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COMPLETED PRISMATIC F-CRYSTALS AND CRYSTALLINE

Z,-LOCAL SYSTEMS
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ABSTRACT. We introduce the notion of completed F-crystals on the absolute pris-
matic site of a smooth p-adic formal scheme. We define a functor from the category
of completed prismatic F-crystals to that of crystalline étale Z,-local systems on
the generic fiber of the formal scheme and show that it gives an equivalence of
categories. This generalizes the work of Bhatt and Scholze, which treats the case
of a complete discrete valuation ring with perfect residue field.
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1. INTRODUCTION

Let p be a prime. In [9], Bhatt and Scholze introduce the notion of prisms
and the relative prismatic ringed site ((X/(A, 1))y, Op) for a bounded prism (A, I)
and a smooth p-adic formal scheme X over A/I. Surprisingly, the cohomology
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RI((X/(A,I))p, Op) gives a good integral p-adic cohomology of X: it recovers the
crystalline cohomology of the special fiber as well as the étale cohomology of the
generic fiber. The prismatic formalism also gives a site-theoretic construction of the
Ajns-cohomology and the Breuil-Kisin cohomology when (A, I) = (Ain(Oc, ), ker 0)
and (&, (F)), respectively (see [0, Ex. 1.9] for the details).

Another advantage of this site-theoretic approach is that it provides a natural
framework of the coefficient theory. In the case of the relative prismatic site, Tian
[45] studies the cohomology of prismatic crystals when X is proper over A/I.

One can study crystals on the absolute prismatic site as well. Let Ok be a com-
plete discrete valuation ring of mixed characteristic (0,p) with perfect residue field
k, and let X be a smooth p-adic formal scheme over Of. In the subsequent pa-
per [7], Bhatt and Scholze study sheaves on the absolute prismatic site X,. Re-
call that the site X) has a sheaf O) of rings equipped with a Frobenius ¢ and
an ideal sheaf Ty (see Definition for the details). They introduce the category
Vect?(X ) of prismatic F-crystals of vector bundles on (X),0)) as well as the cat-
egory Vect(X ), Op[1/Z)]0)?=" of so-called Laurent F-crystals on X.

The main theorem [7, Thm. 1.2] of Bhatt and Scholze states that Vect”((Og)p) is
equivalent to the category of lattices in crystalline representations of K. They also
show that, for general X, Vect(X ), Op[1/Z,]7)#=" is equivalent to the category of Z,-
local systems on the generic fiber of X. Part of their work is reproved or generalized
by Du-Liu [I7], Wu [48], and Min—Wang [34]. For other works on the prismatic site,
we refer the reader to a recent survey [4].

The present article studies the relationship between lattices in crystalline repre-
sentations and suitable F-crystals on the absolute prismatic site in the relative situ-
ation. For this, we need to enlarge the category Vect”(X ) of prismatic F-crystals
on X. To explain the enlarged category, we first focus on the small affine case. More
precisely, let Ry be the p-adic completion of an integral domain that is étale over
W (k)T ..., T;"] for some d > 0 and set R = Ry Qwx) Ox. We also fix a uni-
formizer m of Ok with monic minimal polynomial E(u) over W (k). We consider the
following type of sheaves on the absolute prismatic site ).

Definition 1.1 (Definition B.16] Remark B.I7). A completed prismatic F-crystal on
R is a sheaf F of O)p-modules on R) together with a morphism 1® pz: o*F — F
that satisfies the following properties:

(1) for each (A,I) € Ry, the A-module F, = F(A,I) is finitely generated and
classically (p, I)-complete;

(2) for any morphism (A,IA) — (B,IB) of bounded prisms over R, the map
BR4F4 — Fp is an isomorphism;

(3) for the Breuil-Kisin prism (& = Rg[u], (E(u))) € R) (see Example B.4),
Fes is torsion free, Fs[E~']) is finite projective over S[E']}, and Fg =
Felp™ 1N FelE~';

(4) the cokernel of 1® ¢ r, : ¢*Fs — Fg is killed by E” for a non-negative integer
T

We write CRA’“”(RA) for the category of completed prismatic F-crystals on R.
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Condition (3) in the definition is technical but plays a crucial role in our theory.
The category CR™?(R)) contains, as a full subcategory, the category VectZ;(Ry) of
effective prismatic F-crystals of vector bundles on R) in the sense of [7, Def. 4.1].
We note that there exists a completed prismatic F-crystal which is not a prismatic
F-crystal of vector bundles (see below and Example B.35), and thus CR™?(R)) is
strictly larger than Vectf;(R)) in general.

The main goal of this paper is to describe lattices in crystalline representations of
the Galois group Gg of R[p~!] in terms of completed prismatic F-crystals. Here is
our main result:

Theorem 1.2 (Theorem B.28). There is a contravariant equivalence of categories

from the category of completed prismatic F'-crystals on R to the category of crystalline
Z,-representations of R[p~'] with non-negative Hodge—Tate weights.

Following [7], we call T" the étale realization functor. Since T is compatible with
Breuil-Kisin and Tate twists, one can further enlarge CR™?(R)) and obtain an
equivalence of categories with the category of all crystalline Z,-representations of
R[p~!] (see Example and Remark [3.29)).

Once Theorem is obtained, we can globalize our equivalence to the one for a
smooth p-adic formal scheme over Ok.

Theorem 1.3 (Theorem B.45). Let X be a smooth p-adic formal scheme over Ok.
Then there is a natural equivalence of categories

T: CR™ (%)) = Locg ™. (X,)

between the category of completed prismatic F-crystals on X and the category of
crystalline Z,-local systems with non-negative Hodge—Tate weights on the adic generic
fiber X,, of X (see §[3.0 for the precise definitions).

The main theorems give a prismatic description of crystalline Z,-representations
in the relative case. Note that when R = Ok, Kisin [26] gave a description of lattices
in crystalline representations of K in terms of Breuil-Kisin modules. His work was
generalized by Brinon—Trihan [I3] to the case of complete discrete valuation rings
with imperfect residue field with a finite p-basis. Furthermore, Kim [25] introduced
the notion of Kisin &-modules over R as a generalization of Breuil-Kisin modules
of E-height < 1 in the relative case. Kim attached to a p-divisible group over a
general R a Kisin G-module and showed that the category of p-divisible groups
over R is equivalent to the category of Kisin &-modules when p > 3 [25, Cor. 3.
However, it has not yet been known how to describe crystalline Z,-representations of
R[p~'] with non-negative HodgeTate weights in terms of suitable Breuil-Kisin type
modules in the relative case. In fact, even a suitable description of rational crystalline
representations of R[p~!] has not been given yet in general: while crystalline Q,-
representations of K can be classified by weakly admissible filtered ¢-modules [14],
the correct weakly admissibility has not been found in the relative case. We hope
that the notion of completed prismatic F-crystals clarifies these complications.
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Examples of crystalline Z,-representations of R[p~!] with Hodge-Tate weights in
[0, 1] arise from p-divisible groups over R. Anschiitz and Le Bras [2] developed the
prismatic Dieudonné theory. It follows from their work that the category of p-divisible
groups over R is equivalent to the category of effective prismatic F-crystals of vector
bundles of Z)-height < 1 (see § for the details). It is easy to see that their
formulation is compatible with ours. Following [47], we will also provide an example
of a completed prismatic F-crystal over R that does not arise from a p-divisible group
over R (Example B35). This implies that our category CR™¥(R)) is strictly larger
than the subcategory of effective prismatic F-crystals of vector bundles on R and
that the former category is necessary to describe crystalline Z,-representations in the
relative case. It is an interesting question whether a completed prismatic F-crystal
on R becomes a prismatic F-crystal of vector bundles on X by the pullback along
an admissible blow-up X — Spf R. A related question is whether a crystalline Z,-
representation of R[p~!] with Hodge Tate weights in [0, 1] comes from a p-divisible
group on X for some admissible blow-up X — Spf R. We note that admissible blow-
ups X — Spf R usually yield non-smooth p-adic formal schemes X and thus these
questions diverge from our current work.

Let us now explain the construction of the étale realization functor 7" in Theo-
rem [[.2] (see Proposition 3.26). This will be explained best in the following commu-
tative diagram:

Vethﬁ(RA)_>V€Ct(RA>OA[1/IA] ) P=t %Rep%rp(gzz)
fi—)fct 7

Here Vect(Ry, Op[1/Z)]))?=" denotes the category of Laurent F-crystals, namely,
prismatic F-crystals of vector bundles of O)[1/Z) ] -modules on R, and Repzp(QR)

denotes the category of finite free Z,-representations of the Galois group Gg of R[p~1].
The functor Vect%;(Rp) — Vect(Rp, Op[1/Z)p]))?=" is the scalar extension functor.
Bhatt-Scholze [7 ] and Min-Wang [34] show the (covariant) equivalence of categories
Vect(Ry, Op[1/T)]0)9=" = =~ Repy, (Gr). Hence, to define the contravariant functor

T: CR™(Ry) — Repy, (Gr) or its dual T, it suffices to show that the functor
VectZ;(R)p) — Vect(R), Oﬁ[l/lﬁ] )#=1 extends to a functor

CRM(R)) — Vect(Ry, Op[L/IpIN)",  F s Fa.
The construction of the latter functor uses the following fact on the Breuil-Kisin
prism (&, (E(u))): it covers the final object of Shv(R)), and thus a sheaf on R
is described by a descent datum involving the self-product (6@, (E(u))) and the

self-triple-product (&®), (E(u))) of the Breuil-Kisin prism. In particular, completed
prismatic F-crystals are described by the following data:

Proposition 1.4 (PropositionB.25)). The association F +— Fg gives rise to an equiv-

alence of categories CR™¥(R)) = DDs. Here DDg consists of triples (M, oon, f)
where
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(1) M is a finite S-module satisfying condition (3) of Definition [1.1 in place of
fG;.

(2) pom: M — M is a p-semi-linear endomorphism such that the cokernel of
1® pm: @M — M is killed by E" for a non-negative integer r;

(3) f: 6P, M — 6P x,, M is an isomorphism of & -modules that is
compatible with Frobenii and satisfies the cocycle condition over &),

Since Vect(Rp, Op[1/Z,]7)9=" has a similar description in terms of descent data in-
volving 8P [E~!]) and &®)[E~!]2, the base change along the map 6 — 6@ [E~!])
yields the desired functor CR™¥(R)) — Vect(Rp, Op[1/Zp]7)#=". To put things to-
gether, the contravariant functor 7' is explicitly given by

T(F) = ((FalAum(R), (€))7)".

See Example B.7 for the definition of the Aj-prism (Aie(R), (€)). Once T is defined,
it is not difficult to see that T is fully faithful and that T'(F)[p~'] is a crystalline Q,-
representation of Gz with non-negative Hodge—Tate weights.

The hardest part of the proof of Theorem concerns the essential surjectivity of
T, and § @ is devoted to proving it. For this, take Tj € Rep%:>0(g r). We will attach
to Ty an object (9, oo, f) € DDg.

To explain the outline of the construction, let us introduce several rings. Let Og
denote the p-adic completion G[E~']) of G[E™']. We write Of, (resp. Op) for the
p-adic completion of the localization of Ry at the prime (p) (resp. the localization of
R at the prime (7)): Op, is an absolutely unramified complete discrete valuation ring
with imperfect residue field having a finite p-basis, and O = Or, Qwu) Or. We set
S = Op,[u] and Of, = &L [E7']).

On the one hand, the theory of étale p-modules attaches to T a finite free Og-
module M together with a Frobenius and a descent datum. On the other hand,
Brinon-Trihan’s theory [13] of Breuil-Kisin modules associates with Ty| ¢,z a finite
free & -module M, with a Frobenius. We set 9 := M N My, inside Of, ®p, M =
O, @, M. Naturally, M is equipped with a Frobenius ¢gy. With careful study
of the structures, we are able to show that the pair (91, pgy) satisfies conditions (1)
and (2) of Proposition [[4l Finally, the connection on De.s(V) equips M[p~'] with a
descent datum. Combined with the descent datum on M, it yields a descent datum
f on M and thus an object (9N, por, f) € DDg. The associated completed prismatic
F-crystal F satisfies T'(F) = T.

Organization of the paper. Section 2] reviews basic concepts in relative p-adic
Hodge theory. In § 2.1 we explain the assumptions on our base ring R and objects
attached to R, which we will use throughout this article. We review crystalline
representations developed by Brinon [12] in § 2.2 and étale p-modules in § 2.3l The
topics in the latter two subsections are standard, and the reader may skip them.
Section Bl introduces the notion of completed prismatic F-crystals and states the
main theorems. In § B we define the absolute prismatic site of a p-adic formal
scheme and explain key examples of prisms in the small affine case. In § 3.2 we
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define finitely generated completed prismatic crystals and completed prismatic F-
crystals in the small affine case. Then we describe the category of completed pris-
matic F-crystals in terms of descent data in § 3.3l Section [3.4] introduces the étale
realization functor T': CR™?(R)) — Repg;fm(QR) and states the main theorem in
the small affine case (Theorem B.28). We also prove part of the main theorem that
T is fully faithfully and T'(F) is crystalline for 7 € CR™?(R)) in this subsection. In
§ B.5, we consider the height one case and compare the étale realization functor with
prismatic Dieudonné theory by Anschiitz—Le Bras [2]. We also present an example of
a completed prismatic F-crystal that is not an effective prismatic F-crystal of vector
bundles (Example B.35). In § 3.6, we define the notion of completed prismatic F-
crystals on a general smooth p-adic formal scheme and the étale realization functor.
We end the subsection with the main theorem in this general case (Theorem [B.45),
which is a direct consequence of Theorem [3.28

Section M is devoted to the proof of the remaining part of the main theorem (the
essential surjectivity of Theorem B.28). In § [ we define the notion of quasi-
Kisin modules and show that such an object yields a rational Kisin descent datum.
Section proves the general fact that for a finite torsion free ¢-module (90, poy)
of finite E-height over &, M[p~'| is projective over &[p~!] (Proposition EEI3). In
§ 4.3 we consider the CDVR case. With these preparations, we attach a quasi-Kisin
module to a lattice in a crystalline representation in § [4.4] and [£.5] and complete the
proof of Theorem in §

Appendix [A] follows the work of Tan and Tong [43] and defines the notion of
crystalline local systems on the generic fiber of a smooth p-adic formal scheme.

Notation and conventions. Let p be a prime and let k£ be a perfect field of
characteristic p. Write W = W (k) and let K be a finite totally ramified extension
of Ko == W[p~!]. Fix a uniformizer 7 of K and let E(u) € W/u] denote the monic
minimal polynomial of 7.

For derived completions and relevant concepts, we refer the reader to [9, §1.2]. In
this article, most rings are classically p-complete, and we also call them p-adically
complete. Similarly, a p-adically completed étale map from a p-adically complete ring
A refers to the (classical) p-adic completion of an étale map from A.

We also follow [9] for the definitions of d-rings and prisms. However, to avoid
confusion, we say that a map of prisms (A, I) — (B, J) is (p, I )-completely (faithfully)
flat if the map A — B is (p, I)-completely faithfully flat (compare [9, Def. 3.2]).

We write W(T;=, ... T7") for the p-adic completion of the Laurent polynomial
ring W[T5, ..., TF]. In this article, the braces {: - - } denote the p-adically completed
divided power polynomial, and for a fixed prism (A, I'), the notation {- - - }§ stands for
adjoining elements in the category of derived (p, I)-complete simplicial §-A-algebras.

For an element a of a Q-algebra A and n > 0, write v, (a) for the element %,L € A.

Our convention is that the cyclotomic character Z,(1) := T, (pp) has Hodge-Tate
weight one.

Acknowledgments. We thank Hélene Esnault, Mark Kisin, and Peter Scholze for
their valuable comments on earlier versions of this article. Y.M. and K.S. are partially
supported by AMS—Simons Travel Grant.
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2. REVIEW OF CRYSTALLINE REPRESENTATIONS AND ETALE ©-MODULES
2.1. Base ring. In this subsection, we will introduce our base ring R.

Definition 2.1. A p-adically complete Og-algebra is called small and smooth (or
small for short) if it is p-adically completed étale over O (T5, ..., T fl> for some
d > 0.

Remark 2.2. Let R be small over Og. Since R/7R is étale over k[T ... TF,
there exists a subalgebra Ry C R such that Ry is p-adically completed étale over
W(Tfﬂ,...,Tf1> and R = R() Rw OK.

Let R’ be p-adically completed étale over R. If one fixes a subring Ry C R as
above, then the étale map Ry/pRy = R/mR — R'/w R’ lifts uniquely to a p-adically
completed étale map Ry — R{. Moreover, R @ O is isomorphic to R’ as R-
algebras.

In this paper, we use the crystalline period rings developed in [12]. For this, we
consider the following class of p-adic rings that contains connected small O g-algebras:

Set-up 2.3. A connected p-adically complete Og-algebra R is said to be a base ring
if it is of the form R = Ry ®w Ok, where Ry is an integral domain obtained from
WA(T{E, ..., TF") by a finite number of iterations of the following operations:

e p-adic completion of an étale extension;
e p-adic completion of a localization;
e completion with respect to an ideal containing p.

Remark 2.4. Brinon [12, p. 7] further assumes that W[T;, ... T5'] — Ry has ge-
ometrically regular fibers and that & — R ®o, k is geometrically integral. By [1]
Prop. 5.12] and the fact that any ideal-adic completion of an excellent ring is excel-
lent [28, Main Thm. 2], we see that W[T: ... TF'] — Ry has geometrically regular
fibers for a ring Ry as in Set-up 2.3l We also note that the latter assumption can be
dropped. Indeed, if we let &’ be the integral closure of k inside Frac(R ®o, k), then
R ®p, k is geometrically connected (and thus geometrically integral) over &', and R
is an Ok @ W(k')-algebra. The claim now follows since Brinon’s period rings for
R are defined without any reference to Og. Finally, we note that if R is a base ring,
then it satisfies Brinon’s good reduction condition (BR) in [12, p. 9].

Let R be a base ring as defined in Set-up 2.3l In the rest of this subsection, we
introduce basic objects attached to R that we will use throughout this article.
Let ¢: Ry — Ry denote the lift of the Frobenius on Ry/pRy with ¢(T;) = T7; this

uniquely determines ¢. Let O R, denote the module of continuous Kahler differentials
@n Q(Ro/p”Ro)/(W/p”W)' By [12, Pl"Op. 2.0.2], we have QRO = @?:1 Ro . dlog TZ
Let R denote the union of finite R-subalgebras R’ of a fixed algebraic closure of
Frac R such that R'[p~!] is étale over R[p~']. Set
Gr = Gal(R[p~']/R[p™")).
Let Repq, (Gr) denote the category of finite-dimensional Q,-vector spaces with con-
tinuous Gpr-action. We call its objects Q,-representations of Gr for short. Similarly,
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let Repzp(g r) denote the category of finite Z,-modules equipped with continuous Gp-
action and let Rep%rp(g r) denote the full subcategory consisting of finite free objects.

Remark 2.5. Assume that R is of topologically finite type over O (for exam-
ple, R is small over Ok). If we equip R with p-adic topology, then Rep%rp(QR)
(resp. Repq, (Gr)) is equivalent to the category of Zj,-local systems (resp. isogeny
Z,-local systems) on the étale site of the adic space Spa(R[p~'], R) by [22, Ex. 1.6.6
ii)] and [24, Rem. 1.4.4]. Note also that Spa(R[p~'], R) is the adic generic fiber of
Spf R.

Let B be the p-adic completion of R and let R be its tilt 1&1@ R/pR. Set

Aig(R) = W(Eb). The first projection R - R/pR lifts uniquely to a surjective
W-algebra homomorphism 6: Aj¢(R) — R

Notation 2.6. Let & = Gy := Ry[u] equipped with the Frobenius given by p(u) =
uP. Let Og be the p-adic completion of &u~!], equipped with the Frobenius ¢
extending that on &. Note that F is invertible in Og and the map S[E~'] — O¢

induces an isomorphism &[E~']} = 0.
We recall a result about the Frobenius on 6.

Lemma 2.7. The map ¢: & — & s classically faithfully flat. Moreover, & as a
module over itself via  is finite free.

Proof. By [12, Lem. 7.1.5], ¢: & — & is classically flat. Let ¢ C & be any maximal
ideal. Since & is p-adically complete, we have p € q. Thus, ¢(q) C g, which implies
p: 6& — G is classically faithfully flat.

For the second part, consider & as a module over itself via ¢. Note that &/(p) has
a finite p-basis. By Nakayama’s lemma, a lift of a p-basis to & generates &. There
cannot be any non-trivial relation among such a lift, since & is p-torsion free. O

Notation 2.8. Note that (p) (resp. (7)) is a prime ideal of Ry (resp. R). We let O,
(resp. Op) denote the p-adic completion of the localization (Ry),) (resp. R(y)). Then
Or, and Oy, are complete discrete valuation rings (CDVR’s for short) with the same
residue field Frac(Ry/(p)) = Frac(R/(r)). Set Ly := Op,[p~'] and L :== Or[p~!]. The
Frobenius ¢ on Ry extends to ¢: Op, — Op,. Note that Op, is also a base ring.
When we work on Oy, for a fixed base ring R, we simply write R = O, by abuse of
notation.

Define Ok, , to be the p-adic completion of liﬂ@ Op, and let Ok, = Ok, , @w Ok.
Set Koy = Ok, ,[p'] and K, := Ok, [p~']. Note that there is a unique @-compatible
isomorphism Of, , = W (k,) that reduces to the identity modulo p, where k, denotes
liﬂ¢ Frac(Ry/(p)). Hence Ok, , and Ok, are CDVR’s with the same perfect residue
field k. Note that the structure map Ry — Ok, , factors through Op, — O, , =
W(k,).

In § 3] we will consider the absolute prismatic site on a p-adic formal scheme. In
the affine case, we usually make the following additional assumption:
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Assumption 2.9. The base ring R is small over Og or R = Op. We equip R with
p-adic topology. In particular, Spf R is a smooth p-adic formal scheme over O (or
Oy, in the second case). Note that Repy (Gr) is equivalent to the category of étale

Z,-local systems on the adic generic fiber Spa(R[p™'], R) of Spf R (cf. Remark 2.H).

2.2. Crystalline representations. Let R be a base ring. In this subsection, we

will review the crystalline period ring OB,;s(R) and the notion of crystalline repre-
sentations of the Galois group Gr of R[p~'] developed in [12, Chap. 6].

Recall the surjective W-algebra homomorphism 0: A;(R) == W(ﬁb) — R". De-
fine Agis(R) to be the p-adic completion of the divided power envelope of Aj.¢(R)
with respect to Ker #. Choose a non-trivial compatible p-power roots of unity: ¢, € R
with e = 1,61 # 1, and ¢, = €}, ;. Set € = (g,), € ﬁb and t = logle] € Auis(R).
Define Beis(R) = Aqis(R)[p~1,t71].

Extend the map 6 to Og,: Ro®@w Aine(R) — R". Define OA_.is(R) to be the p-adic

completion of the divided power envelope of Ry ®w Ains(F) with respect to Ker O, .
Define OBis(R) == OA.is(R)[p~ 1, t71.

Remark 2.10.

(1) Our period rings Beis(R) and OB.is(R) are written as BY,
respectively in [12].

(2) When K is absolutely unramified and R is of topologically finite type over
Ok = W, Tan and Tong define the crystalline period sheaves B and OB,
on the pro-étale site of Spa(R[p~'], R) [43, Def. 2.4, 2.9]. In this case, U :=
Spau(ﬁA [p~1], EA) is an affinoid perfectoid object of the pro-étale site. We then
have Beis(R) = Beis(U) and OBis(R) = OBi(U). See Proposition [A4l

(3) The ring O = (R(n)" is also a base ring. In this case, B..is(Or) and
OB..is(Or) are studied in [1I] and written as BY,,
The notation By is also used in [13].

(R) and Bgis(R)

and Bg;s, respectively.

The crystalline period ring OB,;s(R) has a natural Gg-action and a Frobenius
endomorphism ¢ extending those on Ry @y Aie(R), and there is a natural B (R)-
linear integrable connection V: OBs(R) — OBeuis(R) ®r, O Ro- Moreover, R ®g,
OB..is(R) is equipped with a filtration by R[p~!]-modules, which is compatible with
the natural PD-filtration on As(R). See [12, Chap. 6] for the detail of these struc-
tures.

The following result on the crystalline period ring will be used later:

Lemma 2.11 ([I2, Prop. 6.1.5]). Choose a compatible system (T;,,) of p-power roots

of T; in R with Tio = T;, and let Tib € Fb dﬁnote the corresponding element. The
map X; — Ty ® 1 —1® [T?] induces an Aqis(R)-linear isomorphism

Acris(ﬁ){Xla cee aXd} = OAcris(R)a

where the former ring denotes the p-adically completed divided power polynomial with

variables X; and coefficients in Ais(R).

Let us recall the definition of crystalline representations.
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Definition 2.12. For V' € Repq (Gr), set

Deis(V) = (OBeis(R) ®q, V)% and DY (V) = Homg,(V, OBuis(R)).

cris

Then Des(V) is a finite projective Ry[p~']-module of rank at most dimq, V' equipped

with a natural ¢ and V structure induced from OB,;s(R), and R ®pg, Deis(V) has a

filtration induced from R ®g, OB;is(R). The natural map

acris(v>: OBcris(R> ®R0[p*1} Dcris(v) — OBCriS(R) ®Qp V
is injective by [12, Prop. 8.3.5]. We say that V is Rg-crystalline if aqis(V) is an
isomorphism. By [12, Prop. 8.3.5], this notion depends only on R, not on Ry. Hence
we simply say that V' is crystalline from now on.

By [12, Thm. 8.4.2], V' is crystalline if and only if V'V is crystalline. Note also that
DY (V) = Deyis(VY) = Homp,p—11(Deris(V), Ro[p~']). We will mainly use DY; (V) in
this paper.

A finite free Z,-representation 7' € Rep%];(g r) is called crystalline if the associated
Q,-representation T' ®z, Q, is crystalline.

Finally, let us explain the functoriality. Let R’ = R, ®w Ok be another base
ring and assume that there exists a p-equivariant ring homomorphism ¢g: Ry — Rj,
that extends to g: R — R’. By the change of paths for étale fundamental groups,
g induces a continuous group homomorphism Gr — Ggr and thus a natural ®-
functor Repq (Gr) — Repq,(Gr). The map g also induces a ring homomorphism

OB.is(R) — OBs(R'), and the latter is compatible with Frobenii and Galois ac-
tions.

Lemma 2.13. With the notation as above, for V & Repr(QR), the natural mor-
phism Ry[p~'] ®g, ip-1] OBy (R) ®q, V — OB..is(R) ®q, V induces a p-equivariant
morphism of Ry[p~'|-modules

(21) R()[p_l] ®Rg[p*1} Dcris(v) — Dcris(v|gR/>-

Moreover, if V' is crystalline, then V|g,, is crystalline and the above map is an iso-
morphism.

Proof. The first assertion is obvious. Now assume that V' is crystalline. Consider the

composite of OB,s(R’)-linear maps

a: OBgis(R) @Ry [p—1] (Ry[p™Y ®Rrop—1] Deris(V)) — OB.i(R) QR [p1] Deris(Vg,,)

acris(V‘gR/

) —
OB.is(R) ®q, V.

Observe that « is the base change of a,is(V') along the map OBis(R) — OBepis(R').
Since V' is crystalline, « is an isomorphism. Moreover, the second map aeris(Vg,, )
in « is injective. Hence ais(V|g,,) is an isomorphism and thus Vg, is crystalline.
We also see that the first map in « is an isomorphism. Since the map Ry[p~!] —

OB.,is(R') is faithfully flat by [12], Thm. 6.3.8], the morphism (2.1]) is an isomorphism.
U
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2.3. Etale p-modules. The classical theory of étale p-modules and Galois represen-
tations is generalized to our relative setting in [25]. We briefly review some necessary
facts discussed in [25] and [33]. Recall Notation 2.6t & = S = Ro[u] equipped with
the Frobenius given by op(u) = u?; O is the p-adic completion of &[u~!], equipped
with the Frobenius ¢ extending that on &.

Definition 2.14. An étale (@, Og)-module is a pair (M, @) where M is a finitely
generated Og-module and ppr: M — M is a p-semi-linear endomorphism such that
1® @oam: "M — M is an isomorphism. We say that an étale (¢, Og)-module is
projective (resp. torsion) if the underlying Og-module M is projective (resp. p-
power torsion).

Let Modp, denote the category of étale (¢, Og)-modules whose morphisms are Og-
linear maps compatible with Frobenii. Let Modgg and Mod‘é’;, respectively, denote
the full subcategories of projective and torsion objects. Note that we have a nat-
ural notion of tensor products for étale (¢, Og)-modules, and duals are defined for
projective and torsion objects.

We use étale (¢, Og)-modules to study certain Galois representations as follows.
We refer the reader to [39] for definitions and facts on perfectoid algebras. Recall
that 7 denotes a uniformizer in Og. For integers n > 0, compatibly choose 7, € K
such that 7y = 7 and 7T£_,’_1 = 7,, and let K be the p-adic completion of UnZO K(m,).
Then K, is a perfectoid field, and (EA [p_l],EA) is a perfectoid affinoid K.-algebra.
Let K, denote the tilt of K, and set 7= (m,) € K2

Let B, = &/pS, and let Ef;  be the u-adic completion of ligw Ef . Let Ep, =
E} [u™Y] and Ep, = Ef_[u™']. By [39, Prop. 5.9], (Ex., E};_) is a perfectoid affi-
noid K?_-algebra, and we have a natural injective map (Ex__, EEOO) — (ﬁb[(ﬂb)_l] , Fb)
given by u — 7°.

Consider
(22) Roo = W(EEOO) (gv[/([(gg)7 /] OKOO.

By [39, Rem. 5.19], (Roo[p™'], Roo) is a perfectoid affinoid K.-algebra whose tilt

is (Er..,E_). Furthermore, we have a natural injective map (Ru[p™'], Roo) <
(B[, ’") whose tilt is (Bp., Bf_) — (R[(x)",R). If we write G5_ for
¢t (Spec éoo[p_l]), we then have a continuous map of Galois groups Gz = — Gg,
which is a closed embedding by [19, Prop. 5.4.54]. By [39, Thm. 7.12], we can

canonically identify R [(ﬂ'b)jl] with the 7°-adic completion of the affine ring of a pro-
universal covering of Spec Eg_ . Let G be the Galois group corresponding to the
pro-universal covering. Then we have a canonical isomorphism G Pr =g R

There exists a unique W(k)-linear map Ry — W(ﬁb) which maps T} to [T7]

(2

and is compatible with Frobenii (see Lemma Z.T1] for the definition of [T}]). This
induces a @-equivariant embedding & — W(ﬁb) given by u ~ [7°], which fur-
ther extends to an embedding Og — W(Eb[(wb)_l]). Let OF be the integral clo-
sure of O in W(Eb[(ﬁb)_l]), and let @gf be its p-adic completion. We also define
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S™ = Oy N W(Eb) C W(Eb[wb]_l). Since Opg is normal, we have Aute, (OF) =
Gp,. = m'(Spec Eg.), and by [19, Prop. 5.4.54] and [39, Lem. 7.5], we have
Opn, = QEROO & Gp . This induces Gz -action on (5;% The following is proved
in [25].

Lemma 2.15 (cf. [25, Lem. 7.5 and 7.6]). We have (@gr)gﬁoo = O¢ and the same
holds modulo p™. Furthermore, there exists a unique Gg_-equivariant ring endomor-

phism @ on @gr lifting the p-th power Frobenius on @gr (p) and extending ¢ on Og.

The inclusion @gf — W(Eb[(ﬁb)_l]) is p-equivariant where the latter ring is given
the Witt vector Frobenius.

Let Repzp(gf%w) denote the category of finite Z,-modules equipped with continu-
ous Gy -action, and let Rep%rp (Gr..) and Reptor(géoo), respectively, denote the full
subcategories of free and torsion objects. For M € Modp, and T' € Repzp(gfzoo),
define

T(M) = (OF ®o, M)*=" and  M(T) = (OF @g, T)%=

For a torsion étale ¢p-module M € Mod%);, we define its length to be the length of

(O¢) (p) @0 M as an (Og¢)p-module. The following equivalence is proved in [25] (see
also [33, Prop. 2.5]).

Proposition 2.16 (cf. [25, Prop. 7.7], [33, Prop. 2.5]). The assignments T'(-) and
M(-) are exact equivalences (inverse of each other) of ®-categories between Modp,
and Repg (Gp_ ). Moreover, T(-) and M(:) restrict to rank-preserving equivalence
of categories between Modg,. and Repy (Gg_ ) and length-preserving equivalence of
categories between Mod(S: cmd Repy(Gr_). In both cases, T(-) and M(-) commute
with taking duals.

For M € Modp, and T' € Repy, (Gp_ ), we can consider the contravariant functors
TV(M) := Homo, ,(M,O%F) and MY(T) = Homg, (T, o).

By Proposition 2.16] these contravariant functors give equivalences of categories be-
tween Modp, and Repy (G ), and we have natural isomorphisms

TV(M)=T(MY) and MY(T) == M(TY).

We now explain certain functoriality of above constructions. Let Rj be another
base ring over W (k)(T, . .. ,Tdﬂ) as in § 2.1 equipped with Frobenius, and suppose
we have a @-equivariant injective map Ry — Rfy of W (k)(T:, ..., TF")-algebras.
Consider the induced Og-linear extension R = Ry Qw ) Ox — R = R Ow (k) Ox.
By choosing a common geometric point, we have an 1nJect1ve map R — R', and
this induces an embedding R, < R's by the constructions given in Equation (IQZI)
Hence, the corresponding map of Galois groups G — Gr restricts to Gz — G Rw.
Let 6p = RjJu] and let Og g be the p-adic completion of Gr/(u~']. Let MR/( )b
the functor for the base ring R’ constructed similarly as above. If T € Repy (g B )
then T" can be also considered as a G, -representation via the map Gp, N Gr_»
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and we have the natural isomorphism O¢ g ®0, M(T') = Mp/(T) as étale (¢, O¢ gr)-
modules by Proposition 2.16] We will use this functoriality for the maps of base rings
R — Op and R — Ok, as in Notation 2.8 in later sections.

3. COMPLETED PRISMATIC F-CRYSTALS AND CRYSTALLINE REPRESENTATIONS

This section introduces the notion of completed prismatic F-crystals on the ab-
solute prismatic site of R and formulates the main theorem. In § Bl we recall the
definition of absolute prismatic site and consider some important examples of prisms.
In § B2H3.3] we define completed prismatic F-crystals and study their basic proper-
ties in the small affine case. In § 3.4, we study the étale realization and formulate
our main theorem. In § 3.5 we consider the special case where crystalline representa-
tions have Hodge-Tate weights in [0, 1] and study the relation to p-divisible groups.
Finally, we globalize the étale realization functor and the main theorem in § B.6l

We will frequently use the following well-known lemma on flat modules.

Lemma 3.1. Let A be a ring, M a flat A-module, and Ny, Ny submodules of an
A-module N. Then as submodules of M ®4 N, we have

M@A (Nl N Ng) = (M ®A Nl) N (M ®A Ng)

3.1. The absolute prismatic site. We first recall the definition of the absolute
prismatic site from [9] and [7]. Let X be a smooth p-adic formal scheme over Ok (or
a CDVR of mixed characteristic (0, p) such as Of in Notation 2.§]).

Definition 3.2. ([7, Def. 2.3]) The absolute prismatic site X) of X consists of the
pairs ((A,I),Spf A/I — X), where (A, I) is a bounded prism and Spf A/I — X is a
morphism of p-adic formal schemes. For simplicity, we often omit the structure map
Spf A/I — X and simply write (A, I) for an object of X). The morphisms are the
opposite of morphisms of bounded prisms over X, i.e., the ones compatible with the
structure morphisms to X. We equip X, with the topology given by (p, I)-completely
faithfully flat maps of prisms (A, I) — (B, J) over X. If X = Spf R is affine, then we
also write R for X). Note that the associated topos is replete by [7, Rem. 2.4].
The prismatic site X has a sheaf O) of rings defined by O)(A,I) = A and an
ideal sheaf Z C O) given by Z)(A,I) = I (cf. [9, Cor. 3.12]). A similar argument
shows that for each n > 1, the association (A,I) — A/(p,I)" defines a sheaf Oy

on X). Moreover, we have O)p = @n O, = RlimO) . Finally, the d-structure
on each (A, I) € X induces a ring endomorphism ¢: Op — O,.

Let us explain the functoriality of the prismatic topoi. Let f: %) — X be a mor-
phism of smooth p-adic formal schemes over Og. Then f induces a cocontinuous
functor

Dp — Xp, (A D),e: SptA/T =) = (A1), for: SpfA/T — X).
Hence we have a morphism of topoi
fa= (3" fp.): Shv(Yy) — Shv(Xy).

Observe that if f is an open immersion, then Shv (%) ) is an open subtopos of Shv(X )
by f-
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Lemma 3.3. Let (B,IB) & (A, I) 5 (C,IC) be a diagram of maps of bounded
prisms over X with b being (p, I)-completely faithfully flat, and let (B ®a C)(ApJ)
denote the classical (p, I)-completion of B ® 4 C. Then the pushout of b along c is
represented by the map (C,1C) — ((B ®4 C)opry: (B ®a C’)@)J)) and is (p,1C)-
completely faithfully flat.

Proof. By the proof of [9, Cor. 3.12], the pushout of the diagram is represented by the

derived (p, I)-completion B ®Y4 C of B ®"; C'. Moreover, it is discrete and classically
(p, I)-complete, and the map from C' is (p, [C)-completely faithfully flat. By the

proof of [48, Prop. 3.2], we also have H*(B ®Y4 C) = (B ®4 C’)&J), e, B4 C is
nothing but the classical (p, I)-completion of B ®4 C. O

Let R be small over Ok or R = Oy (Assumption 2.9). We now explain several
objects of R) that we will use later.

Example 3.4 (The Breuil-Kisin prism and its self-products). Consider the pair
(&, (F)) where & = Ry[u] and E = E(u) is the Eisenstein polynomial for 7 € Ok
over W as before. Equip & with the d-structure defined by extending the fixed
Frobenius ¢ on Ry to & via ¢(u) = wP. Then (&, (E)) € R), where the structure
map R — &/(F) is given by the natural isomorphism R = &/(FE). We call (&, (E))
the Breuil-Kisin prism attached to m and Ry.

The self-product of (&, (£)) exists in R as follows. Consider the p-adically com-
plete tensor-product 6®zp6 equipped with the induced ®-product Frobenius. We
have a projection d: 6®zp6 — R given by the composite of the natural projections
G®z,86 — & and & — &/(E) = R. Let J be the kernel of d, and let

J AN
6(2) = (6®Zp6){E} .
é

Here {-}{ means adjoining elements in the category of derived (p, E')-complete sim-
plicial -&-algebras, where 6<§>Zp6 is regarded as an G-algebra via a — a®1. By [8]
Cor. 3.14], (6@ (E)) is a (p, E)-completely flat prism over (&, (E)). Furthermore,
(6@, (E)) is bounded by [9, Lem. 3.7 (2)], so (6%, (E)) € Ry. Let (B,I) € R). If
we are given maps fi, fa: (6, (F)) — (B, I) such that two maps R = &/FE — B/I
induced by f; and f; agree, then we have a natural induced map fi® f5: G@)ZPG — B
of §-rings, and (f1® f2)(J) C I. Thus, by the universal property of prismatic envelope
(I8, Cor. 3.14]), we obtain a map (&3, (E)) — (B,I) in R) uniquely determined by
f1, fo- So (6@ (E)) is the self-product of (&, (E)) in Ry. Similarly, the self-triple-
product of (&, (E)) exists in R). Write p1, ps (resp. qi, g2, ¢3) for the maps from
(6. (E)) to (6@, (E)) (resp. to (69, (E))).

A little more explicit description is given in [17, § 4.1] as follows. Recall that Ry is
a W(TE, ..., TF)-algebra. Let B®2 denote the completion of & ®z, & with respect
to the ideal Ker(6 ®z, & — &). We have two natural maps p;,ps: & — B®2 and
regard B®2 as an G-algebra via py. If we set s; == po(T;) and y = po(u), then

G®2 =6y —u,s1 —T1,...,8q¢ — Tq]
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can be naturally considered as an G-subalgebra of B®2. Similarly, let B®3 denote the
completion of & ®z, & ®z, & with respect to the ideal Ker(6 ®z, & ®z, & — 6).

We have maps ¢q,¢2,q3: & — &3, Via q1, we can naturally consider
&% =6y —u,w —u, {s; — Tj,r; — T;}i=1...d]

as an G-subalgebra of B®3, where s; = q(T;),r; = qs(1}),y = g2(u) and w = g3(u).
Let

J® = (E,y —u,w—u,{s; =Tj,r; —Tj};=1

For i = 2,3, 6% is naturally a (p, E)-completed §-S-algebra and & =~ & %}(/5\

Lemma 3.5. The maps p;: & — 8@ (resp. ¢;: & — &O) fori = 1,2 (resp.
i =1,2,3) are classically faithfully flat.

Proof. We only consider p;: & — &® . The proof for ¢;: & — &©@ is similar. Note
that & is classically (p, E)-complete by [9, Lem. 3.7 (1)], and p;: & — &@ is
(p, E)-completely flat. In particular, the induced map &/(p, E)" — & /(p, E)" is
flat for each n > 1. Since & is noetherian, p; : & — &® is classically flat by [42,

Tag 0912]. Note that p; is a section of the diagonal map & — &. So if N is any
non-zero &-module, then &? ®,, ¢ N # 0. Thus, p; is classically faithfully flat. O

Corollary 3.6. @ is p-torsion free and E-torsion free. Furthermore,
&N &[5 = &,
and G [E™Y] is p-adically separated.

Proof. Since & is torsion free and p;: & — 6@ is classically flat, & is p-torsion
free and E-torsion free. We deduce by Lemma Bl and G[p~] N G[E~!] = & that

P NEPET] = (6% @6 6p7']) N (6P @), 6 G[ET]) = 6.

Since 6@ is p-adically complete, this also implies that G [E~1] is p-adically sepa-
rated. U

Example 3.7 (The Aj,-prism). Let (§) be the kernel of 0: Ais(R) — R". Then

(Ains(R), (§)) € Rp, with the structure map R — Ay(R)/(£) given by the natural
inclusion R — R Note that the map fooqv: & = Ape(R) given by u — [r°] and
T; + [T?] induces a map of prisms (&, (E)) — (Aut(R), (€)) over R. Moreover, each

0 € G induces a map of prisms (Ai(R), (€)) = (Aine(R), (€)) satisfying oo f, o =
-fcr(ﬂb),o(T.b) :

Example 3.8 (The OA_s-prism and its Frobenius twists). Consider the surjective
map O, : OAqis(R) — R". The map

'z OACI‘IS(F)/(p) - OAcrls(R)/(p)
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factors through

OAcrIS(E)/(p) — OAcrls(E)/((p) + ker<eRo)) = E/(p) i} OAcrIS(E)/(p)

The pair (OAcis(R),(p)) defines a prism in Rj, where the structure map R —
OA.is(R)/(p) is given by the composite of R — R/(p) and h (defined in above

factorization). Consider the composite Aju¢(R) LN Aii(R) — OAis(R), where the

second map is the natural inclusion. This induces a map of prisms (Ap¢(R), (€)) S

(OAis(R), (p)) over R, which is compatible with Frobenii and Gg-actions.
On the other hand, consider the prism (Ry, (p)) in R, where the structure map
R — Ry/(p) is given by the natural projection R — R/(w) = Ry/(p). For any

integer j > 1, write (¢;0Ais(RR), (p)) for the prism in R) whose underlying J-pair
is (OAqis(R), (p)) and the structure map R — OA;(R)/(p) is given the structure
map of (OAis(R), (p)) composed with ¢/ : OA4is(R) — OAqis(R). For a sufficiently
large j, there exists a map of prisms (Ry, (p)) — (¢;0A.is(R), (p)) given by Dwork’s
trick. Indeed, let e = [K : Kj] be the ramification index, and choose an integer
[ such that p! > e. Consider p!*!': OAi(R) — OAui(R). Taking modulo the

ideal (p) C OAqis(R), this induces a map R/(p) — OAis(R)/(p) as above, which
further factors through R/(). Thus, the ring map Ry ﬂ) OA_is(R) induces a map

(Ro, (p)) — (¢1OAis(R), (p)) of prisms over R.

Example 3.9 (The Breuil prism). Let S denote the p-adically completed PD-envelope
of & with respect to (F), equipped with the Frobenius extending ¢ on &. Note

that ¢ = @ is a unit in S. So (9, (p)) € Ry with the structure map given by
R~ G/(FE) % S/(p), and we have a map of prisms ¢: (&, (E)) — (S, (p)).

For i = 2,3, let S® = DG@(J(Z'))A be the p-adically completed PD-envelope of
&% with respect to the ideal J®. We set

y—u
E

zZo = and Zj =

Let AZ) be the p-adic completion of &-subalgebra of (S[p~!])[z0, 21, ..., 2] gen-

P: AR - AR, extending ¢: & — & and satisfying
517

o(F)

p(20) = and  ¢(z;) =
Since p: 6 — G is injective, p: AR — AR s injective. By ibid., we have a natural
ring map &® — A which is injective and compatible with .

Let Sy == &%, (E), vy — ), {Vn(s; — Tj) }n>1, j=o...a) € &%%[p~!]. Note that
Sy € AR since Yoy —u) = 207 (E) € AP, and similarly for Yn(si — T;). Since E,
y—u, and {s; — T};};=1,. 4 form a regular sequence in 6@, S5 is the PD-envelope of
%2 for J@ by [9, Cor. 2.38]. Then S@ is the p-adic completion of Sy. As a subring
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of (Rolp™N[u,y —u,s1 —T4,...,84— Ty], we have

Qi id+1€6®27 Qi ZdH—)O (asi0+-~-+id+1—>oo)}
where the sum goes over the multi-index (i, ...,74:1) of non-negative integers and
iy,...iq., — 0 means in the p-adic topology. Note that S is a ¢-ring by [9, Cor. 2.38].

Similarly, S® is a é-ring.
Lemma 3.10. Fori = 2,3, we have an embedding & <& 5O

Proof. We prove the statement for p: 8@ — S® and the proof for ¢: 3 — SO
is analogous. It suffices to show ¢(6"(z;)) € S® for j = 0,...,d. Since S? is a
0-ring, we have

_ _ p
ple) = U _ o W0y ) e 50,
p p
and similarly ¢(z;) € S@ for j = 1,...,d. Again since S® is a é-ring, we have
©(0™(2;)) = ™((z;)) € S@ for any n > 0. O

3.2. Completed prismatic F-crystals in the small affine case. In this subsec-
tion, we introduce completed prismatic crystals and completed prismatic F-crystals
on the absolute prismatic site.

We first introduce the notion of finitely generated completed prismatic crystals. Let
X be a smooth p-adic formal scheme over Ok (or a CDVR of mixed characteristic

(0,p)).

Definition 3.11. A finitely generated completed crystal of O)p-modules on X is a
sheaf F of Op-modules on X ) such that
(1) for each (A, I) € X, the evaluation F4 = F(A,I) of F on (A, ) is a finitely
generated and classically (p, I)-complete A-module;
(2) for any morphism (A, ) — (B, IB) of bounded prisms over X, the canonical
linearized transition map

BR4F4 — Fp

is an isomorphism, where B® 4 F4 denotes the (p, I)-adically completed tensor
product lim (B ®4 Fa)/(p,1)"(B @4 Fa).

We also call such a sheaf a finitely generated completed prismatic crystal on X, or a
completed prismatic crystal on X for short.
Similarly, a finitely generated crystal of Om,n-modules on X is a sheaf F, of OA”-
modules on X, such that
(1) for each (A,I) € X, the evaluation F, 4 = F,(A,I) of F,, on (A, ) is a
finitely generated A/(p, I)"-module;

(2) for any morphism (A, ) — (B, IB) of bounded prisms over X, the canonical
linearized transition map B ®4 F, 4 — F, p is an isomorphism.
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Remark 3.12. Let F be a finitely generated completed prismatic crystal on X and
let (A,I) — (B,IB) be a map of bounded prisms over X. Since F4 is a finitely
generated A-module and B is classically (p, I B)-complete, the natural map

(3.1) B®jFa— BOF4 = Fpg

is surjective. Since (p, I B) is a finitely generated ideal of B, the map (BI]) induces an
isomorphism B/ (p, IB)” ®4 Fa — Fg/(p, IB)"Fp by [A9, Thm. 1.2 (2)]. Moreover,
the map (B.0]) is an isomorphism if A and B are both noetherian or if A is noetherian
and the map A — B is classically flat. The latter case follows from [42, Tag 0912].
It is also an isomorphism if F, is a finite projective A-module.

Lemma 3.13. Let F be a finitely generated completed crystal of O )-modules on X .
Then for each n > 1, the association (A, 1) — Fa/(p, )" Fa represents the quotient
sheaf F/(p,Ip)"F and defines a finitely generated crystal F,, of Op  -modules on

X ). Moreover, we have isomorphisms of O)-modules OA,n ®op i1 Fri1 = F, and
F= @nfn ~ Rlim F,.

Conversely, let (Fy,), be an inverse system of sheaves of O p-modules such that F,
1s a finitely generated crystal of(’)A’n—modules and such that the projection F,,11 — F,

induces an 1somorphism O ) 2 ®0, Fr1 = Fn for eachn. Then F = @n Fnisa
finitely generated completed crystal of O)-modules on X p, and we have isomorphisms
of Op-modules O ®o, F =2 F, and F = Rlim F,,.

Proof. Let F be a finitely generated completed crystal of Op-modules on X,. Let
(A,I) — (B,IB) be a (p, I)-completely faithfully flat map of bounded prisms over
X. Set B' = (B ®a B)(Ap’l). By Lemma B3l B’ is (p, I)-completely faithfully flat
over A and (B',IB') € X is the self-fiber product of (B,IB) over (A,I). Let
p1,p2: (B,IB) — (B',IB’) be the two maps of bounded prisms over X. Since
B/(p,I)"B is classically faithfully flat over A/(p, I)" and since B/(p, )" B ®a/@p,1y
B/(p,1)"B = B'/(p,I)"B’, we have an exact sequence

0— ‘Fn,A — B/(pa I)nB ®A/(p,])" fn,A B//(pa [)nB, ®A/(p,l)” Fn,A-

On the other hand, since F is a completed prismatic crystal, we have the isomor-
phisms BRaF4 = Fp and B'® 1 F4 = Fp. It follows that the above exact sequence
is identified with

P1®1—pa®1
—_—

Pi—p5
0— Jrn,A — JT‘;LB N ]:n,B’-

This implies that J,, is a sheaf on X, representing the quotient sheaf F/(p,Zp)"F.
Since F4 is a finitely generated classically (p, I)-complete A-module, F,, is a finitely
generated crystal of O) -modules. Moreover, we have isomorphisms of O)-modules

OA,n ®0p iy Frt1 =S F,and F S @n Fn. Finally, since the absolute prismatic
topos is replete and F,, .1 — JF, is surjective for every n, we obtain @n F. = Rlim F,,
by [6, Prop. 3.1.10].

Conversely, let (F,), be an inverse system of sheaves of O)p-modules satisfying
the properties as in the lemma. An argument similar to the previous paragraph
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shows that the association (A, 1)+ A/(p, )" ®a/@p,1yn+1 Fnt1,4 represents the sheaf
OA,n R0y oy Tt Set F = l&nn F. and take any (A,I) € X). Then we have
./_"(A, ]) = (@n fn)(A, [) = @n Fn.a and A/(p, [)n @A/ (p,1)n+1 Fror1,4a &= Fpa. It
follows from [49, Thm 2.8] that F(A, ) is a finitely generated and classically (p, I)-
complete A-module with F(A,I)/(p,1)"F(A,I) = Fa,. Moreover, for a morphism
(A,I) — (B, IB) of bounded prisms over X, we have B ®4 F,, 4 = F,, . 1t follows
that the canonical map B&,F(A,I) — F(B,IB) is an isomorphism. Hence F is a
finitely generated completed crystal of Op-modules. Now the remaining assertions
follow easily. O

To define completed prismatic F-crystals in the affine case, let us first introduce
the following terminologies.

Definition 3.14. Let R be a base ring and keep the notation as in § 2.1
(1) We say that a finite G-module N is projective away from (p, E) if N is tor-
sion free, N[p~'] is projective over &[p~'], and N[E~']} is projective over
S[E™']) = O¢.
(2) We say that a finite &-module N is saturated if N is torsion free and
N = N[p'|nN[E™Y.

(3) Let r be a non-negative integer and let N be an G-module equipped with a
p-semi-linear endomorphism ¢y: N — N. We say that the pair (N, ¢y) has
E-height < r if

1®<,0N2 6®¢76N—>N
is injective and its cokernel is killed by E(u)". We say that (N, ¢x) has finite
E-height if it has E-height < r for some r.

We will also use these terminologies for a finite module over an G-algebra.

Remark 3.15.

(1) Let N be a torsion free finite G-module. Then N is saturated if and only if

the natural map
N/pN — N[E™'|/pN[E™]

is injective. Since N[E~']/pN[E~'] = N[E~']}/pN[E~']) = N[u™']/pN[u™"],
we deduce that N is saturated if and only if N = N[p~' ][N N[E~']7, or equiv-
alently, N = N[p~'] N N[u™1].

(2) Assume that either R is small over Og or R = Op. We will show that if
(N, pn) is a torsion free finite G-module with Frobenius of finite E-height,
then N[p~!] is projective over &[p~!] (Proposition E13).

We now introduce the notion of completed prismatic F-crystals on R, which will be
our main object of study. We make Assumption R is small over Og or R = Op.

Definition 3.16. A completed F-crystal of O)p-modules on R) is a pair (F,pr),
where F is a finitely generated completed crystal of Op-modules on R) and

1®Q0f(p*f—>F

is a morphism of O)-modules such that
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(1) Fs = F(G, FE) is projective away from (p, F') and saturated;

(2) the pair (Fg, prs) has finite E-height.
We also call such an object a completed prismatic F'-crystal on R. The morphisms
between completed F-crystals of O)-modules are O p-module maps compatible with
Frobenii.

We write CRA’“D(RA) for the category of completed F-crystals of O)-modules on
R). Let Vect%;(R)) denote the full subcategory of CR™?(R)) consisting of objects
(F,@r) where F is a locally free O)-module. For a fixed non-negative integer r, we
let CR[AO”f}(RA) and Vectfo’r}(RA) denote the full subcategories consisting of objects
for which (Fg, prs) has E-height < r.

Remark 3.17. When R is small over O, the above definition agrees with Defini-
tion [Tl by Remark B.I5(2)/Proposition I3l In § B we will define completed
prismatic F-crystals on a smooth p-adic formal scheme by gluing.

Remark 3.18. When R = O = R(Aﬂ) (i.e., a CDVR with residue field having a
finite p-basis and a uniformizer finite over W (k)), any finite &-module which is
projective away from (p, ) and saturated is free over &, since &, is a regular local
ring of dimension 2. Thus, by Proposition below, the category CR™?((Op),) is
equal to the category Vect%;:((Or)p). Furthermore, when R = Ok (i.e., a CDVR with
perfect residue field), our category Vect/;((Ox) ) coincides with the full subcategory
of Vect?(Spf(Ox)p, Op) defined in [7, Def. 4.1] consisting of effective prismatic F-
crystals of vector bundles.

Let us explain that the definition of completed prismatic F-crystals is independent
of the choice of a Breuil-Kisin prism, namely, a uniformizer 7 € Ok and a W-
subalgebra Ry C R (Corollary B.21]). For this, we need the following two lemmas.

Lemma 3.19. Let F be a finitely generated completed prismatic crystal on R equipped
with a morphism 1 @ or: ©*F — F of Op-modules. Fix a uniformizer 1 € Ok
with minimal polynomial FE(u) and associated Breuil-Kisin prism (&, (F)), and let
(&,(F)) — (B,EB) be a classically flat map of bounded prisms over R. Then the
following properties hold:

(1) if Fes is projective away from (p, E) and saturated as an S-module, then Fp
is projective away from (p, E) and saturated as a B-module;

(2) for a non-negative integer r, if the pair (Fs,prs) has E-height < r, then
(FB,vr,) has E-height < r.

Moreover, the converse also holds if & — B is classically faithfully flat.

Proof. Note B ®s Fs = Fp by Remark

(1) Suppose Fg is projective away from (p, F) and saturated as an G-module.
Then Fp is p-torsion free, and Fp[p~!] is projective over B[p~!]. Tt follows that
Fp C Fgl[p~!] is torsion free. Since & is noetherian and Fg is finitely generated, we
see that the induced map G[E~'|)) — B[E~']} is classically flat and B[E™']) ®g(p-1)
Fs|E~') = Fp[E']) by [42, Tag 0912]. We deduce that Fp[E~']} is projective over
B[E_l];,\. Thus Fp is projective away from (p, ). Since Fg is saturated, Lemma [3.1]
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implies that
Fp = B®g Fs = B®s (Fslp | NFs[E]) = Fglp N FplE.

This means that Fg is saturated.
(2) The assertion follows from Coker(1l ® ¢z, ) ®s B = Coker(1 ® ¢z,).

Finally, if the map & — B is classically faithfully flat, then so is S[E™']) —

B[E~']). Hence the converse direction follows similarly. O

Suppose R is small over Ok. Let ©° € Og be another of uniformizer of O,
E'(y) € Wly] the Eisenstein polynomial for «/, and Ry a W ((T{)*, ..., (T}))*)-
algebra with Rj ®w Ox = R as in Remark 2.2 Set &' := R}[y] equipped with
Frobenius given by ¢(T7) = (T!)? and ¢(y) = y*. Then we have a Breuil-Kisin prism
(&',(E'")) € R) with the structure map R = &/(E).

Lemma 3.20.
(1) The absolute product of (&, (E)) and (&', (E")) exists in R). Write (ngr,, I)
for the absolute product. We also have I = EGgT, = E’SST%ZF,.
(2) The maps & — &%, and & — 653;, are classically faithfully flat.

Proof. (1) Consider the p-adically complete tensor-product 6<§>Zp6’ , and let
d: 682,68 — R

be the composite of the natural projections G®z,&" — &/(F)®z,&'/(E') =2 R®z,R

and R@sz — R. Let J be the kernel of d. We claim that the absolute product of
(6,(F)) and (&', (E')) in R) is given by

- J"

6P, = 68,61 5

S

where {-}{ means adjoining elements in the category of derived (p, E')-complete sim-

plicial §-&-algebras. Indeed, by [8, Cor. 3.14], (ngr,, (E)) is a (p, E)-completely flat

prism over (&, (£)). We have a natural map of prisms (&, (E')) — (67(33#’ (E)), and

thus (E’)Ggr, = (E)szr, by [9, Lem. 3.5]. So the construction is symmetric, and

(6(2) (E)) is also a (p, £')-completely flat prism over (&', (E’)). By [9, Lem. 3.7

(2)], (Ggﬂ, (E)) is bounded. The universal property can be checked similarly as in
Example 3.4
(2) The classical flatness follows by a similar argument as in the proof of Lemma[B.5:

note that 653}, is classically (p, F)-complete by [9, Lem. 3.7 (1)]. Since & — 67(3;, is

(p, E)-completely flat and & is noetherian, & — 67(33# is classically flat by [42] Tag
0912].

Consider the composite By — & — GgT,, where the first map is given by the
natural inclusion Ry < Ro[u] = & (which is classically faithfully flat). Since 653;, is

classically (p, E(u))-complete, it is u-complete and w lies in the radical of SST%ZF,. Thus,
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to prove & — 653;, is classically faithfully flat, it suffices to show that Ry — 67(3;,
is classically faithfully flat. Let 8 C R be a maximal ideal, and let m = Ry NP
and m’ = R N*P be the corresponding maximal ideals of Ry and R|, respectively.
Let (Ry),, denote the m-adic completion of the localization (Ry)w. It is shown in the
proof of Proposition below that (Ry). is equipped with the Frobenius induced
from Ry, and that (Ro)y = W (ki)[t1,...,ts] where ky == R/B is a finite extension
of k. Slmllarly, we have (R{)n = W (k)[th, ..., t4].

Let Aq3 be the absolute product of ((Ro)i[u], (E)) and ((Rg)n[y], (E')) con-
structed as in (1) with Ry (resp. Ry) replaced by (Rp)n (resp. (Rj)h/). Note that
the map

(32) fmi W(k’l)[[tl, RN ,td]] = (RQ)‘/.‘\1 — A‘g)
is classically flat similarly as above. Consider the induced map

W (k) [ty . tal /(- ta) = W (k) — AD /(t . ) AR

From the explicit construction of the absolute product Ag) in (1), we deduce that
1¢ (tq,... ,td)A @ and so A /(tl, . ,td)Ag) is not the zero ring. Furthermore,
since A‘g) is classically p—complete, p lies in the radical of Ag) [(t1, ... ,td)Ag). Thus,
Ag) has a maximal ideal which lies over the maximal ideal (p,ti,...,tq) of (Ro)a,
and the map f, in (8.2)) is classically faithfully flat.

Now, consider the map (Rp), — 6(2 7 ®p, (Ro)y induced from Ry — 6(2) We
claim that (Ro)}, — 6(2 @R, (Ro)n is classically faithfully flat. The classical flatness
is clear. Note that by [8 Cor. 3.14], the construction of the absolute product in (1)
commutes with (p, E')-completely flat base change. Thus, the map fy: (Ro)h — Ag)

in (B.2) naturally factors through (Ry)% 6(2 " Qg (Ro)n- Since fi, is classically
faithfully flat, so is the flat map (Ro)h — GW ) @Ry (Ro)m- Now since the claim holds
for any maximal ideal m C Ry, Ry — 6%, is classically faithfully flat.

T,

By symmetry, & — SWJ, is also classically faithfully flat. O

Corollary 3.21. Definition[3.16 of completed prismatic F-crystals is independent of
the choice of a uniformizer m € Ok and a W-subalgebra Ry of R.

Proof. This follows from Lemmas and .20 O

Remark 3.22 (Restriction of completed prismatic F-crystals). Suppose R is small
over Ok, and let R — R’ be a p-adically completed étale map. Let R;, C R’
such that Rj ®w Ox = R’ with a p-adically completed étale map Ry — R{ as
in Remark Note that the Frobenius on R; extends uniquely to a Frobenius
on Rjy. For F € CR™?(R)), consider its restriction F|), to (R'),. Since & =
Ro[u] — R{[u] is classically flat, we deduce from Remark and Lemma that
Flry, (Rolul, (E)) = Ry[u] ®e Fs and F|r € CR™((R'))). We similarly have the
restriction of completed prismatic F-crystals for the maps R — Op and R — Ok, as
in Notation 2.8
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We now study some properties of completed prismatic F-crystals on R. Let &, :=
Opou] equipped with Frobenius given by ¢p(u) = uP. Note that (&, (E)) € Ry
with R — &1 /(E) = O, = R{,, and that the natural map & — & induces a map
of prisms (&, (E)) — (&, (E)) over R. Let Og denote the p-adic completion of
GL[U_I].

Lemma 3.23. Let F € CR"¥(R)). Then the following properties hold.

(1) We have Fs, = & Qg Fg. Furthermore, Fs, is finite free over &,.
(2) We have Fg = Fs, N fg[E_l];\ as submodules of O¢ |, ®¢ Fs.
(3) The natural map

6® ®,,6 Fs = GPVE) ®).6 Fe

is injective for i =1,2.
(4) For any map of bounded prisms (&, (F)) — (A, EA) over R, the natural map

Alp' ®s Fs — Falp™']
is a p-compatible isomorphism of Alp~']-modules.

Proof. (1) Since &, is noetherian and & — &, is classically flat, we deduce by a
similar argument as in Remark [3.22 that Fg, = &1 ®¢ Fs, Fg, is torsion free, and
fGL[p_l] ﬂ]:@L[E_l] = Fe,-

So {p, E'} forms a regular sequence for Fg,. Since &, is a regular local ring of
dimension 2, Fg, is finite free over &,.

(2) It suffices to show Fe, N Fs[E~']) C Fe. Since Fg[p~'] is projective over

S[p~!] and &, N O¢ = &, we have by Lemma 3] that
Feolp 1N F[ET 7] = (S1[p™'] @epn) Felp™]) N (Olp™] ®epp1 Felp™])
= Felp™].
Thus,
AN Fe.

p

Feo, NFs[ETY) C Felp | N Fe[E™]
(3) The natural map
S® Rpi6 Fo — c® [p_l] Opi6 Fe

is injective since Fg — Fg[p~!] is injective and p;: & — &®@ is classically flat by
Lemma 35l Furthermore, since Fg[p~!] is projective over &[p~!] and &@[p~!] —
S@[1/E]N[p™'] is injective by Corollary B8] the natural map

SO @pep-y Folp ] = 6P/ ER ] @y ep- Folp ]
is injective. So the composite map
s®@ Rps Fos — s? [p—l] .6 Fo — 6(2)[1/E];\[p_1] ®p..s Fe
is injective. The composite factors through the map
6P ®, e Fs = GI1/E]) ®,,6 Fe,

which is therefore injective.
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(4) By the definition of a finitely generated completed prismatic crystal, the map
A®sFs — Fa is an isomorphism. Since Fg is finitely generated over & and A is
classically (p, E')-complete, the natural map

A®Rs Fs = AR Fs

is surjective. Note that AReFe is equipped with a Frobenius endomorphism induced
from that on A ®g¢ Fe, since ¢((p, E)") C (p, E)" for each n > 1. So we have a -
compatible surjection

(A®e Fe)lp™'] — (AReFe)lp '],

and it suffices to show that this map is also injective.

Since Fg[p~!] is finite projective over S[p~!], there exists an S[p~!]-module Q
such that Fe[p~'] @ @ is finite free over S[p~!]. We have an S-submodule N C
Fslp™'] ® Q with N[p~'] = Fe[p~'] @ Q such that N is free over & and that the
inclusion Fg < N[p~!] factors through Fs < N C N[p™'].

Consider the induced map A®gFs — A®gN. Note that A®g N is (p, E)-complete
since N is finite free over &. Thus, this map factors through

A®s Fs — AReFs — A®g N.

On the other hand, since Fg[p~!] is a direct summand of N[p~!], the map (A ®g
Fs)lp~'] — (A®e N)[p~'] is injective. Since it factors through

(A®e Fo)lp™'] = (AReFe)lp '] = (A®e N)[p7'],

the map (A ®s Fo)[p~'] = (A®sFs)[p~'] in question is also injective. O

3.3. Completed prismatic F-crystals in terms of descent data. Keep As-
sumption We can explicitly describe the category CR™?(R)) in terms of certain
descent data as follows.

Definition 3.24. Let DDg denote the category consisting of triples (90, oy, f) where

(1) 9 is a finite S-module that is projective away from (p, £') and saturated;

(2) pom: M — M is a p-semi-linear endomorphism such that (9, pon) has finite
E-height;

3) f: 6P @, 6M > 6@ ®,, s M is an isomorphism of G@-modules that is
compatible with Frobenii and satisfies the cocycle condition over &),

The morphisms of DDg are G-linear maps compatible with all structures.

For a fixed non-negative integer 7, let DDg [0, denote the full subcategory consist-
ing of objects for which (90, pgn) has E-height < r.

We call an object of DDg an integral Kisin descent datum. One can also con-
sider a triple (9, go, f) where (9, o) is as above and f: 6@[p~1] ®,, ¢ M —
SP[p1] ®,, e M is an isomorphism of & [p~!]-modules that is compatible with
Frobenii and satisfies the cocycle condition over &® [p~!]. Such an object is called a
rational Kisin descent datum.
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Proposition 3.25. The association F — Fg = F(S,(F)) gives rise to a functor
CR/W(RA) — DDg and induces equivalences of categories

CRV(Ry) = DDs and CRY?(Ry) & DD

Furthermore, under this equivalence, (M, @, f) corresponds to an object in Vect; (R )
if and only if M is finite projective over &.

Proof. Let 7 € CR™*(R)). By Lemma and Remark B12] we have an isomor-
phism of &®-modules

F:6P®, & Fe = Foo +— 263 @, ¢ Fs

satisfying the cocycle condition over &®). Thus, any completed crystal in CR"*(R A)
naturally gives an object in DDg via F — Fg , which gives a functor from CR"¥(R))
to DDG

Conversely, let (90, por, f) € DDg. Take any prism (A, I) € R). By [17, Lem. 4.1.8],
there exists a prism (B, IB) € R) which covers (4, I) and admits a map (&, (E)) —
(B,IB) over R. By Lemma [B.3 the pushout of the diagram (B,IB) < (A,I) —
(B, IB) of maps of bounded prism over R is represented by (B ®4 B)(Ap’l), and

(B ®4 B ®4y B)@m 1 satisfies a similar property for the self-triple cofiber product.
By the universal property of &? and &®), we have maps &? — (B ®,4 B), ) and
6% — (B®a B®a B), .

Consider the B-module BogM. The base change of the descent datum f: ¥ ®,, &
M= 6@ ©,, s M along &2 — (B, B){, 1y gives a descent datum of B ®@¢ M,
namely, a (B ®4 B){, ;-linear isomorphism

f5: (B®a B)\, 1) @ps (B @ M) = (B @4 B)f) 1) @i (B @ M)

satisfying the cocycle condition over (B®4 B ® 4 B)Cj 1)- By reducing modulo (p, 1",
fp induces a compatible system of isomorphisms

fEn: (B@aB)/(0,1)" @py.5 (BRsM) = (B®4 B)/(p,I)" @y, (B @ M)

satisfying the cocycle condition over (B ®4 B ®4 B)/(p, I)" for each n > 1.

Since A — B is (p, I)-completely faithfully flat, each fp, defines a finitely gen-
erated A/(p,I)"-module F, 4 by the usual faithfully flat descent. We claim that
Fn.a is independent of the choice of the cover (A,I) — (B,IB) and that the as-
sociation (A,I) — F, 4 defines a sheaf F, of O)-modules on R). To see the
former, take another prism (B’,1B’) € R) which covers (A, I) and admits a map
(6, (F)) — (B',IB') over R. Let F], , denote the finitely generated A/(p, I)"-module

given by the descent of ((B’ ®e M)/ (p, I)", fB/m). By Lemma [3.3 the pushout of
the diagram (B, IB) < (A,I) — (B’,IB’) of maps of bounded prism is represented

by (B ®a B')(, - Since the maps B — (B ®4 B')(,, ;) and B’ — (B ®a B');, ;) are
(p, I)-completely faithfully flat, we can canonically identify both F, 4 and F, , with
the descent of (((B®4 B).n ®@sM)/(p, I)", f(B®AB/)f\pJ)7n). To see that the associa-

tion (A, I) — Fp 4 defines a sheaf F,, of Op-modules on R, take a (p, I)-completely
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faithfully flat map of prisms (A,I) — (A’,IA’) over R. Then the pushout of the
diagram (A', [A") <= (A,I) — (A, I4’) is represented by (A" ®a A'), ;y. Hence we
need to show the exactness of the sequence

(33) 0— -F AT -Fn A ‘F A’®AA’)( n’

On the other hand, we see that (A’ ®4 B)j, ) (resp. (A’ @4 A" ®4 B)(, 1)) together
with the ideal generated by I gives a bounded prism over R that admits a map from
(6, (E)) over R and covers (A',IA") (resp. ((A" ®@a A)(, ;. [(A" ®4 A), 1)) By
construction, we have a left exact sequence

0= (B®eM)/(p,1)" = (A ®@B s M)/(p, I)" — (A @4 A" ®4 BReM)/(p,1)".

Since this left exact sequence is the base change of the sequence (33) along the
classically faithfully flat map A/(p, I)" — B/(p, )™, we conclude that the sequence
B3) is left exact. This completes the verification of the claim.

The sheaf F,, is equipped with an induced Frobenius, since ¢((p,1)™) C (p,I)".
Furthermore, F,, is a finitely generated crystal of O An -modules. This follows from a
similar argument as in the above paragraph and the verification is left to the reader.
We also remark that {F,},>1 forms an inverse system of sheaves of Op-modules such
that O Amst ®o, ., Fni1 = F,. Hence F = @n F, is a completed prismatic crystal on
R equipped with Frobenius by Lemma[313l By construction, we see F(&, (E)) = .
As a result, F € CR™¥(R)). This proves the essential surjectivity.

The fully faithfulness also follows directly from a similar argument as above. Obvi-
ously, this equivalence also induces CR[AO’f](R A) = DDeg,[0,]- The last assertion follows
from [42, Tag 0D4B|. O

3.4. Etale realization and the main theorem in the small affine case. We
now formulate our main theorem. For this, we first attach to a completed prismatic
F-crystal F on R a finite free Z,-representation T'(F) of Ggr. This will be based on
the results in [7, §3] (see also [34]). Keep Assumption R is small over O or
R=0;.

Recall that Vect(Rp, Op[1/Z,]7)¥=" denotes the category of crystals of vector bun-
dles V on (R, O)p[1/Z)]7) together with isomorphisms py: @*V =V [7, Def. 3.2],
and that there is a natural equivalence of categories

Vect(Rp, Op[1/Zpl0)7~ ' =~ Repl, (Gr)
given by (V, ¢y) = V(Ait(R), (€))#v=! (see [7, Cor. 3.8], [34, Thm. 3.2]).
Proposition 3.26.

(1) The natural functor VectZ(Rp) — Vect(Ryp, Op[1/Z)p)0)?=" given by F —
Fa = Op[1/I)]) ®0, F extends to a faithful functor

CR™(R)) — Vect(Rp, OpL/TH0)7Y F e Fa.
(2) Define a contravariant functor T: CR™?(R)) — Repy, (Gr) by

T(F) = (FalAum(R), ()77 "),
Then it satisfies the following properties:
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(a) there is a Gr-equivariant identification

—5 -1

TR =WER(T) " D] @apem Famm)®
where the Gr-action on the right hand side is the tensor product of those
—b —
on W(R [(7°)7Y]) and on F i@ = F(Aine(R), (£));
(b) Fs[E™']) is the étale p-module associated with T(F)¥|g. — via Proposi-

p
tion [2.16.

(c) If R is small over Ok and if R — R’ is a p-adically completed étale

map together with a compatible W-map Ry — R{,, then T is compatible
with the restrictions CR™?(Ry) — CR™(R),) (see Remark [3.22) and

Repy, (Gr) — Repy, (Gr/). We also have the analogous compatibility for
the base changes along R — O and R — Ok, .

We call the functor T" the étale realization functor.
Proof. (1) Let F € CR™?(R)). By Proposition B.25, we have an &®-linear isomor-
phism
f:69 e, s Fs = 60w, Fe
satisfying the cocycle condition over &®). Let M = Fs[E~!]", which is an étale

p?
p-module finite projective over Og. By extending the scalar, f induces a descent

datum N

SPIET) @0, M = SPET) ®,, 0. M.
By [17, Lem. 4.1.8] and [48, Prop. 3.2], this descent datum gives a Laurent F-crystal
Fer € Vect(X )y, Op[1/Z))))?=". The faithfulness of F +— Fy follows from construc-
tion and Lemma (3). It is straightforward to see that if 7 € Vect;(R)), then
this construction yields O)[1/Z,]) ®o, F.

(2) By the paragraph before the proposition, ((Fa(Aint(R), (f)))*”fétzl)v is a finite
free Z,-representation of Gg for F € CR™?(R)), and T is well-defined.
First we verify (a). By construction in (1), we have
— = — _
Fa(Ains(R), (§)) = A (R)[E 1];,\ ®o, M =W(R (7)) ®¢ Fe.
On the other hand, it follows from Lemma B.23] (4) and Example B.7 that
F(Aue(R), ()] = At (R)[p™'] ®e Fe.

Thus, we deduce

T(F)p™']" = (FalAum(R), ()7 p™'] = (FalAue(R), (€))[p~']) 7™
= (WR (=)Dl ©e Fo)*™
= (WR (@) D) Oty i)™
Since Fy is a crystal, the Gr-action on the prism (Aj(R), (€)) induces the Gg-
action on (W(Rb[(ﬂb)_l])[p_l] Dp,e®@ Fanm) - It is easy to check that the

above isomorphism T'(F)[p~!]Y = (W(Eb[(ﬂb)_l])[p_l] Dae (@) Fane@)’ 15 Gr-
equivariant.
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Next we prove (b). Since T'(F)Y = (W(Eb[(ﬂb)_l]) ®p. M)?=1 it suffices to show

that the natural injective map

/\UI‘ = = — —

(OF ®o, M)*™ — (W(R'[(7")"]) ®o, M)*~!
is also surjective. Consider the ¢-equivariant base change b,: Ry — Wi(k,) as in
Notation 2.8, which extends Og-linearly to R — O, Write Og, for the ring
constructed as in § for the base ring Og,. We have a natural commutative

diagram

(OF @0, M)*=! —— (W(R[(+*)]) €, M)*=!

| |

(08, @0, M)#=! —— (W(EK,) @0, M)#.

All the maps in the diagram are injective by construction. The left vertical map is
bijective by the functoriality as explained in the end of § 2.3l The bottom horizontal
map is bijective by [2I, Lem. 2.1.4]. Thus, the other two maps are also bijective.

We now prove (¢). Let R — R’ be a p-complete étale map. From the above
construction, we have an induced map of Z,-modules

T(F)" = T(Flr)"
which is injective and compatible with Gr-actions. By part (b) and the functori-
ality of étale p-modules as in the end of § 23] this map T'(F)Y — T(F|g)" is an

isomorphism. The statements for R — Op and R — Ok, follow from a similar
argument. 0

Example 3.27. Recall the Breuil-Kisin twist Op {1} € Vect?(R)) from [7, Ex. 4.5].
It is an invertible O)-module with p*O){1} = IZOA{l} and is given informally
by Op{1} = Qyuo(¢")*Ip. For n € Z, set Op{n} = ((’)A{l})m. This is an
invertible O)-module such that ¢*Op{n} = Z,"O)p{n}. By [1, Ex. 4.9], we have
T(Opin}) = Z,(-n) 1l

For F € CR™¥(R)), consider a sheaf of Op-modules F{n} = F ®p, Op{n}.
Suppose that the image of the induced map ¢*(F{n})s — (F{n})s[E~!] lies in
(F{n})s. It follows directly from Proposition that F{n} € CR™?(R)). We
claim that T'(F{n}) = T(F) ®z, Z,(—n). To see this, note that we have a natural
Gr-equivariant map T(F)" @z, Zy(n) = T(F)" @z, T(Op{n})" — T(F{n})". Since
the equivalence in Proposition is compatible with tensor products and duals,
it follows from the proof of Proposition (2b) that this map is bijective, which
shows the claim.

cris cris

Now we state our main theorem. Let Repz°-,(Gr) (vesp. Repz “,(Gr)) denote
the category of crystalline Z,-representations of Gr with non-negative HodgeTate
weights (resp. with Hodge-Tate weights in [0,7]). Note that Z,(1) has Hodge-Tate
weight one by our convention.

'Recall that our étale realization functor T is the dual of that of [7].
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Theorem 3.28. We keep Assumption[2.9.

(1) The étale realization T as in Proposition gives a fully faithful functor
from CR™¥(R)) to Rep%;fzo(glg). Moreover, T restricts to CREB”%(RA) —
Repg,i,s,[o,r] (Gr). .

(2) The functor T gives an equivalence CR{B’f](RA) = Repz 0.1(9r)-

Remark 3.29. Note that for every crystalline Z,-representation Tj of G, there exists
n € Z such that Ty ®z, Z,(n) € Repz°~,(Gr), and that the étale realization functor

T is compatible with Breuil-Kisin twists by Example B.27 Hence as in [27, §1.2], one
can extend the definition of completed prismatic F-crystals in a way that the resulting

cris

category is equivalent to Repz’ (Gr), the category of Z,-crystalline representations
of Gr. We leave it to the reader to make a precise formulation.

We prove the first part here. The second part will be proved in the next section.

Proof of Theorem[3.28 (1). Let F € CR[AO’vf}(RA). Consider the map R — Ok, as
in Notation 2.8 By Remarks and 318 we have Flo,, € CRE&%((OKQ)A) =
Vect 1((Ok,)p).- Thus, by [T, Thm. 1.2] (see also [I7, Thm. 4.1.10]), we have
T(Flok,) € Repz ) j0,(Gk,) where G, = Go, . Note that by Proposition
(2¢), T(Floy, ) is equal to T'(F)|c,, -

Let V(F) = T(F)[p~'] denote the corresponding Q,-representation of Gr. By
Proposition (2a), we see

V(F) = (WER (@) D] ®a,. 0 Fanm) ™

By Lemma 3.23) (4), we have Fp, 7[p7"] = Ais(R)[p™"] ®spp-1) Felp~'], which is
finite projective over Aj;(R)[p~1]. Since Fe(Aime(R), (€)) is an étale p-module finite
projective over W(Rb[(ﬂb)_l]), we obtain
—b B _ -~ |

(34) W(R'[(«") " ))[p "] @q, V(F)" = W(R

Equation (3.4]) induces

W(OE(™) " D~ ®q, V(F)" = WO ) D] @a,@p- Faw@P ]
by the base change W(Rb[(ﬂb)_l]) — W(O'[(x")7"]). By [5}, Lem. 4.26], this restricts
to the equality
(3.5) W(O%) e ®q, V(F) = W(O%)[P_l][ﬂ_l] D Ase (B -] 7 st (B) ]
where p = [e] — 1. We have

—=b _ _ _ _ SN — _
W(R (=) N~ TN WO ) = Aume(R)p~ ][]

by Lemma [3.3T] below. Thus, using Lemma B.I we deduce from Equations (3.4 and
B.H) that

(3.6) Aie(R)p~ 1™ @q, V(F)' = Fa, @l 1]
since F, ([P~ is projective over A (R)[p7Y.

) i _
(=) )p™] D a, BT A (®) P 1.
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Consider the map of prisms (&, (E)) — (Ro, (p)) over R given by u +— 0. Let
D(F) == Fry[p~']. We have D(F) = Ry[p~'] ®s Fe by Lemma (4), and 1 ®
©0: ©*D(F) — D(F) is an isomorphism. Choose a positive integer [ with p! > e as
in Example B8 so that we have the map of prisms (Ro, (p)) —= (¢/0Aais(R), (p))
over R. Thus,

OA.is(R)[p™"] R+t g, D(F) = F(0OALis(R), (p)[p7Y]
= OAuis(R)[P™'] @yr.0au @) F(OAuis(R), (p))
by Lemma (4), and we obtain
(37)  OBuy(F) @01 g, DIF) = OBuis(F) @1 0. 7y F(OAwi(), ().
On the other hand, again by Lemma B.23 (4),
)

F($10Auis(R), ()p] = OAcis(R)[p™"] @1 40w Fa@ P ]
So Equation (3.6]) gives
(3.8) OB.is(R) ®q, V(F)" = OBuis(R) @ oa.,.7) F (OAwis(R), (p)).

By Equations (37), B8), and OByis(R) Qi1 g, D(F) = OBeyis(R) ®@r, D(F) ob-
tained by (/+1)-times iterations of the isomorphism 1®¢, we deduce the isomorphism

(3.9) OB..is(R) ®p, D(F) = OBs(R) ®q, V(F)"

that is compatible with Gg-actions and ¢. Since (OBs(R))9% = Ry[p~!], we deduce
from this isomorphism that OBs(R) ®q, V(F) is spanned by its Gr-invariants as
an OB;s(R)-module. It follows that aeis(V (F)Y) is surjective and thus V(F) is
crystalline. So V' (F) is crystalline. Note that V(F) has Hodge-Tate weights in [0, ],
since it has Hodge-Tate weights in [0, 7] considered as a representation of G, .

The faithfulness follows from the construction of the étale realization T in Propo-
sition B:26 For the fullness, let F;, F, € CR™¥(R)), and suppose we have a map
h: T(F1) — T(F») of representations of Gg. By Proposition B.26] (2b), hlg, induces
a map

(Fo)slE7]p = (Fs[E7')
of étale p-modules over Og. On the other hand, by Lemma (1) and [20
Prop. 4.2.7], h|g6L _ induces a y-equivariant map

(F2)e, = (F1)e,

of & -modules. These two maps are compatible after the base changes to O¢ 1, and
thus we obtain an induced @-equivariant map of &-modules

(Fo)slE7']p N (F)s, = (F)s[E7'] N (F)s,.,

i.e., amap f: (F2)s = (F1)s by Lemma [3.23 (2).
By the construction of the étale realization, f is compatible with the descent data

ON/E) ®o,, .« (FslE') = SPI/E], @0, (F)s[E],
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for i = 1,2. So by Lemma (3), the map f: (F2)s — (F1)s is compatible with
the descent data
6% @6 (Fi)e = 6 @6 (Fi)e

for i = 1,2. Thus, the fullness follows from Proposition [3.25] U

Remark 3.30. For F € CR™(R)), the isomorphism (39) in the above proof shows
that there is an isomorphism F(Ry, (p))[p~'] = DY (T(F)[p~']) as p-modules over
Ro[p™!']. Since ¢ is an isomorphism on DY. (T(F)[p~']), Lemma (4) for the

map of prisms (S, £) 0, (Ro, (p)) 2 (Ro, (p)) gives a p-equivalent Ro[p~']-linear
isomorphism

(Ro ®y,ry Fe/uFs)p™"] = Du(T(F) ™).
In Remark .35, we will explain how to obtain the connection on DY. (T(F)[p~'])
and the filtration on R ®g, DY (T(F)[p~!]) from F under the above isomorphism.

We used the following lemma in the proof of Theorem (1).
Lemma 3.31. We have

W(R

(7)) NW(O5) = Aue(R)

as subrings of W(ng).

Proof. Recall Aj¢(R) = W(Eb). For any z € Eb[(wl’)_l], if its 7°-adic valuation as
an element in ng is > 0, then z € R. Thus, ﬁb[(ﬁb)_l] N O;— = Fb, which implies
the statement. O

3.5. Height one case. This subsection discusses the case where crystalline repre-
sentations have Hodge-Tate weights in [0, 1], and studies the relation to p-divisible
groups. We keep Assumption R is small over Og or R = Op. We first recall a
main result in [2] on classifying p-divisible groups over R via prismatic F-crystals on
R.

For a p-complete R-algebra with bounded p>-torsion, let Rqgsyn denote the big
quasi-syntomic site of R (cf. [2, §3.3]). By [2, Cor. 3.3.10], the functor R) — Rqsyn
sending (A, ) to R — A/I is cocontinuous, so it defines a morphism of topoi

u: ShV(RA) — ShV(RQSYN).

For a p-divisible group H over R, we consider the sheaf M) (H) = Eaty, (u™'H,O))
on R). Let w, ) be the endomorphism of M) (H) induced from ¢ on O). The
following is proved in [2].

Theorem 3.32 (Anschiitz—Le Bras). The assignment
H — (M) (H), o, (1))

defines a functor from the category BT (R) of p-divisible groups over R to VeCtro,u(RA)-
Furthermore, this is an equivalence of categories.
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Proof. Let H € BT(R). By [2, Thm. 4.6.6, Lem. 4.2.4], we see that (9 (H), wa, 1))
is an object in Vect%l}(RA). So the assignment defines a functor from BT(R) to
Vect@u(RA). By [2, Thm. 4.6.9, Prop. 5.2.3|, this is an equivalence. O

Remark 3.33. The above theorem holds for any p-complete regular ring as in [2]. We
make Assumption since we consider the étale realization below.

For H € BT(R), we write T,,(H) for its Tate module. Note that we have a natural
Gr-equivariant isomorphism

Tp(H) = HomBT(EA)((Qp/Zp)EAa HEA)-
Proposition 3.34. There exists a natural Gr-equivariant isomorphism
T,(H) =T(Mp(H)),

where T(Mp(H)) is the étale realization of M) (H) € Vectf (Rp) C CR™(R)) as
in Proposition [3.20.

Proof. Since R is an integral perfectoid ring, the prism (Ais(R), (£)) is the final
object of (R"),. Let M = 9, (H)(Au(R), (€)). By [36, Prop. 1.39] (where the
covariant version of My (-) is used), we have a Gg-equivariant isomorphism
T,(H) 2 (M)
We claim that the natural injective map

= —=b
(MV)@ 1 — (MV ®Ainf(ﬁ) W(R

()]

is also surjective. Let x € (MY ®, g W(R [(7°)7']))#=', and consider the base

change R — Ok, as before. By [5, Lem. 4.26], we have v € MY ®,_ f(ﬁ)W(ObK—) (1.
in g

Since MY is projective over Aj¢(R), we deduce from Lemmas 3.1 and B3] that
—b _ _ _
v (M 90 WRIE) D) N (M 00 WO ) = M)
Thus, x € (MY[p~')¥=! = (MV)¥=! by [36, Prop. 1.39], which proves the claim.

Since (M @, ) WE () )7 = (M @5, W R [7)7)7)", it Tollows
from the definition of the étale realization functor that T),(H) = T'(9Mp(H)). O

b

Based on an example in [47, § 5.4], we now present an example of a crystalline
representation with Hodge—Tate weights in [0, 1] that does not come from a p-divisible
group. By Theorems B.28] B.32] and Proposition B.34] such an example implies that
the inclusion Vect’;(R)) C CR™?(R)) is strict in general.

Example 3.35. Let Ry = W(k)(T*") and R = Ry Qw ) Ok. Suppose p > 3 and
the ramification index [K : Ky is p. Let 9, be a free &/pS-module with a basis
{e1, eq, €3}, equipped with Frobenius given by

1+T)yt—u 0 u
0= 0 wP™t (14 T)Pu?™ — (14 T)
1 0 0



COMPLETED PRISMATIC F-CRYSTALS AND CRYSTALLINE Z,-LOCAL SYSTEMS 33

and with the trivial connection V(e;) = 0 for i = 1,2,3. Note that for

0 0 u?
p=0+T)—(1+T)Pu v (u—1+T)PNA+T)— 1+T)Pur~t) |,
upP™! 0 uPHu— (14+T)r 1)

we have o) = 1o = uPl3. Thus My € (Mod FI)E (¢, V) in the sense of [25 Def. 9.2].
By [25, Thm. 9.8], 9, is associated with a finite flat group scheme H; over R.

Let M, be a free & /pS&-module with a basis { f}, equipped with Frobenius given by
©(f) = f and with the trivial connection V(f) = 0. Then My € (Mod FI)& (¢, V)
and it is associated with a finite flat group scheme Hs over R.

Let h: 9ty — 9y be a map of torsion Kisin modules given by (1 +T u (14 T)u)
Since h is not surjective, the associated map Hy — H; of finite flat group schemes is
not a monomorphism. On the other hand, the induced maps Hs[p~'] — Hi[p~!] and
Hy xg O — Hy Xz Op are monomorphisms of finite flat group schemes over R[p~!]
and Op, respectively.

By [3, Thm. 3.1.1}, there exists a € R with a ¢ (7,1 +T) C R such that (Hy)r
can be embedded into some p-divisible group H over R/, the p-adic completion of
R[a™']. Consider the p-divisible group H' over R'[p~'] given by

H' = Hppy/(Ha) prip-1y,

and let V' be the associated representation of Gr.. Since the map (Hy)g xXg O —
(H1)r x g Of is a monomorphism, the p-divisible group H' X gi,-17 L over L extends
to a p-divisible group over Op. So Vg, is crystalline with Hodge-Tate weights in
[0, 1], where G, == Go, = Gal(L/L). In particular, V is de Rham by [30, Thm. 1.5].
Recall that Tsuji’s purity theorem [46, Thm. 5.4.8] states that if W € Repq (Gr') is
de Rham and if W|g, is crystalline, then W is crystalline. Hence we conclude that
V is a crystalline representation of G with Hodge—Tate weights in [0, 1].

On the other hand, we claim that H' cannot be extended to a p-divisible group
over R'. Suppose otherwise, i.e., suppose that H' extends to a p-divisible group H%,
over I. Let Ry be the (m,1+ T)-adic completion of the localization R{, . Let
m € Spec Ry be the closed point, and let U := Spec R; — m be the open subscheme
of Spec R;. Note that by the construction of h: 2; — My above, the induced map
(Hy)r, — (Hi)g, is not a monomorphism whereas the restriction (Hy)y — (Hi)y
to U is a monomorphism. In particular, by [44, Thm. 4], we have Hp Xp U =
(H xp U)/(Hs)u as p-divisible groups over U. The isogeny H xp U — Hp Xp U
extends to an isogeny i: H xp Ry — HJ X Ry. The kernel of i is a finite flat
group scheme over R; whose restriction to U is (Hs)y. Since R; is a regular local
ring of dimension 2, the kernel of ¢ is then equal to (Hs)g,, and (Hy)g, embeds into
H Xp R;. This contradicts that (Hy)r, — (Hi)g, is not a monomorphism, so H
cannot be extended to a p-divisible group over R’.

In the above example, the ramification index e = [K : Kj] needs to be large. In
fact, when e < p — 1, such an example does not exist.

Theorem 3.36 ([33, Thm. 1.2]). Suppose e < p — 1 (so that p > 3). Assume
moreover that Ry/pRy is a UFD, and that Ry is complete with respect to some ideal
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J C Ry containing p such that Ry/J is finitely generated over some field. Then for
any T € Repz “01](Gr), there exists a p-divisible group G over R such that T,,(G) = T
as representations of Gg.

In particular, we have Vect%l}(RA) = CREE)7,f}(RA) under the assumptions of the
above theorem.

Remark 3.37. In fact, we have a little stronger result: Vect (1)) = CR{B’E(RA) if
e < p—1and Ry is small over Og. To see this, we use arguments in our proof of Theo-
rem (2) (the essential surjectivity) in §[4 More precisely, for T" € Repczrjf,[ovl} (Gr),
the associated completed prismatic F-crystal F € CR[AO:% (R)) satisfies Fe = M
where 9 is given by the construction in § 4.4l By Remark [1.23] Fg is projective over
S when e < p— 1. Hence Proposition implies Vecty, (Rp) = CR[A()’E}(RA) when
e < p—1 (even without the additional assumptions on Ry in Theorem B.36]). By [33,

Rem. 4.6], we can similarly deduce Vectf ,(R)p) = CR[AO’vf}(RA) when er < p—1. In

particular, when r = 0, we have Vect( ,(R)) = CREE)7,§}(RA) for any e.

3.6. Completed prismatic F-crystals on a smooth p-adic formal scheme.
This subsection globalizes the construction and the main theorem in § 3.4l Let X
be a smooth p-adic formal scheme over Of. To define the category CR™¥(X)) by
gluing, we need to show the descent property of completed prismatic F-crystals with
respect to Zariski open coverings.

Lemma 3.38. Let X = J,, Spf Ry be an affine open covering of X . For a sheaf F
of Op-modules on X, it is a finitely generated completed prismatic crystal on X if
and only if Flsptr, is a finitely generated completed prismatic crystal on Spf Ry for
every .

Proof. The necessity is obvious. To show the sufficiency, assume that F|gyep, is a
finitely generated completed prismatic crystal on Spf Ry for every A. Consider the
quotient sheaf 7, = F/(p, Zp)"F = OA,n ®o, F on X for each n € N. Then (F,),
forms an inverse system of Op-modules and the natural morphism F — @n Fn is
an isomorphism since it is so on (Spf Ry)) for each A. By Lemma [3.13] it is enough
to show that F,, is a finitely generated crystal of O An—modules for every n € N.

Take any (A,I) € X). Then there exist a finite affine open covering Spf A/I =
Ué‘:l Spf R; and an element \; € A for each j = 1,...,[ such that the map Spf R; —
Spf A/I — X factors through Spf Ry, C X. Since A/I — R; is p-completely étale
map, it lifts uniquely to a (p, [)-completely étale map A — A; of d-rings (cf. [9,
Construction 4.4]) and defines (A;,1A;) € (Spf Ry,)p C X). Set B = H§:1 A;.
Then B admits a natural J-structure and (B, 1B) € X ). Moreover, (A,I) — (B, IB)
is (p, I)-completely faithfully flat. Let (B’,1B’) be the object of X) corresponding
to the pushout of the diagram (B,IB) < (A,IA) — (B,IB) of maps of bounded
prisms over X. Note B'/(p,I)"B" = B/(p,1)"B ®a,p,1)» B/(p,I)"B by Lemma [3.3
Let p; and py denote the two structure maps B — B'.

Since F, is a sheaf on X, we have an exact sequence

0 — Fu(A, 1) — Fo(B,1B) "% F.(B', IB).
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By definition of B, we also have an identification F,(B,IB) = ngl Fu(A;, TA)).
By assumption, F,|sps ry), is a finitely generated crystal of Oy  -modules. Hence we
have a B'/(p, )" B'-linear isomorphism

0. B' @p,.5 Fu(B,IB) = Fo(B',IB") = B' ®,, 5 Fa( B, IB)

satisfying the cocycle condition over B/(p,)"B®4 B/(p,I)"B®a B/(p,1)"B. Since
A/(p, I)" — B/(p,I)"B is classically faithfully flat, it follows from the faithfully flat
descent that F, (A, I) is a finitely generated A/(p, I)"-module and B ®4 F, (A, I) =
F.(B,IB).

Let (A, 1) — (A, IA) be a map of bounded prisms over X. Set B := A®4B. Then
B admits a natural d-structure and (B, IB) € X). Moreover, (A, IA) — (B,IB)
is (p, I)-completely faithfully flat. By the same argument as above, fn(fl, 1 fl) is an
A/(p, I)" A-module with B ; F,(A, TA) = F,(B,IB). Since F,|(sp Ry), 1s a finitely
generated crystal of O)  -modules, we also have B®pF,(B,IB) = F,(B,IB). Hence

the natural map A ®a Fo(A 1) — ]-"n(le, IA) is an isomorphism since it is so after
tensored with B/(p, I)B over A/(p, I)"A. Therefore F,, is a finitely generated crystal
of Op ,,-modules on X . O

Remark 3.39. An analogue of Lemma [3.38 holds for an étale covering of X in place
of an affine open covering. The verification is left to the reader.

Recall that for an integral domain R that is small over Ok, we defined the category
CR™?(R)) of completed prismatic F-crystals on R in Definition [3.16]

Lemma 3.40. Assume that X = Spf R s affine that is connected and small over
Ok and let F be a sheaf of Op-modules on X) together with 1 ® pr: ©*F —
F. Then (F,er) € CRM(R)) if and only if there exists an affine open covering
X = UMA Spf Ry such that for each X\, Ry is connected and small over Ok, and

(Flispt Ba)ps lespf mr),) € CRMY(RY).

Proof. The necessity is straightforward. For the sufficiency, choose a p-complete étale
map Ry — Ry that induces R — R, after the base change along W — Opg. Set
Ry = Tl ea Bro and extend the Frobenius on Ry to Rj. Let & = R{[u] and
equip it with Frobenius ¢ extending the one on R, by ¢(u) = w?. Via &'/(E) =
[Lea By < R, we regard (&', (£)) as an object of R). Since (&, (E)) — (&', (E))
is a classically faithfully flat map of bounded prisms over R, the sufficiency follows
from Lemmas and d

Definition 3.41. Let X be a smooth p-adic formal scheme over Og. A completed
F-crystal of Op-modules on X is a pair (F,¢r), where F is a finitely generated
completed crystal of Op-modules on X and

1®QD]:I(,O*.F—>f

is a morphism of O )-modules satisfying the following property: there exists an affine
open covering X = | rea SPE Ry, such that each R is connected and small over Ok in
the sense of Definition Z.Tland such that (F|spf r,),, 97| (spf ry),) € CR™?(Rx). When
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X = Spf R is affine that is connected and small over Ok, this definition coincides with
Definition by Lemma [3.40l

We also call such an object a completed prismatic F'-crystal on X. The morphisms
between completed F-crystals of O)-modules are O p-module maps compatible with
Frobenii ¢ .

We write CR™?(X ) for the category of completed F-crystals of O),-modules on
X ). Let Vect%;(X)) denote the full subcategory of CR™?(X ) consisting of objects
(F,@r) where F is a locally free O)-module. For a fixed non-negative integer r, we
let CR[AO’f] (Xp) and Vectf, 1(X)) denote the full subcategories consisting of objects
for which, locally, (Fs, prs) has E-height < r.

Let X, denote the adic generic fiber of X. Recall that Vect(X), Op[1/Z)]0)¢="
denotes the category of crystals of vector bundles V on (Xp,Op[1/Z)]7) together
with isomorphisms ¢y : ©*V =V [1, Def. 3.2] and that there is a natural equivalence
of categories

Vect(Xp, Op[1/Zp)0)7=" = Locg, (X,),
where Locz, (X,)) denotes the category of étale Z,-local systems on X, (see [7, Cor. 3.8]).

Proposition 3.42. The natural functor Vectly (X)) — Vect(X), Op[1/Tp]0)9=
given by F + Fe = Op[1/T)]} o, F extends to a faithful functor

CR™M? (X)) — Vect(X, (’)A[l/IA]Q)“D:l D Fo Fae

Proof. Take an affine open covering X = |J, Spf Ry such that R, is connected and
small over Ok for each X\. Then for each A, F|sptr,) , 1s naturally an object of
CR™?((Rx)p)- Hence by Proposition (1), we obtain an object (F/|spsry),)er Of
Vect((Spf Rx)p, Opl1/Z)p]0)#=" together with an identification

(Flispr —a)p)étlspr RaxxSpf Ry = (Flispt Ry )ét] (Spt RaxxSpf Ry,

satisfying the cocycle condition over (Spf Ry xx Spf Ry xx Spf Ryv)). Hence they
glue to an object Fg of Vect(Xp, Op[1/Zp)))#=". It is immediate to see that Fy
is independent of the choice of the affine open covering and this gives the desired
faithful functor F — Fg. ]

Definition 3.43. Define a contravariant functor T': CR™¥(%X,) — Locg, (X,) to be
the composite

CRM(X ) — Vect(Xy, Op[1/Zp)))7" = Locg, (%,) 1 Locz, (X,),

where the last functor sends L to its dual Z,-local system LY. We call the functor
T the étale realization functor. Note that we use the contravariant convention as
opposed to the covariant convention in [7].

Notation 3.44. Let Locczrjfzo(%n) denote the full subcategory of Locz, (X,,) consisting
of Z,-local systems L on X,, such that L®z_ Q, is a crystalline local system on X, with
non-negative Hodge-Tate weights. See Appendix [Al for the definition of crystalline
local systems on X,,.
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Theorem 3.45. Let X be a smooth p-adic formal scheme over Ok and let X,, denote
its adic generic fiber. The étale realization functor T induces the equivalence of
categories

T: CR™M (X)) = Locg™.o(X,).

Proof. By Theorem [3.28/ (1), we see that T factors through Locczr;fm(%n) C Locgz,(X,)
and T is fully faithful since both properties are of local nature. Once the full faith-
fullness is established, it follows from Proposition (2¢), Theorem (2), and
gluing that T: CR™? (X)) — Locczrjm(%n) is also essentially surjective. O

4. QUASI—KISIN MODULES ASSOCIATED WITH CRYSTALLINE REPRESENTATIONS

The goal of this section is to prove the second part of Theorem (the essential
surjectivity of the étale realization functor). Recall & = Ry[u] as in Notation 2.0
Given a Z,-lattice T" of a crystalline representation of Gr, we will construct a certain
G-module equipped with a Frobenius and a connection, which we call a quasi-Kisin
module associated with 7.

In § A1l we introduce quasi-Kisin modules (Definition [4.1]) and attach a rational
Kisin descent datum to a quasi-Kisin module (Construction and Propositions [4.0,

[1.9). The proof crucially uses explicit computations of elements in A (Lemmas [4.4]
and [4.8). Section shows, under Assumption 2.9 that if (90, pgn) is a finitely
generated torsion free p-module of finite E-height over &, then 9[p~'] is projective
over G[p~!] (Proposition 13)). In § 3] we consider the special case where R = O,
and establish some preliminary results. In § E4HLE we construct a quasi-Kisin
module associated with T € Repczr;fzo(g}g). Finally, § completes the proof of
Theorem by spreading the rational Kisin descent datum to an integral Kisin
descent datum via the theory of étale p-modules.

Since some of the arguments work for a general base ring R, which may be of some
interest, we let R be a base ring over Ok as in Set-up unless otherwise noted.

4.1. Quasi-Kisin modules and associated rational Kisin descent data. Recall
that S denotes the p-adically completed divided power envelope of & with respect
to (E(u)), equipped with the Frobenius extending that on &. Let Fil'S be the PD-
filtration of S. Namely, Fil' S is the p-adically completed ideal of S generated by the
divided powers ~,(E(u)) (j > i), where v;(x) = % Let N,: S — S be the Ry-linear
derivation given by N, (u) = —u, and let d,: S — S be the Ry-linear derivation given
by 0,(u) = 1. Note that —ud, = N,. We also have a natural integrable connection

V=Vg:5—=5®g, QO R, given by the universal derivation on Ry, which commutes
with N,.

Definition 4.1. Let r be a non-negative integer. A quasi-Kisin module over & of
E-height < r is a triple (9, oo, Var) where
(1) 9 is a finitely generated &-module that is projective away from (p, F) and
saturated;
(2) pom: M — M is a p-semi-linear endomorphism such that (9, o) has E-
height < r;
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(3) if we set M = Ry ®, g, M/udM equipped with the induced tensor-product
Frobenius, then

Von: M[p~] = M[p~] ®g, g,

is a topologically quasi-nilpotent integrable connection commuting with Frobe-
nius and satisfies the S-Griffiths transversality (see below).
Let us explain the definition of the S-Griffiths transversality. Set .#Z =S ®@,e M
and define a decreasing filtration F*. [p~'] by

Fatlp) =o€ Alp™] | (1 om)(x) € (FILS[p)) @6 M.

By Lemma below, we have .#[p~'] = S[p~'] @p,p-1y M[p~'], which admits a
connection R

Vl///[pfl}l %[p_l] — ,///[p_l] @Ry QRO
given by V_4,-1] = V1) ® 1 +1® Vay so that ¢ is horizontal. Let 8,: A [p~'] —
A [p~'] be the derivation given by d, g;,-1) ® 1. We say that the connection Vg or
V_up-1) satisfies the S-Griffiths transversality if, for every 1,

Ou(F T p™) C F'tlp™]) and Vg1 (F T p™]) C (F' M p"]) ®r, Qg

Lemma 4.2. Let (M, pon) be a p-module finite torsion free over & of E-height < r
such that Mp~t] is projective over S[p~'|. Let M = Ry ®, g, M/uIM and A =
S Ry, M equipped with the induced Frobenii. Consider the projection q: M — M
induced by the p-compatible projection S — Ry, uw — 0. Then q admits a unique
@-compatible section s: M[p~™] — A[p~']. Furthermore, 1 ® s: S[p™'] @p,p-1
M[p~Y — A [p~'] is an isomorphism.

Proof. Since 9 has E-height < r, the map
L@ )p]: ¢ Mlp™'] = (Ro ®p,r, M)[p™'] = M[p™]

is an isomorphism, and the preimage of M is contained in p~"(p*M). It then follows
from the standard argument as in the proof of [25, Lem. 3.14] that there exists
a unique @-compatible section s: M[p~'] — .#[p~']. Furthermore, the map 1 ®
s: S[p7) ®rep-y Mp~'] — A[p~'] is a map of projective S[p~']-modules of the
same rank. So by a similar argument as in the proof of [35, Lem. 4.17], 1 ® s is an
isomorphism. O

Let (9, pan, Von) be a quasi-Kisin module of E-height < r. We associate with
(OM, won, Var) a rational Kisin descent datum, namely, an isomorphism of &@[p~1]-
modules

F8Dp @, M S ®,,.6M

satisfying the cocycle condition over &®) and compatible with Frobenius.
First we will construct an isomorphism of S [p~!]-modules

fo: SO ®p 5. = SPpY @5 M

satisfying the cocycle condition over S®)[p~'] and compatible with Frobenius and
filtration. For each ¢ = 1,...,d, let Or,: M[p™'] — M[p~!] be the derivation given
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by V: Mlp™] — Mp~!] @r, O, = @@L, M[p~'] - dT; composed with the projection
to the i-th factor.

Construction 4.3. Let (9, pon, Von) be a quasi-Kisin module of E-height < r.
Identify .#[p~!] with 2 := S[p™!] ®g, M as in Lemma L2l Let d,: 2 — 2 be the
derivation given by 9,5 ® 1, and for i = 1,...,d, let 9r,: 2 — 2 be the derivation
given by 05, s ® 1 +1® 07, . We define fg: 5(2 ®pr,s I — S@) Qpy,s Z by

Zaﬂoag - () - 5o (p2(u H%Z (p2(T3) — pa(T3)),

where the sum goes over the multi-index (jo, - .., Jq) of non-negative integers. Note
that 0, and Or,’s are topologically quasi-nilpotent, so the above sum converges. It
follows from a standard computation that this defines a ¢-compatible isomorphism

of S@[p~!-modules fs: S® ®,, s 2 = 5@ ®p,,s Z satistying the cocycle condition
over S®[p1].

By the identification .#[p~!] = 2, we obtain a descent datum fg: S@[p~! ®,, s
M= SO [ @py,s A . Since V4,1 satisfies the S-Griffiths transversality, we see
that fg is compatible with filtrations (see below for the filtration on S®).

Before proceeding, let us discuss filtrations on subrings of Al(ﬁ;x[p_l] defined after
Example 3.9 For any subring B C Afg;x[ ~1] that is stable under ¢ A 1)) define

Fil"B == BN E™A®, [p~!].

In particular, we have Fil"& = E™& and Fil"6® = Em&® by [17, Cor. 2.2.8].
Note that Fil”S® is compatible with the PD-filtration on S, i.e.,

FﬂmS(z) = { Z Qig,....iq11 Vio (E)7i1 (y - u)7i2(51 - Tl) © Yigaa (Sd - Td) ‘

10+ Fid412>m

€ 6®27 aio ..... Td+1 — 0 (as ZO _'_ e + Zd+1 — OO)}

Lemma 4.4. Assume p > 3 and let v be a fixed non-negative integer. There exists
an integer hg > r such that if m > hy and v € SP[EY] with E"x € FiI™ S® | then
() = a+b for some a € 6@ and b € FiI™' 5@ (as elements in AL ).

Proof. By the explicit description of Fil™ S since y — u = Ez, sj —T; = Ez; and
z; € 6P, we can write "z = -, ¢;vi(E) for some ¢; € 6@ with ¢; — 0 p-adically

as 1 — 00. S0
Zgocl ( - )

>m

It suffices to show that there exists hg > r such that if m > hg then p(£-") = @y +byy,

for some a,, € & and b,, € Fil™"' S. For this, note that o(E) = B + pt for some
te 6. So

By = (e gty =3 (") B

=0
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Let vy(-) be the p-adic valuation with v,(p) = 1. Since v,(m!) < -, we have

1 = /m—r , ,
— p(m—r—i) 7
U = E < . )E (pt)' € 6.

: m
1257

Consider by, = = ZOSK% (") EPer = () T p(m—r = ) > m 1 de., m >

7

% (since p > 2), then b, € Fil™™' S. Hence, we can set hy = [%] O

We now return to the discussion on the quasi-Kisin module (9, o, Van). Set
M = G R,e M. For j=1,2, let M? = 6P, M, M =6, M*, and
imj;ﬁjgj = AR p™] ®p,e M. If B is a subring of AR [p~Y] stable under ¢ 4@, 1)
and if p;: & — A2 [p~!] factors through B, then define

Fil'(B ®,,6 M*) = {2 € B®,, s M" | (1 ® pm)(z) € Fi'B®,, s M}.
Note that
Fil'o* = {z € M* | (1 ® ¢)(z) € E'M} and
iy (2) *,(2) ieyy3(2)
Fil'ot™ = {z € M7 | (1@ ¢)(v) € B M7}

Since M has E-height < r, 1 ® ¢: Fil'O* — E"™M is an isomorphism. Let
o Fil" 90T — 9* be the @-semi-linear map given by the composite

e®1

o FIFO 225 EPON = B76 0 M 2205 & ®,6 M = M*

Note that ¢, (Fil"9t*) generates 91* as an G-module. Similarly, we define the p-semi-

linear map ¢, : FilTim;’(z) — i)ﬁ;’@).

Lemma 4.5. We have (Fi'9n=® )n 9)?;’(2) = Filii)ﬁ;’(z).

max,j

Proof. By assumption, (p,u) forms a regular sequence for 9 as an &-module. So
(p, E) is a regular sequence for M, and M/EM is p-torsion free. Since p;: & —

S® is classically flat by Lemma [3.5] 932§2> / Eim§.2) is p-torsion free. In particular,
iy (21, — ) _ migm(2)

EON p Ny = B
It suffices to show

(B'AR) [p7"] @6 M) NP = E'om'?

max

as submodules of A, [p7!] ®p,.¢ M, which makes sense since M[p~'] is projective

over &[p~!] by assumption. Since EiAD[p~]N&@[p~!] = Ei6@ [p~], Lemma B
implies that

(E'AR 7] @8 Mp~ ) NP [p7!] = E'SP [p7!] @, 61 Mp~]
= 'Y

Since Eiimf) [P~ N 93?§-2) = E@ﬁ? by above, the assertion follows. O
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We can now show that fg defines a rational Kisin descent datum when p > 3. The
same result also holds for p = 2 (Proposition [£.9]) with a similar but longer proof,
and we postpone the latter case.

Proposition 4.6. Assume p > 3. Let (M, oo, Van) be a quasi-Kisin module of
E-height < r. There exists a unique rational Kisin descent datum

o8P @6 M= SO @0 M
such that idge ®, e f = fs, where fs is defined as in Construction [.3

Proof. For j = 1,2, we write //lj(z) for the image of S@ ®,, s.# in S@p|®, 5.4
under the natural map. We will show that there exists a unique &® [p~!]-linear map
f: 6(2) [p_l] Op1,& M — 6(2) [p_l] ©p2,& Mm

such that idge) ®, s@ f = fs. Let hg >r be a constant given as in Lemma [£.4l Note
that by the explicit description of Fil"S® | for any z € S®, we have pa =y + 2
for some y € G2 and z € Fil"S®), Thus we can take a sufficiently large integer
n > 0 such that f{ := p"fs satisfies fs( (2)) C ///(2) and

Fo7) <y 4 Fils® .z
as submodules of A%l [p~] Rp,y.6 M*. We claim that
Faem) c my® + Fims® .z

for any m > hy. We induct on m. Suppose that the claim holds for m (> hg). Let
w € Fil"9M*. We can write
: w) =z + Z a;W;

for some z € 93?; @ g, € FIMS®@ | w; € M (with finitely many indices 7). Note that
e (Filram5 ) mm* 2 = Firomy® by Lemma B35l Let of = % € S®[E~]. Then
fs( y=z+ Z a; - E"w; with E"w; € Fil"9*.

We have
Folor(w)) = @r(2) + Z p(a w;).

Since E"a) € Fil™S®, we have p(a}) = b; + ¢; for some b; € 8@ and ¢; € Fil™"'S®?)
by Lemma B4 Thus, fi(p.(w)) € My & L FiImHs@ . P Since o, (Fil'9)
generates " as G-modules, the claim follows.

Since M[p~!] is finite projective over S[p~'] by assumption and the filtration

{FiI™ S@[p=11} is separated, we deduce that f4(9%) c M@ [p~1]. By increasing n

if necessary, we may further assume f§(90*) C EJJI*’(Q) Then fé(i)ﬁ;’@)) C 91{;’(2), and
fo@ray®) ¢ (Framgl),) nomy® = Firon

by Lemma Consider the composite of the isomorphisms

1®¢
Fil'* = E(u) 9 = 9N,
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Since p;: & — &@ is classically faithfully flat by Lemma B35 we obtain the iso-
morphism Fil’"im;’(z) = imf) of @ -modules for j = 1,2. Via these isomorphisms,
Fa Firome @ — Firony® induces a map f': 6@[p®@,, 6 M — S p ] ®,, e M
of @) -modules. If we set f = p~"f’, then we have idg ®,e@ [ = fs. The
uniqueness is obvious.

By applying the same argument to fg 1 we conclude that f is an isomorphism.
Hence f is a rational Kisin descent datum. O

We now explain how to obtain a rational Kisin descent datum from fg when p = 2.
We consider two auxiliary subrings S S of Amax, defined by

T_ao[E] - (EY
S.—6(2)[[2]] {gal(Q) a,€6(2)} and
g._goE] (EY .

5o [£] = (T a(5) |aee)

Since ¢(E) = E* + 2§(E) and 6@ is 2-adically complete, both S and S are stable
under the ring endomorphism ¢ on AR The following is shown in [17].

Lemma 4.7 (cf. [I7, Lem. 2.2.10]). Suppose p = 2. The following properties hold.

(1) o(A max) C S and go(S) cS.
(2) For every positive integer h, we have

- Ei
Fil"S = {Z ai2L—i’J ‘ a; € 6(2)} and Fil"S {Z a;—— 5 ‘ a; € 6(2)}.
i>h 2

Lemma 4.8. Assume p =2, and let r be a fized non-negative integer. There exists
an integer hg > 1 such that if m > ho and x € S[E™'] with E'x € Fil™ S, then
o(z) = a+b for some a € & and b € FiI™™ S (as elements in Ag&x).

Proof. By Lemma 7] (2), we can write

for some ¢; € 6@, So

Em—r’
It suffices to show that there exists hg > r such that if m > hg then % =
4

IS and b, € FiI™! S. For this, note that

m

QU + by for some a,, € (2,u)"""LF

©(E™ ") = (E* 4 25(E 3 < _ )E2(m‘T‘i)(25(E))i.

=0
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We have

m—-rT

1
Set b,,, = ES Z

0<i<| |1
then b,, € Fil™™ S. Since

l

VRS

)E2<m—"—i>(25(E))i. If2(m—r—|2]+1) > m+1,

m m 3
2( _ —{—J 1)>2( D 1):— —or 42,
m-—r 1 + >2lm—r 1 + 2m T+
we can set hg = 4r + 1. O
Using Lemmas [4.7 and [4.8] we now construct a rational Kisin datum when p = 2.

Proposition 4.9. Assume p = 2. Let (M, oo, Van) be a quasi-Kisin module of
E-height < r. There exists a unique rational Kisin descent datum

8 @ e M= 6P @y, 6 M
such that idge ®, @ f = fs, where fs is defined as in Construction [/.3

Proof. For j = 1,2, write //4(2) for the image of S ®p,,5 A in S@p~1 ®@p,,5 M
under the natural map. We first claim that fs(9*) C S[p] ®p,.¢ M. For this, take
a sufficiently large integer n > 0 such that f§ := p" fg satisfies f&(. 4 (2 ) C ///2(2)

FLme) c @ + Firs® .z
as submodules of Al [p7!] @py.e M. Let w € Fil"M*. We can write

. w):z+Zaiwi

for some z € E)ﬁ* ) a; € FI'S®, w; € M (with finitely many indices 7). Note
that z € (Fll"mtm;f2) noy® = Firomy® by Lemma E5 Since ¢; € Fil'S®@), i
follows from the explicit description of Fil" S that a} := = p" & lies in A2 We have
falprw) = prz+ Y, ds - Erw; with E"w; € Fil'ON* as clements in AGh[p~] ®,,.6 M*,
and so

fs(or(pPw)) = @r(p"z) + Z o(a;)er (B w;).

Note that ¢(a]) € S by Lemmal7 (1). Thus, we deduce fs(p,(w)) € S[p™]@p,.6 M.

Since ¢, (Fil"00") generates 9" as G-modules, the claim follows.
Let a € Fil'S. Since | 5L — (L%J r) > 0, it follows from Lemma [£.7] (2) that
P’ & € S. Furthermore, cp(S) C S by Lemma [£.7] (1). Thus, starting with fg(9*) C

S [p7!] ®p,.6 M, we can repeat a similar argument to further obtain

Fs(O) € S[p7] @6 M.
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As in the proof of Proposition with Lemma [4.§ in place of Lemma (4.4 we
deduce fs(M*) C My [p~1]. The rest of the proof proceeds exactly as in the proof
of Proposition O

We end this subsection with a simple lemma.

Lemma 4.10. Let 9 be a finitely generated S-module which is projective away from
(p, E) and saturated. Then the natural map

6@ ®,, M= (6 ®,,6 M N(GPET ®,, & M)
18 an isomorphism.

Proof. Note first that the maps
cs® R, m o s [p—l] Dps 0 M and SO ®p;.6 m- @ [E—l];\ ®p; 0 m

are injective by the same argument as in the proof of Lemma B.23] (3).
We need to show that the injective map

6@ ®,, M= (6D ®,, 6 M N(SHET] ®,, M)

is also surjective. Suppose not. Set £ := (6@ [p] ®, ¢ M) N (SP[E]) @, & M)
for simplicity. For any Z,-module @, write Q/p for Q)/pQ. Then the induced map

6(2)/]) Op;,& m — ﬂ/p

is not injective since @ [p~1®,, ¢ M = L[p~!]. On the other hand, by the saturation
assumption, we have M[p~! ] NIM[E~] = M. So by Lemmas 3.1 and B.5],

(6% @y, 6 Mp~')) N (6P ©,, 6 ME™]) = 6% ©,, & M.
This implies that the map
6(2)/]9 ®p;.6 m— s? [E_I]Q/p Dp;.6 m=c® [E—l]/p Dp; m

is injective. This factors through the map &® /p ®p;.e M — £/p, which therefore is
injective. This gives a contradiction, and the surjectivity follows. U

4.2. Projectivity of M[p~!] under Assumption In this subsection, assume
that either R is small over Og or R = Op (Assumption 2.9). We will show that if
(O, pon) is a finitely generated torsion free p-module of finite E-height over &, then
M [p~!] is projective over &[p~'] (Proposition E.I3). For this, we need two preliminary
results.

Lemma 4.11. Let ky be a perfect field of characteristic p, and let A be a power-series
ring W(ki)[s1, ..., Sa]. Suppose that A is equipped with a Frobenius endomorphism ¢
extending the Witt vector Frobenius on W (ky). Then there exist ty,...,t, € A such
that A = W (k1)[t1,...,t.] and o(t;) has zero constant term for each i.

Proof. Write ¢(s;) = s + p(fi(s1,...,S4)) + pb; where fi(s1,...,5,) € A satisfying
fi(0,...,0) = 0 and b; € W(ky). Write v,(-) for the p-adic valuation on W (k;) with
vp(p) = 1. Suppose b; # 0 for some ¢, and define I = {j | v,(b;) = min;<;<.{v,(b;)}}.

Let ig € I, and let ¢;;, € W(ky) such that ¢(c;,) = b;,. We claim that if we
replace s;, by s;, — pciy, then o(s;) = s¥ + p(fl(s1,...,54.)) + pb; satistying v,(b}) >
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min{v,(b;), vp(by,) + 1} for each i = 1,...,a, and v,(b],) > vp(by,) + 1 and v,()) =
vp(b;) if 49 # @ € I. Here, f] and b, denote the corresponding polynomial and the
constant replacing f; and b;, respectively. To check the claim, note that

Sp(sio - pcio) = Sfo +p(fio(sla SRR sa)) +pbio - Qp(pcio)
= (8i; — PCiy + PCis)’ + Dfio(S1, -+, Sig — PCiy + DCigy - - - Sa)-

Since v, (ciy) = vp(biy), we have v, (b ) > v,(by,) + 1. For i # 4y, we have

o(s;) = 8P +p(fi(s1, ..., 8, — PCig + PCigs - - - 8a)) + Db;.

So v, (b)) > min{v,(c;,) + 1,v,(b;)}. Furthermore, if ¢ € I (with ¢ # 4p), then
v, (b)) = v,(b;). This proves the claim.
Thus, if #1 > 2, then after replacing s;, by s;, —pc;,, #1 decreases by 1. If #1 =1,
then after replacing s;, by s;, — pc;,, we have
min {vp(6)} 2 1+ min {v,(;)}.
By repeating the above process, we deduce that there exist ¢1,...,¢, € W(ky) such

that for t; = s; — pc;, p(t;) has zero constant term for each i. It is clear that
A:W(k‘l)[[tl,...,ta]]. |:|

Lemma 4.12. Let ky be a perfect field of characteristic p, and let A be a power-series
ring W(k1)[t1, ..., t.]. Suppose that A is equipped with a Frobenius endomorphism ¢
extending the Witt vector Frobenius on W (ky) such that p(t;) € A has zero constant
term for each i. Let &4 = Afu] equipped with Frobenius extending that on A by
o(u) =uP. Let N be a finite S 4-module equipped with a p-semi-linear endomorphism
©: M — N such that the induced map 1 ® ¢: (64 Rpes, M) [E(w)™] = N[E(u)™] is
an isomorphism. Then N[p~'] is projective over & 4[p~'].

Proof. We induct on a. The base case a = 0 (i.e., A = W(ky)) is proved in [5],
Prop. 4.3]. Suppose a > 1. Let J be the non-zero Fitting ideal of 9% over G4
with the smallest index. It suffices to show that J&4[p™'| = Sa[p~!]. Assume the
contrary. Since Fitting ideals are compatible under base change, we have

(4.1) TG AlE(u)™"] = (J)&alE(u) ']
as ideals of G 4[F(u)™!], and so
(4.2) (&a/NEW)] = (&a/e(]))[E()~"].

Write K = W (ky)[p~']. Let B be the rigid analytic open unit ball in coordinates
(t1,...,tq, u). Hence the set of Kj-valued points of B is given by

{t . tauw) € K10 < [t ul < 1,

where we use the p-adic norm such that |p| = p~!. We have a natural map S4[p~!] —
Op whose image is dense. Note that by [15, Lem. 7.1.9], we have a functorial bijection
between the set of maximal ideals of &4[p~!] and the points of B. Moreover, the
Frobenius ¢ on &4 induces an endomorphism on B, for which we still write .
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For any real number ¢ with 0 < ¢ < 1, set
M, = {(21,...,2q11) ER|0< 2, <c} and
V. .= {(xl,...,$a+1) ERa+1 ‘ 0<x; <1 for 1 <1< a, Ta+1 :C}.
Consider the K;-valued points of Spec(&4[p~1]/J), and let Z = {(|t1], ..., |tal, |u])}
be the set of corresponding (a 4 1)-tuple norms. Define
Z'=A{(|tal, - tal, Jul) [ (lo(to)], |ul?) € Z}.

By Equation (Z2), we have Z — V|, = Z' — Vj,. Fori =1,...,a, let y;, t; € K; with
0 < |yi| <1and 0 < |t;] <1 such that ¢(t;) = y;. Note that by the assumption on
Qo(ti)’sv

lyil < max{[t;[”,p~ |t p " [tal}
for each i. So we have
N < P 1y
(4.3) max {[yi|} < max {[t:|", p~[t:]}-

First we show that Z contains a point with |u| < |7|. Suppose otherwise. Since
Z = Vg = Z' = Vjp, we deduce that if Z NV, # 0, then ¢ = |7[P"" for some integer
n > 0. By [23 §4, Eq. (5), (6)], the rigid analytic K;-space (Spf(&4/J))"8 has finitely
many connected components. So there exists a finite set of non-negative integers
{ny,...,n,} such that Z NV, # () if and only if ¢ = |7|P" ™ for some i. Without loss
of generality, let n; be maximal among {n1,...,nn,}. Since Z — Vj; = Z' — V5|, we
have Z N V‘W'pfmﬁl) # (), which is a contradiction. Thus, Z contains a point with

u| < [m|.
Next we show (0,...,0) € Z, ie., J&SA[p~!] C (t1,...,ta,u)S4[p~']. Suppose
otherwise. Then there exists f(t1,...,t,, u) € J whose constant term is non-zero,

and let b be the norm of the constant term. Since Z contains a point with |u| < ||,
we deduce from Z — Vi, = Z' — V| and the inequality (@3] that Z N M, # 0 for any
sufficiently small € > 0. But [f(t1,...,t,,u)] =b > 0if (|ts|,...,|ta],|u]) € M, for
any sufficiently small € > 0, which is a contradiction. Thus, (0,...,0) € Z.

On the other hand, we claim J&4[p~'] ¢ IS [p~!] where I = (t1,...,t,) C G4.
Suppose otherwise. Take n > 0 such that J' := p"J satisfies J' C 1&,4. We show
by induction that J" C (p,I)™ NI (as ideals of &,4) for each m > 0. The base case
m = 0 is clear. Suppose J' C (p,1)™ N I. By Equation (4.1)) and the assumption on
©(t;)’s, we have

E@)J co((p,)™NI)C (p,)™' NI
for some integer s > 0. So it suffices to show that if f € &, satisfies F(u)f €
(p, )™ NI, then f € (p, )™ N I. For this, choose a set of generators gy, ..., gy €

A=W(k)[t,. .., ta] of (p, )™ NI. We have E(u)f = S20_, gih; for some h; € & 4.

Note that we can write
e—1

J=0
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for some ¢;; € W(ky)[t1,...,t.] and A, € &4. So

B)S = (3 cuou + B S g

j=0 i=1

Setting u = 7 in the above equation, we get Z;;é(Z?:l ¢i;9:)m™ = 0 as an element,
in Ok/[t1,...,t,] where K" := W (k1) ®w@) K. This implies Z;’:l ¢;;g; = 0 for each
j=0,...,e—1,and thus f = 320 g:h, € (p, )™ N 1. Hence .J' C (p, 1) NI for
each m > 0. Since &4 is (p, [)-adically separated, we have J' = 0 and thus J = 0,
which is a contradiction. This proves the claim.

Finally, consider the p-equivariant projection &4 — G4, = G 4/16 4 = W (ky)[u].
Let Jy C &4, be the image of J. Since JG4[p~!] ¢ IS[p~!], we have Jy # (0).
Moreover, Jo& 4,[p~'] # S 4,[p~?] since (0,...,0) € Z. On the other hand, Equation
[A2) gives via G4 — G4,

(Sa0/ Jo)[E(u) '] = (&, /(Jo)) [E(u) "],
which gives a contradiction by inductive hypothesis. Hence, J&4[p~'] = S4[p~']. O
Let us return to the discussion on the projectivity of M [p~'].

Proposition 4.13. Suppose that R satisfies Assumption[2.9: R is small over O or
R =0p. If (MM, pen) is a finitely generated torsion free p-module of finite E-height
over &, then M[p~'| is projective over S[p~!]

Proof. The case where R = Oy, follows from [5, Prop. 4.3] for Ok, (cf. Notation 2.8)
and the classically faithful flatness of &.[p~!] = &,[p~'] = Ok, [u][p~']. Consider
the case where Ry is the p-adic completion of an étale extension of W (k)(Ti, ... TF").
Note that the Krull dimension of Ry is the same as that of W (k)(T{, ... T7).
Let m C Ry be any maximal ideal, and let (Rp), denote the m-adic completion
of the localization (Rg)n. Since m N W (k)(T:, ..., TF') is a maximal ideal of
W(EWTE, ... TTY), the residue field ky = (Ro)A/m(Ro)) is a finite extension of k.
Note that since p € m and ¢(m) C m, (Ry)4 is equipped with the Frobenius induced
from Ry. Let f: W (k) — (Ro)A be the composite W (k) — W(k)(T{, ..., T+ —
(Ro)%, which is compatible with ¢. Since W (k) — W (ky) is étale, f factors uniquely
through W (k) — W (kwn) — (Ro)n. By unicity, W (ky) — (Ro)j is compatible with
@. Since p ¢ m?, {p} can be extended to a minimal set generating m, and the map
W (kw) — (Ro)n extends to an isomorphism

W (kw)[t1, - - ta] = (Ro)A.

Furthermore, by Lemma .11l t;,...,t; can be chosen such that ¢(¢;) has zero con-
stant term for each ¢ (where ¢ on W (ky)[t1,...,ts] is given by the above isomor-
phism).

Now, let B C S[p~!] be any maximal ideal. Then the prime ideal ¢ = & NP is
maximal among the prime ideals of & not containing p. Thus, n == \/q + pS is a
maximal ideal of &. Let &) be the n-adic completion of the localization &,. By
the above discussion, & = W (k,)[t1, ..., tq][u] for some finite extension k, of k and
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t1,...,tq such that W(k,) < &, is compatible with ¢ and ¢(t;) has zero constant
term for each i.

Let M, = &) g M equipped with the induced tensor-product Frobenius. By
Lemma T2, 9M,[p~!] is projective over &) [p~!]. Let P, C SX[p~!] be a maximal
ideal lying over 8 C &[p~!]. Note that the natural map on localizations

(S[p~ Dy — (S D

is classically faithfully flat. Since (& [p™"])yp, @spp—1Ma[p~'] is finite projective over
(S [p~ )., we deduce that (S[p])g Qepp-1) M[p~'] is projective over (S[p~!])g.
This holds for any maximal ideal ¥ C S[p~!], so M[p~!] is projective over S[p~'|. O

4.3. Crystalline representations and Breuil-Kisin modules in the CDVR
case. We follow Notation 2.8 In particular, recall that Oy denotes the p-adic com-
pletion of R(y). Then L is a complete discrete valuation field whose residue field has
a finite p-basis given by {T},...,T,}. We first consider crystalline representations of
Go, = Gal(L/L), and study certain properties of the associated Breuil-Kisin mod-
ules. By the abuse of notation, we also write G, and G;_ for the Galois groups Go,
and Gz, respectively (see (2.2)) for the definition of Oz ).

Fix a ’non—negative integer 7. Let V' be a crystalline Q,-representation of G, with
Hodge-Tate weights in [0,7]. By [13 Prop. 4.17], there exists an & -module I,
satisfying the following properties:

e M, is finite free over &y ;
e M, is equipped with a yp-semi-linear endomorphism gy, : M — M with
E-height < r;
e Set
My, = Or, ®p0,, Mr/uMp

and equip it with the induced tensor-product Frobenius. We have a natural
isomorphism of Lg-modules Mp[p~!] & DY, (V) compatible with Frobenii.

Via this isomorphism, M [p~!] admits a topologically quasi-nilpotent connec-
tion Vi, .

We call the triple (9, o, , Var, ) the Breuil-Kisin module associated with V. Note
that [13] considers M, /uM,, instead of the Frobenius pullback M. However, we

have a natural isomorphism of Lo-modules My[p~] = (9 /ud.)[p~"] compatible
with Frobenii. Following [25], we use M, since it is more suitable when we consider
the filtration.

Let Sp, be the p-adically completed divided power envelope of & with respect to
(E(u)). The Frobenius on &, extends uniquely to Sp. For each integer i > 0, let
Fil'S; be the PD-filtration of S; as before. Let N,: S, — S; be the Op,-linear
derivation given by N,(u) = —u. We also have a natural integrable connection
Vv:S5, — St ®oy, (AZOLO given by the universal derivation on O, which commutes
with N,.

Set

M, = Sp, Q.61 My
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equipped with the induced Frobenius. If we let ¢: S, - Op, denote the p-compatible
projection given by u — 0, it induces the projection q: .#;, — Mj,.
We define two filtrations on .Z7[p~!] and study their compatibility. Let
D1 = SLlp™ @1, Do (V).
By the above isomorphism Mp[p~!] = DY..(V) and Lemma A2 we have a -
equivariant identification .Z7[p~!] = Zr. Let N,: 21, — 2, be the Ly-linear deriva-
tion given by Ny 5, ® 1, and let V: I, = 71, ®o, (lo,, be the connection given by
Vs, ®1+1® Vpy (v). Define a decreasing filtration on &, by Sf [p~!]-submodules
Fil'?,, inductively as follows: Fil’2;, = 2, and
Fil't''9, = {z € 91 | Nu(z) € FiI'Dy, q(z) € Fil'™ (L @1, DY (V)]
where ¢;: 91, — L ®r, DY (V) is the map induced by Sp[p~'] — L, u — 7. The
following is proved in [35]. Note that [35] §4.1] assumes p > 2 and r < p — 2, but the
results we will cite in this subsection hold without these assumptions.

Lemma 4.14 ([35, Lem. 4.2]). The connection V on 2y, satisfies the Griffiths transver-
sality:
V(FiI'"'2,) C Fi' D, ®o,, Qoy, -

For the second filtration, let
Fatp] = {z € ALlp™"]| (1® pm,)(z) € (FII'SL[p™"]) @e, ML}

We will see that these two filtrations coincide under the identification .Z.[p~!] = Zp
and thus Vgy, satisfies the Sp-Griffiths transversality. For this, consider the base
change along O, — W(k,) as in Notation 2.8 Note that W (k,) is a complete
discrete valuation ring with perfect residue field. Let S, be the p-adically completed
divided power envelope of &, = W (k,)[u] with respect to (E(u)). It is equipped
with ¢, PD-filtration, and N, similarly as above. Let

My =6y Qe, My, My= 558, My, and F = Sylp™'] QW (k) Dcvris(V|GKg)-

We can identify .#,[p~!] = 9, compatibly with ¢, and define two filtrations Fil'%,
and F'.Z,[p~"] similarly as above. By the proof of [32, Cor. 3.2.3], we have

Fil'9, = F'.,[p"].
(V) = D¥%uu(Vlcy,) by [38, 4B.

cris

Note also Ko, ®r, D

Lemma 4.15. Under the @-equivariant identification #1|p~'] = 21, we have
F'9;, = Fil'Yy.

In particular, the triple (Mg, pom,, Van,) i a quasi-Kisin module of E-height < r
over &y,.

Proof. We consider Z;, as a Sp[p~!|-submodule of 2, via S, ®s, 21, = Z,. Recall
that 7 is a uniformizer of O, and let e = [L : Lo]. Note that any z € S can be
written as z = ), E(ﬁ) (Zj;(l] a;ju’) for some a;; € Op, (with a;; — 0 p-adically
as i — 00). Furthermore, a;;’s can be seen to be uniquely determined by inductively
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setting u = 7. The analogous statement holds for the elements in Sy, and thus we
have SL N FllZSg = FIIZSL ' '
Let z € Fil'Z;. Since FiI'9;, C FiI'Y, = F'9,, we have

(1®@)(z) € (FiI'S,[p7']) ®s, M.

Since Sp[p~!] N Filng[p_'l] = Fil'S;[p~!] and M [p~!] is projective over & [p~'], we
deduce (1® p)(z) € (FiI'SL[p™Y]) ®s, My by Lemma BTl Thus, Fil'Z;, C F'Z;.
Conversely, let x € F'9;. Note that

(L ®ro Desis (V) NVFIl' (K @w (1) Dayis (Vi) = Fil'(L ®1, Do (V).

Cris Cris

Hence we deduce by induction on 7 that &, N Fllz.@g = Fil'9,. Since F'9; C
F'9, = FiI'9,, we have v € Z;, NFiI'Y, = FiI'Y;. Hence, F'9;, C Fil'9;. The
second assertion follows from the first and Lemma @14 N, (Fil'"™*2;) c Fil'2;, by
definition, and it is straightforward to check 0, (Fil't*2;) C Fil'Z;,, by induction. O

Next we will explain how to recover V from Z; as a representation of GG;. Note
that the embedding &7 — VV(Ob ) given in § 2.3 extends to S — Aqis(Op), which is
compatible with ¢, filtrations, and G~ -actions. We have a natural A ;s(Op)-semi-
linear Gi7_-action on A is(O7)[p~ ]®SL 91, given by the G _-action on A (O9)[p7Y
and the tr1v1al G _-action on Z;. As in [35, §4], we can extend this to a G'z-action
using differential operators as follows. For each i = 1,...,d, let Np,: 9, — 2, be
the derivation given by V: 9, — 9y, oy, Q@L =~ @Z 1 .@L dlogT; composed with
the projection to the i-th factor. Note that NT T,0r,, where Op,: 91, — 7y, is the
derivation as in § &Il For any o € G, write

o 7Tb
Q(U) = ([7[_('7]]) and &(O’) =

o =L,

Note that log(e(c)) and log(u;(c)) lie in Fil' Aeys(Of). For any element a @ z €
Acris(©f) [p_l] ®SL .@L, define

~

(4.4)
o(awr) = o(a)yi,(—log(e(e))) v (log(pa(0))) - - - i, (log(pa(0)))- N N - - - Nt ()
where the sum goes over the multi-index (i, 71, . . ., iq) of non-negative integers. Since

V4, is topologically quasi-nilpotent and since v;(—log(e(o))), v;(log(ui(o))) — 0 p-
adically as j — oo, the above sum converges. It is standard to check that this gives
a well-defined Acrls((’) )-semi-linear G -action compatible with <p Furthermore, this
G -action preserves the filtration since log(g(c)), log(u;(c) € Fil' A4i(OF) and since
N, and V satisfy the Griffiths transversality by definition and Lemma @14l
Let
V(-@L) = HomSL,Fil,gp(-@In Acris(Of) [p_l])

Using the identification

HomSL,Fil,cp(-@L> Acris(of) [p_l]) = HomSL,Fil,gp(Acrls(O )[ ]®SL -@La Crls(of) [p_l])a

we define the Gp-action on V(2;) by setting o(f)(z) = o(f(c7(z))) for any x €
Auis(O) 7' ®s, 1.
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Proposition 4.16 (cf. [35] §4]). There is a natural Gp-equivariant isomorphism
V(9 = V.

Proof. This is proved in [35], §4], and we sketch the proof here. We first study how
above constructions are related to étale ¢-modules. If we let M = O¢ 1 ®s, M,
with the induced ¢, then M, is an étale p-module over Og 1. Consider the Gy _-
equivariant map

Home, (M, &%) — TV(M;) = Homo, , o(M, OF,)

induced by the embedding é‘f — @grL By [35, Lem. 4.6], this map is an isomor-
phism.
The embedding ¢: @‘f — A¢is(O7) induces a natural sz—equivariant injective
map R
Home, (M, SF)[p~"] — V(Z1)
by Lemma On the other hand, any f € V() induces a ¢-equivariant map
I DYi(V) = Beis(Op) via the map DY, (V) — 2. We see that f’ is also compat-

cris cris

ible with filtration, since Be.is(Of) = Beis(Ox;) and the induced map Dgyis(Vlgy, ) —

Beis(Ox;) is compatible with filtration by the proof of [10, Lem. 8.1.2] and [32, §3.4].
So we obtain a natural injective map

V(21) — Hompi , (D (V), Beris(O1)).-

Since Home, (M, Su)[p~'] and V are Q,-vector spaces of the same dimension,
it suffices to show that Hompy ,(DYis(V), Bais(O)) admits a Gr-action compatibly
with V(Z;,) and there exists a natural isomorphism Hompy (D (V), Beris(Or)) =2V
as G p-representations.

Write D = DY (V) for simplicity. By Lemma 211l we have a Bs(Ogp)-linear
isomorphism

B.is(Op){ X1, ..., X} = OBuis(O7)
given by X; — T; ® 1 — 1 ® [T7]. Consider the projection
pr: OBcris(Of> — Bcris(Of)

given by X; = T; — [T?] + 0, which is compatible with filtrations and ¢. This induces
the projection
pr: OBcris(Of) ®L1,L0 D — Bcris(Of) ®L2,Lo D
compatible with ¢ and filtrations (after tensoring with L over Ly). Here, ¢;: Ly —
OB.,is(O7) is the natural map given by T; — T; ® 1, and t9: Ly — Bis(Op) is the
map given by T; — [T7].
We define a Bis(Op)-linear section s to pr as follows. For z € D, let

it tida (1o i oo (lo E i N (g
s(z) =) (-1 %1(1g([TH)) %d(lg([Tg]))NTl Ny (z)

where the sum goes over the multi-index (i1,...,44) of non-negative integers. It is
shown in [35] §4.1] that s is a well-defined section inducing an isomorphism

St BcriS(Of) Ruy,L0 D i) (OBcriS(Of) ®u1,Lo D)VZO
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of Buis(Or)-modules, compatibly with filtrations and ¢. Furthermore, if we define
Gr-action on Bs(Of) ®,,.1, D by

ola®@x) =" o(a)y,(log(t(0))) - %i,(log(pa(0))) - Nii - - Nyt (x)
for 0 € Gy and a ® © € Bis(O7) ®,,.1, D, then by loc. cit., the map
V(21) — Hompi (D, Beis(O1)) = Hompil o (Beris(Of) ®15.00 D, Baris(Or))
is Gr-equivariant, and s induces a G -equivariant isomorphism
Hompi (D, Beis(Or)) = Hompy ,, v(D, OBeis(Or)) = V.

This shows that V(%) = V as representations of G . O

Since Homsg;, (M, S p 2V as G -representations, we have a natural map
M, — S6F ®z, VY. Via the embedding & % Bui(Or) < OBus(Or), this

induces a map #[p~'] — VV ®q, OBis(Or). Composing this with the section
Mp[p~'] — #L[p~'] in Lemma L2 we obtain a p-compatible map

My, [p_l] — OBcris(Of> ®Qp VY.

Write D = DY, (V) as before. If we compose the above map with

cris

OB..is(O7) XqQ, VY ac—rl1°> OB..is(O1) ®,,., D L B.is(O7) @41, D,
then we obtain a ¢-compatible map
Mp[p™'] = Bais(Of) @y, D.
We will use the following proposition in § 4.5l

Proposition 4.17. The image of the above map Mp[p™'] = Beuis(Of) ®iy.1, D lies
m
D = LQ ®LO D C Bcris(Of) ®L2,Lo D.

Furthermore, the induced map Mp[p~'] — D is an isomorphism of Lo-modules.
Proof. The construction of Gz -equivariant isomorphisms
V(Z1) = Hompy (D, Bais(OF)) = V

and diagram chasing implies that the above map injects into D C Bis(O) ®,y.1, D-
Since My [p~!] and D are Ly-vector spaces of the same dimension, the induced map
Mp[p~'] — D is an isomorphism. O

4.4. Construction of the quasi-Kisin module I: definition of 2. We now work
over a general base ring: consider R and & = Ry[u] as in Set-up 2.3 and Notation 2.6l

Let V' be a crystalline Q,-representation of G with HodgeTate weights in [0, 7],
and let T" be a Z,-lattice of V' stable under Ggr-action. Let

M = MY(T) = Homg,_(T,OF)

be the associated étale (¢, Og)-module. In the following, we will construct a quasi-
Kisin module over & of F-height < r associated with T'.
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Consider the base change along the map R — (O as in Notation 2.8 If we
consider 1" as a representation of G, = Go, via G — Gg, then T' is a Z,-lattice in
a crystalline G -representation with Hodge—Tate weights in [0, r]. Note that M =
O, ®o, M = Homg, (T, (’322) as étale (¢, Og 1)-modules.

Lemma 4.18. There exists a unique Sy -submodule M of My, stable under Frobe-
nius such that the following properties hold.

o M, with the induced Frobenius is a quasi-Kisin module over &, of E-height
< r. Furthermore, My, is free over Gp;

o OUs 1 Rg, My = My,

o if we let M, = Or, ®p0,, ML /uMy, then ML[p~'] = D (Vla,) compatibly

with Frobenius and connection.

Proof. By [13, Cor. 4.18] and Lemma [£.15] there exists a quasi-Kisin module 9t over
S, of E-height < r such that N is free over &y, and Or,[p~] R0, M/uM =
D!..(V|g,) compatibly with Frobenii and connections. By [20, Lem. 4.2.9], M, =
N[p~t] N M satisfies the required properties. The uniqueness also follows from the
cited lemma. O

Construction 4.19. Let T" be a crystalline Z,-representation of Gr with Hodge-Tate
weights in [0, 7] and keep the notation as above. We set

M :=M(T) =M, N M C M.

This is an G-module. Moreover, since 9, and M are p-adically complete and torsion
free, so is M.

We will show that 91 is a quasi-Kisin module over & of E-height < r satisfying
O Qe M= M and 67 ®s IM = M.

Proposition 4.20. The &G-module M is finitely generated. Furthermore, we have
Mu™ | NMp~'] =m.

Proof. Note that the cokernels of the maps &, — O¢ 1, and Og — Og¢ 1, are p-torsion
free. So the maps M /pIM;, — M /pM and M /pM — My /pM| are injective.
By the proof of [33, Lem. 4.1], the intersection 9 /p9M, N M /pM inside My /pM
is finite over &. To show that 91 is finite over &, it suffices to prove that the natural
map M/pM — M, /p, N M/pM is injective since & is noetherian and 9N is
p-adically complete.

We have

P, NM = pINt, "M C pMpN M.
Since pOg¢ ;N Os = pOg¢ and M is classically flat over Og, we have pM;NM C pM.
Thus,
PN, NI C pINy N pM = pIN,
where the last equality follows from the p-torsion freeness of M. Thus the map

M /PN — M /pN,, is injective. Since this map factors as M /pIN — N, /pIt, N
M/pM — M /pMy, we deduce the desired injectivity.
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For the second part, since 9 is torsion free, we have 9 C Mu "] N M[p~']. On
the other hand,

Mu~ ] NMp ] CcMe[u ] NM[p'] = My,
and thus
Mu ] NMp~] C Mu ] NnM, c MM, =M.
O

Since the Frobenius endomorphisms on M and 9, are compatible with that on
Mo, , we have an induced Frobenius ¢gy: 0T — .

Proposition 4.21. The S-module 9N with Frobenius has E-height < r.

Proof. Since the composite of maps 6 ®, e M — O Xy 0, M 24 M is injective,
1®p: G®,eM — M is injective. Consider the natural map G ®, e O — Os Xy o
O¢. Since 6 ®, ¢ Of and Of ®, 0, O are p-adically complete by Lemma 2.7 and
since the induced map &/(p) ®ye O = Og/(p) ®y,0, Of is an isomorphism, the
map 6 ®, s O = Of @y, 0, Of is an isomorphism. Thus, the map

6 ®g076 M — OE ®go,(95 M

is an isomorphism. On the other hand, since Ry/pRy has a finite p-basis which is also
a p-basis of Or,/pOy,, the natural map &/(p) V,e &1 = S./(p) ®pes, ©1 is an
isomorphism. Since 6 ®, ¢ &1, and &, ®, s, G are p-adically complete, the map
6 Rue 61 — 6 ®ype, 6 is an isomorphism. Hence

is an isomorphism.

Now, let x € 9. There exists a unique y; € Of ®y0, M = 6 ®, s M such that
(1®¢)(y1) = E(u)"z. On the other hand, there exists a unique y, € S, ®, s, ML =
S ®yp,e My, such that (1 ® ¢)(y2) = E(u)"z. Hence, we have

Y1 = Y2 € (6 R, & M) N (6 Q.6 mL) =6 Rp,& m
by Lemma B.1]since p: & — & is classically flat. O

Next we will show that 9t satisfies O ®g M = M and & ®s M = M. For
this, we consider another description of 9 as an inverse limit of p-power torsion
G-modules as follows. Let

me,n = me/p"imL, Mn = ./\/l/p"./\/l, and ML,n = ML/p"./\/lL.
Then My, , and M,, are submodules of My ,,, and we set
iD/t(n) = iD/tL,n N Mn C ML,n~

For any positive integers ¢ > j, let ¢; ; denote the natural projection M; — M given
by modulo p’, as well as its restriction g; ;: M) — M(;). We have the commutative
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diagram
qi,5
ker(g; ;)¢ fmfi) fmfa')
M, M; — M.

Lemma 4.22. We have a natural isomorphism

M = lim M.

Proof. Recall that 90 is p-adically complete. By a similar argument as in the proof
of Proposition @20, the natural map 9t/p"M — M, is injective for each n > 1. So
the induced map

f: M= lm OR/p 9N — lim My,

is injective. On the other hand, let = (z,),>1 € @n Mn). Note that z,, lies in
both M, , and M,, as an element in My, ,,. Thus,

€ (ImMy,,) N (JmM,,) C lim My,

ie, r € M, N M C M. This implies that x lies in the image of f, and thus f is
surjective. ]

Remark 4.23. Suppose r = 1 and e < p — 1. By the above lemma and [33, Prop. 4.3,
4.5], M is projective over &. For general r > 0, as noted in [33, Rem 4.6], the &-
module 9N is projective when er < p — 1. In particular, when r = 0, 9 is projective
for any e.

Proposition 4.24. The following properties hold for M, :
(1) My is a finitely generated S-module;
(2) gﬁ(n) [u‘l] =M, and S Qs gﬁ(n) = SUth;
(3) M@y has E-height < 7.

Proof. Since the composite of maps E®, M) — Oc®,.0. M, 189, M, is injective,
1®¢@: 6 ®pe M) — My is injective. Thus, all statements follow from the same
argument as in the proofs of [33, Lem. 4.1, 4.2] (where the case r = 1 is studied). O

Consider the set o7, consisting of G-submodules 91 of 9,y that are stable under
o, have E-height < r, and satisfy M[u~!] = M,,. Let

=[] N M.
NETpn
Lemma 4.25. The following properties hold for sz’n) :
(1) 9:)/th) S ’an; .
(2) My C Q1,0 (MG,, 1)
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Proof. (1) Let e :== [K : K] be the ramification index. We first show that for each
fixed n, there exists an integer s = s(n) such that u*M,y C N C M, for all N € 7,.
Choose an integer a = a(n) > r such that E(u)* = u® mod p". Let M € 7, and
L = M,y /M. Without loss of generality, assume £ # 0. Note that () and N
have FE-height < r and thus E-height < a. Hence we have unique G-linear maps
Yo,y Mny — @My and Pyr: N — ©*N such that Py o (1® pxn) = uId,-n and
Yo, © (1® gpgm(n)) = uIdgean,, -

The exact sequence 0 — 9 — M,y — £ — 0 induces the commutative diagram
with exact rows:

0 ©*N O M) L 0
l 1®pn J{ 1®@om l 1®pe

0 N Mo I3 0
ldfm lwm(n) ng

0 ©*N ©* M) 0 L 0.

Here, 1 ® ¢ and ¢ are the maps induced by 1 ® oy, and oy, respectively. We
have 1¢ o (1 ® @g) = u®ldymge.

We will show that u*£ = 0 for s = (2””1 Since N[u~!] = M,, = Mylu™], £
is killed by some u-power. Take an integer [ > 1 such that u/£ = 0 and u/~1€ # 0.
Pick € £ so that u!~!'2 # 0. Set y = 1 ® x € ¢*£. Then v’y = 1 @ u'z = 0 but
uPl=Vy = 1® (u!~1x) # 0, since ¢: & — & is classically faithfully flat by Lemma 2.7
Let 2z = (1 ® ¢e)(y) € £. Since u'£ = 0, we have u'z = 0 and thus

0= te(u'z) = (e o (1® pe))(y) = u**y.
Soea+1>p(l—1)ie,l< ep"TJ’IP. Hence v’ =0 for s = [e;”%f’] This implies that
usm(n) - f)ﬁ?n) C m(n), and imfn) [u‘l] = M,.

It remains to show that im‘(’n) has E-height < r. Let z € im‘(’n). We need to show
there exists y € ¢™IM(,, such that (1 ® ¢)(y) = E(u)"z. For each N € «7,, we have

x € M, and there exists y € ™M, which is unique as an element of p*M,,, such that
(1®¢)(y) = E(u)"x. Since ¢: & — & is finite free by Lemma 27, we deduce

ye () (B @peM =68us([] N =M,
NE, Nedp
(2) Since Sﬁfnﬂ)[u_l] = M1 and ¢i1.0(Mig1) = M, we have qn+1,n(9ﬁ‘(’n+1))[u_1] =
M,,. So it suffices to show that qn+17n(9ﬁfn+1)) has E-height < r. Let 8 = Ker(g,+1,)-
We have the commutative diagram with exact rows:

0 —= " R——= "M 1) — @ G0N 4q)) —0

l J1e- J1ev

dn+1,n

0 R m(()n_,_l — Qn-l-l,n(m(()n-kl

) ——0
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Since qn+1,n(im‘(’n +1)) C M, the rightmost vertical map is injective. From the first

part, 1 ® ¢ in the middle column has cokernel killed by F(u)". Hence the cokernel of
1 ® ¢ in the rightmost column is killed by E(u)". O

Proposition 4.26. The natural maps
Os @M > M and G Rs M — M.
are 1somorphisms.

Proof. We first prove Og eI = M. Since M ®s O and M are p-adically complete
and M is p-torsion free, it suffices to show that the induced map

fr Og @e M/pI = (M/pM)[u™] — M,
is an isomorphism. It is shown in the proof of Proposition that t/pIt — My
is injective. Hence f is injective. By Lemma (.28 we have 9t/p9t D My and thus
f is surjective.

For the second isomorphism, note that &; ®e M/PIN — &1 ®s M) = My, is
injective since & — & is classically flat. Since & ®g M is p-adically complete and
My, is p-torsion free, S Rg M — My, is injective. In particular, S ®g M is a finite
torsion free G -module. Furthermore, since & — &, is classically flat, we have

(GL R gﬁ)[u_l] N (6L IS gﬁ)[p_l] =MRs &y,

by Lemma [B.I] and Proposition 4200 Thus, &1 ®s M is a finite free &-module.
Since 9 has E-height < r by Proposition [4.21, 6 ®¢ 9 with the induced Frobe-
nius has F-height < r. We have

O¢ 1 ®s, (6 R M) = O¢ 1, o, (O s M)
= O¢1 @0, M= O 1 s, M.

Hence, we deduce &1, ®g 9 = N, by [20, Prop. 4.2.5, 4.2.7]. d

4.5. Construction of the quasi-Kisin module II: definition of V. We further
suppose that either R is small over O or R = Of, (Assumption 2.9]).

Let M = Ry ®y,r, M/udM. The Ry-module M is equipped with the induced
tensor-product Frobenius. We will construct a natural yp-equivariant isomorphism
Mp™] = DY, (V), via which we define V on M[p~']. Consider the ¢-equivariant

cris

map Ry — W (k,) as in Notation 28] which naturally factors as Ry — Or, — W (ky).
Lemma 4.27. The natural Gz _-equivariant map

Homeg (9, &™) — TV (M) = Homo, ,(M, OF) = T
s an isomorphism.

Proof. This follows from Lemma B.31] and a similar argument as in the proof of [35],
Lem. 4.6]. O

Proposition 4.28. Suppose that R satisfies Assumption[2.4. There exists a natural

p-compatible isomorphism M[p™!] = DY (V).

cris
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Proof. Let A = S ®,e M equipped with the induced Frobenius. Consider the ¢-
compatible projection S — Ry given by w + 0. This induces the projection q: .# —»
M. By Lemma [£.2] Propositions 4.13] and [£.27], the projection ¢ admits a unique ¢-
compatible section s: M[p~'] — A[p~'], and 1®s: S[p~|®@pyp-y Mp~'] = A [p~"]
is an isomorphism.

We first construct a @-equivariant map M[p™!] — Dgis(V) similarly as in § L3
By Lemma [4.27] we have a natural map 9t — Gw ®q, VY. This extends to a
map 4 — OBeis(R) ®q, V" via the embedding Gw 4 Bais(R) = OBeis(R). So
by composing with the section s: M[p™'| — .#[p~'] given in Lemma 2], we get a
p-compatible map

(4.5) M[p_l] - OBcriS(E) ®q, VY.
By Lemma ZT1], we have the projection pr: OBes(R) — Beis(R) given by T; ® 1 —
1 ® [T?] — 0. This induces the projection

pr: OBcriS(§> ®u1,Ro DY, (V) — BcriS(E) g, Ro D (V)

Cris cris

where 11: Ry — OBgis(R) is the natural map given by T; + T; ® 1 and 15: Ry —
Be.is(R) is the embedding given by Tj ~ [T7].
If we compose the map (4.5 with

OBcris(E> ®Qp VV % OBcris(E) ®L1,R0 DV (V> B} Bcris(§> ®L2,R0 DV

Cris Cris

V),
then we obtain a ¢-equivariant map
[t M[p_l] - BcriS(ﬁ) ®12,Ro Deis(V).

Cris

By Proposition 417, we have
f(M[p ]) - Dg/rls(v‘GL) LO ®R0 Dcrls(v) - BCI‘iS(Of) ®L27R0 D(\/‘/I‘IS(V)
We claim that
Bcris(R) N LO = RO[p_l]
as subrings of Bes(Op). Since O, C A.is(Op), it suffices to show
A s (E) N OLO = Ry.
We clearly have Ry C Auis(R) N Op,. Let 1 € Agis(R) N Op,. Then
6(x) e R N Oy, = Ry C O,

which implies x € Ry. This shows the claim.
Hence, we have by Lemma [3.1] that

FM[p™']) € Beris(R) @rypp1) Degis(V)) N (Lo @rofp—1) Deris(V)) = Desis (V)
since DY, (V) is projective over Ro[p™']. This gives a natural ¢-equivariant map
(V).

f: M[p™'] = Dy
It remains to show that f is an isomorphism. Note that by Proposition 17, it
suffices to consider the case where Ry is the p-adic completion of an étale extension
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of W(k)WT{, ..., TF). By Propositions and 226, M[p~!] is projective over
Ro[p™!] of rank equal to rank DY. (V). Moreover, by Proposition EEIT] the map

LO ®Ro M[p_l] - D(\:/ris(v‘GL) = LO ®Ro D;/ns(v)

induced by f is an isomorphism. In particular, f: M[p~'] — DY, (V) is injective.
Let I C Ro[p~!] be the invertible ideal given by the determinant of f. Since 1 ®
o: o*M[p~'] — M[p~'] and 1 @ ¢: ¢*DY. (V) — DY..(V) are isomorphisms, we
have

P(I)Ro[p™"] = I Ro[p™"].
So I = Ry[p~!] by Proposition (which is based on Lemma [4.29)) below, and f is
an isomorphism. O

Lemma 4.29. Let ky be a perfect field of characteristic p, and let A = W (k1)[t1, ..., t4]
be a power-series ring. Suppose that A is equipped with a Frobenius endomorphism ¢

extending the Witt vector Frobenius on W (ky). Let I C A[p~'] be an invertible ideal

such that TA[p~'] = p(I)A[p~']. Then I = A[p~!].

Proof. Suppose I # A[p~']. Since A is a UFD, so is A[p~!]. Hence [ is principal, say,
generated by z. Since p is a prime element of A, we may choose x so that x € A~ pA
and z is not a unit in A. Write ¢(z) = aP + py for some y € A. Since p { x, we
deduce from p(I)A[p~!] = I A[p~!] that y = xz for some z € A. Thus,

o(r) = z(2P~ + p2).
P! 4 pz is not a unit in A since it lies in the ideal (z,p) which is contained in the

maximal ideal of A. Note that p { (27! +pz) as elements in A. Thus, 2P~ + pz is not
a unit in A[p~'], which contradicts ¢(I)A[p~'| = I A[p~']. Hence, I = A[p~']. O

Proposition 4.30. Suppose Ry is the p-adic completion of an étale extension of
W(kNTE, ..., TY). Let I C Ro[p™'] be an invertible ideal such that ¢(I)Ry[p~t] =
IRo[p~']. Then I = Ry[p™!].

Proof. Let B C Ry[p~!] be any maximal ideal. Then the prime ideal ¢ = Ry NP
is maximal among the prime ideals of Ry not containing p, and n := /q + pRy is a
maximal ideal of Ry. Let (Ry), be the n-adic completion of the localization (Ry),. As
in the proof of Proposition EI3] (Ro)s = W (kn)[t1,...,tq] for some finite extension
ky of k and ty, ..., tq such that W(k,) < (Rp)} is compatible with ¢.

Since the natural map Ry[p~'] — (Ro)2[p~'] is classically flat, we have I(Ry)~ [p~!] =
(Ro)2[p~'] by Lemma B29 Let B, C (Ro)a[p~'] be a maximal ideal lying over
B C Ro[p~']. Note that the natural map on localizations

(Rolp™ Dy = (Ro)ulp™ D

is classically faithfully flat. Since I((Ro)2[p™'])p. = ((Ro)alp™*])g., we deduce that

I(Ro[p™])p = (Rolp™'])p. This holds for any maximal ideal P C Ry[p~'], so [ =

Ro[p_l]. ]
By Proposition .28, the connection on DY, (V') defines a connection

cris

Von: Mp~'] = Mp~] @, Qr,.
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Finally, we will show that Vg satisfies the S-Griffiths transversality. For this,
we study the compatibility between two filtrations as in § 4.3 By Lemma and
Proposition [4.28] we have a natural p-equivariant isomorphism

M~ = S[p7] @pe M= S[p~'] @p, Dsis(V)-
Let 2 = S[p~!] @g, D...(V), and identify 2 = .#[p~!] via the above isomorphism.

Let N,,: 9 — & be the Ry-linear derivation given by N, = N, s®1, and let V: I —
2 ®r, Slg, be the connection given by Ve ® 1 + 1 ® chvris(V)' We consider two
filtrations on 2 = .#[p~']. For the first filtration, set Fil’% = 2, and inductively

define for i > 1
Fil'9 = {x € 2| N,(v) € FiI'' 92, ¢.(z) € Fil'(R®g, DYis(V)},

where ¢-: 2 — R®g, D,

vis(V) is the map given by u — m. For the second filtration,
let

Fiap™])={z e Sp Rpe M| (1 ®om)(x) € (FiI'S[p~1)) @s M}.

Lemma 4.31. We have
Fi#p~'] =Fil'g.
Furthermore,
V(Fil'?) C Fil' ' 2 @p, Q..
In particular, V satisfies the S-Griffiths transversality.

Proof. By Proposition .26], the first part follows from a similar argument as in the
proof of Lemma using the base change along Ry — W (k,). The second part
on the Griffiths transversality follows from a similar argument as in the proof of [35,
Lem. 4.2]. Note that N, (Fil’?) C Fil"'2 by definition, and it is straightforward to
check 0,(Fil'?) C Fil'"*'2 by induction. O

Combining this with Propositions .13 and d.21], we conclude the following.

Proposition 4.32. Suppose that R satisfies Assumption[2.9. With the above struc-
tures, M is a quasi-Kisin module over & of E-height < r.

4.6. Proof of the second part of Theorem [B.28. Throughout this subsection,
we suppose that R satisfies Assumption 2.9

Let V be a finite free Q,-representation of Gr, which is crystalline with Hodge-
Tate weights in [0,7]. Let 7" C V be a Z,-lattice stable under the Gg-action, and
let M be the quasi-Kisin module over & of E-height < r associated with T as in
Construction and Proposition .32

By Propositions and [£9, we have a rational Kisin descent datum

F 8@, sMS S p Y o,s M

On the other hand, since T is a finite free Z,-representation of Gg, [7, Cor. 3.8] (see
also [34, Thm 3.2]) gives an isomorphism of & [E~!])-modules

fi: 8PENN @, 0. M= SAEN @, 0, M
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satisfying the cocycle condition over &®[E~]". Here, by Proposition 26, M =
O ®g M is the étale p-module finite projective over O associated with T' (con-
travariantly). Note SH[E!)®, ¢ M =SP[E)®, o, M since Oz ®s M = M.

Proposition 4.33. Under the identification
SAE ] ©p6 M= 6P [E])

p

[p_l] ®pj,(9£ M>
the maps idgm[Efl]mpfl} Q@ p-1] f and idge) (E-1]A [p-1] R (2115 f1 coincide.

To show Proposition £.33], let us consider the base change along Ry — Oy, as
before. Recall that (&, (E)) = (Op,[u], (£)) is a prism in R) with the structure
map R — Op = 6. /(F). Let (G(Lz), (E)) be the self-product of (&, (E)) in (Or) .
Considering (Gf), (E)) as a prism in R, the maps f and f induce the descent data

fL: 6(L2) [p_l] Qp1,61, My i 6’(Lz) [p_l] Opo,&1, My,
and
fl,L: 6(L2) [E_ILQ Q1,61 My, — G(Lz)[E_l]g Opa, &1, gﬁLv

respectively. Here, M; = & ®s M by Proposition @26 Since the map & —
6(L2) is injective, Proposition K.33] follows if we show that f; and f; 1 coincide over
6(L2) [ E—l]/\

A [p~!]. For this, we need the following proposition.

Proposition 4.34. There exists an Sp-submodule Ny, C My, with Ny [p~'] = My [p~]
such that fr induces an isomorphism of G(Lz)—modules

fr:6% 0,6 N = 6P 0,6, N

Furthermore, Ny, can be chosen to be finite free over & of E-height < r and stable
under ooy, .

Proof. Since p;: &, — 6532) is classically faithfully flat by Lemma 3.5 the first part
follows directly from the proof of [16, Prop. 3.6.5]. We recall some points here. Note
that for any &-submodule 91, C My, the induced map p!MN;, — p;My, for ¢ = 1,2

is injective, where p!91; denotes G(Lz) ®pi.e, Nr. Take an integer n > 0 such that
p" fr maps pi9Ny, into p39N ;. It suffices to find an &p-submodule 91, C M, such
that p"M;, C Ny and fr, maps pi; to piIy. The map fr induces a map

fre Py (M /p"Mp) — pa(p~ "My /M)
This induces a morphism
52 imL/p"QﬁL — (ID(p_"imL/imL)
where @ := (p1).p5. Let D be the kernel of the composite

ED?L — imL/p"QﬁL ﬁ) (ID(p_"imL/imL)

Then fL(piNL) C p39My, and by the proof of [16, Prop. 3.6.5] (cf. also the proof of
[37, Thm. 1.9]), we further have f(piN;) C p3Ny.
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Since fr is compatible with Frobenius, 5 as above is compatible with ¢. Thus, 91,
constructed as above is stable under ¢. Consider the exact sequence

0— Ny, — M, — (M) —0

where S(M ) C O(p~ "M /M) denotes the image of M, under the above composite.
Under the classically faithfully flat base change along &, — &, this induces an exact
sequence
0—6,Rs, N = 6, Vs, M, = 6, e, (M) — 0.

Note that &, ®s, M, is a Kisin module of E-height < r that is finite free over &,.
Furthermore, S(9) is u-torsion free since p~ "My /M, is finite free over &1 /p" Sy,
and so 6, ®g, B(My) is u-torsion free. Thus, S, Vs, S(My) is a torsion Kisin
module over &, of E-height < r by [31, Prop. 2.3.2]. Then 6, ®s, My, is a Kisin
module of E-height < r finite free over &, by [31, Cor. 2.3.8]. Since &, — &, is
classically faithfully flat, 91, is finite free over & and has F-height < r. U

Proof of Proposition[{.33. By the above proposition, N, := O | ®s, My, is an étale
p-module finite free over Og¢ 1, and f;, induces an isomorphism of 6(L2) [~ -modules

fL: G(Lz)[E_l];zA) ®P1,(9£,L NL - G(Lz)[E_l];zA) ®P2,(9£,L NL

satisfying the cocycle condition over G(L?’) [E7']). As in the proof of Proposition 3.26]
this corresponds to a finite free Z,-representation 7" of Gj. Furthermore, by [7,
Cor. 3.7, Ex. 3.4], T" is determined by the G-action on W(Obf[(ﬁb)_l]) ®oe,, N
On the other hand, note that (Auis(O7), (p)) € Ry similarly as in Example 3.8, and
the composite S — Sp, — Aqis(Or) gives a map of prisms (S, (p)) = (Awis(Or), (p))
over R. Thus, by the construction of the descent datum f and definition of fg in
Construction 4.3, the G -action on Aqis(Op)[p 1] ®@p.e, N = Auis(O7)[p 1 ®s, 21
(Wlth 9D, = SL[p_l] ®<P,6L EJJIL) is given by

fsla@a) = o(a)drap - 0, (x) - v (o([x’]) — [7]) H V(o ([T7]) = [T7]),

for o € G and a®@x € A4is(O7)[p~ 1 ®s, Z1, (Where the sum goes over the multi-index
(Jos - - -, Ja) of non-negative integers). By [29] §8.1], this is the same as the Gz-action
given by Equation (4.4]), and it is proved in § 3] that this gives a Q,-representation
of G isomorphic to T[p~!] = V. Thus, T[p~!] = T’'[p~!] as representations of
(. This proves the claim that f, and fi, coincide over & [E71)[p~"] and thus

Proposition [£.33] O
By Proposition [4.33] we see that the descent data f and f; induce a map
f: m — (6(2) [p_l] ®p276 i)ﬁ) N (6(2) [E_l];y\ ®p2,6 m)

End of the proof of Theorem[3.28 (2). By Lemma 10, we see that f and f; induce
a map

finr: 6P @, M — 6P @, s M.
By applying a similar argument to f~! and f;!, we deduce that fi, is an isomor-
phism. Namely, fiy is a descent datum. Since f is compatible with ¢, so is fiy;. By
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Proposition B.25] the triple (I, ¢, fing) gives rise to a completed prismatic F-crystal
F on R with MM = Fg. It is straightforward to see T'(F) = T. Hence the functor T’
in Theorem [3.28] is essentially surjective (when R satisfies Assumption 2.9]). U

Remark 4.35. We continue the discussion in Remark B30 For F € CR™?(R)), let
V =T(F)pY € Repczr;fzo(gR). Consider the p-equivalent Ry[p~!]-linear isomor-
phism

h: (Ro ®g,ry Fo/uFe)p™'] = Dgs(V)
in Remark 3.301 Note that Fs[p~'] = S[p~!|®, s Fes by Lemma (4) for the map
of prisms (&, FE) — (S,(p)). So h induces a y-compatible isomorphism Fg[p~!] &
Slp™' ®r, DY%i(V) by Lemma 2,

Since F € CR™¥?(R)), we have an isomorphism of &®-modules

Under the map ¢: & — S@ this induces an isomorphism of S®[p~']-modules

(4.6) fs: SPp T @5 Fs = 5@ [p7"] ®p,,s Fs.

Note that fg reduces to the identity after the base change along S® — S and it
satisfies the cocycle condition over S®. Let v: Ry Qw Ry — Ry be the natural

projection, and let Réz) be the p-adically completed divided power envelope of Ry®y,
Ry with respect to Ker(v). We also write v: R(()z) — Ry for the induced map. Consider
the map S® — R(()z) given by u,y — 0. From the isomorphism (4.6]), we obtain an
isomorphism of R [p~]-modules

Sy B 071 @p1.m Do (V) = B [p7) @iy Deri(V)
such that fr, reduces to the identity after the base change along v and it satisfies a

similar cocycle condition. Since Qp, = Ker(v)/(Ker(r))2 where (Ker(v))2 denotes
the divided square of Ker(v), the isomorphism fr, gives an integrable connection

V: DY (V) = DY (V) ®g, Qr,. On the other hand, we have the natural integrable

cris cris b

connection on DY, (V) induced by that on OBs(R) (cf. §22)). In the proof of
Theorem [B.28] (2) on essential surjectivity, the isomorphism (4.6]) is obtained by Con-
struction using the natural connection on DY, (V') as in § Thus, V given

above agrees with the natural connection on DY (V).
Define the filtration on Fg[p~'] by

F'Fslp™' ] ={z €S ®pe Fe | (1©®¢)(zx) € FI'S[p™"] ®e Fe}.

Let Fil'(R ®g, DY.(V)) be the quotient filtration given by F'Fg[p~'] under the map
Gr: S — R, u— w. By the proof of Theorem (2), Lemma [3T] and a similar
argument as in the proof of [10, Prop. 6.2.2.3], this quotient filtration agrees with the
natural filtration on R®pg, D% (V) as in §[221 In this way, we can directly obtain the

Cris( -
filtered (p, V)-module (DY, (T(F)[p~']), V,Fil'(R ®r, DY (T(F)[p~']))) from F.

cris

Corollary 4.36. The étale realization functor gives an equivalence of categories from
Vec%,r] ((OL)p) to Repz ) 0.,(GL).-
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Proof. By Remark B.I8 the category CR[AO’vf](((’)L)A) is equal to Vect{ ,((Or)p). So
the statement follows from Theorem [3.28 O

Remark 4.37. As a corollary, we can deduce that the construction of Brinon—Trihan
in [13] is independent of the choice of a uniformizer and the Kummer tower.

APPENDIX A. CRYSTALLINE LOCAL SYSTEMS

Let X be a smooth p-adic formal scheme over Ok and let X denote its adic generic
fiber. In this appendix, we define the notion of crystalline local systems on X, which
is used in § The definition of crystalline local systems goes back to the work
[18, V f)] of Faltings. Tan and Tong [43] also define crystalline local systems in the
unramified case O = W and prove that their definition agrees with the one given
by Faltings. Since we also work on the ramified case, we give a minimal foundation
that generalizes part of the work of Tan and Tong.

For our purpose, we work in two steps: when there exists a smooth p-adic formal
scheme Xy over W such that X = Xq ®w Ok, we define the pro-étale sheaf OB, on
X and use it to define crystalline local systems. Note that this assumption is satisfied
Zariski locally, e.g., by considering a Zariski open covering consisting of small affines.
In the general case, we define crystalline local systems via gluing.

Let X,rost denote the pro-étale site defined in [40, §3] and [4I]. It admits the
morphism of site v: Xpoer — Xes.

Definition A.1. We introduce sheaves on Xpo4t.
(1) ([40, Def. 4.1, 5.10]). Set

0% =v 0%, (5;2 = @O}/p", Ox = @}[p_l], and (5;2b = lim @}/p
D x—aP
(2) (40, Def. 6.1]. Set Ay = W(@;b) and Bi,; = Ai[p~!]. We have ring

morphisms 0: Ay — @} and 0: By — Ox.
(3) (43, Def. 2.1]). Let A%, be the PD-envelope of A;,; with respect to the ideal
sheaf Kerf, and set A = @AO /p". Note that the series ¢t = log[¢]

cris

converges and is a nonzero-divisor in Agis|x. See [43, (2A.6), Cor. 2.24].

Now assume that X admits a W -model, namely, there exists a smooth p-adic formal
scheme X over W such that X = Xy ®@w Ok. Let X, denote the adic generic fiber of
Xo. Hence we have a canonical identification X = Xy Xgpawp—1,w) Spa(K, Ok). In
[43, § 2B], Tan and Tong defined the structural crystalline period sheaves OA s x,
and OBis x, on (Xo)proet- We define structural crystalline sheaves on X0 in a
similar way.

Definition A.2 (cf. [43, § 2B]). Consider the morphisms of sites
w: Xproét — Xep — Xep — (:{O)ét-
Define sheaves O%+ and O% on X 04 by

ur ur/X — ur ur/X% _ _
Out = 0N = T Oy, and O = 0% = w1 Oy Y.
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Set QA = O%' ®z Apy. By extending the scalars, we have an O "-algebra

morphism Oy : OA;; — (5} Define OA..;s to be the p-adic completion of the PD-
envelope OA? . of OA;, with respect to the ideal sheaf Ker x. Note that QA is

an Ais-algebra. Set
OBt

Here the sheaf OBZ,|x _[t7'] on Xjwer/x,. naturally descends to a sheaf on Xiprost
and OB}

+.[t7'] denotes the corresponding sheaf. These sheaves are equipped with a
decreasing filtration and a connection that satisfy the Griffiths transversality, which
we omit to explain. See the remark below.

= OAcris [p_l] and OBcris = O]Bz;is [t_l]‘

Remark A.3. The definitions of our sheaves OA,; and OAY . are slightly different
from the ones given by Tan and Tong: we use ®gz instead of ®y to define OA.
However, our QA still coincides with theirs in the unramified case O = W since k
is perfect. Hence it follows that OA i = OAcis x| Xproge AN OBeris = OBpig, X! Xproct -
In particular, one can define the additional structures on OA;s and OB directly

from [43].

Proposition A.4 (cf. [43, Cor. 2.19]). Let Ly = Spf Ry € (X¢)s be affine such that Ry
is connected and small over W . With the notation as in §[2.1, set R = Ry®w Ok and
U = Spa(R[p~1], R), and let U € X o6t denote the affinoid perfectoid corresponding
to the pro-étale cover (R[p~'], R) of (R[p~], R). Then there is a natural isomorphism

of Ry @w Beis(R)-modules
OBCriS(R) E) O]Bcris(U)

that is strictly compatible with filtrations. Moreover, for every ¢ > 0 and j € Z, we
have

H (U, OBeyis) = H'(U, Fi¥ OBqy) = 0.

Proof. Note that we have natural identifications R = Ry and OB s(R) = OB.is(Ro).
Now the proposition is nothing but [43, Cor. 2.19] for Uy and U € (Xo)prost- Note
that loc. cit. only claims that the map OBgis(R) — OBeis(U) is an isomorphism of
Ry ®w Bais(Ok )-modules, but its proof together with [43, Cor. 2.8] shows that the

map is indeed an isomorphism of Ry ®w Bepis(R)-modules. O

Remark A.5. The modules OBs(R) and OB.s(U) admit an action of G (or even
Gr,)- The above isomorphism is compatible with the Galois actions. It is also
compatible with the restriction along any étale morphism Spf R — Spf Ry.

Remark A.6. By the same argument, we also have a description of OAs(U) similar
to [43, Lem. 2.18].

We now explain the crystalline formalism. Let Locz, (X) (resp. ILocgz, (X)) denote
the category of étale Z,-local systems (resp. étale isogeny Z,-local systems) on X. See
[24, § 1.4, 8.4] for the precise formulation. By [40, Prop. 8.2], Locg, (X) is equivalent

to the category of ip-local systems on X,oct. We also note that if X = Spf R
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is connected and affine with X = Spa(R[p~!], R), then there are equivalences of
categories

Locz, (X) = Repy, (Gr) and ILocg,(X) = Repq, (Gr).

Definition A.7 (cf. [43] Def. 3.12]). Keep the assumption on the existence of Xo.

For an étale isogeny Z,-local system L on X with corresponding Qp—local system L
on X6, We set

Derio(L) = w.(OBeris ®g L) and  Fil’ Deyig(LL) := w, (Fil' OBes ®g, L).

Note that these are sheaves of O(x),, [p~']-modules.
We say that L is crystalline (with respect to X) if

(1) the O(x,), [p~']-modules Deys(IL) and Fil' Deyss(L) (i € Z) are all coherent,

and
(2) the adjunction morphism
(Al) OBcris ®O§§[p*1} w_chris(L) — OBcris ®Qp L

is an isomorphism of OB,,;-modules.

Remark A.8. In the unramified case, Tan and Tong [43, Def. 3.10] define crystalline
local systems using the notion of association with a convergent filtered F-isocrystal,

and they prove that their definition is equivalent to conditions (1) and (2) above in
[43, Prop. 3.13].

Lemma A.9 (cf. [43, Lem. 3.14]). Assume that X admits a W-model Xy and let
L € ILocz,(X). For each small and connected affine formal scheme g = Spf Ry that
is étale over Xy, set R = Ry @w Ok and U := Spa(R[p~'], R), and let Vi; denote the
Q,-representation of Gr corresponding to L|y;. Then there exist natural isomorphisms
of Rolp~'|-modules

Dcris(ﬂ‘) (u()) i Dcris(vU> and (Fllz Dcms(ﬂ“))(u()) i Flll Dcris(vU> (Z S Z)

Moreover, if we write U € Xproew for the affinoid perfectoid attached to (R[p~'], R),
then the evaluation of the adjunction morphism (Adl) at U coincides with

acris(VU): OBcris(R> ®Rg[p*1} Dcris(vU) — OBcris(R> ®Qp VU
under the identification Deis(IL) (o) = Deris(Viy).

Proof. The proof in [43, Lem. 3.14] also works in the current setting if one uses
Proposition [A4] in place of [43, Cor. 2.19]. The second assertion follows from the
construction. U

Proposition A.10. Assume that X admits a W-model Xy and let . € ILocg, (X).
Then L is crystalline with respect to Xo in the sense of Definition [A.7 if and only
if there exists an étale covering {Uxo — Xo} of small and connected affine o =
Spf Ry such that the Q,-representation Vy of Gg, corresponding to L|sya(r,p-1),8y)
crystalline in the sense of Definition[2.13, where Ry = Ry o®@w Ok . In particular, the
notion of crystalline local systems on X does not depend on the choice of a W-model
of X.
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Proof. The necessity follows from Lemma [A.9l For the sufficiency, observe that both
of conditions (1) and (2) in Definition [A.7 can be verified locally on (Xg)s. So we
may assume Xy = Spf Ry for some . To simplify the notation, write Ry for Ry,
and V for V.

First we verify condition (1). Since the proof is similar, we only show that Dey;s(L) is
a coherent O (x,),, [p~']-module. Take any connected and affine g = Spf R} € (X)a.
We need to show that the natural morphism

(A-Q) R6 [p_l] @ Ro[p—1] DcriS(L) (.’fo) - DcriS(L) (MO)

is an isomorphism. Set R’ := R{ ®w Ok. Then R’ is connected and small over Ok.

By Lemma [A.9] we have identifications D.s(IL) (%) = Deis(V) and De,i(IL) (o) =
Deis(Vg,, ). Since V is crystalline, the map (A.2)) is an isomorphism by Lemma 213
Now that we have verified condition (1), condition (2) follows from the proof of [43,
Cor. 3.15 and 3.16] with Remark [A.G] Proposition [A.4] and Lemma in place of
Lemma 2.18, Corollary 2.19, and Lemma 3.14 of [43]. This completes the proof of
the sufficiency. The last assertion follows from [12, Prop. 8.3.5]. O

With these preparations, we define the notion of crystalline local systems via gluing.

Definition A.11. Let X be a smooth p-adic formal scheme over Ok and let X
denote its adic generic fiber. An étale isogeny Z,-local system L on X is said to be
crystalline if there exists an open covering X = |J, i\ such that each , admits a
W-model and such that for each A, L|y, is crystalline in the sense of Definition
where U, denotes the adic generic fiber of {. By Proposition [A.T0] this definition
coincides with Definition when X itself admits a W-model.

An étale Z,-local system LL on X is said to be crystalline if the associated isogeny
Z,-local system is crystalline.

Remark A.12. One could define crystalline local systems by introducing a period
sheaf OB pax x 00 X ot that generalizes the period ring A, (R)[p~", ¢™!] appearing
in the proof of [12, Prop. 8.3.5]. This period sheaf is defined without fixing a W-model
of X and thus one could bypass the gluing approach.
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