satisfies the RAE assumption, Set Ry = Wt1,... ,tm)
and f: Ry — Ry by sending t; to T;.

Proposition 6.0.4. Assume that Ry is a p-complete integral domain which admits finite
p-basis and satisfies RAE assumption. Then f is formally étale p-adically.

Proof. We thanks for Wansu Kim providing the following proof. By standard technique
using [II71l Ch.III, Corollaire 2.1.3.3] (e.g., see the proof in [Kim14l, Lem. 2.3.1]), it suffices
to show that the cotangent complex ]LRO /i is acyclic. Since both Ry and Ry are Z,-flat,

it suffice to show that L Ry/f is acyclic where Ry = Ry/pRy and R = Ro / péo. Since Ry

has finite p-basis, by [dJ95, Lem. 1.1.2], Lg, ) =~ Qg, /5. Note that maps k& — Ry — Ry

induces a fiber sequence
L
Lél/k ®]:21 Rl - I[‘Rl/k - IL‘R1/R1
Since that IL gk = Q Fa and 2 gk = Qg, /& by RAE condition, we conclude that L. Ryjfty =
0 as required. O

Let us end with a discussion about our base rings and the base rings used in [Bri08]. As
explained in the beginning of [Bri08, Chap. 2], his base ring Ry in [Bri08] is obtained from
W (L, ... tED) by a finite number of iterations of certain operations and is also assumed
to satisfy certain properties. By Prop. 2.0.2 loc. cit., we see that R has finite p-basis and
satisfies RAE assumption. So the base ring Ry in [Bri08] also satisfies the requirement that
fiW(t1,... ,tm) — Ro is formally étale by Proposition [6.0.4]
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