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Abstract: Perverse schobers are categorical analogs of perverse sheaves. Examples
arise from varieties admitting flops, determined by diagrams of derived categories of
coherent sheaves associated to the flop: in this paper we construct mirror partners to
such schobers, determined by diagrams of Fukaya categories with stops, for exam-
ples in dimensions 2 and 3. Interpreting these schobers as supported on loci in mirror
moduli spaces, we prove homological mirror symmetry equivalences between them.
Our construction uses the coherent–constructible correspondence and a recent result of
Ganatra et al. (Microlocalmorse theoryofwrapped fukaya categories. arXiv:1809.08807)
to relate the schobers to certain categories of constructible sheaves. As an application,
we obtain new mirror symmetry proofs for singular varieties associated to our exam-
ples, by evaluating the categorified cohomology operators of Bondal et al. (Selecta Math
24(1):85–143, 2018) on our mirror schobers.

1. Introduction

Mirror symmetry is a collection ofmysterious conjectural relationships between complex
and symplectic geometry, inspired by the physics of superstring theory. For certain pairs
of a complex geometry X and a symplectic geometry Y , key predictions are:

1. that a stringy Kähler moduli spaceMKäh for X is isomorphic to a complex structure
moduli space MCS for Y , and

2. an equivalence between a derived category of coherent sheaves on X and a Fukaya
category for Y , called homological mirror symmetry.

Unifying these, mirror symmetry predicts:

3. an equivalence between a locally constant family of derived categories on MKäh,
and a corresponding family of Fukaya categories onMCS.
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Fig. 1. Data determining perverse sheaf, and spherical pair

We interpret a ‘locally constant family of categories’ here as an appropriate cate-
gorical analog of a locally constant sheaf. Such sheaves arise as solution sheaves for
ordinary differential equations: when these equations have singularities, it is natural to
study them using certain generalized objects called perverse sheaves.

Kapranov–Schechtman have suggested categorical analogs of perverse sheaves [29],
named perverse schobers, or simply schobers. As perverse sheaves may be thought of as
singular versions of locally constant sheaves, schobers give a notion of a locally constant
families of categories with singular behaviour.

In the mirror symmetry situation, the locally constant family of categories onMKäh
is expected to have singular behaviour at certain boundary points. We focus here on
boundary points known as conifold points. Recent research suggests that one can extend
the family as a schober over such points by using categories from birational geometry.
By mirror symmetry, this schober should then have a mirror partner. Namely, we have:

Questions 1. For the locally constant family of Fukaya categories onMCS,

i. does this family extend to a perverse schober?
ii. does this schober satisfy a mirror symmetry equivalence?

In this paper, we give affirmative answers to these questions for some examples,
working to a mathematical standard of rigour. We show that appropriate extensions of
families may be elegantly formulated using Fukaya categories with stops.We then apply
this to give a new proof of homological mirror symmetry for singularities associated
to these examples, by evaluating a categorified cohomology operator on the resulting
schober of Fukaya categories.

1.1. Background. We give background on perverse schobers and mirror symmetry,
before explaining our results in Sect. 1.2.

Stringy Kähler moduli heuristic In this paper, we take X to be a resolution of a surface or
3-fold quadric cone. As a heuristic for these examples, we takeMKäh to be a punctured
disk ∆ − p, and p to be a conifold point. This should be thought of as a local slice
of the full stringy Kähler moduli: for further physical discussion in the 3-fold case, see
Aspinwall [1, Sect. 4]. We therefore construct schobers on ∆, singular at p, to answer
Question (i): this will mean constructing a spherical pair, as follows.

Spherical pairs Kapranov and Schechtman give different categorifications of a perverse
sheaf P on ∆, singular at p, for different skeletons K ⊂ ∆ [29]. Take K a path which
passes through 0 as in Fig. 1. Then the sheaf of local cohomology of P with support
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in K is concentrated in some fixed degree (this important property is known as purity),
and is constructible. Furthermore, because P is singular only at p, this sheaf has only
3 distinct stalks (P± and P0). These stalks, along with natural maps between them, turn
out to determine P .

This motivates the definition of a spherical pair, illustrated in Fig. 1, as the data of
triangulated categoriesP± andP0, along with embeddings satisfying certain conditions,
and further conditions on orthogonals to these embeddings: for details, see Sect. 3.1.

Examples of spherical pairs arise from birational geometry. Letting X± be the two
sides of a 3-fold flop, or more generally certain flops of families of curves, Bodzenta
and Bondal [5] construct a spherical pair given by the following data.

D(X−) Q0 D(X+)

Here Q0 is an appropriate quotient of the derived category D(XB) of the fibre product
of X± over their common contraction. In this paper we give an alternative construction
using a subcategory of D(XB), in Theorem A below.

Flobers Bondal, Kapranov, and Schechtman give related constructions for certain webs
of flops, under the name of flobers, whichmay be viewed as categorified perverse sheaves
on Cn , singular along a real hyperplane arrangement [7]. The prototype of a flober (on
C, singular at 0) is determined by data as follows.

D(X−) D(XB) D(X+) (∗)

A flober is defined by strictly weaker conditions than a spherical pair: in this case, these
conditions amount to the usual Fourier–Mukai functors between D(X−) and D(X+)
being equivalences.

Mirror symmetry equivalences Our version of homological mirror symmetry combines
work of the second author [36] and Ganatra, Pardon, and Shende [21]. For a large
class of toric stacks X , this gives an equivalence between the bounded derived category
of coherent sheaves D(X) and a certain Fukaya category. Namely, we take a torus
T obtained from the (dual of the) toric data for X , and consider the wrapped Fukaya
categoryWΛ∞(ΩT )with stopΛ∞, a locus in contact infinity of the cotangent bundleΩT
which Lagrangians in the category must avoid, also determined by the toric data of X .
Further details are given in Sect. 1.3.

1.2. Results. Take X0 to be one of the following singularities, along with two (stacky)
resolutions X± as described.

Example 1. Take X0 the quotient of C2 by Z/2Z acting by ±1. Then let X− be the
associated Deligne–Mumford quotient stack, and X+ be the minimal resolution of the
singularity X0.

Example 2. Take X0 the conifold singularity {xy − zw = 0}, and X± two small resolu-
tions related by an Atiyah flop.
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Wedenote thefibre product XB of X± over the singularity X0, and associatedmorphisms,
as follows: see Sect. 4 for an explicit construction of XB .

XB

X+X−

X0

p+p−

Spherical pairs Following our heuristic above, we takeMCS andMKäh to be punctured
disks ∆ − p. The following is our main theorem. It constructs perverse schobers on
partial compactifications MCS and MKäh, both identified with the disk ∆. We give
these schobers in the form of spherical pairs, and show they are equivalent, answering
Questions (i) and (ii) for our examples.

Theorem A (Theorems 6, 7). For Examples 1 and 2 , we have
i. schobers given by data below, and
ii. an equivalence of these schobers via homological mirror symmetry, explained in

Sect. 1.3.
Symplectic side:Let T be a torus andΛ∞

± be loci in contact infinity ofΩT , all determined
by the toric data of X± in Sect. 4. Then take data as follows, with embeddings given in
the course of the proof.

WΛ∞
− (ΩT ) WΛ∞

− ∪Λ∞
+
(ΩT ) WΛ∞

+
(ΩT ) (A)

Complex side: Let P0 be the subcategory of D(XB) generated by the images of the
embeddings of D(X±) in (∗). Then take data as follows.

D(X−) P0 D(X+) (B)

Remark 1. The mirror operation to the 3-fold flop in Example 2 is given by Fan, Hong,
Lau, and Yau [15]. It would be interesting to relate this to the locally constant family of
Fukaya categories on the punctured disk ∆ − p which arises from Theorem A.

Remark 2. It would be interesting to try to use the schobers appearing in Theorem A
to categorify perverse sheaves extending the A-model and B-model local systems of
cohomology onMCS andMKäh, in our examples and more generally. In particular, this
could lead to an a priori reason why the derived equivalences associated to a flop may be
organized into a categorified perverse sheaf, as asked byBondal–Kapranov–Schechtman
[7, Sect. 0A].

Symplectic flobers Some of the techniques used to prove Theorem A then yield the
following, giving a counterpart to the flober (∗) on the symplectic side.

Theorem B (Theorem 8). For Examples 1 and 2, the flober (∗) is equivalent to a flober
as follows, where Λ∞

B is a locus in contact infinity of ΩT , determined by the toric data
of XB.

WΛ∞
− (ΩT ) WΛ∞

B
(ΩT ) WΛ∞

+
(ΩT )
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Application Perverse sheaves admit certain cohomology operators which yield vectors
spaces: these are used, for instance, to define intersection cohomology. By analogy, Bon-
dal, Kapranov, and Schechtman [7] define certain categorified cohomology operators on
perverse schobers which yield categories. In particular, they define the 2nd cohomology
with compact support H2

c to be a homotopy push-out of the diagram defining the flober.
They prove that H2

c for (∗) is D(X0), with X0 the singular base given above. We prove
a symplectic analog of this result, as follow.

Proposition C (Proposition 13). The 2nd cohomology with compact support H2
c for the

symplectic flober in Theorem B is given by the category

WΛ∞
− ∩Λ∞

+
(ΩT ).

We immediately obtain the following statement of homological mirror symmetry for the
singular space X0.

Corollary D (Corollary 4). The equivalence of Theorem B induces an equivalence

D(X0) ∼= WΛ∞
− ∩Λ∞

+
(ΩT ).

An equivalence of the categories in Corollary D follows from work of the second
author in [36], as the methods there apply in singular cases. The corollary provides a
new alternatively proof of this, which uses the results of [36] only for smooth cases,
along with the categorified cohomology operator H2

c .

Remark 3. Bondal–Kapranov–Schechtman also define 1st cohomologyH1 of a flober [7,
Sect. 2D]: for the flober (∗) this is by definition a quotient of D(XB) by the triangulated
subcategory generated by the embeddings of D(X±). In this language, the spherical
pairs of Theorem A are special in the sense that their H1 is zero, whereas the flober (∗)
and the flober in Theorem B have non-zero H1.

1.3. Method of proof. Let X be one of the toric varieties or stacks appearing above, and
let T be the corresponding dual torus: namely, if X is described by a toric fan Σ in NR
where N = Hom(M,Z) for a lattice M , then we take T = MR/M . Write ShwΛ(T ) for
a category of wrapped constructible sheaves on T , with microsupport Λ in ΩT , where
Λ is the FLTZ skeleton for the toric data. Furthermore let Λ∞ be the associated locus
at infinity in ΩT , where full details are given in Sect. 3.2. Then the homological mirror
symmetry equivalences used above are obtained by composition as follows.

WΛ∞(ΩT ) ∼=
(1)

ShwΛ(T )
op ∼=

(2)
D(X)op ∼=

(3)
D(X)

1. This is proved in recent work of Ganatra, Pardon, and Shende [21], refining a result
of Nadler–Zaslow [42].

2. This is a version of the coherent–constructible correspondence, as proved by the
second author in [36].

3. Here we take the derived dual RHom(−,OX ) to give a covariant composition.

We prove Theorem A by showing that the diagrams (A) and (B) appearing there
are equivalent to a diagram as follows (where, for convenience, we drop ‘op’ from the
notation).

ShwΛ−(T ) ShwΛ−∪Λ+
(T ) ShwΛ+

(T ) (C)
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For the symplectic side diagram (A), this equivalence follows immediately from (1) and
by construction of the diagrams. For the complex side (B), we proceed as follows. We
first apply the equivalence (2) to the spaces which appear in the flober (∗). From these
we deduce that there is an embedding

κ : P0 ↪→ ShwΛ−∪Λ+
(T ).

Weprove that κ is an equivalence by constructing and comparing certain semiorthogonal
decompositions of these categories, as follows. To illustrate our proof, and for interest,
these decompositions are presented in Sect. 2 for the surface case.
– Adecomposition ofShwΛ−∪Λ+

(T )with a componentShwΛ±(T ) arises froman explicit
presentation of the skeleton Λ− ∪ Λ+.

– A decomposition ofP0 with a component D(X±) is standard in the 3-fold case. For
the surface case, we construct one by studying derived categories of appropriate GIT
quotients.

We thus establish that κ is an equivalence. It follows from the decompositions ofP0 that
the diagram (B) gives a spherical pair, and we thence deduce that (C) gives a spherical
pair. That the diagram (A) gives a spherical pair then follows by composing with the
equivalence (1).

Theorem B is proved by a similar, but simpler, argument using a diagram of wrapped
constructible categories as follows.

ShwΛ−(T ) ShwΛB
(T ) ShwΛ+

(T )

To prove Proposition C we adapt a method of Bondal, Kapranov, and Schechtman to
show thatH2

c applied to the the diagram above gives ShwΛ0
(T ), using explicit presentation

of skeleta. The result follows again by composing with the equivalence (1).

Remark 4. In the course of the proof of Proposition C we obtain a new proof of an
instance of the coherent constructible correspondence, namely

D(X0) ∼= ShwΛ0
(T ).

At the end of paper, we present a conjectural picture about how this method could be
extended to prove more general such results.

1.4. Related work. Nadler has also discussed mirror equivalences of schobers on the
disk [41]. In this case a different skeleton K is used so that the schober takes the form
of a spherical functor. He proves a homological mirror symmetry statement relating a
certain Landau–Ginzburg A-model to the B-model for the higher-dimensional pair of
pants [41, Corollary 1.5] by deducing it from a mirror equivalence of such schobers [41,
Theorem 1.4]. The A-model schober in this case is over a disk in the space of values of
the (complex) superpotential.

Harder andKatzarkov have used schobers to given a newproof of amirror equivalence
for the projective space P3 [25].

The first author previously constructed schobers on the complex side of mirror sym-
metry, associated to wall crossings in GIT [12]. In subsequent work he applied these
to study schobers associated to standard flops, which led to a discussion of the Ques-
tions (i) and (ii) [13, Sect. 1.2]. In further work [14], the first author and M. Wemyss
give a mathematical treatment of the stringy Kähler moduli for general 3-fold flops of
irreducible curves.
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1.5. Structure of paper. In Sect. 2 we explain some details of our surface example
informally. In Sect. 3 we give preliminaries. In Sect. 4 we construct the data of spherical
pairs and flobers, and in Sect. 5we prove that they satisfy the required properties, and give
homological mirror symmetry equivalences between them, proving Theorems A and B.
Finally, in Sect. 6 we prove Proposition C, deduce Corollary D, and finish with some
remarks and conjectures on further applications of flobers to the coherent–constructible
correspondence.

1.6. Categories. We denote categories as follows: for details, see Sect. 3.2.

D bounded derived category of coherent sheaves
Shc constructible sheaves
Sh♦ quasi-constructible sheaves
Shw wrapped constructible sheaves [40]
WΛ∞ wrapped Fukaya category with stop Λ∞ [20,46]

Our categories are dg-categories (or A∞-categories). However, in our proofs, the only
point where we use enhancements is for existence of homotopy pushouts in Sect. 6.

1.7. Conventions. We often consider maps p : XΣ ′ → XΣ of toric varieties induced by
a refinement Σ ′ of a fan Σ . In that case we have a functors

p∗ : D(XΣ ) → D(XΣ ′) and p∗ : Sh♦
ΛΣ

(T ) → Sh♦
ΛΣ ′ (T ).

For the construction of the latter one, see Sect. 3.3, in particular (3). The notation here
is chosen because these functors correspond under mirror symmetry, and the mirror
reflection of the letter p is p. Functors between other categories of constructible sheaves,
and between Fukaya categories, are denoted similarly.Wewrite adjoints p! + p∗ + p∗ +
p! and, by analogy, adjoints p! + p∗ + p∗ + p!.

2. Surface Example

In this section we present semiorthogonal decompositions for the surface case, to illus-
trate our proof, and for interest.

2.1. Setting. We take the singularity X0 = C2/Z2, and take (stacky) resolutions X±
given by the corresponding Deligne–Mumford stack X− and the minimal resolution X+,
denoted as below. The fibre product XB is a further Deligne–Mumford stack, given
explicitly in Sect. 4.1.

XB

X+
˜C2/Z2X−[C2/Z2]

X0

f− f+
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ΛB

F−

F+

Λ− Λ− ∪ Λ+ Λ+

Λ0

Fig. 2. Skeleta for symplectic side schober

The fibres of f− and f+ over the singularity 0 are the stacky point [0/Z2], and a
projective line P1. Let E− and E+ be the structure sheaves of these fibres, tensored by the
non-trivial irreducible representation of Z2, and the twisting sheafO(−1), respectively.
The fibre product XB contains, by definition, the product E of these fibres and so we
may regard E± as sheaves on E via pullback, and thence on XB via pushforward.

Now take skeletaΛ0,Λ±, andΛB determined by the toric data of X0, X±, and XB , as
illustrated in Fig. 2, which we explain now. The construction of these skeleta is discussed
in Sects. 4 and 5.2. The squares in the figure show a fundamental domain for the quotient
T = R2/Z2. The ‘hairs’ denote cotangent directions inΩT , and thereby indicate conical
loci inΩT corresponding to the skeletonΛ. We letF− andF+ be microlocal skyscraper
sheaves [40] in ShwΛ−∪Λ+

(T ) corresponding to the cotangent directions marked.
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Proposition D (Propositions 5, 8). The category P0 appearing in Theorem A has
semiorthogonal decompositions as follows.

〈D(X−), E−〉 = P0 = 〈D(X+), E+〉
The category ShwΛ−∪Λ+

(T ) has decompositions as follows.
〈
ShwΛ−(T ),F−

〉
= ShwΛ−∪Λ+

(T ) =
〈
ShwΛ+

(T ),F+
〉

In the course of the proof we see that these categories, and the components in the
above decompositions, all correspond under the coherent–constructible correspondence.

The embeddings of the D(X±) are the pullbacks p±∗, and it follows that the equiva-
lences between D(X−) and D(X+) required in the definition of a spherical pair follow
from simple cases of results of Bridgeland–King–Reid [10].

Remark 5. We get decompositions of Fukaya categories
〈
G−,WΛ∞

− (ΩT )
〉
= WΛ∞

− ∪Λ∞
+
(ΩT ) =

〈
G+,WΛ∞

+
(ΩT )

〉

for certain objects G± of WΛ∞
− ∪Λ∞

+
(ΩT ), by applying the equivalence of Ganatra, Par-

don, and Shende. (That the categoriesW appear in the decompositions here on the right,
whereas the categories Shw appear on the left in the proposition above, is due to the fact
that this equivalence is contravariant.)

3. Preliminaries

3.1. Perverse schobers. We work with spherical pairs, as follows. Recall that a semi-
orthogonal decomposition T =

〈
C,D

〉
, is determined by embeddings

γ : C −→ T and δ : D −→ T ,

and induces projection functors given by adjoints as follows.

γ LA : T −→ C and δRA : T −→ D.

We may then make the following definition.

Definition 1. [29, Sect. 3C]A spherical pair P is a triangulated categoryP0 with admis-
sible subcategories P± and semi-orthogonal decompositions

〈
Q−,P−

〉
= P0 =

〈
Q+,P+

〉
,

such that compositions of the embeddings and projections above

Q− ←→ Q+ and P− ←→ P+,

are equivalences.

Remark 6. As indicated in Sect. 1.1, this data should be thought of as a categorification of
vector space data determining a perverse sheaf. Further discussion is given byKapranov–
Schechtman in [28, Sect. 9A] and [29].

Definition 2. An isomorphismbetween spherical pairsP andP ′ consists of equivalences
P• / P ′

• and Q• / Q′
• intertwining the embeddings.

Author's personal copy



462 W. Donovan, T. Kuwagaki

A weaker notion is discussed by Bondal, Kapranov, and Schechtman [7] omitting the
condition on orthogonals Q•.

Definition 3 [7, Sect. 1B]. A flober or weak spherical pair P is a triangulated category
P0 with admissible subcategories P± with embeddings δ± such that the compositions
of δ± and δRA± as follows

P− ←→ P+

are equivalences.

A spherical pair yields a flober in the obvious way.

Example 1. Canonical examples of spherical pairs may be obtained from sphere bundles
[29, Example 3.9]. They also arise from 3-fold flops and more general flops of curves,
see [5, Sect. 5.2]: for a discussion of weak spherical pairs in the same setting, see [7,
Sect. 1B, 1C].

Bondal–Kapranov–Schechtman make following definition.

Definition 4 [7, Sect. 2E]. For a weak spherical pair P , the homology with compact
support H2

c(∆,P) is defined as the homotopy push-out in the Morita model of the
following.

P0

P+P−

δRA+δRA−

We will often say, for brevity, that a spherical pair P is determined by data written
as follows, sometimes omitting the adjoint functors.

P− P0 P+

δ− δ+

δRA− δRA+

(1)

As we will study anti-equivalences, it will also be convenient to say that a spherical
pair is determined by the opposite of categorical data shown in (1). We explain our
conventions for this now. For the functors δ± : P± → P0 we use the same letter for the
opposite functors, namely δ± : Pop

± → Pop
0 . Noting that taking opposites reverses the

direction of adjoints, the opposite of (1) is written as follows.

Pop
− Pop

0 Pop
+

δ− δ+

δLA− δLA+

(2)

In particular, given data as in (2) we have semi-orthogonal decompositions
〈
Pop

− ,Qop
−

〉
= Pop

0 =
〈
Pop
+ ,Qop

+
〉
,

and H2
c(∆,P) is given by a push-out of the following.

Pop
0

Pop
+Pop

−

δLA+δLA−
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3.2. Fukaya category and microlocal sheaf theory. In this subsection, we give a brief
introduction to a relationship between the Fukaya category and microlocal sheaf theory.
Let Z be a real analytic manifold and kZ be the constant sheaf valued in a field k. We
denote the bounded derived category of kZ -modules byMod(kZ ). We define microsup-
port (also known as ‘singular support’), one of the most important notion in microlocal
sheaf theory.

Definition 5. The microsupport SS(E) of E ∈ Mod(kZ ) is a subset of the cotangent
bundle ΩZ defined by its complement as follows: (x, ξ) ∈ ΩZ (where x ∈ Z and
ξ ∈ ΩZ ,x ) is not contained in SS(E) if there exists an open neighbourhood U of (x, ξ)
such that

(
RΓ {z|ψ(z)≥ψ(y)} E

)
y / 0

for any point y ∈ Z and any smooth function ψ with Graph(dψ) ⊂ U .

We view ΩZ as a symplectic manifold with its standard exact symplectic structure.
The microsupport SS(E) is a Lagrangian subset of ΩZ if E is constructible:

Definition 6. A sheaf E is constructible (respectively quasi-constructible) if there exists
a real analytic Whitney stratification S of Z such that the restriction of E to each stratum
S ∈ S is a locally constant sheaf of finite rank (respectively locally constant sheaf
possibly of infinite rank). For the definition of such a stratification, we refer to [30].

Theorem 1 (Involutivity theorem [30, Theorem 8.4.2]). An object E ∈ Mod(kZ ) is
quasi-constructible if and only if SS(E) is Lagrangian.

Remark 7. Here, and elsewhere, we allow Lagrangians to be singular.

We write Shc(Z) (respectively Sh♦(Z)) for the (dg-)category of bounded complexes
of constructible sheaves (respectively unbounded complexes of quasi-constructible
sheaves) over Z . For a subset Λ ⊂ ΩZ , the full subcategory of Shc(Z) (respec-
tively Sh♦(Z)) spanned by objects with microsupport living inside Λ is denoted by
ShcΛ(Z) (respectively Sh♦

Λ(Z)).
Before stating a relationship with Fukaya category, we introduce one more category.

Definition 7. Let Λ ⊂ ΩZ be a subset. The full subcategory ShwΛ(Z) of Sh
♦
Λ(Z) is

defined by the following: E ∈ ShwΛ(Z) if and only if

HomSh♦
Λ(Z)(E,−) : Sh♦

Λ(Z) → Vect

commutes with any direct sums. We call an object of ShwΛ(Z) a wrapped constructible
sheaf.

A relationship between microlocal sheaf theory and the Fukaya category was first
clearly stated by Nadler–Zaslow by using an ‘infinitesimally wrapped Fukaya category’.
Our setting is a more recent variant of Nadler–Zaslow established by Ganatra–Pardon–
Shende [21]: Let Z be a real analytic manifold and ΩZ be the cotangent bundle of Z .
Let {xi } be local coordinates of Z and {ξi } be the corresponding cotangent coordinates.
Then ΩZ has an exact symplectic structure locally written as

∑
i dξi ∧ dxi . Let us fix g

a Riemannian metric over Z . Then we define the cosphere bundle by

S∗Za := {(x, ξ) ∈ ΩZ | gx (ξ, ξ) = a} .
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The symplectic structure induces a contact structure on S∗Za . Since the S∗Za for various
a are contactoisomorphic to each other, we consider a → ∞ virtually and call this
abstract contact manifold contact infinity and denote it byΩ∞

Z . LetΛ∞ be a subanalytic
Legendrian of Ω∞

Z . Then one can define an A∞-category WΛ∞(ΩZ ), the wrapped
Fukaya category of ΩZ with the stop Λ∞. Roughly, this category consists of

1. Objects: (possibly noncompact) Lagrangian submanifold whose noncompact ends
live away from Λ∞.

2. Morphisms: wrapped Floer cohomology.

For details, see Ganatra, Pardon, and Shende [20, Sects. 1.1, 2] and Sylvan [46].
Given a Legendrian Λ∞ as above, we obtain a locus in ΩZ as follows.

Definition 8. Let Λ ⊂ ΩZ be given byΛ = (R>0 ·Λ∞)∪ Z whereR>0 acts by scaling
the cotangent fibers, and Z is the zero section in ΩZ .

We can also go the other way around: namely, for a given conic (i.e. invariant under
R>0) Lagrangian Λ in ΩZ\Z we have the following.

Definition 9. We obtain a Legendrian Λ∞ ⊂ Ω∞
Z as follows. First, for any a we obtain

a Legendrian in S∗Za by Λa = S∗Za ∩ Λ. The conicness implies that Λa is preserved
under the isomorphism S∗Za ∼= S∗Zb for any a, b. Hence we get a Legendrian Λ∞ in
the abstract contact manifold Ω∞

Z .

We may now state the following theorem.

Theorem 2 (Ganatra–Pardon–Shende [21]). There exists an equivalence

ShwΛ(Z)
op / WΛ∞(ΩZ )

of A∞-categories, where op denotes the opposite category.

Remark 8. We may remove the op in the above, but at the expense of negating the
Liouville form, or performing a similar operation on Λ∞ [21, after Theorem 1.1].

It is expected that this theorem generalizes to the case ofWeinstein manifolds instead
ofΩZ . This is known as Kontsevich’s conjecture [38]. Progress towards a proof has been
made by many people, see in particular work of Nadler [39].

A point for us is that a Landau–Ginzburg model gives an isotropic subset Λ∞, hence
a partially wrapped Fukaya category. We sometimes call this category Fukaya–Seidel
category of the Landau–Ginzburg model [20]. In general, this category is not generated
by Lefschetz thimbles emanating from critical points:

Example 2. We take W (z) = z on C∗. Then the set of Lefschetz thimbles is empty but
the partially wrapped Fukaya category is equivalent to the derived category of coherent
sheaves over A1.

Hence, to study mirror symmetry, the partially wrapped Fukaya category is appro-
priate.

The Lagrangian skeletons for mirror Landau–Ginzburg models of toric varieties can
be combinatorially defined. Such skeletons were first proposed by Fang, Liu, Treumann,
and Zaslow [17, Sect. 5.5]. This followed earlier work of Fang [16], and pioneering work
of Bondal [4].

Notation 1. We use standard notation in the toric setting, as follows.
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M a rank n free abelian group
N the dual of M
Σ a rational finite fan in NR := N ⊗Z R
XΣ the toric variety of Σ
T real torus MR/M
π projection MR → T

For a subset σ ⊂ NR, we set

σ⊥ := {m ∈ MR | n(m) = 0 for any n ∈ σ } .
We then have the following.

Definition 10 (FLTZ skeleton).

ΛΣ :=
⋃

σ∈Σ

π(σ⊥) × (−σ ) ⊂ T × NR ∼= ΩT .

The following result is due to Gammage–Shende [19], Zhou [47], and Ganatra–
Pardon–Shende [21].

Theorem 3. The FLTZ skeleton at infinity Λ∞
Σ is a Weinstein skeleton of a generic

fiber of the Hori–Vafa mirror potential. If moreover XΣ is Fano, then WΛ∞
Σ
(ΩT ), and

hence ShwΛΣ
(T ), is equivalent to the Fukaya–Seidel category of W.

Wewill not define ‘Weinstein skeleton’ here. Themain point for us is thatWΛ∞
Σ
(ΩT )

in general can be considered as a generalization of a Fukaya–Seidel category.
Since mirror symmetry predicts an equivalence between the B-model on XΣ and the

mirror Landau–Ginzburg A-model, we can interpret homological mirror symmetry as an
equivalence between the derived category of coherent sheaves over XΣ and ShwΛΣ

(T ).
This is the content of the next subsection.

3.3. Coherent–constructible correspondence. In this subsection, we review the result
in [17] and [36] for the smooth variety case. We now take the field k to be C. Let ΛΣ

and XΣ be as in the previous section. For σ ∈ Σ , we have the corresponding affine
coordinate iσ : Uσ ⊂ XΣ . Letting Qcoh denote the unbounded derived category of
quasicoherent sheaves, there exists a unique functor

κΣ : Qcoh(XΣ ) → Sh♦
ΛΣ

(XΣ )

which maps Θ ′(σ ) := iσ∗OUσ to Θ(σ ) := π!CInt(σ∨) where Int is the interior and σ∨
is the polar dual of σ .

Theorem 4. [36] The restriction of κΣ to D(XΣ ) gives an equivalence

D(XΣ )
∼−→ ShwΛΣ

(T ).

As discussed in the last part of the previous section, this equivalence is an instance
of homological mirror symmetry.

According to [36], we redefine the equivalence functor as

KΣ := κΣ (− ⊗ ω−1
Σ )

where ωΣ is the canonical sheaf. Since ωΣ is invertible, we have:
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Corollary 1. [36] The functor KΣ gives an equivalence

D(XΣ )
∼−→ ShwΛΣ

(T ).

The reason why we use this modified functor is to get a commutativity with push-
forwards on the B-side, as appeared in the proof of Theorem 5.

As a corollary of the above theorem and Theorem 2, we get a homological mirror
symmetry between coherent sheaves and a Fukaya category:

Corollary 2. We have an equivalence

D(XΣ )
∼−→ WΛ∞

Σ
(ΩT )

op.

Next we would like to discuss the functoriality. Let Σ ′ be a refinement of Σ . We
denote the correspondingmap by p : XΣ ′ → XΣ . Then there exists an inclusion relation
ΛΣ ⊂ ΛΣ ′ , which induces an inclusion

p∗ : Sh♦
ΛΣ

(T ) ↪→ Sh♦
ΛΣ ′ (T ). (3)

Proposition 1 (Fang–Liu–Treumann–Zaslow [17, Theorem 3.8]). There is natural iso-
morphism of triangulated functors

κΣ ′ ◦ p∗ / p∗ ◦ κΣ .

We remark that we do not need a dg-level statement for this natural isomorphism (see
also Sect. 1.6 for discussion on dg-categories).

For a general inclusion of Lagrangians Λ ⊂ Λ′, the inclusion

Sh♦
Λ(T ) ↪→ Sh♦

Λ′(T )

takes compact objects to compacts objects, and therefore restricts to a functorShcΛ(T ) ↪→
ShcΛ′(T ). It does not, however, give a functor ShwΛ(T ) ↪→ ShwΛ′(T ). Nevertheless, in
our case, we have:

Proposition 2. If XΣ is smooth, the functor (3) above restricts to a functor

p∗ : ShwΛΣ
(T ) ↪→ ShwΛΣ ′ (T ).

Proof. By Proposition 1 and Theorem 4, this is equivalent to saying that the pullback
p∗ : Qcoh(XΣ ) → Qcoh(XΣ ′) restricts to a functor between bounded derived cate-
gories, which is true under the assumption.

We also note the following for later use.

Proposition 3. For a general inclusion of Lagrangians Λ ⊂ Λ′, a left adjoint ιLA of the
natural embedding ι : Sh♦

Λ(T ) ↪→ Sh♦
Λ′(T ) restricts to an essentially surjective functor

ιw : ShwΛ′(T ) → ShwΛ(T ).
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Proof. This is by general nonsense, see Nadler [40, end of Sect. 3.6]. For the reader’s
convenience, we indicate a sketch of the proof. For a smooth point (x, ξ) ∈ Λ, con-
sider the local cohomology functor measuring the existence of microsupport at (x, ξ).
Provided that Λ is Lagrangian, one can explicitly represent the functor by an object in
Shc(T ) (not necessarily with support contained in Λ). This implies that the functor is
cocontinuous. ByBrown representability, one gets an object in ShwΛ(T )which represents
the functor. The object is called a microlocal skyscraper sheaf at (x, ξ).

By the discussion of Nadler [40], such objects generate ShwΛ(T ). The same holds
for Λ′. Moreover, for (x, ξ) ∈ Λ ⊂ Λ′, the microlocal skyscraper sheaf on (x, ξ) in
ShwΛ′(T ) is mapped to the one on (x, ξ) in ShwΛ(T ) under ιw. Hence a set of generating
objects of ShwΛ′(T ) is mapped to that of ShwΛ(T ). This completes the proof.

3.4. Toric stacks. Here we recall a definition of toric stacks, following Gerashenko–
Satriano [22]. Let L and N be free abelian groups and

f : L → N

be a morphism. We can associate a morphism between algebraic groups

f ⊗Z C∗ : L ⊗Z C∗ → N ⊗Z C∗.

LetΣ be a fan in L and XΣ be the associated toric variety. Then the toric stack associated
to the data (Σ, f ) is defined by the quotient stack

[XΣ/ ker( f ⊗Z C∗)]
where ker( f ⊗Z C∗) acts on XΣ via the action of L ⊗Z C∗ on XΣ .

4. Schober Constructions

We give the required description of the geometry of our examples, before constructing
schobers on the A-side and B-side of mirror symmetry.

4.1. Surface example. Consider the A1 quotient singularity X0 = C2/Z2 where Z2 =
{±1}.This has resolutions aDeligne–Mumford quotient stack, and aminimal resolution,
which we denote as follows.

X− = [C2/Z2] X+ = ˜C2/Z2

The minimal resolution may be realised as the total space of a line bundle.

X+ = TotOP1(−2)

The fibre product of X± over X0 is a further Deligne–Mumford stack, as follows.

XB = [TotOP1(−1)/Z2].
Here Z2 acts as ±1 on the fibres of the bundle. The associated morphisms

p± : XB → X±

are described as follows.
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Σ−

f

Σ+

1N

Fig. 3. Toric data for X±

– The map p− is the blowup of [0/Z2] ⊂ X−, in other words the blowup of 0 ∈ C2,
noting that this is equivariant with respect to the Z2-actions.

– Themap p+ is given by the root stack construction alongP1 (for a general discussion,
see [18]), namely a family version of the following morphism.

[C/Z2] → C : z 8→ z2

Toric description Let N be a rank 2 lattice with basis e1, e2, and let M be its dual. The
faces of the cone Cone(e1, e1 +2e2) ⊂ NR give a fanΣ0 representing the singularity X0.
Then the small resolution X+ is represented by a refinementΣ+ ofΣ0 given by the faces
of the following cones.

Cone(e1, e1 + e2), Cone(e1 + e2, e1 + 2e2) ⊂ NR

Σ0 Σ+

To obtain toric data for the stack X−, in the sense of Sect. 3.4, take a further rank 2
lattice L with basis g1, g2 and consider the standard fan representing C2, generated by
faces of Cone(g1, g2) ⊂ LR, and denote it Σ−. The lattice map

f : L → N
g1 8→ e1
g2 8→ e1 + 2e2

then induces a map between the corresponding algebraic tori

TL → TN : (a, b) 8→ (ab, b2).

The kernel of this map is Z2 = {±1}. It follows that the toric stack corresponding to
the data of ΣL and f is the toric stack [C2/Z2] = X−, the stacky resolution of the
A1-singularity, see Fig. 3. The variety X+ is realized as a toric stack by taking the data
Σ+ and 1N .

For the toric data corresponding to the fibre product XB , take the fan ΣB given by
faces of the following cones

Cone(e1, e1 + e2), Cone(e1 + e2, e2) ⊂ LR.
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ΣB

f

Fig. 4. Toric data for XB

Note that this fan refines Σ−, and corresponds to TotOP1(−1). Then we take data ΣB
and f to obtain XB , see Fig. 4. Note this is not a toric Deligne–Mumford stack in the
sense of Borisov–Chen–Smith [8].

Now the projections p± from XB are induced by appropriate commutative squares
of lattices, as shown.

XB

X−

X+

p−

p+

L

L

N

f

N

N

N

f

f

1N

4.2. Threefold example. We recall the geometry of the Atiyah flop local model. Namely,
take X0 to be the conifold singularity (xy− zw = 0) inC4. This has crepant resolutions
X± with exceptional curves E± ∼= P1 such that

X± ∼= TotOE±(−1)⊕2,

related by an Atiyah flop as follows.

X+X−

X0

Let XB be the fibre product of this diagram. This is isomorphic to the blowup of X±
along E±. Write E for the common exceptional divisor P1 × P1.

Toric data Let N be a rank 3 lattice with basis ei , and dual M . The set of faces of the
cone Cone(e1, e2, e1 + e3, e2 + e3) ⊂ NR gives a fan Σ0 representing the conifold. The
small resolutions X± come from

Σ+ := Σ0 ∪ {Cone(e2, e1 + e3)}
Σ− := Σ0 ∪ {Cone(e1, e2 + e3)}
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e1

e2

e1 + e3

e2 + e3

ΣB

Fig. 5. Threefold toric fan in NR

and the blow-up XB from

ΣB := Σ+ ∪ Σ− ∪ {R≥0 · (e1 + e2 + e3)}.

This data is sketched in Fig. 5. Note that the fan ΣB refines Σ± giving the morphisms

p± : XB → X±.

4.3. B-side constructions. Here we obtain schobers involving the categories D(X±).
To do this, we verify that the diagram (B) from the introduction gives a schober, by an
analysis of semiorthogonal decompositions. For the 3-fold case which we study first,
our schober should be equivalent to the one constructed, in a more general setting, by
Bodzenta–Bondal in [5]. We here use a different method to theirs, which also applies to
the stacky surface case.

Threefold case First note we have p∗
± : D(X±) → D(XB)with left adjoints p±!, where

we take p! = p∗(ωp[dim p] ⊗ −). The compositions

p+∗ p∗
− and p−∗ p∗

+

are equivalences by Bondal–Orlov [6, Theorem 3.6, and remark following]: see also
an account of the proof of fully faithfulness in Huybrechts [26, Proposition 11.23],
and an explanation of why the equivalence property follows in [26, Remark 11.22 and
Proposition 1.54]. By taking left adjoints, the compositions

p−! p∗
+ and p+! p∗

−

are equivalences.

Definition 11. LetP0 be full triangulated subcategoryofD(XB)generatedby the images
of p∗

+ and p∗
−.
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Then we have p∗
± : D(X±) → P0 with left adjoints p±! obtained by restriction,

because P0 is a full subcategory of D(XB), and we deduce that the compositions
D(X−) ↔ D(X+) in the following diagram, namely p−! p∗

+ and p+! p∗
−, are equiva-

lences.

D(X−) P0 D(X+)

p∗− p∗
+

p−! p+!
(4)

To show that this gives (the opposite of) a spherical pair, and for use in our equivalence
proof in Sect. 5, we construct semi-orthogonal decompositions of P0. Set notation for
the blowup of X± in E± as follows.

X± XB

E± E

p±

q±

j± i (5)

Proposition 4. The data of (4) yields the opposite of a spherical pair. In particular, we
have semi-orthogonal decompositions

P0 =
〈
p∗
±D(X±), i∗q∗

±OE±(−1)
〉
.

Proof. Recall that by a result of Orlov [44], see for instance [37, Theorem 2.6], we have

D(XB) =
〈
p∗
+D(X+), i∗q∗

+D(E+)
〉
.

To obtain a semi-orthogonal decomposition of P0 ⊂ D(XB), we therefore calculate
the image of p∗

−D(X−) ⊂ P0 under the projection to D(E+): the projection functor
is q+∗i !. Recalling that i ! = ωi [dim i] ⊗ i∗, it thence suffices to calculate the image of
the following functor on D(X−).

q+∗
(
ωi ⊗ i∗ p∗

−(−)
)

(6)

Now ωi = NE |X , and it is straightforward to show that

NE |X = q∗
+OE+(−1) ⊗ q∗

−OE−(−1), (7)

see [26, Sect. 11.3] for instance. The functor (6) is then given as follows.

q+∗
(
ωi ⊗ i∗ p∗

−(−)
) ∼= q+∗

(
ωi ⊗ q∗

− j∗−(−)
)

(commutativity of (5))
∼= q+∗

(
q∗
+OE+(−1) ⊗ q∗

−OE−(−1) ⊗ q∗
− j∗−(−)

)

∼= OE+(−1) ⊗ q+∗
(
q∗
−OE−(−1) ⊗ q∗

− j∗−(−)
)

∼= OE+(−1) ⊗ q+∗q∗
−
(
OE−(−1) ⊗ j∗−(−)

)

Here the third line is obtained by the projection formula. Now, writing r± : E± → pt,
we have q+∗q∗

− ∼= r∗
+r−∗ by flat base change. The functor (6) is therefore isomorphic to

the composition of

r−∗
(
OE−(−1) ⊗ j∗−(−)

)
then OE+(−1) ⊗ r∗

+(−).
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The first functor is essentially surjective onto D(pt): to see this, apply it to s∗
−OE−(+1)

where s− is the bundle projection of X−, and note that j∗−s
∗
− ∼= id. The image of (6)

is thence the image of the second functor, namely the subcategory of D(E+) generated
byOE+(−1). We deduce a semi-orthogonal decomposition as in the statement, with the
other sign following by symmetry.

Finally we show the schober conditions. The required equivalences between D(X−)
and D(X+) are explained above (4). For the equivalences between the orthogonals,
these are generated by single objects, and therefore by symmetry it suffice[s] to prove
the following lemma.

Writing E± = i∗q∗
±OE±(−1), we have the following.

Lemma 1. The image of E− under the projection to D(E+) is E+[−2].
Proof. The projection to D(E+) is q+∗i !. Noting that i is the embedding of a divisor we
have a triangle of functors

id → i !i∗ → (− ⊗ NE |X )[−1] → .

Applying this to q∗
−OE−(−1) and using the expression (7) for NE |X gives

q∗
−OE−(−1) → i !i∗q∗

−OE−(−1) → q∗
+OE+(−1) ⊗ q∗

−OE−(−2)[−1] → .

Applying q+∗ to the lefthand term gives zero, where we use flat base change q+∗q∗
− ∼=

r∗
+r−∗. Applying to the righthand term gives F+[−2] because r−∗OE−(−2) = Opt[−1],
and the claim follows.

Surface case We apply the same approach to the surface case, constructing the required
semiorthogonal decompositions using variation of GIT. For the surfaces X±, we have
fibre product diagrams as in (5) as follows.

X± XB

E± E

p±

q±

j± i (8)

Here we take

E− = [0/Z2] and E+ = P1,

with j− the obvious embedding, and j+ the embedding of the zero section of the bun-
dle X+. The common fibre product E is isomorphic to [P1/Z2] with trivial Z2-action.

We have P0 a full subcategory of D(XB) defined as in the 3-fold case.

Proposition 5. For the surfaces X±, the data shown in (4) yields the opposite of a
spherical pair. In particular, have semi-orthogonal decompositions

P0 =
〈
p∗
±D(X±), i∗q∗

±OE±(−1)
〉
.

Here OE−(−1) is used to denote the sheaf on the stack E− = [0/Z2] corresponding to
the non-trivial irreducible representation of Z2.
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Remark 9. There is literature on semiorthogonal decompositions for ‘stacky blowups’:
this term is convenient to describe both blowups of stacks and root stack construction
(see for instance [3, Introduction]), as both arise naturally in birational geometry of
Deligne–Mumford stacks. Derived categories of root stacks have been considered in
[27, Theorem 1.6], and these results generalized in [3] and [45]. Kawamata has also
constructed semiorthogonal decompositions in this situation, for discussion see in par-
ticular [31, Theorem 3.4] with proofs found in [32–34]. Although the results below are
likely covered by this work, we found it convenient to apply the variation of GITmethod
herein.

Proof. We use a general construction of Coates, Iritani, Jiang, and Segal [11] to realize
the blowup p− as a variation of GIT. We then use standard technology which relates
derived categories under variation of GIT [2,23] to obtain a semi-orthogonal decompo-
sition. The semi-orthogonal decomposition for p+ follows by an appropriate adaptation
of this argument.
Case(−): First recall that p− is the blowup in E− = [0/Z2] ⊂ X−. We choose a bundle
F on X− with a section σ cutting out E−. Following [11, Sect. 5.2], we consider the
total space Tot(F ⊕O)with aC∗-action of weight −1 on the fibres ofF , and weight +1
on the fibres of O. Writing (v, z) for fibre coordinates, and π for the projection to X−,
we take the substack

[M/C∗] := {vz = π∗σ } ⊂ Tot(F ⊕ O).

The stack [M/C∗] has GIT quotients

X− and BlE− X− ∼= XB,

and fixed locus MC∗ ∼= E−. Furthermore, we obtain a semiorthogonal decomposition
as follows.

D(XB) =
〈
p∗
−D(X−), i∗q∗

−D(E−)
〉

(9)

We explain some of the details, so that we can adapt them to the case of p+ below.
By general theory, the GIT quotients are derived equivalent to certain ‘windows’ in
D[M/C∗] of the form

Cd =
{
E ∈ D[M/C∗]

∣∣H•Li∗ZE have weights in [0, d)
}
.

Namely, the restriction functors

CrkF → D(XB) C1 → D(X−)

are equivalences. Furthermore, there is a semiorthogonal decomposition of with D(XB)
with components D(X−) and D(E−), the latter appearingwithmultiplicity rkF−1 = 1.
In particular, [11, Lemma 5.2(1)] is used to show that D(X−) embeds via p∗

−, and the
embedding of the orthogonal follows from [24, Lemma 2.3].

We then obtain the required semiorthogonal decomposition of P0 with component
D(X−) from (9) by following the argument for the 3-fold case. Note in particular that
the expression (7) for NE |X holds verbatim.
Case (+): We argue similarly, considering E+ = P1 ⊂ X+, and taking a line bundle G on
X+ with a section σ cutting out E+. For this case we take Tot(G ⊕ O) with a C∗-action
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of weight −2 on the fibres of G, denote fibre coordinates as above, and consider the
substack

[N/C∗] := {vz2 = π∗σ } ⊂ Tot(G ⊕ O).

By the arguments of [11, Sect. 5.2], we see that [N/C∗] has a GIT quotient X+. We
claim furthermore that it has XB as a GIT quotient.

For this, first note that X+ may be described as a C∗-quotient of C3 with weights(
1 1 −2

)
, coordinates (x1, x2, y), and semistables {(x1, x2) ;= 0}. Under this description

[N/C∗] is the locus {(x1, x2) ;= 0, vz2 = y} in the stack [C5/C∗2] given as follows.

x1 x2 y v z( )
1 1 −2 −2 0
0 0 0 −2 1

By projecting away from y, this is isomorphic to the left-hand stack [C4/C∗2] below.
By row and column operations, this is isomorphic to the right-hand one, which can be
seen to have a GIT quotient XB = [TotOP1(−1)/Z2]. By inspection, the variation of
GIT for [N/C∗] induces the map p+ : XB → X+.

x1 x2 v z( )
1 1 −2 0
0 0 −2 1

−→
x1 x2 z v( )
1 1 −1 0
0 0 1 −2

We then again use the argument of [11, Sect. 5.2] to obtain a semi-orthogonal decom-
position of P0 with component D(X+). This proceeds as above, except that C2·rk G takes
the place of CrkF . In particular, themultiplicity of components D(E+) in the semiorthog-
onal decomposition is now given by 2 · rk G − 1 = 2 · 1 − 1 = 1, as required.

Finally we show the schober conditions. The required equivalences between D(X−)
and D(X+) are an instance of the main theorem of Bridgeland–King–Reid [10]. The
proof of the equivalences between orthogonals goes through as for the 3-fold case, using
the expression (7) for NE |X as before, which applies verbatim.

4.4. A-side constructions. Here we construct and study the functors in the diagram (C)
of categories of wrapped constructible sheaves from the introduction. This is used, in
the next section, to prove our homological mirror symmetry statement in Theorem A.

For brevity we use notation as follows.

Λ0 := ΛΣ0

Λ± := ΛΣ±
ΛB := ΛΣB

Note that ΣB is a refinement of Σ±, so there exist an inclusion Λ± ⊂ ΛB , and thence

Λ− ∪ Λ+ ⊂ ΛB .

Remark 10. The skeleton Λ− ∪ Λ+ is not represented as ΛΣ for some Σ . It would be
interesting to study whether it naturally arises in some other way, for instance from a
Landau–Ginzburg model.
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Using that Λ± ⊂ Λ− ∪ Λ+, there exist natural embeddings:

Sh♦
Λ±(T ) ↪→ Sh♦

Λ−∪Λ+
(T ) (10)

We want to define such a functor on the level of wrapped constructible sheaf categories.
For this, recall the following.

i. Using smoothness of X± and XB , Proposition 2 gives functors

ShwΛ±(T ) ↪→ ShwΛB
(T ).

ii. Using the inclusion Λ− ∪ Λ+ ⊂ ΛB , Proposition 3 gives a functor

ιw : ShwΛB
(T ) → ShwΛ−∪Λ+

(T ).

Definition 12. Composing (i) and (ii) immediately above, we write

p∗± : ShwΛ±(T ) → ShwΛ−∪Λ+
(T ).

Using Proposition 3, we also have functors

p±! : ShwΛ−∪Λ+
(T ) → ShwΛ±(T ).

Remark 11. Following the convention in Sect. 1.7, we use the notations p∗± and p±!
because these functors will turn out to be mirror to p∗

± and p±! between D(X±) and P0.

Proposition 6. The functor p∗± is isomorphic to the restriction of the embedding (10),
namely

Sh♦
Λ±(T ) ↪→ Sh♦

Λ−∪Λ+
(T ),

to the full subcategory ShwΛ±(T ). In particular, p∗± is an embedding.

Proof. By functoriality, composing (10) with the embedding

ι : Sh♦
Λ−∪Λ+

(T ) ↪→ Sh♦
ΛB

(T )

gives the embeddings ι± : Sh♦
Λ±(T ) ↪→ Sh♦

ΛB
(T ).Writing ιLA for a left adjoint, we have

ιLA ◦ ι / id. Therefore (10) is isomorphic to the composition of ι± with ιLA. Restricting
the latter composition to ShwΛ±(T ) gives p∗± by definition.

Claim. Embeddings p∗± give a spherical pair, which is mirror to the B-side spherical
pair from Sect. 4.3.

We will prove this claim by using mirror symmetry in the next section.

5. Mirror Equivalences

In this section we prove homological mirror symmetry statements for the A-side and
B-side schobers of the previous section, obtaining proofs of Theorems A and B.
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5.1. Threefold proof. Theorem 4 gives equivalences

κΣB : D(XB)
∼−→ ShwΛB

(T ) κΣ± : D(X±)
∼−→ ShwΛ±(T )

which we write as κB and κ± for brevity.

Mirror symmetry at the conifold point Let us consider the composition

κP : P0 ↪→ D(XB)
κB−→ ShwΛB

(T )
ιw−→ ShwΛ−∪Λ+

(T ).

Proposition 7. κP is fully faithful.

Proof. Let us consider the precomposition of the inclusion D(X±) ↪→ P0 with κP and
denote it κP±. Then by the functoriality in Proposition 1, this is the same as the com-
position of κ± and the functor p∗± : ShwΛ±(T ) ↪→ ShwΛ−∪Λ+

(T ) constructed in Sect. 4.4.
Hence κP± is fully faithful. Since D(X±) jointly generate P0 by definition, the functor
κP is also fully faithful.

Take a point (x, ξ) ∈ ΩT which lies in Λ− ∪ Λ+, but not in Λ−. Let Fx,ξ be a
microlocal skyscraper sheaf.

Remark 12. Skyscraper sheaves are exceptional objects. However microlocal skyscraper
sheaves are not exceptional in general.

This becomes clearer if one recalls that a microlocal skyscraper sheaf depends on the
ambient categoryShwΛ(T ), i.e. it is defined as a representing object of a local cohomology
functor (a microstalk functor). Hence the correct analogue is a stalk functor, but not
a skyscraper sheaf. Then the stalk functor on ShwΛ(T ) is also not represented by an
exceptional object.

However, in our case,

Lemma 2. Fx,ξ is exceptional.

Proof. Let us consider the locally closed subset D in MR, as shown in Fig. 6, consisting
of those m ∈ MR such that the following hold.

〈m, e1 + e3〉 ≤ −1 〈m, e2〉 ≥ 0 〈m, e1〉 > −1 〈m,−e2 + e3〉 > −1

The 1-cell ∆ of D cut out by

〈m, e1 + e3〉 = −1 〈m, e2〉 = 0

has conormal (Λ− ∪ Λ+)\Λ−, and it follows that the sheaf π!CD gives Fx,ξ by non-
characteristic deformation as in [35]. Since RHom(π!CD,π!CD) is the microstalk of
π!CD , which is rank 1 and degree 0 from the picture below, the claim follows.

Proposition 8.

ShwΛ−∪Λ+
(T ) /

〈
ShwΛ−(T ),Fx,ξ

〉
.
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f1
f2

f3

∆

Fig. 6. The region D in MR: the basis { fi } is dual to {ei }, and shaded faces are included in D

Proof. Since Fx,ξ is exceptional, we have a semi-orthogonal decomposition

ShwΛ−∪Λ+
(T ) /

〈
C,Fx,ξ

〉

where C is the left orthogonal of Fx,ξ . By the definition of microlocal skyscraper, C ⊂
Sh♦

Λ−(T ).
Since we now have an inclusion ShwΛ−(T ) ⊂ ShwΛ−∪Λ+

(T ), we also have
j : ShwΛ−(T ) ↪→ C. So it suffices to show that this latter inclusion is essentially sur-
jective.

By the definition of semi-orthogonal decomposition, we have a left adjoint

iLA : ShwΛ−∪Λ+
(T ) → C

of i : C ↪→ ShwΛ−∪Λ+
(T ). On the other hand, we also have a composition of the inclusion

j : ShwΛ−(T ) ↪→ C and

ιw : ShwΛ−∪Λ+
(T ) → ShwΛ−(T )

which is the left adjoint of ι : ShwΛ−(T ) ↪→ ShwΛ−∪Λ+
(T ). Then we have, for any E ∈

ShwΛ−∪Λ+
(T ) and F ∈ C,

HomC( j ◦ ιw(E),F) / HomSh♦
Λ−

(ιw(E),F)

/ HomSh♦
Λ−∪Λ+

(E,F)

/ HomShwΛ−∪Λ+
(E, i(F))

/ HomC(i
L(E),F).

Hence we have iLA / j ◦ ιw. Since iLA is essentially surjective, we can conclude that j
is also essentially surjective. This completes the proof.

Remark 13. We also have a semi-orthogonal decomposition of the form

ShwΛ−∪Λ+
(T ) /

〈
ShwΛ+

(T ),Fx,ξ
〉

where (x, ξ) ∈ (Λ− ∪ Λ+)\Λ−. In this case, Fx,ξ is π!CD′ where D′ is the image of D
under the reflection e1 ↔ e2.
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Remark 14. We expect these semi-orthogonal decompositions to be related to those
obtained by Ganatra–Pardon–Shende using their ‘forward stopped’ criterion [20,
Sect. 1.7], but did not investigate further.

We also have a semiorthogonal decomposition P0 / 〈D(X−), D(pt)〉 from Propo-
sition 4. Note that the functor κB restricts to the equivalence κ−.

Proposition 9. κP is an equivalence.

Proof. We have already shown that κP is fully faithful, and that its restricts on D(X−) to
an equivalence D(X−) → ShwΛ−(T ). Using the semiorthogonal decompositions above
we deduce that the restriction of κP to the orthogonal D(pt) of D(X−) gives a functor

κpt : D(pt) →
〈
Fx,ξ

〉
.

This is fully faithful, therefore via the equivalence
〈
Fx,ξ

〉
/ D(pt) it is isomorphic to a

homological shift [s]. Hence κpt is essentially surjective, and so the same holds for κP ,
completing the proof.

Relating mirror schobers We use Proposition 9 above to conclude equivalences of
schobers.

We now have an opposite spherical pair

D(X−) P0 D(X+)

p∗− p∗
+

p−! p+!

Let us setP ′
0 := P0 ⊗ωXB ⊂ D(XB). By tensoring with the canonical sheaves on each

category of the above schober, we get an equivalent opposite spherical pair.

D(X−) P ′
0 D(X+)

p!− p!+

p−∗ p+∗

To show this we use the isomorphism

p!± ∼= ωXB ⊗ p∗
±
(
ω−1
X± ⊗ −

)
,

which holds because the relative dimension of p± is zero, and its left adjoint.

Theorem 5. The opposite spherical pair

D(X−) P ′
0 D(X+)

p!− p!+

p−∗ p+∗

is equivalent via the mirror symmetry functor KΣ± to an opposite spherical pair as
follows.

ShwΛ−(T ) ShwΛ−∪Λ+
(T ) ShwΛ+

(T )
p∗− p∗+

p−! p+!
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Proof. By the argument above, in particular using Theorem 4, Proposition 1, and Propo-
sition 9, we have commutative squares as follows

D(X−) P0 D(X+)

ShwΛ−(T ) ShwΛ−∪Λ+
(T ) ShwΛ+

(T )

∼ ∼

∼

p∗− p∗
+

p∗− p∗+

where the vertical arrows are the functors κ .
Taking left adjoints, we furthermore obtain the following diagram.

D(X−) P0 D(X+)

ShwΛ−(T ) ShwΛ−∪Λ+
(T ) ShwΛ+

(T )

∼ ∼

∼

p−! p+!

p−! p+!

Since the upper lines of the diagrams give the data of a weak spherical pair and satisfy
the condition to be a spherical pair, we deduce that the lower lines give the data of an
equivalent spherical pair. Note that the associated semi-orthogonal decompositions are
given in Proposition 8 and Remark after the proposition.

Composing the tensor of the inverse of canonical sheaves with the above schober
equivalence, we have

D(X−) P ′
0 D(X+)

ShwΛ−(T ) ShwΛ−∪Λ+
(T ) ShwΛ+

(T )

∼ ∼ ∼

p!− p!+

p∗− p∗+

where the vertical arrows are κ ◦ (− ⊗ ω−1) = K .

Let D := Hom(−,ω) be the Grothendieck duality. Then

D ◦ p! ◦ D / D ◦
(
p∗ Hom(−,ω) ⊗ ω ⊗ p∗ω−1)

/ D ◦
(
p∗(−)∨ ⊗ p∗ω ⊗ ω ⊗ p∗ω−1)

/ D ◦
(
p∗(−)∨ ⊗ ω

)

/ Hom
(
p∗(−)∨ ⊗ ω,ω

)

/
(
p∗(−)∨

)∨

/ p∗.
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Therefore applying D to the opposite spherical pair given by the top line in the diagram
below

D(X−) P ′
0 D(X+)

D(X−) DP ′
0 D(X+)

D D D

p!− p!+

p∗− p∗
+

we get an anti-equivalent spherical pair. By the construction, DP ′
0 is the image of the

functors p∗
± and hence DP ′

0 = P0. Consequently, we have a spherical pair as follows.

D(X−) P0 D(X+)

p∗− p∗
+

p−∗ p+∗

Combining this with Theorem 2 we obtain the following.

Theorem 6. In the 3-fold setting of Sect. 4.2, there exists a spherical pair

WΛ∞
− (ΩT ) WΛ∞

− ∪Λ∞
+
(ΩT ) WΛ∞

+
(ΩT )

p∗− p∗+

p−∗ p+∗

which is equivalent via mirror symmetry to the spherical pair as follows.

D(X−) P0 D(X+)

p∗− p∗
+

p−∗ p+∗

Proof. Note that Λ∞
− ∪ Λ∞

+ = (Λ− ∪ Λ+)
∞ by the definition. We take the functors

between Fukaya categories as the compositions of the functor in Theorem 2 with the
functors between wrapped constructible sheaves. The commutativity and equivalences
follow from this description.

Remark 15. The functors q±∗ between Fukaya categories are isomorphic to stop removal
functors as given in [21]. The functorsq∗

± are a bitmore subtle, aswe used the smoothness
of mirrors to construct them. A Fukaya-categorical description may be as follows: the
image of a Lagrangian submanifold is its result under the Reeb flow until it stops.
However, making this claim precise is a problem.

5.2. Surface proof. We return to the setting of Sect. 4.1, in particular we use notation
as follows.

X− = [C2/Z2] X+ = ˜C2/Z2

For a toric Deligne–Mumford stack, we have to generalize the definition of ΛΣ . We
only describe the result:

Λ− := Λ0 ∪ (Λ0 + 1
2 · [e∨

1 ])
ΛB := Λ+ ∪ (Λ+ + 1

2 · [e∨
1 ])

where +1
2 · [e∨

1 ] means the translation by the class 1
2 · [e∨

1 ] ∈ T = MR/M .
As before, let us take a point (x, ξ) ∈ ΩT which lies in Λ− ∪ Λ+, but not in Λ−. Let

Fx,ξ be a microlocal skyscraper sheaf. Then the following is the analogue of Lemma 2.
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Lemma 3. Fx,ξ is exceptional.

Proof. Again, we have an explicit description.

We take the constant sheaf on the shaded triangle, where the blue side is included, and
other sides are not.

By the same argument as in the conifold case, we have the following analogue of
Proposition 8.

Proposition 10.

ShwΛ−∪Λ+
(T ) /

〈
ShwΛ−(T ),Fx,ξ

〉
.

Remark 16. The skeleton Λ+ is the usual FLTZ skeleton, as shown in Fig. 2. Again, we
have a microlocal skyscraper on a point in (Λ− ∪ Λ+)\Λ+ as follows:

We can prove a semi-orthogonal decomposition for this case:

ShwΛ−∪Λ+
(T ) /

〈
ShwΛ+

(T ),Fx ′,ξ ′
〉
.

In the same way as in the conifold case, we can get a mirror equivalence between
schobers, as follows.

Theorem 7. In the surface setting of Sect. 4.1, the analog of Theorem 6 holds.
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5.3. Result for flober. The coherent–constructible correspondence and an argument sim-
ilar to the one presented in the last two subsections also gives a mirror equivalence of
flobers. Let us only describe the result. We have an opposite flober

D(X−) D(XB) D(X+)

p!− p!+

p−∗ p+∗

which is anti-equivalent to a flober as follows.

D(X−) D(XB) D(X+)

p∗− p∗
+

p−∗ p+∗

We denote the latter one by PB .
On the other hand, the coherent–constructible correspondence K takes the former

opposite flober to another flober

ShwΛ−(T ) ShwΛB
(T ) ShwΛ+

(T )
p∗− p∗+

p−! p−!

and then Theorem 2 takes this to an anti-equivalent flober as follows.

WΛ∞
− (ΩT ) WΛ∞

B
(ΩT ) WΛ∞

+
(ΩT )

p∗− p∗+

p−∗ p−∗

We denote this by PA. We then have the following.

Theorem 8. The two flobers PA and PB are equivalent via mirror symmetry.

6. Applications to Singularities

We first explain work of Bondal, Kapranov, and Schechtman calculating cohomology of
the floberPB in the 3-fold case, and explain how their method applies also to the surface
case. We then give an analogous calculation for the flober PA, proving Proposition C
and Corollary D.

6.1. B-side calculation. Bondal–Kapranov–Schechtman showed the following in our
3-fold setting, and for general 3-fold flops:

Proposition 11. [7, Proposition 2.12] The flober PB has the 2nd compact cohomology

H2
c(∆,PB) / D(X0),

meaning that the diagram

D(XB)

D(X+)D(X−)

D(X0)

p+∗

f−∗

p−∗

f+∗

(11)

Author's personal copy



Mirror Symmetry for Perverse Schobers from Birational Geometry 483

is a push-out in the Morita model category of dg-categories, where the f± are the
resolutions X± → X0.

Let us recall their logic. First we extend the diagram to the following, defining L+
(respectively C−) to be the kernel of p+∗ (respectively f−∗).

L+

C− D(XB)

D(X+)D(X−)

D(X0)

h

p+∗

f−∗

p−∗

f+∗

Lemma 4 [7, Theorem 2.14]. In this situation, we have D(XB)/L+ / D(X+) and
D(X−)/C− / D(X0).

D(XB)/L+ / D(X+) and D(X−)/C− / D(X0).

We moreover have the following general proposition, which is a slight modification
of [7, Lemma 2.17].

Proposition 12. Let u : S1 → T1 be a fully faithful dg-functor between two Karoubian
pre-triangulated dg-categories and v : T1 → T2 be a dg-functor. Let S2 be the thick
triangulated hull of objects of v(S1). Then the push-out of

T1

T1/S1T2

v

is Morita-equivalent to T2/S2.

Proof. Let S ′
2 be the full sub dg-category of T2 spanned by objects of v(S1). Then [7,

Lemma 2.17] says the desired push-out is quasi-equivalent to T2/S ′
2. Since T2/S ′

2 is
Morita-equivalent to T2/S2 (for example, one can deduce it from [7, Lemma 2.16]), we
complete the proof.

Remark 17. An alternative short explanation of the above proposition was suggested by
the referee. We have a commutative diagram as follows: the left-hand square and the
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rectangle are push-outs, so the right-hand square is also.

S1

T1

T2

0

T1/S1

T2/S2

The situation of the above proposition is:

S1

T1

T1/S1

S2

T2

T2/S2

v

u

To apply this proposition to our situation, the following is sufficient.

Lemma 5 [7, Lemma 2.18]. The functor h : L+ → C− is a split generation.

This completes the logic to prove Db(X0) / push-out of (11) in the 3-fold case. We
now explain how this method gives the same result for the surface case.

The argument for [7, Theorem 2.14], which is quoted as Lemma 4 above, is quite gen-
eral, and applies in the setting ofDeligne–Mumford stacks. It requires certain t-structures
on XB and X− which are compatible with the contractions p+ and f− respectively. In
the 3-fold case, we may take one of the t-structures pPer of Bridgeland [9, Sect. 3]: for
the surface case we may translate the same notion to the stacky setting.

The split generation claim for h, quoted in Lemma 5 above, may be checked explicitly
in the surface case: using the notation in the commutative diagram (8), we have that
j−∗OE−(−1) is a split generator of C−, and is the image of i∗q∗

−OE−(−1) under h.

6.2. A-side calculation. Let us now turn to the A-side. We would like to prove the
following:
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Proposition 13. The A-model flober PA has 2nd compact cohomology

H2
c(∆,PA) / WΛ∞

− ∩Λ∞
+
(ΩT ).

We would first like to set up a somewhat general situation. Let Z be a real analytic
manifold. Let Λ be a conic Lagrangian in ΩZ and Λ′ be a closed conic Lagrangian
subset of Λ. Then there exists a canonical inclusion

ι : Sh♦
Λ′(Z) → Sh♦

Λ(Z)

and a left adjoint ιLA : Sh♦
Λ(Z) → Sh♦

Λ′(Z).

Notation 2. Let SΛ(Λ\Λ′) be the set of microlocal skyscraper sheaves in Sh♦
Λ(Z) over

Λ\Λ′ and SΛ(Λ
′) be the set of microlocal skyscraper sheaves in Sh♦

Λ(Z) over Λ′.

For brevity, we set

S := SΛ(Λ\Λ′) ∪ SΛ(Λ
′) and R := SΛ(Λ\Λ′).

Then ιLA maps R to 0 and S\R to a set of generators of Sh♦
Λ′(Z). Then Sh♦

Λ(Z) = 〈S〉
by Nadler’s generation result [40]. By Thomason’s localization theorem [43, Theorem
1.14], we have

〈R〉idem = 〈R〉 ∩ ShwΛ(Z)

where 〈R〉idem is the smallest thick subcategory containing R and

(
Sh♦

Λ(Z)/〈R〉 )c / ShwΛ(Z)/〈R〉 ∩ ShwΛ(Z).

where (−)c is the full subcategory spanned by compact objects (more precisely ℵ0-
compact). Combining these, we have the following.

(
Sh♦

Λ(Z)/〈R〉 )c / ShwΛ(Z)/〈R〉idem

To prove the next lemma, we recall some facts.

Definition 13 (Bousfield localization). Let T be a triangulated category and S be a thick
subcategory. The Bousfield localization functor for the pair (T ,S) is a right adjoint of
the quotient functor T → T /S.

Theorem 9 [43, Theorem 9.1.16]. The Bousfield localization functor is fully faithful.

Now we would like to prove the following:

Lemma 6.

Sh♦
Λ(Z)/〈R〉 / Sh♦

Λ′(Z).
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Proof. It suffices to show this on the level of homotopy categories. Again, general
nonsense tells us that there exists a right adjoint πRA

1 of the quotient π1 : Sh♦
Λ(Z) →

Sh♦
Λ(Z)/〈R〉 (cf. [43, Example 8.4.5]). Hence this is a Bousfield localization and hence

fully faithful. For an object E ∈ Sh♦
Λ(Z)/〈R〉 and an r ∈ R, we have

HomSh♦
Λ(Z)(r,π

RA
1 (E)) / HomSh♦

Λ(Z)/〈R〉(π1(r), E) / 0.

Hence SS(πRA
1 (E)) ⊂ Λ′ by the definition of microlocal skyscraper sheaves. So we

have a fully faithful functor π̃RA
1 : Sh♦

Λ(Z)/〈R〉 → Sh♦
Λ′(Z) such that πRA

1 = ι ◦ π̃RA
1 .

We would like to see that this is essentially surjective.
Let us take F ∈ Sh♦

Λ′(Z). It is enough to prove π̃RA
1 ◦ π1 ◦ ι(F) / F for our

purpose. Letting π2 be the functor Sh♦
Λ(Z)/〈R〉 → Sh♦

Λ′(Z) induced by ιLA, which
satisfies π2 ◦ π1 = ιLA.

First, let us see π2 is the left adjoint of π1 ◦ ι. Let us consider an object π1(G) ∈
Sh♦

Λ(Z)/ 〈R〉 which is represented by G ∈ Sh♦
Λ(Z). We have

HomSh♦
Λ′ (Z)

(π2 ◦ π1(G),F) / HomSh♦
Λ′ (Z)

(ιLA(G),F)

/ HomSh♦
Λ(Z)(G, ι(F))

/ HomSh♦
Λ(Z)/〈R〉(π1(G),π1 ◦ ι(F)).

For the last equality, we used the fact that 〈R〉 is in the left orthogonal of Sh♦
Λ′(Z). Next,

we can see π1 ◦ ι is fully faithful because of the following.

HomSh♦
Λ(Z)/〈R〉(π1 ◦ ι(F ′),π1 ◦ ι(F)) / HomSh♦

Λ′ (Z)
(π2 ◦ π1 ◦ ι(F ′),F)

/ HomSh♦
Λ′ (Z)

(ιLA ◦ ι(F ′),F)

/ HomSh♦
Λ′ (Z)

(F ′,F)

Finally, we have

HomSh♦
Λ′ (Z)

(
F ′, π̃RA

1 ◦ π1 ◦ ι(F)
)

/ HomSh♦
Λ(Z)(ι(F

′),πRA
1 ◦ π1 ◦ ι(F))

/ HomSh♦
Λ(Z)/〈R〉(π1 ◦ ι(F ′),π1 ◦ ι(F))

/ HomSh♦
Λ′ (Z)

(F ′,F).

Yoneda then completes the proof.

Lemma 7. The functor π2 is an equivalence.

Proof. From the proof above, we also see that π1 ◦ ι : Sh♦
Λ′(Z) → Sh♦

Λ(Z)/〈R〉 is an
equivalence. Since π2 is the left adjoint of π1 ◦ ι, we actually have

π2 = π̃RA
1 .

π2 = π̃RA
1 .
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Corollary 3. The functor π2 induces an equivalence as follows.

ShwΛ′(Z) / ShwΛ(Z)/〈R〉idem

Let us go back to our situation. We now have a diagram.

〈
SΛB (ΛB\Λ+)

〉idem

〈
SΛ−(Λ−\(Λ− ∩ Λ+))

〉idem ShwΛB
(T )

ShwΛ+
(T )ShwΛ−(T )

ShwΛ−∩Λ+
(T )

h

p+!

f−!

p−!

f+!

The two sequences from upper left to lower right are Verdier–Drinfeld quotients by
Corollary 6.5. The functor his the restriction of p−! to the uppermost category. The
functors f±! are the restrictions of the left adjoints of the inclusions ShwΛ−∩Λ+

(T ) ⊂
ShwΛ±(T ).

Lemma 8. The category
〈
Λ−\(Λ− ∩ Λ+)

〉idem is split-generated by the image of h.

Proof. Note that p−! takes a microlocal skyscraper sheaf in ShwΛB
(T ) over a point inΛ−

to a microlocal skyscraper sheaf in ShwΛ−(T ) over the same point in Λ− [40]. Note also
that p−! takes a microlocal skyscraper sheaf in ShwΛB

(T ) over a point in ΛB\Λ− to zero
[40]. These imply the well-definedness of h. Since ΛB\Λ+ ⊃ Λ−\(Λ− ∩ Λ+), these
also imply the surjectivity of hon the split generators.

Repeating the logic presented in the beginning of the section, we can conclude

ShwΛB
(T )

ShwΛ+
(T )ShwΛ−(T )

ShwΛ−∩Λ+
(T )

p+!

f−!

p−!

f+!

is a homotopy push-out in the Morita model. Noting that (Λ− ∩ Λ+)
∞ = Λ∞

− ∩ Λ∞
+

by the definition of taking infinity, Theorem 2 takes this diagram to another push-out
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diagram.

WΛ∞
B
(ΩT )

WΛ∞
+
(ΩT )WΛ∞

− (ΩT )

WΛ∞
− ∩Λ∞

+
(ΩT )

p+∗

f−∗

p−∗

f+∗

Here f±∗ is defined as the composition of the functor in Theorem 2 and f±!. This implies
Proposition 13.

On the other hand, Theorem 8 implies that H2
c(∆,PA) / H2

c(∆,PB). Combining
with Proposition 13, we have homological mirror symmetry for singular varieties

Corollary 4.

D(X0) / WΛ∞
− ∩Λ∞

+
(ΩT ).

Remark 18. In this section, we used flobers to study the compact cohomology rather
than spherical pairs. If one instead uses the spherical pairs from Theorem A, then one
will arrive at the same conclusion as presented here, i.e. the flobers and spherical pairs
have the same 2nd compact cohomology.

Remark 19. The method presented here might be generalized to another general proof
of the coherent–constructible correspondence for singular toric varieties, as proved by
the second author in [36].

Let X be a singular toric variety. Let SX be the category consisting of

1. Objects: smooth toric Deligne–Mumford stacks refining X .
2. Morphisms: morphisms of stacks corresponding to refinement.

There exists a functor from SX to the category of dg-categories defined by X ′ 8→ D(X ′),
where morphisms are mapped to push-forwards along them.

Conjecture 1. The universality morphism gives an equivalence

lim−→
X ′∈SX

D(X ′) / D(X).

One can define theA-model counterpart,wheremorphisms aremapped to left adjoints
of functors supplied by Proposition 2, as above, and conjecture as follows.

Conjecture 2. The universality morphism gives an equivalence

lim−→
X ′∈SX

ShwΛX ′ (T ) / ShwΛX
(T ).

These two conjectures would allow us to conclude an equivalence D(X) / ShwΛX
(T )

from the smooth coherent–constructible correspondence.
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