
ar
X

iv
:2

10
7.

12
24

0v
2 

 [
m

at
h.

N
T

] 
 3

 F
eb

 2
02

2

A PRISMATIC APPROACH TO (ϕ, Ĝ)-MODULES AND F -CRYSTALS

HENG DU AND TONG LIU

Abstract. We give a new construction of (ϕ, Ĝ)-modules using the theory of prisms
developed by Bhatt and Scholze. As an application, we give a new proof about the
equivalence between the category of prismatic F -crystals in finite locally free O∆-modules
over (OK)

∆
and the category of lattices in crystalline representations of GK , where K is

a complete discretely valued field of mixed characteristic with perfect residue field. We
also generalize this result to semi-stable representations using the absolute logarithmic
prismatic site defined by Koshikawa.
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1. Introduction

Let K be a complete discretely valued field of mixed characteristic with perfect residue
field k. Fix a separable closure of K of K and let GK be the absolute Galois group of
K. The study of stable lattices in crystalline representations of GK plays an important
role in number theory. For example, in many modularity lifting results, one wants to
understand liftings of mod p representations of the Galois group of a number field F to
Galois representations over Zp-lattices with nice properties when restricted to the Galois
groups of Fv for all places v of F . And a reasonable property at places over p is that
the representation of the Galois group of the local field is crystalline. There are various
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theories about characterizing GK -stable lattices in crystalline representations, for example,
theory of strongly divisible lattices of Breuil(cf. [Bre02]), Wach modules(cf. [Wac96] and
[Ber04]), Kisin modules(cf. [Kis06]), Kisin-Ren’s theory(cf. [KR09]) and the theory of

(ϕ, Ĝ)-modules(cf. [Liu10]). The theories above state that one can describe lattices in
crystalline representations using certain linear algebraic data over certain commutative
rings A.

In a recent work of Bhatt-Scholze[BS21], they give a different characterization of the
category of lattices in crystalline representations. To explain their result, let OK be the
ring of integers in K, and they consider the absolute prismatic site (OK)∆, which is defined
as the opposite category of all bounded prisms over OK and equipped with the faithfully flat
topology. Let O∆ be the structure sheaf over (OK)∆, and I∆ ⊂ O∆ be the ideal sheaf of the
Hodge-Tate divisor, then O∆ carries a ϕ-action coming from the δ-structures. A prismatic
F -crystal in finite locally free O∆-modules over (OK)∆ is defined as a crystal M∆ over
(OK)∆ in finite locally free O∆-modules together with an isomorphism (ϕ∗M∆)[1/I∆] ≃
M∆[1/I∆]. The main result in [BS21] is the following:

Theorem 1.0.1. ([BS21, Theorem 1.2] and Theorem 4.1.10) There is an equivalence of
the category of prismatic F -crystals in finite locally free O∆-modules over (OK)∆ and the
category of Galois stable lattices in crystalline representations of GK .

To relate the result of Bhatt-Scholze with previous works of characterizing lattices in
crystalline representations using linear algebraic data, one should first realize the base
rings A used in those theories as certain prisms (A, I) over OK . Then one should expect
that evaluating the prismatic F -crystals on (A, I) should recover the corresponding theory.
For example, in the theory of Kisin [Kis06], he uses the base ring A = S := W (k)[[u]] with
δ(u) = 0, and if one fixes a uniformizer ̟ of OK which is a zero of an Eisenstein polynomial
E ∈ W (k)[u], then it is well-known that (A, (E)) is the so-called Breuil-Kisin prism which
is inside (OK)∆. And Kisin was able to attach any lattice T in a crystalline representation
of GK a finite free A-module together with an isomorphism (ϕ∗M)[1/E] ≃M[1/E]. Now,
if M∆ is the prismatic F -crystal attaching to T under Theorem 1.0.1, then Bhatt-Scholze
show that the evaluation of M∆ on (A, (E)) recovers Kisin’s theory (cf. Theorem 1.3 of
loc.cit.).

The first question answered in this paper is whether and how one can recover the theory
of (ϕ, Ĝ)-modules from the prismatic F -crystals characterization of Bhatt-Scholze. The cat-

egory of (ϕ, Ĝ)-modules, roughly speaking, consisting of pairs ((M, ϕM), Ĝ), where (M, ϕM)

is a Kisin module, and Ĝ is a GK -action onM⊗S,ϕR̂ that commutes with ϕM and satisfying

some additional properties. Here R̂ is a subring of Ainf that is stable under ϕ and GK , where

Ainf =W (O♭
K
) introduced by Fontaine, and there is a surjection θ : Ainf :=W (O♭

K
)→ ÔK .

However, the period ring R̂ introduced by Liu is not known to be p-adically complete or
not, and it is even harder to determine whether it can be shown up as a prism. So in
order to relate the theory of (ϕ, Ĝ)-modules with the category of prismatic F -crystals of

Bhatt-Scholze, we develop a theory of prismatic (ϕ, Ĝ)-modules, in which theory the ring

R̂ is replaced by A
(2)
st , a subring of Ainf constructed as certain prismatic envelope in §2.3.

The first result of this paper is about the theory of prismatic (ϕ, Ĝ)-modules. We can

show similar to the classical (ϕ, Ĝ)-module theory, there is an equivalence between the

category of prismatic (ϕ, Ĝ)-modules and lattices in semi-stable representations of GK .

Moreover, (A
(2)
st , (E)) is indeed a prism in (OK)∆, it admits a map (A, (E)) → (A

(2)
st , (E))
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of prisms, and carries an action of GK . For a GK-stable lattice T in a crystalline rep-
resentation, if M∆ is the prismatic F -crystal attaches to T , then evaluating M∆ on the

morphism (A, (E)) → (A
(2)
st , (E)) recovers the prismatic (ϕ, Ĝ)-module attaches to T . We

can also show the map A
(2)
st → Ainf

ϕ−→ Ainf factor through R̂, so the theory of prismatic

(ϕ, Ĝ)-modules recovers the classical theory. The ring A
(2)
st is simpler than R̂ in many ways,

although it is still very complicated and non-noetherian, it is more explicitly described and
is p-adic complete. In particular, our new theory can be used to fix the gap [Liu07] indicated
by [Gao21, Appendix B].

The second attempt made in this paper is to provide a new approach to the equivalence
between the category of prismatic F -crystals and the category of lattices in crystalline
representation established by Bhatt and Scholze as in Theorem 1.0.1. That is, using the
known equivalence between lattices in semi-stable representations and prismatic (ϕ, Ĝ)-

modules, we will establish a functor from the category of prismatic (ϕ, Ĝ)-modules that
correspond to crystalline representations to prismatic F -crystals, and show this functor is
an equivalence.

To be more precise, let T be a GK -stable lattice in a crystalline representation with
positive Hodge-Tate weights, let (A,E) be the Breuil-Kisin prism, and let (A(2), (E)) (resp.

(A(3), (E))) be the self-product (self-triple-product) of (A, (E)) in (OK)∆. Then evaluating

prismatic F -crystals on the diagram (A, (E))
i1−→ (A(2), (E))

i2←− (A, (E)) induces an equiv-
alence of the category of prismatic F -crystals and Kisin modules with descent data, that is
pairs ((M, ϕM), f) where (M, ϕM) is a Kisin module and

f : M⊗S,i1 A
(2) ≃M⊗S,i2 A

(2)

is an isomorphism of A(2)-modules that is compatible with ϕ and satisfies cocycle condition
over A(3). Using this, to establish an equivalence between prismatic (ϕ, Ĝ)-modules that
correspond to crystalline representations and prismatic F -crystals, it remains to find certain
correspondence between the Ĝ-action and the descent isomorphism f . We will show the

descent isomorphism can be obtained by taking the GK -action of the (ϕ, Ĝ)-module at a
specific element. To be more precise, fix a Kummer tower K∞ =

⋃∞
n=1K(̟n) used in the

theory of Kisin, where {̟n}n is a compatible system of pn-th roots of ̟0 = ̟, and let L be

the normalization of K∞ inside K. Choose τ ∈ Ĝ := Gal(L/K) satisfying τ(̟n) = ζpn̟n

such that {ζpn} is a compatible system of primitive pn-th roots of 1, then our slogan is
that the descent isomorphism corresponds to the τ̃ -action on the Kisin module M inside

T∨ ⊗Ainf where τ̃ ∈ GK is any lifting of τ under the quotient map GK → Ĝ.
To sketch our idea, first we have the maps u 7→ [̟♭] and u 7→ [τ(̟♭)] defines two

morphisms of (A, (E)) to (Ainf ,Ker θ). By the universal property of (A(2), (E)), these two
maps induce a morphism (A(2), (E)) → (Ainf ,Ker θ). We can show this map is injective,

and the embedding factors through A
(2)
st , which is the base ring used in our prismatic (ϕ, Ĝ)-

module theory. That is, we have a chain of subrings A ⊂ A(2) ⊂ A
(2)
st of Ainf , such that

τ̃(A) is also contained in A(2). We can show a prismatic (ϕ, Ĝ)-module corresponds to a
crystalline representation if and only if the coefficients of the τ̃ -action on M in T∨ ⊗ Ainf

lie inside A(2). And once this is proved, the τ̃ -action will induce an isomorphism:

fτ : M⊗S,τ A
(2) ≃M⊗S A

(2).

We will see fτ gives the descent isomorphism. As a result, we give a new proof for Theo-
rem 1.0.1.
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An advantage of our approach is that our new method can be easily generalized to the

semi-stable representations cases. It turns out that the prism (A
(2)
st , (E)) is isomorphic to

the self-coproduct of (A, (E)) in the category of logarithmic prisms over OK defined by

Koshikawa[Kos21]. Using the equivalence between prismatic (ϕ, Ĝ)-modules and lattices
in semi-stable representations of GK . we will show in §5 the following generalization of
Theorem 1.0.1 for semi-stable representations.

Theorem 1.0.2. (Theorem 5.0.18) There is an equivalence of the category of prismatic
F -crystals in finite locally free O∆-modules over (OK)∆log

and the category of Galois stable

lattices in semi-stable representations of GK .

Another interesting and natural question one can ask is whether Theorem 1.0.1 and
Theorem 1.0.2 can accommodate more general base rings. Motivated by our strategy, it
seems to us that the answer should be affirmative if a suitable theory of (ϕ, Ĝ)-module can
accommodate more general base rings, for example, if the base ring R is a complete DVR
with imperfect residue field that admits a finite p-basis. We are working on such direction
and hopefully will report our progress in the future. So part of our paper, for example, § 2
do allow specific general base rings.

Acknowledgments. It is our pleasure to thank Hui Gao, Wansu Kim, Teruhisa Koshikawa,
Zeyu Liu, Yong Suk Moon, Peter Scholze, Koji Shimizu, Yupeng Wang, Zhiyou Wu and
Min Yu for comments and conversations during the preparation of this paper.

2. Ring Structures on certain prismatic envelope

Recall that K is a completed discrete valuation field in mix characteristic (0, p) with
ring of integers of OK and prefect residue field k. Write W = W (k). Let ̟ ∈ OK be a
uniformizer and E = E(u) ∈W [u] be the Eisenstein polynomial of ̟. Let Cp be the p-adic

completion of K, and OCp be the ring of integers. Let R0 be a W (k)-algebra which admits
Frobenius lift ϕ : R0 → R0. Set R := R0 ⊗W (k) OK . We make the following assumptions
for R0 and R:

(1) Both R0 and R are p-adically complete integral domains, and R0/pR0 = R/̟R is
an integral domain;

(2) Let R̆0 =W 〈t1, . . . , tm〉. R0 is a R̆0-formally étale algebra with p-adic topology;

(3) R̆0 admits a Frobenius lift such that R̆0 → R0 defined in (2) is ϕ-equivalent.
(4) The k-algebra R0/pR0 has finite p-basis in the sense of [dJ95, Definition 1.1.1].

Our main example is R0 = R̆0 =W (k). We will not use the finite p-basis assumption until
§4. The following are other examples of R0:

Example 2.0.1. (1) R0 =W (k)〈t±1
1 , . . . , t±1

m 〉 with ϕ(tj) = tpj
(2) R0 =W (k)[[t]] with ϕ(t) = tp or (1 + t)p − 1.
(3) R0 is an unramified complete DVR with imperfect field κ with finite p-basis. See

§6 for more discussions.

We reserve γi(·) to denote i-th divided power.

2.1. Construction of A(2). Let A = S = R0[[u]] and extend ϕ : A→ A by ϕ(u) = up. It
is well-known that (A,E) is a prism and we can define a surjection θ : A→ R via u 7→ ̟.

We have Ker θ = (E(u)). Let Ă := R̆0[[u]] and define ϕ and θ̆ : Ă → R̆ := OK ⊗W R̆0

similarly. We set

A⊗̂2 := A[[y − x, s1 − t1, . . . , sm − tm]], A⊗̂3 := A[[y − x,w − x, {si − ti, ri − ti}j=1,...,m]].
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Note that A⊗̂2 (resp. A⊗̂3) is Ă ⊗Zp Ă(resp. Ă ⊗Zp Ă ⊗Zp Ă)-algebra by u ⊗ 1 7→ x,
1 ⊗ u 7→ y and 1 ⊗ ti 7→ si (resp. 1 ⊗ 1 ⊗ u 7→ w and 1 ⊗ 1 ⊗ ti 7→ ri). So in this way,

we can extend Frobenius ϕ of A, which is compatible with that on Ă to A⊗̂2 and A⊗̂3.

Set J (2) = (E, y − x, {si − ti}i=1,...,m) ⊂ A⊗̂2 and J (3) = (E, y − x,w − x, {si − ti, ri −
ti}i=1,...,m) ⊂ A⊗̂3. Clearly, we have A⊗̂i/J (i) ≃ R for i = 2, 3. And we have A⊗̂2/(p,E)

(resp. A⊗̂3/(p,E)) is a formal power series ring over the variables ȳ−x̄, {s̄i−t̄i}i=1,...,m (resp.

ȳ − x̄, w̄ − x̄, {s̄i − t̄i, r̄i − t̄i}i=1,...,m), so (A, (E)) → (A⊗̂i, J (i)) satisfies the requirements
of in [BS22, Prop. 3.13], and we can construct the prismatic envelope with respect to this

map, which will be denoted by A(i). More precisely, A(i) ≃ A⊗̂i
{

J(i)

E

}∧

δ
, here {·}∧δ means

freely adjoining elements in the category of (p,E(u))-completed δ-A-algebras. We will see

A(i), i = 2, 3 are the self product and triple product of A in category X∆ in §4.1.

2.2. The ring A
(2)
max. Now we set t0 = x, s0 = y and

zj =
si − ti
E

and z0 = z =
y − x
E

=
s0 − t0
E

.

Note that A(i) are A-algebras via u 7→ x.

Definition 2.2.1. Let Omax be the p-adic completion of the A-subalgebra of A[1p ] generated

by p−1E. And let A
(2)
max be the p-adic completion of the A-subalgebra of A[zj ,

1
p ; j = 0, . . . ,m]

generated by p−1E and {γi(zj)}i≥1,j=0,...,m.

We first note that A
(2)
max is an A⊗̂2-algebra via (sj − tj) = Ezj , j = 0, . . . ,m. Write

ι : A⊗̂2 → A
(2)
max for the structure map. By construction, it is easy to see that A

(2)
max ⊂

R0[
1
p ][[E, zj , j = 0, . . . ,m]]. In particular, A

(2)
max is a domain and any element b ∈ A(2)

max can

be uniquely written as
∞∑

i0=0
· · ·

∞∑
im=0

bi1,...,im
m∏
j=0

γij (zj) with bi0,...,im ∈ Omax and bi0,...,im → 0

p-adically when i0+ · · ·+ im →∞. Our next aim is to define ϕ on A
(2)
max. For this, we need

a little preparation.

Lemma 2.2.2. c := ϕ(E)
p ∈ Omax and c−1 ∈ Omax.

Proof. We have A is a δ-ring, and E is a distinguished element, so in particular

ϕ(E)/p = c0 + Ep/p

where c0 = δ(E) ∈ A×. So c = ϕ(E)/p ∈ Omax, and c
−1 = c−1

0

∞∑
i=0

(−c−1
0 Ep)i

pi
∈ Omax. �

Now we define ϕ(z) = ϕ(z0) =
yp−xp

ϕ(E) and ϕ(zj) =
ϕ(sj)−ϕ(tj )

ϕ(E) . Since

ϕ(z) =
yp − xp
ϕ(E)

= c−1 y
p − xp
p

= c−1 (x+ Ez)p − xp
p

= c−1
p∑

i=1

xp−i(Ez)i
(
p

i

)
/p

= c−1
p∑

i=1

aiz
i,
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where ai ∈ W (k)[[x]][E
p

p ] ⊂ Omax ⊂ A
(2)
max and c is a unit in Omax, we have ϕ(z) ∈ A(2)

max.

Then

γn(ϕ(z)) =
ϕ(z)n

n!
=
zn

n!
(c−1

p∑

i=1

aiz
i−1)n

is in A
(2)
max. The argument for ϕ(zj) for j > 1 need a little more details. Note that ϕ(tj) =

tpj + pδ(tj) with δ(tj) ∈ R̆0 by our assumptions. It is clear that δ(sj)− δ(tj) = (sj − tj)λj
with λj ∈ A⊗̂2. Using that (sj − tj) = Ezj , so

(1) ϕ(zj) = c−1(
spj − t

p
j

p
+ Ezjλj)

The same argument as that for ϕ(z0) also shows that γn(zj) ∈ A(2)
max, for j = 1, . . . ,m.

Since any element b ∈ A
(2)
max can be uniquely written as

∞∑
i0=0
· · ·

∞∑
im=0

bi1,...,im
m∏
j=0

γij (zj)

with bi0,...,im ∈ Omax and bi0,...,im → 0 p-adically when i0 + · · · + im → ∞, this allows

to extend Frobenius map ϕ on A to a ring map ϕ : A
(2)
max → A

(2)
max by sending u 7→ up,

z 7→ yp−xp

ϕ(E) , ϕ(zj) =
ϕ(sj)−ϕ(tj)

ϕ(E) , and γi(zj) 7→ γi(ϕ(zj)) as the above.

Remark 2.2.3. The ring map ϕ : A
(2)
max → A

(2)
max is not a Frobenius lift of A

(2)
max/p because

ϕ(E/p) − (E/p)p 6∈ pA(2)
max. In particular, A

(2)
max is not a δ-ring.

Recall that A
(2)
max is an A⊗̂2-algebra via map ι : A⊗̂2 → A

(2)
max. The above construction of

Frobenius ϕ on A
(2)
max is obviously compatible with ι.

Our next goal is to show that ι induces a map A(2) → A
(2)
max so that A(2) is a subring of

A
(2)
max which is compatible with ϕ-structures and filtration. We need a little preparation.

Write zn = δn(z) with δ0(z) = z = z0, and A0 =W (k)[[u]].

Lemma 2.2.4.

δn(Ez) = bnzn +

p∑

i=0

a
(n)
i zin−1.

where a
(n)
i ∈ A0[z0, . . . , zn−2] so that a

(n)
p ∈ A×

0 and for 0 ≤ i ≤ p − 1 each monomials of

a
(n)
i contains a factor z

p
j for some 0 ≤ j ≤ n − 2. Furthermore, bn+1 = pδ(bn) + bpn and

b1 = pδ(E) + Ep.

Proof. Given f ∈ A0[x1, . . . , xm], if each monomials of f contains xlj for some j and l ≥ p

then we call f good. For example, f = xp1x2 + 2x1x
p+3
2 . So we need to show that a

(n)
i ∈

A0[z0, . . . , zn−2] is good. Before making induction on n, we discuss some properties of
good polynomial. It is clear that the set of good polynomials is closed under addition and
multiplications. Note that

(2) δ(zil) =
1

p
(ϕ(zil)− z

pi
l ) =

1

p

(
(pzl+1 + z

p
l )

i − z
pi
l

)
=

i∑

j=1

(
i

j

)
(pj−1z

p(i−j)
l )zjl+1.

In particular, given an f ∈ A0[z0, . . . , zm], δ(zpmf) = fpδ(zpm) + z
p2
mδ(f) + pδ(zpm)δ(f) is a

good polynomial in A[z0, . . . , zm+1]. Using the fact that δ(a + b) = δ(a) + δ(b) + F (a, b)

where F (X,Y ) = 1
p(X

p + Y p − (X + Y )p) = −
p−1∑
i=1

(
p
i

)
/pXiY p−i, together with the above
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argument of δ(zpl f), it is not hard to show that if g ∈ A0[z0, . . . , zm] is good then δ(g) ∈
A0[z0, . . . , zm, zm+1] is also good.

Now we make induction on n. When n = 1, we have

δ(Ez) = Epz1 + zpδ(E) + pδ(E)z1 = (pδ(E) + Ep)z1 + δ(E)zp.

Then b1 = pδ(E) +Ep, a
(1)
p = δ(E) ∈ A×

0 and a
(1)
i = 0 for 1 ≤ i ≤ p− 1 are required. Now

assume the formula is correct for n, then

δn+1(Ez) = δ(bnzn +

p∑

i=0

a
(n)
i zin−1) = δ(bnzn) + δ(

p∑

i=0

a
(n)
i zin−1)) + F (bnzn,

p∑

i=0

a
(n)
i zin−1)),

Clearly, F (bnzn,
p∑

i=0
a
(n)
i zin−1)) =

p−1∑
j=1

ã
(n)
j z

j
n with ã

(n)
j being good. An easy induction shows

that δ(
p∑

i=0
a
(n)
i zin−1) =

p∑
i=0

δ(a
(n)
i zin−1) + f with f ∈ A0[z0, . . . , zn−1] being good. Since

δ(a
(n)
i zin−1) = (a

(n)
i )pδ(zin−1)+(zpin−1)δ(a

(n)
i )+pδ(zin−1)δ(a

(n)
i ), by using formula of δ(zin−1) in

(2) and that a
(n)
i is good implies that δ(a

(n)
i ) is also good, we conclude that for 0 ≤ i ≤ p−1,

p−1∑

i=0

δ(a
(n)
i zin−1) =

p−1∑

i=0

αiz
i
n

with αi ∈ A0[z0, . . . , zn−1] being good polynomials. Using that a
(n)
p ∈ A×

0 , we compute that

δ(a
(n)
p z

p
n−1) =

p∑
i=0

βiz
i
n with βp ∈ pA0 and βj ∈ A0[z0, . . . , zn−1] being good for 1 ≤ j ≤ p−1.

Now we only need to analyze δ(bnzn), which is δ(bn)z
p
n + bpnzn+1 + pδ(bn)zn+1. So bn+1 =

pδ(bn)+b
p
n and a

(n+1)
p = δ(bn)+βp. Since δ(bn) ∈ A×

0 , we see that a
(n+1)
p = δ(bn)+βp ∈ A×

0
as required. �

Let Ã(2) := A⊗̂2[zj ]δ = A⊗̂2[δn(zj), n ≥ 0, j = 0, . . . ,m] and natural map α : Ã(2) →
Ã(2)[1p ] (we do not know α is injective at this moment).

Lemma 2.2.5. For i ≥ 0 and j = 0, 1, . . . , d, there exists fij(X) ∈ Ã(2)[X] such that, as

elements of Ã(2)[1p ] via α : Ã(2) → Ã(2)[1p ],

γi(zj) = fij

(E
p

)
.

Proof. Write z = zj for simplicity, and let γ̃(z) = zp

p and γ̃n = γ̃ ◦ γ̃ · · · ◦ γ̃︸ ︷︷ ︸
n

. It suffices to

show that for each n ≥ 1, we have γ̃n(z) = fn(
E
p ) inside Ã

(2)[1p ] for some fn(X) ∈ Ã(2)[X].

For an element x ∈ A[δi(z)]i≥0, we say that x has δ-order ≤ n if x ∈∑
0≤j≤nA[{δi(z)}0≤i≤n]δ

j(z),

namely, if x can be written as a sum of monomials such that each term is divisible by δj(z)
for some 0 ≤ j ≤ n.

We claim that the following two equations hold for each n ≥ 1:

(1) We have

(3) δn(z) = νnγ̃
n(z) + Pn

(E
p

)
+
Ep

p
dnδ

n(z)
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for some νn ∈ A×, dn ∈ A, and Pn(X) ∈ (A[δi(z)]i≥0)[X] such that each coefficient
of Pn(X) has δ-order ≤ n− 1.

(2) We have

(4) γ̃(δn−1(z)) = µn−1γ̃
n(z) +Qn−1

(E
p

)

for some µn−1 ∈ A× and Qn−1(X) ∈ (A[δi(z)]i≥0)[X] such that each coefficient of
Qn−1(X) has δ-order ≤ n− 1.

We prove claims (1) and (2) by induction. For n = 1, since

δ(Ez) = zpδ(E) + (pδ(E) + Ep)δ(z)

and δ(E) ∈ S×, we have

δ(z) = −γ̃(z) + δ(E)−1 δ(Ez)

p
− δ(E)−1E

p

p
δ(z).

By easy induction, we also have δi(Ez) ∈ (Ez)A for each i ≥ 1. So claim (1) holds. Claim
(2) holds for n = 1 trivially with Q0(X) = 0.

Suppose that claims (1) and (2) hold for 1 ≤ n ≤ m. We will verify claims (1) and (2)
for n = m + 1. We first consider claim (2). Since each coefficient of Pm(X) has δ-order
≤ m− 1, Ep

p = pp−1
(
E
p

)p
, and Equations (3) and (4) hold for 1 ≤ n ≤ m, applying γ̃(·) to

Equation (3) for n = m yields

γ̃(δm(z)) = νpmγ̃
m+1(z) +Qm

(E
p

)

for some Qm(X) ∈ (S[δi(z)]i≥0)[X] such that each coefficient of Qm(X) has δ-order ≤ m.
This proves the claim (2) for n = m+ 1.

We now consider claim (1) for n = m+1. By the above Lemma for n = m+1 and that
bn = pαn + βnE

p for some αn ∈ A× and βn ∈ A (via an easy induction on n), we have

αm+1δ
m+1(z) =

δm+1(Ez)

p
− βm+1

Ep

p
δm+1(z)− a(m+1)

p γ̃(δm(z)) − 1

p

p−1∑

j=0

a
(m+1)
j (δm(z))j .

As noted above, we have δm+1(Ez) ∈ (Ez)A. Furthermore, by the condition on a
(m+1)
j ,

the last term 1
p

∑p−1
j=0 a

(m+1)
j (δm(z))j is a linear combination of terms involving γ̃(δl(z)) =

1
p(δ

l(z))p for some 0 ≤ l ≤ m− 1. Thus, by applying Equations (3) and (4) for 1 ≤ n ≤ m,

we see that claim (1) also holds for n = m+ 1 with νm+1 = −α−1
m+1a

(m+1)
p µm and dm+1 =

−α−1
m+1βm+1. This completes the induction and prove the lemma . �

Remark 2.2.6. In the above proof, by equation (4), we even have for each i, j ≥ 0,

γi(δ
j(z)) = f(Ep ) for some f ∈ Ã(2)[X].

An easy induction by (3) implies that α(δn(z)) ∈ A⊗̂2[{γi(zj)}i≥0,j=1,...,m,
E
p ] ⊂ A

(2)
max,

which satisfies equations in Lemma 2.2.4 by replacing zn by α(δn(z)) inside A
(2)
max. It is

clear that ι is still Frobenius compatible (because both A⊗̂2 and A
(2)
max are domains). Since

E = pEp , ι is a continuous for (p,E)-topology on Ã(2) and p-topology on A
(2)
max. Finally, we

construct a ring map ι : A(2) → A
(2)
max so that ι is compatible with Frobenius.
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Our next goal is to show that ι is injective. Define FiliA
(2)
max[

1
p ] := EiA

(2)
max[

1
p ]. For any

subring B ⊂ A(2)
max[

1
p ], set

FiliB := B ∩ FiliA(2)
max[

1

p
] = B ∩EiA(2)

max[
1

p
].

Let Dz be the p-adic completion of R[γi(zj), i ≥ 0; j = 0, . . . ,m].

Proposition 2.2.7. (1) Ã(2)/E = R[γi(zj), i ≥ 0; j = 0, . . . ,m].

(2) A(2)/E ≃ Dz.
(3) ι is injective.

(4) Fil1A(2) = EA(2).

(5) A(i) are flat over A for i = 2, 3.

Proof. (1) By definition, Ã(2) = A⊗̂2[z
(n)
j , n ≥ 0; j = 0, . . . ,m]/J where mod J is equiv-

alent the following relations (note that z0 = z): Ez = (x − y), Ezj = sj − tj, δ(z(n)j ) =

z
(n+1)
j , δn(Ez) = δn(y − x), δn(Ezj) = δn(sj − tj). Since δ(x − y) = (xp−yp)−(x−y)p

p and

δ(sj − tj) = ϕ(sj−tj)−(sj−tj)
p

p , it is easy to prove by induction that δn(x− y) and δn(sj − tj)
always contains a factor (x−y), sj−tj and hence δn(x−y), δ(sj−tj) ≡ 0 mod E. Therefore
δn(Ezj) ≡ 0 mod E. By Lemma 2.2.4, we see that

pµnz
(n)
j = −

p∑

i=0

a
(n)
i (z

(n−1)
j )i mod E and pz

(1)
j = zpj mod E

where a
(n)
i = a

(n)
i mod E and µn = δ(bn)

p mod E ∈ O×
K . Using that a

(n)
p ∈ A×

0 , and

a
(n)
i , 1 ≤ i ≤ p − 1 are good in the sense that they contains factor of (z

(l)
j )p for some

l = 0, . . . , n − 2, we easily see by induction that Ã(2)/E = R[γ̃n(zj), n ≥ 0; j = 0, . . . ,m].
But it is well-known that R[γ̃n(zj), n ≥ 0; j = 0, . . . ,m] = R[γn(zj), n ≥ 0; j = 0, . . . ,m].

Now we show that the natural map ι : Ã(2) → A
(2)
max[

1
p ] induced by α(δn(zj)) is injec-

tive. Note that Ã(2) is the direct limit of Ã(2)
n := A⊗̂2[{δi(zj)}i=1,...,n,j=0,...,m]. A similar

argument similar as above show that Ã(2)
n/E injects to A

(2)
max[

1
p ]/E = Dz[

1
p ]. Since Ã(2)

n

is E-separate and A
(2)
max is a domain, this implies that Ã(2)

n injects to A
(2)
max[

1
p ]. So Ã(2)

injects to A
(2)
max via ι.

(2) Since A(2) is (p,E)-completion of Ã(2) 1, we have a natural map from ῑ : A(2)/E → Dz.

The surjectivity of ῑ is straightforward as A(2) is also p-complete. To see injectivity, given an

sequence fn so that fn+1−fn ∈ (p,E)nÃ(2) and fn = Egn for all n, we have to show that gn

is a convergent sequence in A(2). Since E(gn+1−gn) =
∑n

i=0 p
iEn−ihi with hi ∈ Ã(2). Then

E|pnhn. Since Ã(2)/E has no p-torsion, we have E|hn and write hn = Eh′n. Since Ã
(2) is a

domain as it is inside the fraction field of A⊗̂2, we see that gn+1−gn = pnh′n+
n−1∑
i=0

piEn−i−1hi.

Hence gn converges in A(2) as required.

1Indeed, A(2) is derived (p,E)-completion. Since Ã(2)/E is Zp-flat, then derived completion coincides
with the classical completion, which is used here.
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(3) It is clear that A
(2)
max[

1
p ]/E ≃ Dz[

1
p ]. So the map ι mod E(u) induces an injection

Dz →֒ Dz [
1
p ]. So for any x ∈ Ker(ι), we see that x = Ea for some a ∈ A(2). As A

(2)
max is

E-torsion free and A(2) is E-complete, we see that x = 0 as required.
(4) By the definition of Fil1A(2), we see that EA(2) ⊂ Fil1A(2) and A(2)/Fil1A(2) injects

to A
(2)
max[

1
p ]/E = Dz[

1
p ]. But we have seen that A(2)/E = Dz injects to Dz. Then Fil1A(2) =

EA(2).
(5) Both A(2) and A(3) are obtained by the construction of [BS22, Proposition 3.13],

which implies that they are (p,E)-complete flat over A. Since A is Noetherian, by [Sta20,

Tag 0912], we have both A(2) and A(3) are A-flat. �

Corollary 2.2.8. (1) FiliA(2) = EiA(2).

(2) A(i) are bounded prisms for i = 2, 3.

Proof. These follow that A(2)/EA(2) ≃ Dz which is Zp-flat. For (2), we have A(2) and A(3)

are (p,E)-complete flat over A, so boundedness follows from (2) in [BS22, Lemma 3.7]. �

Lemma 2.2.9. A(2) is a closed subset inside A
(2)
max.

Proof. We need to show the following statement: Given x ∈ Ã(2), if x = pny with y ∈
A

(2)
max then x =

n∑
i=0

pn−iEixi with xi ∈ Ã(2). Indeed, since A(2)/E ≃ A
(2)
max/Fil

1, there

exists x0, w1 ∈ Ã(2) so that x = pnx0 + Ew1. Then Ew1 ∈ pnA
(2)
max. Write Ew1 =

pn
∞∑
i=0

m∑
j=0

fijγi(zj), we see that fij =
∑

l≥1 aijl
El

pl
∈ Fil1Omax. So it is easy to see that

pnE−1fij ∈ pn−1Omax and then w1 = pn−1x1 with x1 ∈ A(2)
max. Then we may repeat the

above argument to w1, and finally x =
n∑

i=0
pn−iEixi with xi ∈ Ã(2) as required. �

Now we realize A(2) as a subring of A
(2)
max via ι. We need to introduce some auxiliary

rings. By the description of elements in A
(2)
max, we define S̃0 be the subring of A

(2)
max as follow

S̃ := A(2)[[
Ep

p
]] := {

∑

i≥0

ai(
Ep

p
)i | ai ∈ A(2)}.

And when p = 2, we define Ŝ := A(2)[[E
4

2 ]] simiarly. We will have Ŝ ⊂ S̃ ⊂ A
(2)
max. Viewing

S̃ and Ŝ as subrings of A
(2)
max, we give them the filtration induced from A

(2)
max. The following

lemma is crucial for later applications and we thank Yong Suk Moon for many useful
comments to improve many details in the proof.

Lemma 2.2.10. Fix h ∈ N, then we have

(1) We have ϕ(A
(2)
max) ⊂ S̃ ⊂ A(2)

max, and when p = 2, we have ϕ(S̃) ⊂ Ŝ ⊂ S̃;
(2) x ∈ Filh S̃ if and only if x can be written as

x =
∑

i≥h

ai
Ei

p⌊
i
p
⌋

with ai ∈ A(2).
(3) when p > 2, there is a h0 > h such that ϕ(Film S̃) ⊂ A(2) + Eh Film+1 S̃ for all

m > h0;
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(4) when p = 2, then x ∈ Filh Ŝ if and only if x can be written as

x =
∑

i≥h

ai
Ei

2⌊
i
4
⌋

with ai ∈ A(2);

(5) when p = 2, there is a h0 > h such that ϕ(Film Ŝ) ⊂ A(2) + Eh Film+1 Ŝ for all
m > h0.

Proof. For (1), any a ∈ A(2)
max, we can write

a =
∞∑

i0=0

· · ·
∞∑

im=0

∞∑

l=0

ai0,...,im,l

(
E

p

)l m∏

j=0

γij (zj)

where ai0,...,im,l ∈ A and ai0,...,im,l → 0 p-adically when
∑

j ij + l→∞. Thanks for Lemma

2.2.5, we see that bi0,...,im,l := ϕ

((
E
p

)l ∏m
j=0 γij(zj)

)
∈ S̃. So ϕ(a) =

∑
ai0,...,im,lbi0,...,im,l

converges in S̃.

For the claim in (1) for p = 2, we have ϕ(E
2

2 ) = (E2 + 2b′)2/2 = E4

2 + 2b for some

b, b′ ∈ A. And for a =
∑

i≥0 ai(
Ep

p )i ∈ S̃, we have

ϕ(a) =
∑

i≥0

ϕ(ai)(
ϕ(E2)

2
)i =

∑

i≥0

ϕ(ai)

i∑

j=0

cij(2b)
i−j(

E4

2
)j =

∑

j≥0




∞∑

i=j

ϕ(ai)cij(2b)
i−j


 (

E4

2
)j

for some cij ∈ Z. So we have ϕ(a) ∈ Ŝ.
For (2), the if part is trivial. For the other direction, any x ∈ Filh S̃, we have

x =
∑

i≥0

ai
Ei

p⌊
i
p
⌋

as element in S̃. And if we also have x ∈ FilhA
(2)
max[

1
p ] = EhA

(2)
max[

1
p ], this implies for

ã0 =
∑

0≤i≤h

ai
Ei

p
⌊ i
p ⌋

is in FilhA(2)[1p ]. This implies p
⌊h
p
⌋
ã0 ∈ FilhA(2) = EhA(2). That is

ã0 = p−⌊h
p
⌋Ehb for some b ∈ A(2). So x is of the given form. The proof for (4) is similar.

For (3), we have by (2), x ∈ Film S̃, x can be written as

x =
∑

i≥m

ai
Ei

p
⌊ i
p
⌋
.

And use the fact ϕ(E) = Ep + pb for some b ∈ A(2), we have

ϕ(x) =
∑

i≥m

ϕ(ai)

i∑

j=0

cijE
p(i−j)pj

p⌊
i
p
⌋

=
∑

i≥m

i∑

j≥⌊ i
p
⌋

bijE
p(i−j)pj

p⌊
i
p
⌋

+
∑

i≥m

∑

0≤j<⌊ i
p
⌋

Eh bijE
p(i−j)−hpj

p⌊
i
p
⌋

with bij ∈ A(2).
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In particular, we have
∑

i≥m

∑i
j≥⌊ i

p
⌋
bijE

p(i−j)pj

p
⌊ i
p ⌋

is inside A(2). To prove (3), it is amount

to find h0 such that whenever m > h0, i ≥ m and 0 ≤ j < ⌊ ip⌋, we have

∑

i≥m

∑

0≤j<⌊ i
p
⌋

bijE
p(i−j)−hpj

p⌊
i
p
⌋

∈ Film+1 S̃.

The claim follows if we can find h0 > h such that Ep(i−j)−hpj

p
⌊ i
p ⌋

∈ S̃ and p(i−j)−h ≥ m+1 for

all m > h0, i ≥ m and 0 ≤ j < ⌊ ip⌋. That is ⌊
p(i−j)−h

p ⌋+j ≥ ⌊ ip⌋ and p(i−j)−h ≥ m+1 for

all i, j,m in this range. And solve this we have it is enough to choose h0 > max{h, p(h+1)+1
p(p−2) },

which is valid for p > 2.

Statement in (5) is similar to (3). Any x ∈ Film Ŝ, x can be written as

x =
∑

i≥m

ai
Ei

2⌊
i
4
⌋
.

We have ϕ(E) = E2 + 2b for some b ∈ A(2), so

ϕ(x) =
∑

i≥m

ϕ(ai)

i∑

j=0

cijE
2(i−j)2j

2⌊
i
4
⌋

=
∑

i≥m

i∑

j≥⌊ i
4
⌋

bijE
2(i−j)2j

2⌊
i
4
⌋

+
∑

i≥m

∑

0≤j<⌊ i
4
⌋

Eh bijE
2(i−j)−h2j

2⌊
i
4
⌋

.

Similar to the argument in (3), it is amount to find h0 such that whenever m > h0, i ≥ m
and 0 ≤ j < ⌊ i4⌋, we have ⌊(i− j)− h

2⌋+ j ≥ ⌊ i4⌋ and 2(i− j)− h ≥ m+1. It is enough to
choose h0 > 2(h+ 2). �

If A is a ring then we denote by Md(A) the set of d× d-matrices with entries in A.

Proposition 2.2.11. Let Y ∈ Md(A
(2)
max) so that EhY = Bϕ(Y )C with B and C in

Md(A
(2)) then Y is in Md(A

(2)[1p ]).

Proof. First, we claim that there is a constant s only depends on h, such that the entries

of psY is in S̃. By (1) of Lemma 2.2.10, entries of EhY are in S̃. So for each entry a of Y ,

we can write Eha =
∞∑
i=0

ai
Epi

pi
with ai ∈ A(2). It is clear that Ehpha = a′ + Eh

∑
i≥h

aj
Epi−h

pi

so that a′ ∈ A(2). Therefore, a′ ∈ FilhA(2) = EhA(2) by Corollary 2.2.8. So write a′ = Ehb,

we have pha = b′ +
∑
i≥h

aj
Epi−h

pi
. In particular, we see that p2ha ∈ S̃, this proves our claim.

When p = 2, then we may repeat the above argument and we can assume psY is in Md(Ŝ).

Let R = S̃ when p > 2 and R = Ŝ when p = 2, then we may assume Y is inside Md(R).
Then we claim there is another constant r only depends on h, such that for each entry a of

Y , there is a sequence {bi}i≥1 in A(2) such that we have a−
m∑
i=0

biE
i ∈ Film+1R. Note that

once this is known, we will have
m∑
i=0

biE
i converges to an element b in A(2), and a − b = 0

since it is in FilmR for all m ∈ N.
So it remains to show our claim. When p > 2, let h0 be the integer in (3) of Lemma 2.2.10,

then it is easy to show there is a constant r only depends on h0 (so only on h) and sequence
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{bi}h0
i=1 such that for each entry a of Y ′ := prY , we have

a−
h0∑

i=0

biE
i ∈ Filh0+1R.

Now we show our claim by induction, assume for each entry a in Y ′, there is a sequence
{bi}mi=1 such that,

a−
m∑

i=0

biE
i ∈ Film+1R.

for some m ≥ h0. So we can write Y ′ as
m∑

i=0

YiE
i + Zm+1,

with Yi ∈ Md(A
(2)) and Zm+1 ∈ Md(Fil

m+1R). Writing Xm =
∑m

i=0 YiE
i, then EhY ′ =

Bϕ(Y ′)C implies

EhZm+1 = Bϕ(Xm)C − EhXm +Bϕ(Zm+1)C.

By (3) in Lemma 2.2.10, we have Bϕ(Zm+1)C = Am+1 +EhBm+1, with Am+1 ∈Md(A
(2))

andBm+1 ∈ Md(Fil
m+2R). One can check Bϕ(Xm)C−EhXm+Am+1 ∈ Md(Fil

h+m+1A(2)),

so Bϕ(Xm)C − EhXm + Am+1 = Eh+m+1Ym+1 with Ym+1 ∈ Md(A
(2)). And we have

Y −∑m+1
i=0 YiE

i = Bm+1 ∈ Md(Fil
m+2R) as required.

At last when p = 2. We know we can assume Y is inside Md(Ŝ). Then repeat the above
arguments by replacing (3) in Lemma 2.2.10 with (5), we can also prove our claim. �

2.3. The ring A
(2)
st . We assume that R = OK in the following two subsections. For our

later use for semi-stable representations, we construct A
(2)
st as the following: Define ϕ on

W (k)[[x, y]] by ϕ(x) = xp and ϕ(y) = (1+y)p−1 and set w = y
E . Set A

(2)
st :=W (k)[[x, y]]{w}∧δ

where ∧ means (p,E)-completion. Similarly, we define A
(3)
st = W (k)[[x, y, z]]{ y

E ,
z
E}∧δ , with

the δ-structure onW (k)[[x, y, z]] given by δ(x) = 0, ϕ(y) = (y+1)p−1 and ϕ(z) = (z+1)p−1.
Define A

(2)
st,max to be the p-adic completion of W (k)[[x, y]][w, Ep , γi(w), i ≥ 0]. It is clear that

for any f ∈ A(2)
st,max can be written uniquely a =

∞∑
i=0

fiγi(w) with fi ∈ Omax and fi → 0

p-adically. For any subring B ⊂ A
(2)
st,max[

1
p ], we set FiliB := B ∩ EiA

(2)
st,max[

1
p ] and Dw the

p-adic completion of OK [γi(w), i ≥ 0].

It turns out that A(2) and A
(2)
st share almost the same properties by replacing z with w.

So we summarize all these properties in the following:

Proposition 2.3.1. (1) One can extend Froebnius from A to A
(2)
st,max.

(2) There exists an embedding ι : A
(2)
st →֒ A

(2)
st,max so that ι commutes with Frobenius.

(3) A
(2)
st ∩ EiA

(2)
st,max[

1
p ] = EA

(2)
st .

(4) A
(2)
st /E ≃ Dw = A

(2)
st,max/Fil

1A
(2)
st,max.

(5) A
(2)
st is closed in A

(2)
st,max.

(6) A
(2)
st and A

(3)
st are flat over A, and in particular they are bounded.

(7) Proposition 2.2.11 holds by replacing A
(2)
max and A(2) by A

(2)
st and A

(2)
st,max respectively.
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Proof. All previous proof applies by noting the following difference

ϕ(w) = ϕ(
y

E
) = c−1 1

p

p∑

i=1

(
p

i

)
yi = c−1

p−1∑

i=1

yi
(
p

i

)
/p+ c−1E

pwp

p
.

Also δ(y) =
p−1∑
i=1

yi
(p
i

)
/p always contains y-factor and this is a key input for the analogy of

Lemma 2.2.5.
For the boundedness of A

(3)
st , we have

W (k)[[x, y, z]]/(p,E) ≃ (OK/p)[[ȳ, z̄]]

so {y, z} form a (p,E)-complete regular sequence, and by [BS22, Proposition 3.13], A
(3)
st is

also A-flat, and this implies A
(3)
st is bounded by (2) in Lemma 3.7 of loc.cit.. �

Note that A⊗̂2 = W (k)[[x, y]] ⊂ W (k)[[x, y]] via y = x(y + 1) or equivalently y = y
x − 1.

It is clear that this inclusion is a map of δ-rings. By the universal property of prismatic

envelope to construct A(2), the inclusion induces a map of prisms α : A(2) → A
(2)
st . Since

z = xw, we easily see that A
(2)
max ⊂ A

(2)
st,max. So A(2) ⊂ A

(2)
st via α. We will see that A(2)

(resp. A
(2)
st ) is the self product of A in category X∆ (resp. (X,MX )∆log

) in §4.1 and §5.

Then the existence of α : A(2) → A
(2)
st can be explained by the universal property of self

product. See §5 for details.

To simplify our notation, let B
(2)
st (resp. B

(3)
st , B(2), B(3)) be the p-adic completion of

A
(2)
st [ 1E ] (resp. A

(3)
st [ 1E ], A(2)[ 1E ], A(3)[ 1E ]).

Lemma 2.3.2. (1) A
(i)
st ⊂ B

(i)
st ⊂ B

(i)
st [

1
p ] and A

(i) ⊂ B(i) ⊂ B(i)[1p ] for i = 2, 3.

(2) B
(2)
st ∩A

(2)
st [1p ] = A

(2)
st and B(2) ∩A(2)[1p ] = A(2).

Proof. Here we only prove the case A(2) while the proofs for A
(2)
st , A(3) and A

(3)
st are almost

the same.
By Proposition 2.2.7, A(2) is a subring of A

(2)
max ⊂ K0[[x, z]]. So A(2) and hence A(2)[ 1E ]

is an integral domain. Then B(2) has no p-torsion: Assume that x ∈ B(2) so that px = 0.
Suppose that xn ∈ A(2)[ 1E ] so that x ≡ xn mod pn. Then pxn ≡ 0 mod pnA(2)[ 1E ]. Since

A(2)[ 1E ] is domain, xn ≡ 0 mod pn−1. Hence x = 0. As B(2) has no p-torsion, we see

that B(2) ⊂ B(2)[1p ]. To see the natural map A(2) → B(2) is injective, it suffices to show

that A(2)/pA(2) injects to A(2)/pA(2)[ 1u ] = B(2)/pB(2). Clearly, this is equivalent to that

A(2)/pA(2) has no u-torsion. Note that A(2) is obtained by taking prismatic envelope of

A⊗̂2 = W (k)[[x, z]] for the ideal I = (z). As mentioned before, we can apply [BS22, Prop.
3.13] to our situation. So A(2) is flat over A and hence A(2)/pA(2) has no u-torsion as
desired.

Now we can regard B(2) and A(2)[1p ] as subrings of B
(2)[1p ]. In particular, B(2) ∩A(2)[1p ]

makes sense and contains A(2). For any x ∈ B(2) ∩A(2)[1p ], if x 6∈ A(2) but px ∈ A(2). Then

the image of y = px inside A(2)/pA(2) is nonzero but the image of y in B(2)/pB(2) is zero.

This contradicts to that A(2)/pA(2) injects to B(2)/pB(2). So such x can not exist and we

have B(2) ∩A(2)[1p ] = A(2) as required. �

By [BS22, Lem. 3.9], any prism (B, J) admits its perfection (B, J)perf = (Bperf , JBperf).
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Remark 2.3.3. In [BS22], the underlying δ-ring of (B, J)perf is denoted by (B∞, JB∞), and
Bperf is defined as the direct perfection of B in the category of δ-rings. In this paper, we
write Bperf as the (p, J)-adic completion of colimϕB, which also coincides with the derived
(p, I)-completion of colimϕB (cf. Lemma 3.9 of loc.cit.).

Lemma 2.3.4. We have (A(2))perf and (A
(2)
st )perf are A-flat.

Proof. We have seen that A(2) is A-flat via i1. And it is easy to see ϕ on A is flat. Since
i1 is a δ-map, so we have ϕn ◦ i1 = i1 ◦ ϕn which is flat. So colimϕA

(2) is flat over A. In
particular, we will have Aperf is (p,E)-complete flat over A. Now since A is Noetherian, by

[Sta20, Tag 0912], we have (A(2))perf is A-flat. The proof for (A
(2)
st )perf is the same. �

2.4. Embedding A(2) and A
(2)
st to Ainf . Let Ainf = W (O♭

Cp
), then there is a surjection

θ : Ainf → OCp and Ker θ = (E). And let B+
dR be the ker θ-adic completion of Ainf [

1
p ].

Definition 2.4.1. Let Amax be the p-adic completion of the Ainf-subalgebra of B+
dR gener-

ated by E/p.

It can be easily seen that ϕ(E/p) := ϕ(E)/p ∈ Acris ⊂ Amax is well-defined and it extends
the Frobenius structure on Ainf to an endomorphism on Amax.

Let {̟n}n≥0 be a compatible system of pn-th roots of ̟0 = ̟ and {ζn}n≥0 be a compati-

ble system of pn-th roots of 1. Write ̟♭ := {̟n}n≥0, ζ
♭ := {ζn}n≥0 ∈ O♭

Cp
and let u = [̟♭],

ǫ = [ζ♭], v = ǫu and µ = ǫ−1 be elements inside Ainf . We can regardW (k)[[x, y]] as a subring
of Ainf via x 7→ u and y 7→ v. Consider z′ = u−v

E ∈ Ainf [
1
E ]. Since u− v = u(ǫ− 1) is clearly

inside Ker(θ) and Ker(θ) = EAinf , we conclude that z′ ∈ Ainf . Hence we have a natural

map (of δ-rings) ιA : Ã(2) → Ainf via z 7→ z′, which naturally extends to ιA : A(2) → Ainf

because (p,E)-topology of A(2) matches with the weak topology of Ainf . Similarly, we have

map of δ-rings ιst : A
(2)
st → Ainf via x 7→ u and y 7→ ǫ− 1 and w 7→ ǫ−1

E .

Remark 2.4.2. Once we know that A(2) is self-product of A inside X∆ with X = Spf(OK)
as explained in §4.1. The map ιA can be constructed as the following: First we fix an
embedding A → Ainf by sending x 7→ u = [̟♭]. Then A → Ainf by x → v = ǫu is

another map of prisms. By universal property of A(2), these two maps extends to a map
ιA : A(2) → Ainf . Clearly, the map ιA : A(2) → Ainf depends on choice of ̟♭ = (̟n)n≥0

and ζ♭ = (ζn)n≥0. Also ιA is a special case of ι
(2)
γ defined by (14) in §4.3. Indeed if

γ([w♭]) = [ζ♭][w♭] then ιA = ι
(2)
γ . Similarly comment also applies to ιst.

Proposition 2.4.3. There is a unique embedding A
(2)
max Amax such that

W (k)[[x, y]] Ainf

A
(2)
max Amax B+

dR

commutes. Furthermore, FiliB+
dR ∩A

(2)
max = FiliA

(2)
max. The same result holds when A

(2)
max is

replaced by A
(2)
st,max.

Proof. In the following, we only treat the case of A
(2)
st,max while the proof of A

(2)
max is the

same by noting that z = uw in Ainf .
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The uniqueness is clear. To show the existence of the embedding, it is enough to show
γi(w) ∈ Amax for all i ≥ 1.

It is a well-known fact that Amax is isomorphic to the p-adic completion of Ainf [
ue

p ], and

Amax[1/p] is a Banach Qp-algebra, which is the completion of Ainf [1/p] under the norm
|·|p−1 such that

|x|p−1 = sup
n
{p−n|xn|O♭

C
}

where x =
∑

n≫0[xn]p
n ∈ Ainf [1/p]. And we have for x ∈ Amax[1/p], x ∈ Amax if and only

if |x|p−1 ≤ 1. Moreover |·|p−1 is multiplicative. So now it is enough to show for x = γi(w)

considered as an element inside Amax[1/p], we have |xp−1|p−1 ≤ 1. To show this, we have

by [BMS18, Proposition 3.17], ξ := µ/ϕ−1(µ) is a generator of Ker θ with µ = ǫ − 1. In
particular, w = µ/E = aϕ−1(µ) ∈ Ainf with a ∈ A×

inf . And we can check wp−1 = cue inside

O♭
C = Ainf/pAinf , with c a unit. So wp−1 = aue + bp with a, b ∈ Ainf , and

xp−1 =
(aue + bp)i

(i!)p−1
.

Using the fact vp(i!) <
i

p−1 , one can show each term in the binomial expansion on the right

hand side of the equation has |·|p−1-norm less or equal to 1, so in particular, |xp−1|p−1 ≤ 1.

To prove that FiliB+
dR∩A

(2)
st,max = FiliA

(2)
st,max, it suffices to show that EB+

dR∩A
(2)
st,max[

1
p ] =

EA
(2)
st,max[

1
p ]. By Proposition 2.2.7, we reduces to prove that the map

θ : Dw = A
(2)
st,max[

1

p
]/E → B+

dR/E = Cp

is injective. Let f(w) =
∑

i≥0 aiγi(w) ∈ Ker θ with ai ∈ OK limits to 0 p-adically. Then

f(w0) = 0 with w0 := θ(w) = θ( ǫ−1
E ) ∈ Cp. Note vp(w0) ≥ 1

p−1 because it is well-known
ǫ−1

ϕ−1(ǫ)−1
is another generator of kernel θ : Ainf → OCp and then vp(w0) = vp(θ(ϕ

−1(ǫ)−1)) =
1

p−1 . Since we are aiming to show that f = 0, without loss of generality, we can assume that

K contains p1 = p−1
√
p. Note that vp(i!) ≤ 1

p−1 , we conclude that w0
p1

is a root of f(p1w)

which is in OK〈w〉. By Weierstrass preparation theorem, w0 is algebraic over K unless
f = 0. By Lemma below, w0 := θ(w) ∈ Cp is transcendental over K and hence f = 0. �

Lemma 2.4.4. w0 = θ( ǫ−1
E ) is transcendental over K.

Proof. If w0 is contained in an algebraic extension L over K, we define L0,∞ =
⋃

n L(̟n).
For g ∈ GL0,∞ , we will have

θ(g(
ǫ− 1

E
)) = g(w0) = w0 = θ(

ǫ− 1

E
).

Since GL0,∞ fix E, θ(g(ǫ−1)−(ǫ−1)
E ) = 0. This implies g(ǫ−1)− (ǫ−1) ∈ Fil2B+

dR. Recall for

t = log ǫ, t− (ǫ−1) ∈ Fil2B+
dR, so we have g(t)− t ∈ Fil2B+

dR. But this can’t be true. Since
L0,∞ can only contain finitely many pn-th roots of 1, for g ∈ GL0,∞ , g(t) = c(g)t satisfying

c(g) ∈ Qp and c(g) 6= 1. This implies g(t)− t = (c(g) − 1)t ∈ Fil1B+
dR \ Fil2B+

dR. �

Corollary 2.4.5. The natural maps ιA : A(2) → Ainf and ιst : A
(2)
st → Ainf are injective.
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To summarize, we have the following commutative diagram of rings inside B+
dR:

A(2) A
(2)
st Ainf

A
(2)
max A

(2)
st,max Amax.

3. Application to semi-stable Galois representations

In this section, we assume that R = OK . We explain how to use the period ring A(2)

and A
(2)
st to understand lattices in crystalline and semi-stable representations. Roughly

speaking, we are going to use A(2) and A
(2)
st to replace R̂ in the theory of (ϕ, Ĝ)-modules

developed in [Liu10].
Let K∞ =

⋃∞
n=1K(̟n), G∞ := Gal(K/K∞) and GK := Gal(K/K). Recall that A =

S = W (k)[[u]]. Let S be the p-adic completion of W (k)[[u, E
i

i! , i ≥ 1]], which is the PD

envelope of W (k)[u] for the ideal (E). It is clear that S ⊂ Omax. We define ϕ and Fili on
S induced that from those on Omax, in particular, Fili S = S ∩ EiOmax[

1
p ]. Note that A

embeds to Ainf via u 7→ [̟♭] is not stable under GK -action but only on G∞-action. For

any g ∈ GK , define ε(g) = g(u)
u . It is clear that ε(g) = ǫa(g) with a(g) ∈ Zp. We define two

differential operators NS and ∇S on S by NS(f) =
df
duu and ∇S(f) =

df
du . We need ∇S to

treat crystalline representations.

3.1. Kisin module attached to semi-stable representation. Fix h ≥ 0, a Kisin mod-
ule of height h is a finite free A-module M with a semi-linear endomorphism ϕM : M→M

so that coker(1⊗ ϕM) is killed by Eh, where 1 ⊗ ϕM : M∗ := A⊗ϕ,A M→M is lineariza-
tion of ϕM. Note here we are using classical setting of Kisin modules used in [Liu10] but
it is good enough for this paper. The following summarizes the results on Kisin modules
attached to GK-stable Zp-lattices in semi-stable representations. The details and proofs of
these facts can be found in [Liu10].

Let T be a GK-stable Zp-lattice inside a semi-stable representation V of GK with Hodge-
Tate weights in {0, . . . , h}. Let D := D∗

st(V ) = HomQp,GK
(V,Bst) be the filtered (ϕ,N)-

module attached to V and DK := K ⊗K0 D. Then there exists a unique Kisin module
M := M(T ) of height h attached to T so that

(1) Homϕ,A(M, Ainf) ≃ T |G∞ .
(2) There exists an S-linear isomorphism

ιS : S[
1

p
]⊗ϕ,A M ≃ D ⊗W (k) S

so that ιS is compatible with ϕ on the both sides.
(3) ιS also induces an isomorphism Filh(S[1p ]⊗ϕ,AM) ≃ Filh(D⊗W (k)S). The filtration

on the both sides are defined as following:

Filh(S[
1

p
]⊗ϕ,A M) :=

{
x ∈ S[1

p
]⊗ϕ,A M|(1 ⊗ ϕM(x)) ∈ Filh S[

1

p
]⊗A M

}
.

To define filtration on D := S ⊗W (k) D, we first extend the monodromy operator
ND (resp. ∇D) on D to D by ND = 1⊗ND+NS⊗1 (resp. ∇D = 1⊗ND+∇S⊗1).
Then we define FiliD by induction: set Fil0D = D and

FiliD := {x ∈ D|ND(x) ∈ Fili−1D, f̟(x) ∈ FiliDK}
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where f̟ : D → DK is induced by S → OK via u 7→ ̟.

Remark 3.1.1 (Griffith transversality). From the construction of FiliD, we see thatND(Fil
iD) ⊂

Fili−1D. This property is called Griffith transversality.
We only use ∇D when ND = 0, that is, when V is crystalline. In this case, it is clear

that ND = u∇D. So it is clear that ∇D(Fil
iD) ⊂ Fili−1D.

For ease of notations, we will write N = ND and ∇ = ∇D in the following. Let T∨ :=
HomZp(T,Zp) and V

∨ := T∨⊗Zp Qp denote the dual representations. Then there exists an
Ainf -linear injection

(5) ιM : Ainf ⊗A M→ T∨ ⊗Zp Ainf ,

which is compatible with G∞-actions (G∞ acts on M trivially) and ϕ on both sides. Ap-
plying S⊗ϕ,A and using ιS := S ⊗ϕ,A ιM, we obtain the following commutative diagram

Acris[
1
p ]⊗ϕ,A M

≀ Acris⊗SιS

��

S⊗ϕ,AιM // V ∨ ⊗Zp Acris

Acris ⊗W (k) D
α // V ∨ ⊗Zp Acris

where the second row α is built by the classical comparison

Bst ⊗K0 D
∗
st(V ) ≃ V ∨ ⊗Qp Bst,

and α is GK-stable on the both sides. The left side of α is defined by

∀x ∈ D,∀g ∈ GK , g(x) =

∞∑

i=0

N i(x)γi(log(ε(g)))

Therefore, if we regard M∗ := A⊗ϕ,A M as an A-submodule of V ∨ ⊗Zp Acris via injection
ι∗ := S ⊗ϕ,A ιA, one can show that:

(6) ∀g ∈ GK , x ∈M∗, g(x) =

∞∑

i=0

N i
D(x)γi(log(ε(g))).

When V is crystalline, or equivalently, ND = 0, we have ([LL21, §8.1])

(7) ∀g ∈ GK , x ∈M∗, g(x) =

∞∑

i=0

∇i
D(x)γi(uε(g)).

3.2. Descent of the GK-action. Let us first discuss the GK -action on M ⊂ T∨ ⊗Zp Ainf

via ιM in (5) in more details. We select an A-basis e1, . . . , ed of M so that ϕ(e1, . . . , ed) =
(e1, . . . , ed)A with A ∈ Md(A). Then there exists a matrix B ∈ Md(A) so that AB = BA =
EhId. For any g ∈ GK , let Xg be the matrix so that

g(e1, . . . , ed) = (e1, . . . , ed)Xg.

In this section, we are interested in where the entries of Xg locates.

Theorem 3.2.1. The entries of Xg are in A
(2)
st . If V is crystalline and g(u)−u = Ez then

Xg ∈ Md(A
(2)).
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First, it is well-known that W (C♭
p) ⊗Ainf

ιM is an isomorphism. So Xg ∈ Md(W (C♭
p)).

Since GK -actions and ϕ-commutes, we have

Aϕ(Xg) = Xgg(A).

Define

FilhM∗ := {x ∈M∗|(1⊗ ϕM)(x) ∈ EhM}.
Since M has E-height h, it is easy to show that FilhM∗ is a finite free A-module and FilhD
is generated by FilhM∗.

To be more precise, let {e∗i := 1 ⊗ ei, i = 1, . . . , d} be an A-basis of M∗. It is easy to

check that (α1, . . . , αd) = (e∗1, . . . , e
∗
d)B is an A-basis of FilhM∗, and it is also an S[1p ]-

basis of FilhD. So for any g ∈ GK , we have g(αj) =
∞∑
i=0

N i(αj)γi(log(ε(g))). By Griffith

transversality in Remark 3.1.1: N(FiliD) ⊂ Fili−1D, we have,

(8) g(αj) =
h∑

i=0

N i(αj)E
iγi(

log(ε(g))

E
) +

∞∑

i>h

N i(αj)γi(E)(
log(ε(g))

E
)i.

SinceN i(αj)E
i ∈ FilhD, γi(E) inOmax and w

n → 0 insideA
(2)
st,max, we see that g(α1, . . . , αd) =

(α1, . . . , αd)Yg with Yg ∈ A(2)
st,max[

1
p ].

In the case that V is crystalline, using (7), we have

g(αj) =

h∑

i=0

∇i(αj)E
iγi(

uε(g)

E
) +

∞∑

i>h

∇i(αj)γi(E)(
uε(g)

E
)i

If g is chosen so that g(u)−u = Ez then, a similar argument can shows that g(α1, . . . , αd) =

(α1, . . . , αd)Y
∇
g with Y ∇

g ∈ A
(2)
max[

1
p ].

Now g(e∗1, . . . , e
∗
d) = (e∗1, . . . , e

∗
d)ϕ(Xg). Using similar arguments, we see that ϕ(Xg)’s

entry are in A
(2)
st,max[

1
p ] and A

(2)
max[

1
p ] respectively. Since (α1, . . . , αd) = (e∗1, . . . , e

∗
d)B, we

conclude that

ϕ(Xg)g(B) = BYg.

Using the formula that Aϕ(Xg) = Xgg(A) and AB = BA = EhId, we conclude that

Yg = (g(E)
E )hXg. Write r = g(E)

E . We claim that r is a unit in A
(2)
st . Indeed, g(E)

E =

E(uǫa(g))
E(u) =

e∑
i=0

E(i)(u)u
i(ǫa(g)−1)i

Ei! is again inside A
(2)
st , where E(i) means the i-th derivative

of E. And it is easy to show g(E) is also a distinguished element A
(2)
st , so by [BS22, Lemma

2.24], r is a unit. Similarly, when g(u) − u = Ez, we will have r = g(E)
E ∈ (A(2))×. Hence

(9) EhXg = r−hAϕ(Xg)g(B).

Now we can apply Proposition 2.2.11 and Proposition 2.3.1 (5) to the above formula, we
conclude that for g ∈ GK (resp. g ∈ GK such that g(u)− u = Ez and V is crystalline), we

have Xg has entries in A
(2)
st [1p ] (resp. A

(2)[1p ]).

To complete the proof of Theorem 3.2.1, it suffices to show that entries Xg are in A
(2)
st

(resp. A(2)). Unfortunately, the proof to remove “1
p” is much harder, which needs §4.2 and

§4.3. For the remaining of this subsection, we only show that the proof of Theorem 3.2.1
can be reduced to the case that g = τ̃ for a special selected τ̃ ∈ GK .
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Let L =
∞⋃
n=1

K∞(ζpn), K1∞ :=
⋃∞

n=1K(ζpn), Ĝ := Gal(L/K) and HK := Gal(L/K∞). If

p > 2 then it is known that Ĝ ≃ Gal(L/K1∞) ⋊HK with Gal(L/K1∞) ≃ Zp. Let τ be a
topological generator of Gal(L/K1∞). We have τ(u) = ǫau with a ∈ Z×

p . Without loss of

generality, we may assume that τ(u) = ǫu. If p = 2 then we can still select τ ∈ Ĝ so that

τ(u) = ǫu and τ,HK topologically generate Ĝ. Pick τ̃ ∈ GK a lift of τ . Clearly, we have
τ̃(u)− u = Ez.

Proposition 3.2.2. For g = τ̃ , the entries of Xg are in A
(2)
st , and if further V is crystalline,

then Xg ∈ Md(A
(2)).

Lemma 3.2.3. Proposition 3.2.2 is equivalent to Theorem 3.2.1.

Proof. Since Ĝ is topologically generated by τ and HK . So GK is topologically generated

by G∞ and τ̃ . And we have τ(u) − u = (ǫ − 1)u = Ez. Now if Xτ̃ has coefficient in A
(2)
st

and Xg = Id for all g ∈ G∞ then to show that Xg ∈ A(2)
st for all g ∈ GK , it suffices to show

that Xτ̃pn converges to Id inside Md(A
(2)
st ). Since A

(2)
st is closed in A

(2)
st,max by Proposition

2.3.1 (5), it suffices to show that Xτ̃pn converges inside A
(2)
st,max. Since Xg = ( E

g(E))
rYg and

Yg is defined by (8), we easily check that Xτ̃pn converges to Id in A
(2)
st,max by using that

ε(τ̃p
n
) converges to 0 in (p, ǫ− 1)-topology. The proof for the crystalline case is similar by

replacing A
(2)
st with A(2). �

So it remains to prove Proposition 3.2.2 to complete the proof of Theorem 3.2.1. We
will prove Proposition 3.2.2 in §4.3. Briefly speaking, for g = τ̃ , we have shown that the
linearization of the g-action defines a ϕ-equivariant isomorphism:

fg : M⊗A,ιg A
(2)
st [

1

p
] ≃M⊗A A

(2)
st [

1

p
]

of A
(2)
st [1p ]-modules, and since g(u)−u = Ez and V is crystalline, fg defines a ϕ-equivariant

isomorphism:

fg : M⊗A,ιg A
(2)[

1

p
] ≃M⊗A A

(2)[
1

p
]

of A(2)[1p ]-modules. Here ιg : A → A
(2)
st (resp. ιg : A → A(2))) is defined by u → g(u).

On the other hand, by [Wu21, Theorem 5.6], we will see the g-action on T∨ ⊗W (C♭
p) also

descent to a ϕ-equivariant morphism c of B(2)-modules, and recall that B(2) the is p-adic
completion of A(2)[ 1E ]. Then by comparing c and fg using the technique developed in §4.2,
we will deduce Proposition 3.2.2 from Lemma 2.3.2.

Remark 3.2.4. Our original strategy to prove Theorem 3.2.1 is to show A
(2)
st [1p ] ∩W (C♭

p) =

A
(2)
st (resp. A(2)[1p ] ∩W (O♭

Cp
) = A(2)). This is equivalent to that A(2)/p,A

(2)
st /p injects in

C♭
p. Unfortunately, it does not work out though we can show Ã(2)/p, Ã

(2)
st /p injects in C♭

p.

3.3. Relation to (ϕ, Ĝ)-modules. In this subsection, we show that the base ring R̂ for

the theory of (ϕ, Ĝ)-modules can be replaced by A
(2)
st . To this end, this builds a new theory

of (ϕ, Ĝ)-modules with new base ring A
(2)
st . Since the idea of this new theory is almost the

same as that of the old one, We will use classical to indicate we are using the theory over

R̂. For example, when we say classical (ϕ, Ĝ)-module, it means a (ϕ, Ĝ)-module over R̂.
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Recall L =
∞⋃
n=1

K∞(ζpn), Ĝ := Gal(L/K) and HK := Gal(L/K∞). Let m be the maximal

ideal of O♭
Cp

and set I+ = W (m) so that Ainf/I+ = W (k̄). For any subring B ⊂ Ainf

set I+B = B ∩ I+. Let t = log ǫ, t(i) = tr(i)γq̃(i)(
tp−1

p ) where i = (p − 1)q̃(i) + r(i) with

0 ≤ r(i) < p− 1. Recall that R̂ := Ainf ∩RK0 where

RK0 :=

{
∞∑

i=0

fit
(i), fi ∈ S[

1

p
], fi → 0 p-adically

}
.

Lemma 3.3.1. (1) As a subring of Ainf , A
(2)
st is stable under GK-action and the GK-

action factors through Ĝ.

(2) A
(2)
st /I+A

(2)
st =W (k).

(3) I+A
(2) ⊂ uA(2)

st .

(4) ϕ(A
(2)
st ) ⊂ R̂.

Proof. (1) It is clear that the GK-action is stable on W (k)[[u, ǫ − 1]]. Since A
(2)
st is (p,E)-

completion of W (k)[[u, ǫ − 1]][δi(w), i ≥ 0], to show that A
(2)
st is GK -stable, it suffices to

show that g(w) ∈ A(2)
st (because g and δ commutes, if g(x) ∈ A(2)

st then so is g(δ(x))). Now

Ew = ǫ− 1, we have g(E)g(w) = g(ǫ− 1) = ǫa(g) − 1. Then g(w) = E
g(E)

ǫa(g)−1
E . By [BS22,

Lemma 2.24], E/g(E) is a unit in A
(2)
st , then g(w) ∈ A(2)

st .
(2) It is clear that both u, ǫ− 1 are in I+. Hence w ∈ I+ because Ew = ǫ− 1 ∈ I+ and

E ≡ p mod I+. For any x =
∞∑
i=0

pi[xi] ∈ Ainf , x ∈ I+ if and only of xi ∈ m. Then it is

easy to check that δ(I+) ⊂ I+, and consequently all δi(w) ∈ I+. So I+A(2)
st is topologically

generated by u, y = ǫ− 1, δi(w), i ≥ 0 and hence A
(2)
st /I+A

(2)
st =W (k) as required.

(3) I+A
(2) is topologically generated by u, v = ǫu, {δi(z)}, i ≥ 0. And (3) follows from

z = uw and δn(z) = up
n
δn(w).

(4) Since A
(2)
st ⊂ A

(2)
st,max, it suffices to show that ϕ(A

(2)
st,max) ⊂ RK0 . Since ϕ(Omax) ⊂

A[[E
p

p ]] ⊂ S, it suffices to show that ϕ(γn(w)) ∈ RK0 . Note that ϕ(E) = pν with ν ∈ A[[Ep

p ]]×

and γi(ǫ− 1) ∈ RK0 . And we have

ϕ(w) = ϕ(
(ǫ− 1)

E
) = ν−1(ǫ− 1)

p∑

i=1

((
p

i

)
/p

)
(ǫ− 1)i−1

which is a polynomial with coefficients in Z and in variables ν−1 and γi(ǫ−1)’s. In particular
ϕ(γn(w)) ∈ RK0 by basic properties of divided powers. �

Definition 3.3.2. A (finite free) (ϕ, Ĝ)-module of height h is a (finite free) Kisin module

(M, ϕM) of height h together with an A
(2)
st -semi-linear Ĝ-action on M̂ := A

(2)
st ⊗AM so that

(1) The actions of ϕ and Ĝ on M̂ commutes;

(2) M ⊂ M̂HK ;

(3) Ĝ-acts on M̂/I+A
(2)
st trivially.
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The category of (ϕ, Ĝ)-modules consists of the above objects and morphism of two (ϕ, Ĝ)-

modules is morphism of Kisn modules that commutes with actions of Ĝ. Given a (ϕ, Ĝ)-

modules M̂ := (M, ϕ, Ĝ), we define a Zp-representation of GK ,

T̂ (M̂) := Hom
A

(2)
st ,ϕ

(A
(2)
st ⊗A M, Ainf).

Since ϕ(A
(2)
st ) ⊂ R̂, given a (ϕ, Ĝ)-module M̂ := (M, ϕ, Ĝ)-defined as the above, (M, ϕ)

together Ĝ-action on R̂ ⊗ϕ,A M is a classical (ϕ, Ĝ)-modules M̂c. It is easy to check that

T̂ (M̂) = T̂ (M̂c) := HomR̂,ϕ(R̂ ⊗ϕ,A M, Ainf).

Theorem 3.3.3. The functor T̂ induces an anti-equivalence between the category of (ϕ, Ĝ)-
modules of height h and the category of GK-stable Zp-lattices in semi-stable representations
with Hodge-Tate weights in [0, . . . , h].

Proof. Given an (ϕ, Ĝ)-module M̂ = (M, ϕ, Ĝ), M̂c is a classical (ϕ, Ĝ)-module. So T̂ (M̂) =

T̂ (M̂c) is a lattice inside semi-stable representation with Hodge-Tate weights in [0, . . . , h].
Conversely, given a lattice in semi-stable representation T with Hodge-Tate weights in

[0, . . . , h], following the proof for the existence of classical (ϕ, Ĝ)-module M̂ so that T̂ (M̂) =

T , it suffices to show that for any g ∈ GK , g(M) ⊂ A(2)
st ⊗A M, here M and A

(2)
st ⊗A M are

regarded as submodules of T∨⊗ZpAinf via ιM in (5) and uses the GK -action on T∨⊗ZpAinf .
This follows Theorem 3.2.1. �

Now let us discuss when T̂ (M̂) becomes a crystalline representation. Recall that τ
is a selected topological generator of Gal(L/K1∞), and we have τ(u) = ǫu and τ,HK

topologically generate Ĝ.

Corollary 3.3.4. Select τ ∈ Ĝ as the above. Then T̂ (M̂) is crystalline if and only if
τ(M) ⊂ A(2) ⊗A M.

Proof. Clearly for the selected τ , we have τ(u)− u = Ez. If T := T̂ (M̂) is crystalline then
Theorem 3.2.1 proves that τ(M) ⊂ A(2) ⊗A M. Conversely, Suppose τ(M) ⊂ A(2) ⊗A M.
Then we see that (τ−1)M ⊂ uAinf⊗AM by Lemma 3.3.1 (3). And we have this is enough to

show that T̂ (M̂) is crystalline. For example, We will have M⊗A (Ainf [
1
p ]/p) has a GK -fixed

basis given by a basis ofM, where the ideal p is defined as p := ∪n∈Nϕ−n(u)Ainf [
1
p ] ⊂ Ainf [

1
p ].

Then one can prove by the same method in [Oze18, Thm. 3.8] or directly use [Du21,
Theorem 4.2.1] that T is crystalline. �

Remark 3.3.5. Though A
(2)
st is still complicated, for example, it is not noetherian, A

(2)
st is

still better than old R̂: at least it has explicit topological generators. Furthermore, A
(2)
st is

p-adic complete. This can help to close the gap in [Liu07] mentioned in [Gao21, Appendix

B]. Indeed, as indicated by Remark B.0.5 loc.cit., if R̂ can be shown to be p-adic complete

then the gap in [Liu07] can be closed. So by replacing R̂ by A
(2)
st , we close the gap of [Liu07]

([Gao21] provides another similar way to close the gap).

4. Crystalline representations and prismatic F -crystals

In this section, we reprove the theorem of Bhatt and Scholze on the equivalence of
prismatic F -crystal and lattices in crystalline representations of GK and complete the
proof of Theorem 3.2.1. We start to discuss some general facts on the absolute prismatic
site (which allows general base rings).
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4.1. Prismatic F -crystals in finite projective modules. Let R = R0 ⊗W OK =
R0[u]/E as in the beginning of §2 and X = Spf(R) with the p-adic topology.

Definition 4.1.1. The (absolute) prismatic site X∆ of X is the opposite of the category of
bounded prisms (A, I) that are (p, I)-completed together with a map R→ A/I, and a mor-
phism of prisms (A, I)→ (B, J) is a covering map if and only if A→ B is (p, I)-completely
faithfully flat.

Define the following functors:

O∆ : (A, I) 7→ A,

and for all h ∈ N, let

Ih
∆
: (A, I) 7→ Ih.

It is known in [BS22] that these are sheaves on X∆. We will also use O∆[1/I∆]∧p to denote
functor assign (A, I) to the p-adic completion of A with I inverted.

Now we verify A(2)(resp. A(3)) constructed in §2.1 is indeed self (resp. triple) product
of A in X∆. We mainly discuss the situation of A(2) while the proof of A(3) is almost the

same. Recall that Ă = R̆0[[u]] =W 〈t1, . . . , tm〉[[u]].
First we want to make a remark on the existence of nonempty self-coproduct in the cate-

gory of prisms over R. We thank Peter Scholze for answering our question on Mathoverflow.
And we just repeat his answer here. Let (Ai, Ii) for i = 1, 2 that are prisms over R, let
A0 = A1⊗̂ZpA2 where the completion is taken for the (p, I1, I2)-adic topology. Let J be the
kernel of the map:

A0 → A1/I1 ⊗R A2/I2.

Let (A, I) be the prismatic envelope of (A1, I1)→ (A0, J), one can check this is the initial
object in the category of prisms over R that admits maps from (Ai, Ii) such that the two
R → Ai/Ii → A/I agree. Also we want to note that in general, we don’t know if the
boundedness of (A1, I1) and (A2, I2) will imply the boundedness of their coproduct. But

we have seen A(2) and A(3) are indeed bounded by Corollary 2.2.8.

To start, note that there exists a W -linear map ĭ2 : Ă → A⊗̂2 induced by u 7→ y and

ti 7→ si. We claim that ĭ2 uniquely extends to i2 : A → A⊗̂2 which is compatible with
δ-structures. Indeed, consider the following commutative diagram

A
i2 //

i2,n

''❖
❖

❖

❖

❖

❖

❖

A⊗̂2/(p, J (2))

Ă

OO

ĭ2,n // A⊗̂2/(p, J (2))n

OO

Here ĭ2,n = ĭ2 mod (p, J (2))n and i2 is induced by A → A/(p,E) ≃ A⊗̂2/(p, J (2)). Since

ĭ2(u) = y = x+(y−x) and ĭ2(ti) = si = ti+(si− ti), we see that the above (outer) diagram
commutes. Since A is formally étale over Ă by (p, u)-adic topology, we conclude that there

exists a unique map i2,n : A→ A⊗̂2/(p, J (2))n so that the above diagram commutes. Since

A⊗̂2 is (p, J (2))-complete, there uniquely exists i2 : A → A⊗̂2 which extends ĭ2. To see i2
is compatible with δ-structures. it suffices to show that ϕ ◦ i2 = i2 ◦ ϕ. But both of ϕ ◦ i2
and i2 ◦ ϕ extend Ă

ϕ→ Ă → A⊗̂2. Again by formally étaleness of A over Ă, we see that

ϕ ◦ i2 = i2 ◦ϕ. Hence we obtain a map 1⊗ i2 : A⊗Zp A→ A⊗̂2. Define θ⊗2 : A⊗Zp A→ R
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via θ⊗2(a ⊗ b) = θ(a)θ(b). By the construction of i2, we have the following commutative
diagram

A⊗Zp A
1⊗i2 //

θ⊗2

��

A⊗̂2

��

R
∼ // A⊗̂2/J (2)

Let Â⊗2 be the (p, ker(θ⊗2))-completion of A⊗2 := A⊗Zp A. Hence 1⊗ i2 induces a map î2

from the Â⊗2 to A⊗̂2 because A⊗̂2 is clearly (p, J (2))-complete. To treat A⊗̂3, we construct

i3 : A→ A⊗̂3 by extending ĭ3 : A→ A⊗̂3 by sending u 7→ w and tj 7→ rj . The same method

shows that i3 is compatible with δ-structure and we obtain a map 1⊗ i2 ⊗ i3 : A⊗3 → A⊗̂3

with A⊗3 : A⊗Zp A⊗Zp A. Similarly, we obtain a natural map î3 : Â⊗3 → A⊗̂3.

Lemma 4.1.2. For s = 2, 3, îs : Â⊗s → A⊗̂s are isomorphisms.

Proof. We need to construct an inverse of îs. We only show for î2 and the proof for î3 is

the same. Let g : A⊗̂2 → Â⊗2 be the A-linear map by sending y − x 7→ 1 ⊗ u− u⊗ 1 and
sj − tj 7→ 1⊗ tj − tj ⊗ 1. Clearly g is well-defined because 1⊗ u− u⊗ 1 and 1⊗ tj − tj ⊗ 1

are in Ker(θ⊗2). Since i2(u) = y and i2(tj) = sj, î2 ◦ g is identity on A⊗̂2. Now it suffices

to show that h := g ◦ î2 is identity. Write K = (p,Ker(θ⊗2)). Note that we have map

A ⊗Zp Ă → Â⊗2 h→ Â⊗2 induced by h which we still call it h̆. Now we have the following
commutative diagram

A⊗Zp A
mod K //

mod Kn

hn ))❙
❙

❙

❙

❙

❙

❙

❙

(A⊗Zp A)/K

A⊗Zp Ă

OO

h̆ mod Kn
// (A⊗Zp A)/K

n

OO
,

where hn is induced by h mod Kn. We see that both hn and mod Kn on the dashed
arrow can make the diagram commute. Then by the formal étaleness of A over Ă, we
conclude that hn = mod Kn and h is the identity map. �

Proposition 4.1.3. A(2) and A(3) is self-product and triple product of A in X∆.

Proof. In the following, we only treat the case of A(2) while the proof for A(3) is the same.
We need to prove that for any B = (B, J) in X∆,

HomXopp

∆

(A(2), B) = HomXopp

∆

(A,B)×HomXopp

∆

(A,B).

By the above lemma, we have natural maps A⊗ZpA→ Â⊗2 ≃ A⊗̂2. Combined with natural

map A⊗̂2 → A(2) as A(2) is the prismatic envelope of A⊗̂2 for the ideal J (2), we have map
α : A⊗Zp A→ A(2) which is compatible with δ-structures. Then α induces map

β : HomXopp

∆

(A(2), B)→ HomXopp

∆

(A,B)×HomXopp

∆

(A,B).

To prove the surjectivity of β, given fi ∈ HomX
∆
(A,B) for i = 1, 2, we obtain a map

f1 ⊗ f2 : A⊗Zp A→ B. It is clear that (f1 ⊗ f2)(Ker(θ⊗2)) ⊂ J . Since B is (p, J)-derived

complete, f ⊗ f2 extends to a map f1⊗̂f2 : Â⊗2 ≃ A⊗̂2 → B which is compatible with



A PRISMATIC APPROACH TO (ϕ, Ĝ)-MODULES AND F -CRYSTALS 25

δ-structures, Hence f1⊗̂f2 is a morphism of δ-algebra. Finally, by the universal properties
of prismatic envelope, f1⊗̂f2 extends to a map of prisms f1⊗̂∆f2 : A

(2) → B as required.
Finally, we need to show that β is injective. It suffices to show that A-algebra struc-

ture map i1 : A → A(2) and i′2 : A
i2→ A⊗̂2 → A(2) both are injective. Since all rings

here are (p,E)-complete integral domains, it suffices to check that i1, i
′
2 mod (p,E) are

injective. By Proposition 2.2.7, we see that i1 mod (p,E) is R/pR → R/pR[{γi(zj)}], so
it is injective. By the construction i′2 and i2, we see that i′2 mod (p,E) is the same as

A/(p,E) → A⊗̂2/(p, J (2)) → A(2)/(p,E), which is same as R/pR → R/pR[{γi(zj)}]. So it
is injective. �

Remark 4.1.4. When R = OK is a complete DVR with perfect residue field k, we know a
priori, the self-product A(2) of (A, (E)) in X∆ can be constructed as the prismatic envelope
of (A, (E)) → (B, I), whereB is the (p,E(u), E(v))-adic completion ofW (k)[[u]]⊗ZpW (k)[[v]]
and I is the kernel of the map:

B → A/(E) ⊗R A/(E) = R.

On the other hand, W (k) is formally étale over Zp for the p-adic topology, so for all
(C, J) ∈ X∆, the mapW (k)→ R→ C/J lifts uniquely to a mapW (k)→ C. In particular,
for all (C, J) ∈ X∆, C has a natural W (k)-algebra structure. So when we construct the

self-product, we can also consider A(2) as the prismatic envelope of (A, (E)) → (C, J),
where C is the (p,E(u), E(v))-adic completion of A⊗W (k)A and J is the kernel of the map:

C → A/(E) ⊗R A/(E) = R.

We have C ≃W (k)[[u, v]], J = (E(u), u − v) and A(2) =W (k)[[u, v]]{u−v
E }∧δ .

Definition 4.1.5. (1) A prismatic crystal over X∆ in finite locally free O∆-modules
(resp. O∆[1/I]

∧
p -modules) is a finite locally free O∆-module (resp. O∆[1/I]

∧
p -

module) M∆ such that for all morphisms f : (A, I) → (B, J) of prisms, it induces
an isomorphism:

f∗M∆,A := M∆((A, I)) ⊗A B ≃M∆,B := M∆((B, J))

(resp. f∗M∆,A := M∆((A, I)) ⊗A[1/I]∧p
B[1/I]∧p ≃M∆,B := M∆((B, J))).

(2) A prismatic F -crystal over X∆ of height h in finite locally free O∆-modules is a pris-
matic crystal M∆ in finite locally free O∆-modules together with a ϕO

∆
-semilinear

endomorphism ϕM∆
of the O∆-module M∆ : M∆ → M∆ such that the cokernel of

the linearization ϕ∗M∆ →M∆ is killed by Ih.
Proposition 4.1.6. If the sheaf represented by (B, I) in Shv(X∆) covers the final object
∗ in Shv(X∆), i.e., for any (C, J) in X∆, there is a (P, J) lies over (B, I) and covers

(C, J). Also assume that the self-coproduct B(2) and self-triple-coproduct B(3) of (B, I) are
inside X∆, i.e., they are bounded. Then a prismatic crystal M∆ over X in finite locally
free O∆-modules is the same as a finite projective module M over B together with a descent

data ψ : M ⊗i1,B B(2) ≃ M ⊗i2,B B(2) satisfies the cocycle condition. Here ij : B → B(2)

(j = 1, 2) are the two natural maps.

Proof. First letM be a prismatic crystal in finite projective modules. DefineM = M∆((B, I)),
and the descent data comes from the crystal property:

ψ : M⊗i1,B B
(2) ≃M∆((B

(2), I)) ≃M⊗i2,B B
(2).
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Now given (M, ψ), then for any (C, J) inX∆, we need to construct a finite projective module
over C. We choose the (P, J) as in the assumption, let MP = M ⊗B P , and consider the
following diagram:

C P P
(2)
C

B B(2)

B P

C

f1

i1

f

i2

f2

Here (P
(2)
C , J) is the self-coproduct of (P, J) in the category of prisms over (C, J), and the

existence of (P
(2)
C , J) is from [BS22, Corollary 3.12], where they also show that P

(2)
C is the

derived (p, J)-completion of P ⊗L
C P and (P

(2)
C , J) is bounded. As a bounded prism over

(C, J), (P
(2)
C , J) is naturally inside X∆, so f exists by the universal property of B(2). So if

we take the base change of ψ along f , we get

f∗ψ : (M⊗i1,B B
(2))⊗B(2),f P

(2)
C ≃ (M⊗i2,B B

(2))⊗B(2),f P
(2)
C

which is the same as an isomorphism:

ψC : MP ⊗P,f1 P
(2)
C ≃MP ⊗P,f2 P

(2)
C .

Similar arguments will show ψC satisfies the cocycle condition. And MP descents to a finite
projective module over C by [AB21, Proposition A.12]. �

Remark 4.1.7. We want to note that the structures of finite nonempty coproducts in the
category of bounded prisms over a prism (A, I) is much simpler compared with the structure
of finite nonempty products in the category (R/A)∆ (cf. [Bha18, Lecture V, Corollary 5.2]).

Lemma 4.1.8. The prism (A, (E)) defined in §2.1 covers the final object ∗ in Shv(X∆) in

the sense of Proposition 4.1.6. And A(2) and A(3) are bounded.

Proof. The proof is similar to [AB21, Lemma 5.2.8], we need to show for R defined as in
§2.1, there exists a quasi-syntomic perfectoid cover of R. We will construct this perfectoid
cover similar to [Kim14, §7.1].

First recall we have R = OK ⊗W R0, and we fix a compatible system {̟n}n≥0 of

pn-th roots of a uniformizer ̟0 of OK inside E. Let K̂∞ be the p-adic completion of

∪nK(̟n), we know K̂∞ is perfectoid. Use R0[[u]] to denote A/(p) = R/(̟) = R0/(p)[[u]],
and let R0[[u]]

∧
perf to be the u-adic completion of the direct perfection of R0[[u]], it can be

checked directly that (R0[[u]]
∧
perf [1/u], R0[[u]]

∧
perf) is a perfectoid affinoid K̂♭

∞-algebra, by tilt

equivalence, there is a corresponded perfectoid affinoid K̂∞-algebra. More explicitly, let
R̃∞ =W (R0[[u]]

∧
perf)⊗W (O♭

K̂∞
),θ OK̂∞

. Then R̃∞ is naturally an R-algebra, and we claim it

is a quasi-syntomic cover of R.
To show this, by [Kim14, §7.1.2], we have

R̃∞ = (R0⊗̂WOK̂∞
)⊗̂ZpZp〈T−p∞

i 〉
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where Ti ∈ R0 is any lift of a p-basis of R0/(p). We have OK → OK̂∞
is a quasi-syntomic

cover so by (2) of [BMS19, Lemma 4.16], R → R0⊗̂WOK̂∞
is also a quasi-syntomic cover.

And we have S = Zp〈T−p∞

i 〉 is a quasi-syntomic ring, this can be seen by constructing a
perfectoid quasi-syntomic covering of it, so by Lemma 4.34 of loc.cit., we have the complex

LS/Zp
∈ D(S) has p-complete Tor amplitude in [−1, 0]. In particular, Zp → Zp〈T−p∞

i 〉
is also a quasi-syntomic cover, so applying (1) in Lemma 4.16 of loc.cit., R → R̃∞ is a
quasi-syntomic perfectoid cover.

The boundedness of A(2) and A(3) is from (2) in Corollary 2.2.8. �

Corollary 4.1.9. Assume the the base X = Spf(R) satisfies the condition in §2, and let A,

A(2) and A(3) be defined as in §2.1, then a prismatic F -crystal (M∆, ϕM∆
) in finite locally

free O∆-modules of height h over X is the same as a Kisin module (M, ϕM) of height h
over A with a descent datum

f : M⊗A,i1 A
(2) ≃M⊗A,i2 A

(2)

that compatible with the ϕ-structure and satisfies the cocycle condition over A(3).

Theorem 4.1.10. ([BS21, Theorem 1.2]) Let T be a crystalline representation of GK over
a Zp-lattice of Hodge-Tate weights in [0, h], then there is a prismatic F -crystal M∆(T ) over
X∆ of height h over X such that M∆((A,E)) is the Kisin module associated to T . Moreover,
the association of T 7→M∆(T ) induces an equivalence of the above two categories.

We will prove this theorem in §4.3.

Remark 4.1.11. Theorem 4.1.10 was first established by Bhatt-Scholze in [BS21, Theorem
1.2]. The harder direction of [BS21, Theorem 1.2] is to show for all Zp-lattices inside
crystalline representations of GK , one can attach a prismatic F -crystal. Using the theory
of (ϕ, Ĝ)-modules, we have shown in §3.2, given a crystalline representation of GK over a
Zp-lattices T , we can attach a Kisin module M and a descent data2

fτ̃ : M⊗A,i1 A
(2)[

1

p
] ≃M⊗A,i2 A

(2)[
1

p
]

comes from the τ -action. We just show this is a ϕ-equivariant isomorphism, and we need to
show it gives rise to a descent data over A(2). As we have mentioned in Remark 3.2.4, we can
not find a direct ring theoretic proof of this. Our idea is to use result of [Wu21] or [BS21,

Corollary 3.7]: the underlying Galois representation T gives a descent data over A(2)[ 1E ]∧p .

To finish our proof, we need to compare this descent data with fτ̃ over A(2)[ 1E ]∧p [
1
p ]. This

lead us to develop a “prismatic” (ϕ, τ)-module theory in the next subsection, where we will

have Lemma 4.2.12 and Lemma 4.2.16 to help us compare descent data over A(2)[ 1E ]
∧
p and

A(2)[ 1E ]∧p [
1
p ] via an evaluation map to W (O♭

L̂
).

4.2. (ϕ, τ)-modules and prismatic F -crystals. In this subsection, we make some prepa-
rations to prove Proposition 3.2.2 and Theorem 4.1.10. So we restrict to the case that
R = OK is a complete DVR with perfect residue field.

Definition 4.2.1. An étale ϕ-module over A[1/E]∧p is a pair (M, ϕM) such that M is a
finite free module over A[1/E]∧p , and ϕM is an isomorphism

ϕM : ϕ∗M := A[1/E]∧p ⊗ϕ,A[1/E]∧p
M≃M

2Strictly speaking, §3.2 only constructs an isomorphism but have not checked that it satisfies cocycle
condition, which will be proved in §4.3.
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of A[1/E]∧p -modules. And we define an étale ϕ-module over A[1/E]∧p [1/p] to be a ϕ-module

over A[1/E]∧p [1/p] such that it is obtained from an étale ϕ-module over A[1/E]∧p by base
change.

An étale ϕ-module over A[1/E]∧p (resp. A[1/E]∧p [1/p]) with descent data is a triple
(M, ϕM, c), such that (M, ϕM) is an étale ϕ-module over A[1/E]∧p (resp. A[1/E]∧p [1/p]),
and c is an isomorphism

c :M⊗A[1/E]∧p ,i1
B(2) ≃M⊗A[1/E]∧p ,i2

B(2)

(resp. c :M⊗A[1/E]∧p [1/p],i1
B(2)[1/p] ≃M⊗A[1/E]∧p [1/p],i2

B(2)[1/p])

that compatible with the ϕ-structure and satisfies the cocycle condition over B(3) (resp.

B(3)[1p ]). Here for j = 1, 2, ij : A[1/E]∧p → B(2) is the map induced from ij : (A, (E)) →
(A(2), (E)).

Remark 4.2.2. It is the main result in [Wu21] and [BS21, §2] that there is an equivalence of
the category of lattices in representations of GK and the category of prismatic F -crystals in
finite locally free O∆[1/I]

∧
p -modules over OK . Also by [BS21, Proposition 2.7], one can show

prismatic F -crystals in finite locally free O∆[1/I]
∧
p -modules is the same as étale ϕ-modules

over A[1/E]∧p with descent data.

The aim of this subsection is to use the ideas in [Wu21] and [KL19, §5.5] show that
étale ϕ-modules over A[1/E]∧p (resp. A[1/E]∧p [1/p]) with descent data are equivalence to

RepZp
(GK) (resp. RepQp

(GK)). More importantly, for all γ ∈ Ĝ, we will construct an
evaluation at γ map

eγ : B(2) → W (L̂♭)

and use it to study ϕ-equivariant morphisms between finite free B(2) and B(2)[1/p]-modules.
We will see the evaluation at τ map will play a crucial role in our proof of Proposition 3.2.2
and the Theorem 4.1.10 below.

Recall in §3.3, we define L =
∞⋃
n=1

K∞(ζpn), Ĝ := Gal(L/K) and HK := Gal(L/K∞).

Moreover, we define K̂1∞ to be the p-adic completion of ∪n≥0K(ζpn), and we let L̂ to be

the p-adic completion of L. It is clear that A[1/E]∧p ⊂ W (L̂♭)HK . Recall the following
definition and theorem in [Car13]:

Theorem 4.2.3. An étale (ϕ, τ)-module is a triple (M, ϕM, Ĝ) where

• (M, ϕM) is an étale ϕ-module over A[1/E]∧p ;

• Ĝ is a continuous W (L̂♭)-semi-linear Ĝ-action on M̂ := W (L̂♭) ⊗A[1/E]∧p
M, and

Ĝ commutes with ϕM;
• regarding M as an A[1/E]∧p -submodule of M̂, we have M⊂ M̂HK .

Then there is an anti-equivalence of the category of étale (ϕ, τ)-modules and RepZp
(GK),

such that if T corresponds to (M, ϕM, Ĝ), then

T∨ = (M̂ ⊗W (L̂♭) W (C♭
p))

ϕ=1.

One of the basic facts used in the theory of étale (ϕ, τ)-modules developed in [Car13]

is that Gal(L̂/K̂1∞) ≃ Zp, and we write τ to be a topological generator of Gal(L̂/K1∞)

determined by τ(̟n) = ζpn̟n as the discussion before Corollary 3.3.4. Also Ĝ is topolog-

ically generated by τ and HK , so in particular, the Ĝ-action on M̂ is determined by the
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action of τ onM inside M̂. As discussed before, we will provides a direct correspondence
of the category of étale (ϕ, τ)-modules and the category of étale ϕ-modules over A[1/E]∧p
with descent data. Moreover, we will construct an evaluation at τ map:

eτ : B(2) →W (L̂♭),

and show that the τ -action onM inside M̂ is given by the base change of the descent data
along eτ .

Remark 4.2.4. In [Wu21, Theorem 5.2], they prove a similar equivalence but for étale (ϕ,Γ)-
modules. The theory of étale (ϕ,Γ)-module is defined for the cyclotomic tower K1∞ over
K while the theory of étale (ϕ, τ)-modules is defined using the Kummer tower K∞. We
will use a lot of ideas and results developed in [Wu21] when proving our claims in this
subsection. The main difficulty in our situation is that the Kummer tower K∞ is not a
Galois tower over K. To deal with this, we have to use the idea in [KL19, §5.5]. Roughly

speaking, we will take the Galois closure L of K∞, then prove results over L̂, then descent

back to K∞ using the fact K̂∞ = L̂HK .
One should be able to construct the evaluation map in the content of [Wu21] the same

way as we define in this subsection. This map will give a more direct correspondence of the
descent data and the Γ-actions on étale (ϕ,Γ)-modules.

By [BS22, Lem 3.9], any prism (B, J) admits a map into its perfection (Bperf , JBperf).
The following theorem ([BS22, Thm 3.10]) is the key to understand perfect prisms.

Theorem 4.2.5. (A, I) → A/I induces an equivalence of the category of perfect prisms
over OK with the category of integral perfectoid rings over OK .

Let (A, (E)) be the Breuil-Kisin prism defined in §2.1, we have

Lemma 4.2.6. Aperf ≃W (O♭
K̂∞

).

Proof. Exactly the same as the proof of [Wu21, Lemma 2.17] �

Lemma 4.2.7. Let PerfdK be the category of perfectoid K-algebras, then PerfdK admits
finite non-empty coproducts.

Proof. Let R and S be two perfectoid K-algebras, it follows from [KL15, Corollary 3.6.18]
that the uniform completion (R⊗K S)

u of the tensor product (R⊗K S) is again a perfectoid
K-algebra, and it is easy to show this is the coproduct of R and S in the category of
perfectoid K-algebras. �

For i ∈ N>0, let (A(i), (E)) (resp. (Ainf(OL̂)
(i), (E))) denote the i-th self-coproduct of

(A, (E)) (resp. (Ainf(OL̂), (E))) in the category of prisms over OK , where Ainf(OL̂) :=

W (O♭
L̂
). The following is a description of (A(i))perf [1/E]∧p and (Ainf(OL̂)

(i))perf [1/E]∧p .

Lemma 4.2.8. Let K̂
(i)
∞ (resp. L̂(i)) be the i-th self-coproduct of K̂∞ (resp. L̂) in PerfdK ,

then (A(i))perf [1/E]∧p ≃W ((K̂
(i)
∞ )♭) (resp. (Ainf(OL̂)

(i))perf [1/E]∧p ≃W ((L̂(i))♭)).

Proof. We will only prove the lemma for (A(i))perf [1/E]∧p , and the case for (Ainf(OL̂)
(i))perf [1/E]∧p

is similar.
We use similar arguments as in [Wu21, Lemma 5.3]. Fix i, first we can show (A(i))perf

is the i-th self-coproduct of (Aperf , (E)) in the category of perfect prisms over OK , i.e.

(A(i))perf = (Aperf)
(i)
perf . By Theorem 4.2.5, Lemma 4.2.6 and [Wu21, Proposition 2.15], if
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we let S = (A(i))perf/E, then S[1/p] is the i-th self-coproduct of K̂∞ in the category of
perfectoid K-algebras. Now we have

(A(i))perf [1/E]∧p ≃W (S♭)[1/[̟♭]]∧p =W (S♭[1/̟♭]) =W ((S[1/p])♭) ≃W ((K̂(i)
∞ )♭).

�

Remark 4.2.9. There is another way to view K̂
(i)
∞ in terms of diamonds over Spd(K,OK)

which is used in the proof of [Wu21, Lemma 5.3], that there exist a ring of integral elements

K̂
(i),+
∞ in K̂

(i)
∞ , such that we have

(10) Spa(K̂(i)
∞ , K̂(i),+

∞ )⋄ ≃ Spa(K̂∞, K̂
+
∞)⋄ ×Spd(K,OK) . . .×Spd(K,OK) Spa(K̂∞, K̂

+
∞)⋄

︸ ︷︷ ︸
i-copies of Spa(K∞,K+

∞)⋄

.

And similar results hold for L̂. Using this description and the fact that functor from
perfectoid spaces over Spa(K,OK) to diamonds over Spd(K,OK) is an equivalence, we

have L̂(i) has a natural action of Ĝi coming from the action on the diamond spectrum.

Since L̂HK = K̂∞, we have

Spa(K̂(i)
∞ , K̂(i),+

∞ )⋄ ≃
(
Spa(L̂,OL̂)

⋄ × . . .×Spd(K,OK) Spa(L̂,OL̂)
⋄
)Hi

K ≃ (Spa(L̂(i), L̂(i),+)⋄)H
i
K .

That is, (L̂(i))H
i
K = K̂

(i)
∞ .

Now we use ideas in [Wu21] and [KL19, §5.5] to study étale ϕ-modules over A[1/E]∧p
with descent data. We will show this category is the same as generalized (ϕ,Γ)-modules
in the work of Kedlaya-Liu. The following is a quick review of Example 5.5.6 and 5.5.7 in
[KL19].

Firstly, one has L̂(i) ≃ Cont(Ĝi−1, L̂), here Cont means the set of continuous functions.
One can see this fact from the proof of [Wu21, Theorem 5.6]. When i = 2, we choose the

two canonical maps i1, i2 : L̂→ L̂(2), corresponds to j1, j2 : L̂→ Cont(Ĝ, L̂) given by

(11) j1(x) : γ 7→ γ(x) and j2(x) : γ 7→ x.

From Remark 4.2.9, there is a natural action of Ĝ2 on L̂(2). One can check this corre-
sponds to the Ĝ2-action on Cont(Ĝ, L̂) given by:

(σ1, σ2)(f)(γ) = σ2f(σ
−1
2 γσ1).

Remark 4.2.10. We interchange the roles of j1 and j2 comparing with the isomorphism
defined in [KL19, Example 5.5.6], so the Ĝ2-action is different from that in Example 5.5.7
of loc.cit., we will see this definition is more convenient when relating the descent data with
the semilinear group actions.

One can show Cont(Ĝ,−) commutes with tilting and the Witt vector functor, as been
discussed in [Wu21, Lemma 5.3], so in particular, we have

W ((L̂(i))♭) ≃ Cont(Ĝi−1,W (L̂♭)).

For i = 2, we still use j1 and j2 to represent the two canonical maps from W (L̂♭) to

Cont(Ĝ,W (L̂♭)) that comes from (11). The above isomorphism also is compatible with the

action of Ĝ2, so we have

(12) W ((K̂(2)
∞ )♭) ≃ Cont(Ĝ,W (L̂♭))H

2
K

We prove the following lemma for our later use.
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Now letM be an étale ϕ-module over W (K̂♭
∞) with a descent data:

ψ :M⊗
W (K̂♭

∞),j1
W ((K̂(2)

∞ )♭) ≃M⊗
W (K̂♭

∞),j2
W ((K̂(2)

∞ )♭)

as étale ϕ-modules over W ((K̂
(2)
∞ )♭) and satisfies cocycle condition over W ((K̂

(3)
∞ )♭). Using

(12), we have ψ is the same as a descent data:

(13) ψ̂ :M⊗W (K̂♭
∞),j1

Cont(Ĝ,W (L̂♭))H
2
K ≃M⊗W (K̂♭

∞),j2
Cont(Ĝ,W (L̂♭))H

2
K .

For each γ ∈ Ĝ, we have an evaluation map ẽγ : Cont(Ĝ,W (L̂♭)) → W (L̂♭) given by

evaluating at γ. Using (11), one can check ẽγ ◦ j2 : W (K̂♭
∞) → W (L̂♭) is given by the

natural embedding and ẽγ ◦j1 : W (K̂♭
∞)→W (L̂♭) is given by x 7→ γ(x). So for each γ ∈ Ĝ,

if we tensor (13) against the evaluation map ẽγ , we get an isomorphism:

ψγ :M⊗
W (K̂♭

∞),γ
W (L̂♭) ≃M⊗

W (K̂♭
∞)
W (L̂♭).

And similar to the classical Galois descent theory, the cocycle condition for ψ implies {ψγ}γ
satisfies

ψσγ = ψσ ◦ σ∗ψγ .

Hence {ψγ}γ defines a continuous semilinear action of Ĝ on M̂ :=M⊗
W (K̂♭

∞)
W (L̂♭). One

can check for γ ∈ HK , we have the composition

W (K̂♭
∞)

jk−→W ((K̂(2)
∞ )♭)→ Cont(Ĝ,W (L̂♭))

ẽγ−→ W (L̂♭)

is the natural embedding W (K̂♭
∞) →֒W (L̂♭) for k = 1, 2. And using the cocycle condition,

one can show ψγ = id for γ ∈ HK , so in particular, M ⊂ M̂HK . Conversely, given a

semilinear action of Ĝ on M̂ such that M ⊂ M̂HK , {ψγ}γ defines a descent data ψ over

Cont(Ĝ,W (L̂♭))H
2
K if and only if the semilinear action is continuous. In summary, we have

Theorem 4.2.11. (1) The category of étale ϕ-modules over A[1/E]∧p with descent data

over A(2)[1/E]∧p is equivalent to the category of étale (ϕ, τ)-modules over A[1/E]∧p ;

(2) Given a descent data f of an étale ϕ-module M over A[1/E]∧p , and γ ∈ Ĝ, we can
define the evaluation fγ of f at γ, defined by the base change of f along

eγ : A(2)[1/E]∧p → (A(2))perf [1/E]∧p
ẽγ−→W (L̂♭),

which defines an isomorphism:

fγ :M⊗A[1/E]∧p ,ι̃γ
W (L̂♭) ≃M⊗A[1/E]∧p

W (L̂♭)

where ι̃γ : A[1/E]∧p → W (L̂♭)
γ−→ W (L̂♭). Suppose that (M, f) corresponds to a

Zp-representation T of GK , then fγ corresponds to the semilinear action of γ on

M inside M⊗A[1/E]∧p
W (C♭

p) ≃ T∨ ⊗W (C♭
p). Moreover, two descent data f, g are

equal if and only if fτ = gτ .

Proof. The discussion above the theorem establishes the equivalence between the category
of étale ϕ-modules over Aperf [1/E]∧p with descent data over (A(2))perf [1/E]∧p is equivalent
to the category of étale (ϕ, τ)-modules over A[1/E]∧p . Now (1) follows [Wu21, Theorem

4.6] which shows that the category of étale ϕ-modules over B[1I ]
∧
p is equivalent to the

category of étale ϕ-modules over Bperf [
1
I ]

∧
p for bounded prism (B, I) satisfying ϕ(I) mod p

is generated by a non-zero divisor in B/p. Then it just remains to prove the last statement
in (2). Actually one can check (2) by chasing all the functors used in (1), and use the fact
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that for any étale (ϕ, τ)-module, the Ĝ-action on M̂ is determined by the τ -action onM.
However, this can also been seen directly from the following lemma. �

Lemma 4.2.12. Given two finite free étale ϕ-modules M,N over A(2)[1/E]∧p and two

morphisms f, g : M → N of étale ϕ-modules over A(2)[1/E]∧p . Let fτ , gτ be the base
changes of f, g along the map

eτ : A(2)[1/E]∧p → (A(2))perf [1/E]∧p ≃ Cont
(
Ĝ,W

(
(L̂(2))♭

))H2
K ẽτ−→W (L̂♭).

Then f = g if and only if fτ = gτ .

Proof. We take the natural base change of f and g along A(2)[1/E]∧p → (A(2))perf [1/E]∧p ,

we get two morphisms ψ and ψ′ between étale ϕ-modules over (A(2))perf [1/E]∧p . Since the

base change functor between étale ϕ-modules over A(2)[1/E]∧p and (A(2))perf [1/E]∧p is an
equivalence of categories, it reduces to show that ψ = ψ′ if and only if their base change
along

ẽτ : (A(2))perf [1/E]∧p ≃ Cont
(
Ĝ,W

(
(L̂(2))♭

))H2
K −→W (L̂♭)

is equal. SinceM and N are finite free, it is enough to show the evaluation map:

ẽτ : Cont
(
Ĝ,W

(
(L̂(2))♭

))H2
K →W

(
(L̂(2))♭

)

is injective. Suppose h ∈ Cont
(
Ĝ,W

(
(L̂(2))♭

))H2
K

satisfies h(τ) = 0, then

(σ1, σ2)(h)(τ) = σ2h(σ
−1
2 τσ1) = 0

for (σ1, σ2) ∈ H2
K . Since Ĝ is topologically generated by HK and τ , we get h ≡ 0. �

Now we give the Q-isogeny versions of Theorem 4.2.11 and Lemma 4.2.12. Recall that
the étale (ϕ, τ)-modules over A[1/E]∧p [

1
p ] is equivalent to the category of Qp-representations

of GK , and recall the following definition of étale (ϕ, τ)-modules over B[1/J ]∧p [
1
p ] for a prism

(B, J) ∈ X∆.

Definition 4.2.13. An (globally) étale ϕ-moduleM over B[1/J ]∧p [
1
p ] is a (finite projective)

ϕ-module over B[1/J ]∧p [
1
p ] that arises by base extension from an étale ϕ-module B[1/J ]∧p .

From this definition, we immediately deduce the following result from [Wu21, Theorem
4.6]

Proposition 4.2.14. For any prism (B, J) ∈ X∆ satisfying ϕ(J) mod p is generated by

a non-zero divisor in B/p, the base change functor defined by B[1/J ]∧p [
1
p ]→ Bperf [1/J ]

∧
p [

1
p ]

induces an equivalence between the category of étale ϕ-modules over B[1/J ]∧p [
1
p ] and the

category of étale ϕ-modules over Bperf [1/J ]
∧
p [

1
p ].

And similar to Theorem 4.2.11 and Lemma 4.2.12, we have

Theorem 4.2.15. The category of étale ϕ-modules over A[1/E]∧p [
1
p ] with descent data

over A(2)[1/E]∧p [
1
p ] is equivalent to the category of étale (ϕ, τ)-modules over A[1/E]∧p [

1
p ].

Moreover,

Cont
(
Ĝ,W (L̂♭)[

1

p
]
)H2

K ≃W (K̂(2)
∞ )♭[

1

p
].
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For γ ∈ Ĝ, we can define the evaluation map

ẽγ : Cont
(
Ĝ,W (L̂♭)[

1

p
]
)
→W (L̂♭)[

1

p
].

And given a descent data f of an étale ϕ-module M over A[1/E]∧p [
1
p ], and γ ∈ Ĝ, we can

define the evaluation fγ of f at γ, defined by the base change of f along

eγ : A(2)[1/E]∧p [
1

p
]→ (A(2))perf [1/E]∧p [

1

p
]

ẽγ−→W (L̂♭)[
1

p
],

which defines an isomorphism:

M⊗A[1/E]∧p [1/p],ι̃γ
W (L̂♭)[

1

p
] ≃M⊗A[1/E]∧p [1/p]

W (L̂♭)[
1

p
]

where ι̃γ : A[1/E]∧p [
1
p ]→W (L̂♭)[1p ]

γ−→W (L̂♭)[1p ]. If (M, f) corresponds to a Qp-representation

V of GK , then fγ corresponds to the semilinear action of γ onM inside V ∨⊗W (C♭
p)[1/p].

Moreover, two descent data f, g are equal if and only if fτ = gτ .

Lemma 4.2.16. Given two finite free étale ϕ-modules M,N over A(2)[1/E]∧p [
1
p ] and two

morphisms f, g : M → N of étale ϕ-modules over A(2)[1/E]∧p [
1
p ]. Let fτ , gτ be the base

changes of f, g along the map

eτ : A(2)[1/E]∧p [
1

p
]→ (A(2))perf [1/E]∧p [

1

p
] ≃ Cont

(
Ĝ,W

(
(L̂(2))♭[

1

p
]
))H2

K ẽτ−→ W (L̂♭)[
1

p
].

Then f = g if and only if fτ = gτ .

Proof. The proofs are exactly the same as the proof of Theorem 4.2.11 and Lemma 4.2.12,
plus the following fact that

Cont
(
Ĝ,W (L̂♭)[

1

p
]
)
= Cont

(
Ĝ,W (L̂♭)

)
[
1

p
],

which can be shown by the compactness of Ĝ. �

4.3. Proofs of Proposition 3.2.2 and Theorem 4.1.10. We keep the assumption that
R = OK is a mixed characteristic complete DVR with perfect residue field in this subsection,
and keep our notations in §2.1.

Let us first prove Proposition 3.2.2 using Lemma 2.3.2 and results in §4.2. First, we give
a different interpretation of the “evaluation map”:

eγ : A(2)[1/E]∧p → (A(2))perf [1/E]∧p ≃ Cont
(
Ĝ,W

(
(L̂(2))♭

))H2
K ẽγ−→W (L̂♭)

in Theorem 4.2.11 when restricted on A(2) . Recall that we fix a compatible system {̟n}n of
pn-th roots of a uniformizer ̟ ∈ OK , this defines a map of prisms ι : (A, (E))→ (Ainf , (E))

maps u to [̟♭], and given a γ ∈ GK , we define ιγ to be the composition of ι with γ :
(Ainf , (E)) → (Ainf , (E)) where the second map is defined as a 7→ γ(a). Since (E) ⊂ Ainf

is equal to Ker(θ) and θ is GK -equivariant, γ is a well-defined map of δ-pairs. By the

universal property of A(2), we can define a map of prisms ι
(2)
γ : (A(2), (E))→ (Ainf , (E)) so



A PRISMATIC APPROACH TO (ϕ, Ĝ)-MODULES AND F -CRYSTALS 34

that the following diagram commutes:

(14)

(A, (E)) (A(2), (E)) (A, (E))

(Ainf , (E))

i1

ιγ ι
(2)
γ

i2

ι

We have ι
(2)
γ induces a morphism ι̃

(2)
γ : A(2)[1/E]∧p →W (C♭

p). We claim for all γ ∈ GK , ι̃
(2)
γ

is the same as the

A(2)[1/E]∧p → (A(2))perf [1/E]∧p ≃ Cont
(
Ĝ,W

(
(L̂(2))♭

))H2
K ẽγ−→W (L̂♭) →֒W (C♭

p).

To see this, by the universal property of direct perfection, we have (14) factorizes as:

(A, (E)) (A(2), (E)) (A, (E))

(Aperf , (E)) ((A(2))perf , (E)) (Aperf , (E))

(Ainf , (E))

i1 i2

i′1

ι′γ
ι
′(2)
γ

i′2

ι′

So ι̃
(2)
γ has a factorization

A(2)[1/E]∧p → (A(2))perf [1/E]∧p →W (C♭
p).

We just need to check ι
′(2)
τ induces the evaluation map

(A(2))perf [1/E]∧p ≃ Cont
(
Ĝ,W

(
(L̂(2))♭

))H2
K ẽτ−→W (L̂♭) −֒→ W (C♭

p).

And this follows from the isomorphism of (A(2))perf [1/E]∧p ≃ W ((K
(2)
∞ )♭), then one check

directly for j1, j2 defined in (11), ẽγ ◦j1 : Aperf [1/E]∧p →W (L̂♭) is equal to the map induced

from ι′γ and ẽγ◦j2 : Aperf [1/E]∧p →W (L̂♭) is equal to the map induced from ι′. In particular,
we have a commutative diagram:

(15)

A(2) Ainf

A(2)[1/E]∧p (A(2))perf [1/E]∧p W (L̂♭) W (C♭
p).

ι
(2)
γ

ẽγ

Now we can prove Proposition 3.2.2.

Proof of Proposition 3.2.2. First we pick γ = τ̃ that is a preimage of τ under the map

GK → Ĝ, we have γ(u) − u = Ez and ι
(2)
γ defined as above is the embedding defined in

§2.4 by Remark 2.4.2. In particular, composing the embedding A(2) →֒ Ainf defined in §2.4
with Ainf →֒W (C♭

p), one get the evaluation map

(A(2))perf [1/E]∧p ≃ Cont
(
Ĝ,W

(
(L̂(2))♭

))H2
K ẽτ−→W (L̂♭) −֒→ W (C♭

p).
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restricted on A(2).
Keep the notations as in §3.2, and letMAinf

=W (C♭
p)⊗AM andMA ≃M⊗AA[1/E]∧p .

By Theorem 4.2.11 and Theorem 4.2.3, recall we use B(2) = A(2)[ 1E ]∧p and B
(2)
st = A

(2)
st [ 1E ]∧p

to simplify our notations, we have there is a descent data

c :MA ⊗A[1/E]∧p ,̃i1
B(2) →MA ⊗A[1/E]∧p ,̃i2

B(2)

of MA over B(2) that corresponds to the representation T . And the semilinear action of
γ = τ̃ on MAinf

is given by the evaluation cτ , that is, we have the linearization of the
τ̃ -action is defined by

cτ : W (C♭
p)⊗ι̃γ ,A[1/E]∧p

MA ≃W (C♭
p)⊗ι̃,A[1/E]∧p

MA.

By base change c along B(2) → B(2)[1p ], we get a B(2)[1p ]-linear ϕ-equivariant morphism:

c′ :MA ⊗A[1/E]∧p ,̃i1
B(2)[

1

p
]→MA ⊗A[1/E]∧p ,̃i2

B(2)[
1

p
].

On the other hand, from the discussions after Proposition 3.2.2, τ̃ -action also defines a
ϕ-equivariant morphism

fτ̃ : M⊗A,ιτ̃ A
(2)
st [

1

p
] ≃M⊗A A

(2)
st [

1

p
].

We will see in Proposition 4.3.1 below that fτ̃ actually descents to a B(2)[1/p]-linear mor-

phism. Assuming this fact, then if we base change fτ̃ along A(2)[1p ] → W (C♭
p)[

1
p ], we will

have fτ̃ ⊗W (C♭
p)[

1
p ] = cτ since the way we define fτ̃ is by taking the τ̃ -action. From the dis-

cussion at the beginning of the proof and Lemma 4.2.16, we have fτ̃ = c′ as a B(2)[1p ]-linear

isomorphism betweenMA ⊗A[1/E]∧p ,̃i1
B(2)[1p ] andMA ⊗A[1/E]∧p ,̃i2

B(2)[1p ].

We fix a basis {ei} of M, for j = 1, 2 let {eji} be the basis ofMA⊗A,ĩ′j
B(2)[1p ] defined by

eji = ei⊗ 1 and the tensor is via A→ A[1/E]∧p
ĩj−→ B(2)[1/p]. So we can interpret fτ̃ = c′ as

matrix using this two basis, this matrix isXτ̃ from this definition, so it has coefficients inside

A
(2)
st [1p ] by the discussion before Proposition 3.2.2. On the other hand, Xτ̃ has coefficients

in B(2) ⊂ B(2)
st since c′ is defined by the B(2)-linear map c. So by Lemma 2.3.2, we have Xτ̃

has coefficients inside A
(2)
st . The same argument shows when T is crystalline, then Xτ̃ has

coefficients inside A(2). �

Proposition 4.3.1. Base change along B(2) → A
(2)
st [1/E]∧p defines an equivalence of cate-

gories of étale ϕ-modules over B(2) and A
(2)
st [1/E]∧p and an equivalence of categories of étale

ϕ-modules over B(2)[1/p] and A
(2)
st [1/E]∧p [1/p].

Proof. By [Wu21, Theorem 4.6], we just need to show the same result after perfections, we

will show (A(2))perf = (A
(2)
st )perf in Lemma 5.0.13 using the logarithmic prismatic site. �

Now, let us prove Theorem 4.1.10 by first producing a functor T from prismatic F -
crystals in finite O∆-modules to lattices inside a crystalline representation. For prism A,

we use ik : A → A(2) or A(3) for natural map from A to k-th factor of A(2) or A(3). The
notation ikl : A

(2) → A(3) has the similar meaning.
By Corollary 4.1.9, given a prismatic F -crystal M∆, we obtain a Kisin module (M, ϕM)

of height h together with descent data f : M ⊗A,i1 A
(2) →M⊗A,i2 A

(2) so that f satisfies
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the following cocycle condition i13 ⊗ f = (i23 ⊗ f) ◦ (i12 ⊗ f), where ikl ⊗ f is the base
change of f along ikl, and f also compatible with the ϕ-structure on the both sides of f .
Note that the existence of f follows from the crystal property of M∆:

(16) f : M⊗A,i1 A
(2) ≃M∆((A

(2), (E))) ≃M⊗A,i2 A
(2)

We letM = M⊗AA[1/E]∧p and c = f ⊗A(2) B(2), then (M, c) is an étale ϕ-module with
descent data, which corresponds to a Zp-representation of GK . Moreover the semilinear

action of GK on M⊗AW (C♭
p) comes from {cγ}γ∈GK

using the evaluation maps. If we define

fγ : Ainf ⊗ιγ ,A M→ Ainf ⊗ι,A M

as the base change of f along ι
(2)
γ , then by (15), we have cγ = fγ . The GK -semilinear action

commutes with ϕ as f does. For any γ ∈ GK , we have γ(A) ⊂W (k)[[u, ǫ−1]] ⊂ A(2)
st ⊂ Ainf .

Therefore, the GK -action on the Ainf ⊗A M defined the above factors through A
(2)
st ⊗A M.

We claim that GK-action on M̂ := A
(2)
st ⊗A M defines a (ϕ, Ĝ)-module which corresponds

to a crystalline representation.

First, for γ ∈ G∞, γ(A) = A in Ainf , we conclude ι
(2)
γ : A(2) → Ainf satisfies ι

(2)
γ ◦ i1 =

ι
(2)
γ ◦ i2. In particular, for any γ ∈ G∞ and j = 1, 2, using (16) and the crystal property of

M∆, fγ comes from the base change of (16) along ι
(2)
γ : A(2) → Ainf , in particular, we have

fγ : M⊗
A,ι

(2)
γ ◦i1

Ainf ≃M∆((Ainf ,Ker θ)) ≃M⊗
A,ι

(2)
γ ◦i2

Ainf .

Since ι
(2)
γ ◦ i1 = ι

(2)
γ ◦ i2, we have fγ = id which means M ⊂ (M̂)G∞ . Similarly, GK acts on

M̂/I+ corresponds the base change of f along

A(2) ι
(2)
γ−−→ Ainf →W (k̄)

where the last arrow is the reduction modulo W (m) (m is the maximal ideal of O♭
Cp
). One

can check for all γ ∈ GK and j = 1, 2, we have

A
ij−→ A(2) ι

(2)
γ−−→ Ainf →W (k̄)

are all equal to A → W (k) →֒ W (k) with the first arrow given by u 7→ 0. The above
map induces a morphism of prisms (A, (E)) → (W (k), (p)), then using (16) and the crystal

condition of M∆, we can similarly prove that GK acts on M̂/I+-trivially, so (M, ϕM, GK) is

a (ϕ, Ĝ)-module. Furthermore, T̂ (M̂) is crystalline by Corollary 3.3.4 and Theorem 3.2.1.

Remark 4.3.2. In §5, we will consider a category consisting of modules with descent data,
and similar arguments about the triviality of the Galois actions can be shown directly using
the cocycle condition of the descent data. We summarize this fact in the following easy
fact.

Lemma 4.3.3. Let q : (A(2), (E)) → (B, J) be a map of prisms satisfying q ◦ i1 = q ◦ i2,
then for any descent data f over A(2), the base change of f along q is the identity map.

To show the fully faithfulness of this functor, first let (M, f), (M′, f ′) be two Kisin mod-
ules with descent data f, f ′ respectively. Suppose that there exists a map α : T ((M, f))→
T ((M′, f ′)) as lattices of crystalline representations, then from our construction of T and

Theorem 3.3.3, α is induced from a map α̂ : (M, ϕM, ĜM)→ (M′, ϕM′ , ĜM′) between (ϕ, Ĝ)-
modules. The faithfulness of T follows the fact that A → A[1/E]∧p induces a fully faith-
ful functor between Kisin modules over A and étale ϕ-modules over A[1/E]∧p from [Kis06,
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Proposition 2.1.12]. On the other hand, α̂ gives morphisms α̂1 : M⊗A,i1A
(2) →M′⊗A,i1A

(2)

and α̂2 : M⊗A,i2 A
(2) →M′⊗A,i2 A

(2). If we view A and A(2) as subrings of Ainf using dia-

gram (14), then the following diagram commutes by the fact that α̂ : M̂→ M̂′ is compatible
with τ -action.

M⊗A,i1 A
(2) M⊗A,i2 A

(2)

M′ ⊗A,i1 A
(2) M′ ⊗A,i2 A

(2)

f

α̂1 α̂2

f ′

Thus we produces a morphism between (M, f) and (M′, f ′), i.e. T is also full.
It remains to show the functor T is essential surjective. Given a lattice T in a crystalline

representation of GK , let M be the corresponded Kisin module, it suffices to construct
a descent data of M over A(2). We have shown in our proof of Proposition 3.2.2 that if

we view A(2) as a subring of Ainf via ι
(2)
τ̃ , then Xτ̃ defines a ϕ-equivariant isomorphism

f : M⊗A,i1 A
(2) ≃M⊗A,i2 A

(2) of A(2)-modules. We also show the base change of f along

A(2) → B(2) is equal to the descent data c of the étale ϕ-module MA = M ⊗A A[1/E]∧p
that corresponds to GK -action on T . In particular, c : M⊗A,i1B

(2) ≃M⊗A,i2B
(2) satisfies

the cocycle condition. By Lemma 2.3.2, A(2) (resp. A(3)) injects into B(2) (resp. B(3)),
so we have f also satisfies the cocycle condition. In particular, (M, f) together produce a
primatic F -crystals in finite free O∆-module by Corollary 4.1.9.

Remark 4.3.4. Given an étale ϕ-module (MA, ϕMA
, c) over A[1/E]∧p with descent datum c,

we call (MA, ϕMA
, c) is of finite E-height ifMA is of finite E-height, i.e., if there is a finite

free Kisin module (M, ϕM) of finite height and defined over A such that M⊗A A[1/E]∧p ≃
MA as ϕ-modules. Since (MA, ϕMA

) is the étale ϕ-module for T |G∞ , our definition of
finite E-height is compatible with the one given by Kisin under the equivalence in (1) of
Theorem 4.2.11.

We expect same arguments in the proof of Proposition 3.2.2 will be used to study rep-
resentations of finite E-height. Similar result has been studied using the theory of (ϕ, τ)-
modules by Caruso. For example, in the proof of [Car13, Lemma 2.23], Caruso shows for
representations of finite E-height, the τ -actions descents to Su-np,τ , which is a subring of

Ainf closely related to ι̃
(2)
τ̃ (B(2)) ∩Ainf , where τ̃ is a preimage of τ in GK .

Remark 4.3.5. We can also establish the compatibility of our Theorem 4.1.10, the theory
of Kisin and [BS21, Theorem 1.2]. Given a lattice T in a crystalline representation of GK

with non-negative Hodge-Tate weight, and let M be the Kisin module corresponds to T in
[Kis06], and let M∆ (reso. M′

∆
) be the prismatic F -crystal corresponds to T∨ under [BS21,

Theorem 1.2] (resp. T under Theorem 4.1.10). Note that we need to take T∨ since in the
work of Bhatt-Scholze, the equivalence is covariant. By our construction of M′

∆
, we have

M′
∆
((A, (E))) ≃M. By [BS21, Remark 7.11], M∆((A, (E))) ≃M. Next we need to show

the descent data over A(2) constructed respectively are the same. By Corollary 2.4.5, we
just need to show they are the same as descent data of étale ϕ-modules over A(2)[1/E]∧p ,
but they are the same by our τ -evaluation criteria in Lemma 4.2.12.



A PRISMATIC APPROACH TO (ϕ, Ĝ)-MODULES AND F -CRYSTALS 38

5. Logarithmic prismatic F -crystals and semi-stable representations

In this section, we will propose a possible generalization of Theorem 4.1.10 to semi-stable
representations using the absolute logarithmic prismatic site. The main reference of this
subsection is [Kos21]. We will restrict ourselves to the base ring R = OK , a complete
DVR with perfect residue field. And we give R the log structure associated to the prelog
structure α : N→ R such that α(1) = ̟ is a uniformizer in R, i.e., let D = {̟ = 0}, then
the log structure on X = Spf(R) is defined by

MX =MD →֒ OX where MD(U) := {f ∈ OX(U) | f |U\D ∈ O×(U\D)}.
Let us introduce the absolute logarithmic site over (X,MX ).

Definition 5.0.1. [Kos21, Definition 2.2 and Definition 3.3]

(1) A δlog-ring is a tuple (A, δ, α : M → A, δlog :M → A), where (A, δ) is a δ-pair and
α is a prelog-structure on A. And δlog satisfies:
• δlog(e) = 0,
• δ(α(m)) = α(m)pδlog(m),
• δlog(mn) = δlog(m) + δlog(n) + pδlog(m)δlog(n) for all m,n ∈ M . And we will
simply denote it by (A,M) if this is no confusion. Morphisms are morphisms
of δ-pairs that compatible with the perlog structure and δlog-stucture.

(2) A δlog-triple is (A, I,M) such that (A, I) is a δ-pair and (A,M) is a δlog-ring.
(3) A δlog-triple (A, I,M) is a prelog prism if (A, I) is a prism, and it is bounded if

(A, I) is bounded.
(4) A bounded prelog prism is a log prism if it is (p, I)-adically log-affine (cf. [Kos21,

Definition 3.3]).
(5) A bounded (pre)log prism is integral if M is an integral monoid.
(6) A δlog-triple (A, I,M) is said to be over (R,N) if A/I is an R-algebra and there is

a map M → N of monoids such that the following diagram commutes.

M A

N R A/I

All δlog-triples over (R,N) form a category. Similarly, we can define the category
of prelog prisms over (R,N) and the category of bounded log prisms over (R,N)a.

Remark 5.0.2. If A is an integral domain, or more general if α(M) consists of non-zero
divisors, then δlog is uniquely determined by δ if exists. In particular, morphisms between
such δlog-rings are just morphisms of δ-rings.

Remark 5.0.3. Note that in this paper, for a δ-pair (A, I), we always assume A is (p, I)-adic
complete, but in [Kos21], non-(p, I)-adic completed δlog-triples are also been studied. By
Lemma 2.10 of loc.cit., we can always take the (p, I)-adic completions of the δ-pair (A, I)
and the δlog-structure will be inherited.

Proposition 5.0.4. [Kos21, Corollary 2.15] Given a bounded prelog prism (A, I,M), one
can associate it with a log prism

(A, I,M)a = (A, I,Ma)

Remark 5.0.5. When we deal with log prisms in this paper, we will always take it as the log
prism associated with some prelog prism. And by the above proposition, we know taking
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the associated log prism does not change the underlying δ-pair. Moreover, it is a general
fact that (A, I,M)a is integral if (A, I,M) is a integral.

Definition 5.0.6. The absolute logarithmic prismatic site (X,MX)∆log
is the opposite of

the category whose objects are

(1) bounded log prisms (A, I,MA) with integral log structure,
(2) maps of formal schemes fA : Spf(A/IA)→ X,
(3) the map fA satisfies

(Spf(A/IA), f∗AMX)→ (Spf(A),MA)
a

defines an exact closed immersion of log formal schemes.

A morphism (A, I,MA) → (B, I,MB) is a cover if and only if A → B is (p, I)-complete
faithfully flat and the pullback induces an isomorphism on log structure. We define the
structure sheaf O∆log

on (X,MX)∆log
by (A, I,MA) 7→ A.

There is a variant of the about definition that we will also use in this subsection, we

define (X,MX )perf
∆log

be the full subcategory of (X,MX)∆log
whose objects are (A, I,MA)

with A perfect.

Remark 5.0.7. Our definition of the absolute logarithmic prismatic site is different from
[Kos21, Definition 4.1]. First, we need to consider the absolute prismatic site, not the
relative one. Furthermore, we use the (p, I)-complete faithfully flat topology compared
with the (p, I)-complete étale topology. Also we require the log-structures to be integral.

Proposition 5.0.8. (X,MX )∆log
forms a site.

Proof. Similar to [BS22, Corollary 3.12], we need to show for a given diagram

(C, I,MC ) (A, I,MA) (B, I,MB)
c b

in (X,MX)∆log
such that b is a cover, then the pushout of b along c is a covering. From the

argument in loc.cit., we known for the underlying prisms, the pushout of b along c is the
(p, I)-completed tensor product D = C⊗̂AB, and (D, I) is a bounded prism covers (C, I)
in the (p, I)-complete faithful flat topology. And we give D the log structure MD defined
by viewing Spf(D) as the fiber product via [Ogu18, Proposition 2.1.2], then (C,MC) →
(D,MD) is strict morphism by Remark 2.1.3 of loc.cit., so in particular, MD is integral
since MC is. For the same reason,

(Spf(D/ID), f∗DMX)→ (Spf(D),MD)
a

is strict since it is the base change of a strict morphism. It is an exact closed immersion
since pushout of a surjective map of monoids is again surjective. �

Example 5.0.9. [Kos21, Example 3.4]

(1) Let (A, (E)) be the Breuil-Kisin prism, then we can define a perlog structure to
(A, (E)) given by N → A;n 7→ un, one have (A, (E),N)a is in (X,MX )∆log

, where

(3) in Definition 5.0.6 follows from the prelog structures N → R → A/(E) and
N→ A→ A/(E) induce the same log structure.

(2) For any prism (B, J) over (A, (E)), it has a natural prelog structure N → A→ B,
and similar to (1), (B, J,N)a is in (X,MX )∆log

.
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(3) A special case of (2) is that (B, J) = (Aperf , (E)), the perfection of (A, (E)). One has

the prelog structure in (2) can be directly defined as 1 7→ [̟♭]. And (A, (E),N)a →
(B, J,N)a is a covering of log prisms in (X,MX)∆log

.

Actually, all logarithmic structures of log prisms in (X,MX)∆log
is the log structure

associated to a prelog structure defined by N. We thank Teruhisa Koshikawa for letting us
know the following lemma.

Lemma 5.0.10. For any log prism (B, J,MB) inside (X,MX)∆log
, (B,MB)

a admits a

chart N→ B defined by n 7→ unB for some uB ∈ B satisfying uB ≡ ̟ mod J .

Proof. For any log prism (B, J,MB) inside (X,MX )∆log
, we have

(Spf(B/J), f∗BMX)→ (Spf(B),MB)
a

defines an exact closed immersion of log formal schemes. So by the proof of [Kos21, Propo-
sition 3.7], if we let Na

B/J := Γ(Spf(B/J),Na) for the prelog structure N → OK → B/J

induced from the given prelog structure onOK , then the fiber productMB×Na
B/J

N is a chart

for (B,MB)
a. Moreover, since we assumeMB to be integral, we have (Spf(B/J), f∗BMX)→

(Spf(B),MB)
a is a log thickening with ideal J in the sense of [Ogu18, Definition 2.1.1.],

and one can show MB ×Na
B/J

N ≃ N× (1 + J). Now (1 + J)× = (1 + J), so

N→ N× (1 + J) ≃MB ×Na
B/J

N→ B

is also a chart for (B,MB)
a. And the prelog structure given by n 7→ unB for some uB ∈ B

satisfying the image of uB in B/J coincides with the image of ̟ under OK → B/J . �

In the rest of this subsection, we will try to generalize results we proved in §4.1-§4.3 for
the logarithmic prismatic site.

Lemma 5.0.11. (1) For (A, IA,MA)
a, (B, IB ,MB)

a ∈ (X,MX )∆log
such that MA,MB

are integral and (A,MA)→ (A/IA,N) and (B,MB)→ (B/IB ,N) are exact surjec-
tive, there is a prelog prism (C, IC ,MC) with integral log structure that is universal
in the sense that the diagram

(A, IA,MA) (C, IC ,MC) (B, IB ,MB)

is initial in the category of diagrams

(A, IA,MA) (D, ID,MD) (B, IB ,MB)

of prelog prisms over (R,N), and (D,MD)→ (D/ID,N) is an exact surjective.
(2) If (C, IC ) in (1) is bounded, then (C, IC ,MC)

a is the product of (A, IA,MA)
a and

(B, IB ,MB)
a inside (X,MX )∆log

.

(3) If (A, IA,MA)
a, (B, IB ,MB)

a in (1) are in (X,MX )perf
∆log

, and let (Cperf , IC) be the

perfection of (C, IC) defined in (1). Let (Cperf , IC ,MC) be the prelog prism with
prelog structure induced from C. Then (Cperf , IC ,MC)

a is the product of (A, IA,MA)
a

and (B, IB ,MB)
a in (X,MX )perf

∆log
.

Proof. Let (A, IA,MA), (B, IB ,MB) ∈ (X,MX )∆log
, define C0 to be the (p, IA, IB)-adic

completion of A⊗W (k) B and let J be the kernel of

C0 → A/IA⊗̂RB/IB .
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Then (C0, J,MA×MB) is a δlog-triple over (A, IA,MA). And we have (C0, J,MA×MB)→
(C0/J,N) is surjective. Then we can apply [Kos21, Proposition 3.6] to get a universal prelog
prism (C, IC ,MC) over (A, IA,MA) and (B, IB ,MB) and satisfies (C,MC ) → (C/J,N) is
exact surjective. Just recall in the proof of [Kos21, Proposition 3.6], we first construct
a δlog-triple (C ′, J ′,M ′

C) which is universal in the sense that it is a δlog-triple over both
(A, IA,MA) and (B, IB ,MB) satisfying C ′/J ′ is over A/IA and B/IB as R-algebra and
(C ′,M ′

C) → (C ′/J ′,N) is exact surjective. Then we take the prismatic envelope with
respect to (A, IA) → (C ′, J ′) to get (C, IC ). Then we can check such (C, IC ,MC) satisfies
the universal property. For (2), when (C, IC) is bounded, the fact that (C, IC ,MC)

a is the
product of (A, IA,MA)

a and (B, IB ,MB)
a inside (X,MX )∆log

follows from Proposition 3.7

of loc.cit.. For (3), we have (Cperf , IC) is automatic bounded, and one can check (Cperf , IC)
is universal using exactly the same proof of Proposition 3.7 of loc.cit.. �

We thank Koji Shimizu for the following lemma on A
(2)
st .

Lemma 5.0.12. Let (A, I,N)a be the Breuil-Kisin prism defined in (1) of Example 5.0.9,
then the self-product (resp. self-triple product) of (A, I,N)a in (X,MX)∆log

exist. Moreover,

if we let (A〈2〉, I,M2)a (resp. (A〈3〉, I,M3)a) be self-product (resp. self-triple product) of

(A, I,N)a, then A〈i〉 ≃ A(i)
st for i = 2, 3.

Proof. By our construction in Lemma 5.0.11, (A〈2〉, I,M) is the prelog prismatic envelope
(C, IC ,MC) with respect to

(A, (E),N) → (C0, J,N
2) and (C0/J,N

2)→ (R,N)

where C0 = W [[u, v]], J = (E(u), u − v) with the prelog structure given by β : (1, 0) 7→
u, (0, 1) 7→ v. The prelog prismatic envelope is constructed using the technique of exact-
ification: consider π : (C0,N

2) → (R = C/J,N) where the map between log structures is
given by πlog : N × N → N; (m,n) 7→ m + n, here πlog is surjective but not exact, so to
constructsthe exactification of π : (C,N2) → (R,N) (cf. [Kos21, Construction 2.18]), first
we have the exactification of πlog is

α :M2 → N given by (m,n) 7→ m+ n,

whereM2 = {(m,n) ∈ Z×Z |m+n ∈ N}. Since M2 is generated by (−1, 1), (1,−1), (0, 1)
and (1, 0), one has the exactification of π is

(
W (k)[[u, v]]

[ v
u
,
u

v

]∧
(p,J ′)

, J ′,M2;α : (1, 0) 7→ u, (0, 1) 7→ v, (1,−1) 7→ u

v
, (−1, 1) 7→ v

u

)

where J ′ := ker(W (k)[[u, v]]
[
v
u ,

u
v

]
→ R).

We have the (p, J ′)-adic completion of W (k)[[u, v]]
[
v
u ,

u
v

]
is W (k)[[u, vu − 1]]. Then take

prismatic envelope of (A, (E))→ (W (k)[[u, vu − 1]], (E, vu − 1)). One can check

W (k)[[u,
v

u
− 1]]

{v/u− 1

E(u)

}∧

δ
≃ A(2)

st

directly from the definition of A
(2)
st .

Similarly, we can show A〈3〉 ≃ A(3)
st which is also bounded. �

The following is one of our key observations.

Lemma 5.0.13. We have (A〈2〉)perf ≃ (A(2))perf .
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Proof. Let u1, u2 be the image of u under the two natural maps ij : Aperf → (A(2))perf for

j = 1, 2. We claim that u2/u1 is inside (A(2))perf .

Firstly, we have already shown Aperf ≃ W (Ô♭
K∞

) and u = [̟♭], here ̟♭ = (̟n) with

{̟n}n≥0 being a compatible system of pn-th roots of ̟ inside OK̂∞
, and (̟n) ∈ O♭

K̂∞

via the identification O♭
K̂∞
≃ limx 7→xp OK̂∞

. Let S = (A(2))perf/(E), this is an integral

perfectoid ring over OK in the sense of [BMS18]. We have S♭ ≃ (A(2))perf/(p). For j = 1, 2,

define ̟♭
j = uj mod (p) ∈ S♭, then we have uj = [̟♭

j ] for j = 1, 2.

Recall in § 2.1, we have z = y−x
E(x) in A

(2). Since E(x) ≡ xe mod p, we have x(1+xe−1z) ≡
y mod p. If we denote ι : A(2) → (A(2))perf the natural map, then ι(x) = u1 and ι(y) = u2

in our definition, and u1(1+u
e−1
1 ι(z)) ≡ u2 mod p inside S♭ = A

(2)
perf/(p). This is the same

as ̟♭
1µ = ̟♭

2 with µ = (1+ue−1
1 ι(z)) mod p in S♭. So we have [µ]u1 = [µ][̟♭

1] = [̟♭
2] = u2,

which proves our claim.
Now by symmetry, u1/u2 is also inside (A(2))perf , so u1/u2 is a unit in (A(2))perf . So we

can give (A(2))perf a prelog structure

α :M2 → (A(2))perf with (1,−1) 7→ u1
u2
, (−1, 1) 7→ u2

u1
, (1, 0) 7→ u1, (0, 1) 7→ u2

with the monoid M2 defined as in the proof of Lemma 5.0.12, then ((A(2))perf , (E),M2)a

is in Xperf

∆log
.

One can check the maps i1, i2 : (A, (E)) → (A(2), (E)) → ((A(2))perf , (E)) induce i1, i2 :

(Aperf , (E),N) → ((A(2))perf , (E),M2) of prelog prisms. So by Lemma 5.0.12, there is a

unique map (A〈2〉, I,M2)→ ((A(2))perf , (E),M2), which factors through ((A〈2〉)perf , (E),M2).

So it induces a map ((A〈2〉)perf , (E),M2)→ ((A(2))perf , (E),M2) inside Xperf

∆log
. On the other

hand, by the universal property of A(2), we know there is a map (A(2))perf → (A〈2〉)perf fits

into the coproduct diagram in Xperf

∆
, which is the full subcategory of X∆ containing perfect

prisms.
One can check the composition η : ((A(2))perf , (E))→ ((A〈2〉)perf , (E))→ ((A(2))perf , (E))

satisfies η ◦ ij = ij ◦ η for i1, i2 : (Aperf , (E)) → ((A(2))perf , (E)). Such a map is unique

inside Xperf

∆
, so η = id((A(2))perf ,(E)).

On the other hand, the composition

η′ : ((A〈2〉)perf , (E),M2)a → ((A(2))perf , (E),M2)a → ((A〈2〉)perf , (E),M2)a

satisfies η ◦ i′j = i′j ◦ η for i′1, i
′
2 : (Aperf , (E),N)a → ((A〈2〉)perf , (E),M2)a induced from

i′1, i
′
2 : (A, (E),N) → (A〈2〉, (E),M2). Such map is also unique inside Xperf

∆log
, so η′ =

id((A〈2〉)perf ,(E),M2)a . So in particular we have (A〈2〉)perf ≃ (A(2))perf . �

Theorem 5.0.14. The category of étale ϕ-module over A[1/E]∧p with a descent data over

A
(2)
st [1/E]∧p is equivalent to the category of lattice in representations of GK . Moreover, for

all γ ∈ Ĝ, we can define the evaluation map

eγ : A
(2)
st [1/E]∧p →W (L̂♭)

such that Lemma 4.2.12 is still valid. Moreover, the Q-isogeney version of this theorem also
holds.
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Remark 5.0.15. The above theorem should be related to the étale comparison theorem in
the log prismatic settings, which has not been studied in [Kos21] yet.

Moreover, we have a log version of Lemma 4.1.8 also holds. We thank Teruhisa Koshikawa
for hints of the following result.

Proposition 5.0.16. The sheaf represented by (A, (E),N)a covers the final object ∗ in in
Shv((X,MX )∆log

).

Proof. For any log prism (B, J,MB), by Lemma 5.0.10, we can assume (B, J,MB)
a =

(B, J,N)a, with prelog structure defined by n 7→ unB with uB ≡ ̟ mod J .
Using deformation theory, we have there is a unique W (k)-algebra structure for B, and

we define C = B[[u]][uB
u ,

u
uB

]{uB/u−1
J }∧δ , where the completion is taken for the (p, J)-adic

topology. Similar to the proof of Lemma 5.0.12, we have (C, JC,N)a is the product of
(A, (E),N)a and (B, J,N)a inside (X,MX )∆log

. Moreover, we have B → C is (p, J)-complete

flat by [BS22, Proposition 3.13]. It remains to show that (B, J)→ (C, J) is a covering, i.e.,
B → C is (p, J)-complete faithfully flat. Let

Cnc := B[[u]][
uB
u
,
u

uB
]{uB/u− 1

J
}δ

be the non-complete version of C that we have the (p, J)-adic completion of Cnc is C. Now
we just need to show the flat ring map B/(p, J)→ C/(p, J) = Cnc/(p, J) is also faithful.

We claim that C/(p, J) is free over B/(p, J). One has JC = E(u)C, and (p, J) = (p,E) =
(p, J,E) in C. So C/(p, J) = Cnc/(p, J) is equal to

B[[u]][
uB
u
,
u

uB
][δi(z), i ≥ 0]/

(
p, J,E,Ez =

uB
u
− 1, δi(

uB
u
− 1)) = δi(Ez), i ≥ 1

)
.

After modulo (p, J), the above is the direct limit of

B/(p, J)[δi(z)]/
(
δi(
uB
u
− 1)) = δi(Ez) mod (p,E, J)

)

for i ≥ 0.
Now we use Lemma 2.2.4 to compute δi(uB

u − 1) = δi(Ez) mod (p,E, J). We keep the

notations in Lemma 2.2.4, by induction, we have bn = 0 mod (p,E). Using that a
(j)
p ∈ A×

0 ,

δi(uB
u − 1) = δi(Ez) mod (p,E, J) gives a relation (zi−1)

p =
p−1∑
j=0

ã
(i)
j (zi−1)

j where zi = zi

mod (p, J,E) and ã
(i)
j ∈ B/(p, J)[z0, z1, . . . , zi−2]. In summary, we have

C/(p, J) = B/(p, J)[zi, i ≥ 0]

/
(zi)

p −
p−1∑

j=0

ã
(i)
j (zi)

j , i ≥ 1




which is free over B/(p, J). �

Definition 5.0.17. (1) A prismatic crystal over (X,MX )∆log
in finite locally free O∆log

-

modules is a finite locally free O∆log
-module M∆ such that for all morphisms f :

(A, I,MA)→ (B, J,MB) of log prisms, it induces an isomorphism:

f∗M∆,A := M∆((A, I,MA))⊗A B ≃M∆,B := M∆((B, J,MB))
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(2) A prismatic F -crystal over (X,MX)∆log
of height h (in finite locally free O∆log

-

modules) is a prismatic crystal M∆ in finite locally free O∆log
-modules together

with a ϕO
∆log

-semilinear endomorphism ϕM
∆
of the O∆log

-module M∆ : M∆ →M∆

such that the cokernel of the linearization ϕ∗M∆ →M∆ is killed by Ih
∆
.

In particular, with help of Theorem 5.0.14 and Proposition 5.0.16, a direct translation

of proofs in §4.3 with A(2) replaced by A
(2)
st shows the following theorem.

Theorem 5.0.18. The category of prismatic F -crystals over (X,MX )∆log
of height h is

equivalent to the category of lattices in semi-stable representations of GK with Hodge-Tate
weights between 0 and h.

6. Some discussions on base rings

In this section, we show that our base ring assumed at the beginning of §2 covers many
situations of base rings used in [Kim14] and [Bri08].

Let K be complete DVR with perfect residue field k, and let K0 =W [1p ] withW =W (k),

fix a uniformizer ̟ ∈ OK and E(u) ∈ W [u] a minimal polynomial of ̟ over K0. Let R
be a normal domain and satisfies that R is a p-complete flat OK -algebra that is complete
with respect to J-adic topology, for an ideal J = (̟, t1, . . . , td) of R containing ̟. We also
assume R = R/(̟) is a finite generated k-algebra with finite p-basis discussed in [dJ95,
§1.1].

Lemma 6.0.1 ([Kim14] Lemma 2.3.1 and lemma 2.3.4). (1) In the above setting, there
is a p-adic formally smooth flat W -algebra R0 equipped with a Frobenius lift ϕ0 such
that R := R0/(p). Moreover let J0 be the preimage of J inside R0, then R0 is J0-
adically complete, and under this topology, R0 is formally smooth.

(2) R0/(p)
∼−→ R/(̟) lifts to a W -algebra morphism R0 → R and the induced OK-

algebra morphism OK ⊗W R0 → R is an isomorphism. Moreover this isomorphism
is continuous with respect to the J0-adic topology.

Let (R0, ϕR0) denote a flat W -lift of R/(̟) obtained from the above lemma. And we
will have J0 = (p, t1, . . . , td) ∈ R0, and we write J = (t1, . . . , td) ⊂ R.
Definition 6.0.2. Let R0 be a p-complete Zp-algebra, we say R0 satisfies the “refined almost

étalenes” assumption, or simply RAE assumption, if Ω̂R0 = ⊕m
i=1R0dTi with Ti ∈ R×

0 .

Where Ω̂R0 is the module of of p-adically continuous Kähler differentials.

The following are examples of R0 and R which satisfy assumptions of Lemma 6.0.1 and
RAE assumption.

Example 6.0.3. (1) If R/(̟) is a completed noetherian regular local ring with residue
field k, then Cohen structure theorem implies R/(̟) = k[[x1, . . . , xd]]. In this case,
R0 = W [[x1, . . . , xd]] and J0 = (p, x1, . . . , xd). Then R = W [[x1, . . . , xd]][u]/E, with
E ∈W [u] is a Eisenstein polynomial.

(2) Let R0 = W (k)〈t±1
1 , . . . , t±1

m 〉 and J0 = (p), in this example, R = k[t
±1
1 , . . . , t

±1
m ] is

not local.
(3) An unramified complete DVR (R0, p) with residue field k so that [k : kp] <∞.
(4) Note the the Frobenius liftings in Lemma 6.0.1 is not unique. In (2) we can choose

ϕR0(ti) = tpi . In (1), we can choose the ϕR0(xi) = xpi or ϕR0(xi) = (xi + 1)p − 1.
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Let R0 be p-complete algebra which satisfies the RAE assumption, Set R̆0 =W 〈t1, . . . , tm〉
and f : R̆0 → R0 by sending ti to Ti.

Proposition 6.0.4. Assume that R0 is a p-complete integral domain which admits finite
p-basis and satisfies RAE assumption. Then f is formally étale p-adically.

Proof. We thanks for Wansu Kim providing the following proof. By standard technique
using [Ill71, Ch.III, Corollaire 2.1.3.3] (e.g., see the proof in [Kim14, Lem. 2.3.1]), it suffices

to show that the cotangent complex LR0/R̆0
is acyclic. Since both R0 and R̆0 are Zp-flat,

it suffice to show that LR1/R̆1
is acyclic where R1 = R0/pR0 and R̆1 = R̆0/pR̆0. Since R0

has finite p-basis, by [dJ95, Lem. 1.1.2], LR1/k ≃ ΩR1/k. Note that maps k → R̆1 → R1

induces a fiber sequence

LR̆1/k
⊗L

R̆1
R1 → LR1/k → LR1/R̆1

Since that LR̆1/k
≃ ΩR̆1/k

and ΩR̆1/k
≃ ΩR1/k by RAE condition, we conclude that LR1/R̆1

=

0 as required. �

Let us end with a discussion about our base rings and the base rings used in [Bri08]. As
explained in the beginning of [Bri08, Chap. 2], his base ring R0 in [Bri08] is obtained from
W 〈t±1

1 , . . . , t±1
m 〉 by a finite number of iterations of certain operations and is also assumed

to satisfy certain properties. By Prop. 2.0.2 loc. cit., we see that R0 has finite p-basis and
satisfies RAE assumption. So the base ring R0 in [Bri08] also satisfies the requirement that
f : W 〈t1, . . . , tm〉 → R0 is formally étale by Proposition 6.0.4.
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