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A Diameter Bound for Finite Simple Groups of Large Rank
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Abstract

Given a non-abelian finite simple group G of Lie type, and an arbitrary symmetric generating
set S, it is conjectured that its Cayley graph Γ(G,S) will have a diameter bound of (log |G|)O(1).
However, little progress has been made when the rank of G is large. In this article, we shall show
that if G has rank n, and its base field has bounded size, then the diameter of Γ(G,S) would be
bounded by exp(O(n(logn)3)).

1. Introduction

1.1. History and Background

Given a group G and a symmetric generating set S, one can construct a corresponding
Cayley graph Γ(G,S). Its vertices are elements of G, and two vertices g, h ∈ G are connected
by an edge iff there is an element s ∈ S such that sg = h. The Cayley graph is a metric space
where the distance between two vertices is simply the length of the shortest path from one
to the other. In this way, we can discuss the diameter of the Cayley graph. Equivalently, we
can also define the diameter to be the smallest number ` such that every element of G can be
written as a product of at most ` elements of S.

If G is a non-abelian finite simple group, we expect all its Cayley graphs to have good
connectivity. In particular, we have the following conjecture of Babai:

Conjectures 1.1 Babai, [BS92]. For any non-abelian finite simple group G, and for any
symmetric generating set, the diameter of the Cayley graph is bounded by (log |G|)O(1), where
the implied constant is absolute.

The first class of simple groups verified for Babai’s conjecture was PSL2(Z/pZ) with p
prime, by Helfgott [Hel08]. Afterwards, a lot of research was done on the diameters and related
expansion properties of these Cayley graphs.

The best result to date are those by Pyber and Szabo [PS16], and Breuillard, Green and Tao
[BGT11]. They verified Babai’s conjecture for all finite simple groups of Lie type with bounded
rank. The results of Pyber and Szabo was announced first, while the results of Breuillard,
Green and Tao initially failed to cover the Suzuki groups.

For all non-abelian finite simple groups, Breuillard and Tointon [BT15] also obtained a
diameter bound of max(|G|ε, Cε) for arbitrary ε > 0 and a constant Cε depending only on
ε. However, for all finite simple groups of Lie type, these diameter bounds retain a strong
dependency on the rank of the group.

On the other hand, a lot of research were also done for the symmetric group Sn and the
alternating group An. In 1988, Babai and Seress showed the following theorem.
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Theorem 1.2 Babai and Seress, [BS88]. Let G = Sn or G = An, then for any symmetric
generating set,

diam(G) ≤ exp(
√
n log n(1 + on(1)) = exp(

√
log |G|(1 + on(1)).

This was the best known bound for Sn or An for over two decades, until Helfgott and Seress
recently showed the following.

Theorem 1.3 Helfgott and Seress, [HS14]. Let G = Sn or G = An, then for any symmetric
generating set,

diam(G) ≤ exp(O((log n)4 log log n))

. The implied constant is absolute.

In this article we give a modest upper bound on the diameter for finite simple groups of Lie
type, where the dependency on rank is lessened.

Theorem 1.4 Main Theorem. Let G be a finite simple group of Lie type, with rank n and
base field Fq, then

diam(G) ≤ qO(n((logn+log q)3)).

In particular, if the base field has bounded size, we have

diam(G) ≤ exp(O(n(log n)3)) = exp(O(
√

log |G|(log log |G|)3)).

1.2. Preliminaries

Definition 1.5. Given an algebraic group G over a finite field Fq, the algebraic rank of
G is the dimension of a maximal torus in G.

Proposition 1.6. There is an absolute constant C, such that any finite simple group of
Lie type G of algebraic rank larger than C must be a projective special linear group PSLn(Fq),
a projective symplectic group PSpn(Fq), a projective special unitary group PSUn(Fq), or the
simple quotient PΩn(Fq) of the derived subgroup Ωn(Fq) of the orthogonal group On(Fq).

Proof. Going through the list of finite simple groups of Lie type, the algebraic ranks of all
but the above four families of groups are bounded by an absolute constant C.

In this paper, we are only interested in finite simple groups of Lie type with large ranks.
Therefore, these four families of groups are all we need to deal with.

Proposition 1.7. For groups GLn(Fq), SLn(Fq), PSLn(Fq), Spn(Fq), PSpn(Fq), Un(Fq),
SUn(Fq), PSUn(Fq), On(Fq), Ωn(Fq), PΩn(Fq), their algebraic rank is between n

2 − 1 and n.

Proof. This is done by computing their algebraic rank one by one.

Let G be any group. Given a subset S of G, we shall use Sd to denote {g1...gd : g1, ..., gd ∈ S},
i.e., the set of product of d elements of S.
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We shall use the “big O” and “small o” convention. We let O(g(x)) to denote a quantity
whose absolute value is bounded by Cg(x) for some absolute constant C. And we let on(1) to
denote a quantity whose limit is 0 as n goes to infinity.

1.3. Outline of the Proof

Definition 1.8. Given a matrix A, we define its degree to be deg(A) = rank(A− I).
Equivalently, it is n minus the dimension of fixed subspace of A.

The general idea is to find a matrix of small degree and close to the identity. And from
there on, the expansion would be very fast. This is analogous to the case of symmetric and
alternating groups, where one first find elements of small support (i.e., 2-cycles or 3-cycles),
and then proceed to fill up the whole group.

Given any finite simple group of Lie type, we proceed via the following steps. Let G be
SLn(Fq), Spn(Fq), SUn(Fq) or Ωn(Fq). Then we can assume that G acts on a vector space V
of dimension n.

(1) We start by finding a subset of small diameter in G near the identity, which we call a t-
transversal set. Such a set contains an extension for every linear or isometric embeddings
of any t-dimensional subspace W into V . This is an analogy to a t-transitive subset of a
symmetric group Sn. See Section 2 for the linear case, and Section 6 for the symplectic
case, the unitary case, and the orthogonal case.

(2) Using the t-transversal set above, we can find a special matrix, which we call a P-matrix.
Some large power of a P-matrix will have a much smaller degree than the original one.
This is the main degree reducing step, insipired by Lemma 1 of the paper of Babai and
Seress [BS88]. The result on P-matrices is dependent on an inequality of primes, which
is dudeced in Section 3. For P-matrices, see Section 4.

(3) Combined with repeated commutators with carefully chosen elements from the t-
transversal set, we can repeat the above step many times, until we reach a matrix of very
small degree. See Section 5 for the linear case, and Section 7 for the symplectic case, the
unitary case, and the orthogonal case.

(4) From a small degree matrix, one can quickly fill up its conjugacy class. Then from a
conjugacy class, one can quickly fill up the whole group. See Section 8.

1.4. Acknowledgements

We would like to thank Emmanuel Breuillard and Terence Tao for a number of helpful
discussions and advices in this subject.

2. t-Transversal Sets with Small Diameters

Given a vector space V of dimension n over the field Fq. Let the group GLn(Fq) act on it
naturally.

Definition 2.1. A subset S of GLn(Fq) is called a t-transversal set if given any
embedding X of a t-dimensional subspace W into V , we can find A ∈ S that extends X on W .

Lemma 2.2. GLn(Fq) is t-transversal for all t, and SLn(Fq) is t-transversal for all t < n.



Page 4 of 19 Arindam Biswas, Yilong Yang

Proof. Let W be any subspace with a basis w1, ..., wt. We can complete this into a basis of
V with new vectors v1, ..., vn−t. Let A be a matrix with column vectors w1, ..., wt, v1, ..., vn−t.
In the case when t < n, we can multiply vn−t by a constant so that det(A) = 1.

For any embedding X of W into V , X(w1), ..., X(wt) are linearly independent. We can
complete this into a basis of V with new vectors u1, ..., un−t. Let B be a matrix with column
vectors X(w1), ..., X(wt), u1, ..., un−t. In the case when t < n, we can multiply un−t by a
constant so that det(B) = 1.

Now B(A)−1 is in GLn(Fq) and, if t < n, also in SLn(Fq). We also have (B(A)−1)|W = X.

Lemma 2.3. For any symmetric subset S of GLn(Fq), if the subgroup generated by S is

t-transversal, then
⋃d=qnt

d=1 Sd is t-transversal.

Proof. Let W be any t-dimensional subspace. Let L(W ) be the set of embeddings of W
into V . Let H be the subgroup generated by S. Then an element g of H acts on L(W ) by
g(X) = (g ◦X)|W for any X ∈ L(W ). Let Γ be the corresponsing Schreier graph of this action
of H on L(W ) with generating set S, i.e., the vertices are elements of L(W ), and two vertices
X,Y are connected iff g(X) = Y for some g ∈ S.

Now, since H is t-transversal, the graph Γ is connected. So the diameter of Γ is trivially

bounded by its number of vertices, which is at most qnt. As a result, the set
⋃qnt

d=1 S
d is

t-transversal.

Corollary 2.4. Given any symmetric generating set S for GLn(Fq), the set
⋃d=qnt

d=1 Sd is
t-transversal. If t < n, then the same statement is true with SLn(Fq) replacing GLn(Fq).

3. An Inequality on Primes

In this section, we shall establish an inequality on primes to be used in the next section.
Throughout this section, we shall fix a prime p0 and fix a power of it q0, which in the next

section shall become the characteristic and the order of a finite field.
Let p1, ..., pr be the first r primes coprime to p0(q0 − 1). Let M be the least common multiple

of p1 − 1, p2 − 1, p3 − 1, ..., pr − 1. Let S be the sum of p1 − 1, p2 − 1, p3 − 1, ..., pr − 1. Our goal
for this section is the following proposition:

Lemma 3.1. There exist absolute constants c1 and c2 such that, if pr ≥ c1 log q0, then

S ≤ (pr)
2 ≤ c2(logM)3.

Before we prove this, let us first set up more notations. Let P+ be the function that sends
each positive integer to its largest prime factor. Let P = {p1, ..., pr}. For any δ > 0, let Pδ =
{prime number p : 3 ≤ p ≤ pr, P+(p− 1) ≥ (pr)

δ}, and let P ∗δ = Pδ ∩ P .
We start by citing an important theorem of Fouvry.

Lemma 3.2 (Fouvry [Fou85]). There is an absolute constant δ > 2
3 , and an absolute

constant c0, such that

|Pδ| ≥ c0
pr

log pr
.
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Corollary 3.3. There is an absolute constant δ > 2
3 , and absolute constants c0 and c3,

such that |P ∗δ | ≥ c0
pr

log pr
− c3 log q0

log log q0
.

Proof. By prime number theorem, the prime factors of p0(q0 − 1) is bounded by c3
log q0

log log q0
for some absolute constant c3.

Lemma 3.4. Let p ≥ (pr)
δ be some prime. Then

|(P+)−1(p) ∩ P ∗δ | ≤
2pr
pδr − 1

.

Proof. The set (P+)−1(p) ∩ P ∗δ is contained in the set of primes ≤ pr that are congruent
to 1 mod p. By Brun-Titchmarsh theorem, combined with the fact that p ≥ (pr)

δ, we have

|(P+)−1(p) ∩ P ∗δ | ≤
2pr

φ(p) log pr
p

≤ 2pr
p− 1

≤ 2pr
(pr)δ − 1

.

Here φ is the Euler’s totient function.

Now we have enough to prove Lemma 3.1.

Proof of Lemma 3.1. The first inequality is straight forward

S ≤
∑

prime p≤pr

p ≤ (pr)
2.

All the primes in P+(P ∗δ − 1) are factors of M , and they are all larger than (pr)
δ.

Furthermore, we have

|P+(P ∗δ − 1)| ≥ |P ∗δ |
maxp≥(pr)δ |(P+)−1(p) ∩ P ∗δ |

≥(c0
pr

log pr
− c3

log q0

log log q0
)/(

2pr
(pr)δ − 1

)

≥1

2
((pr)

δ − 1)(
c0

log pr
− c3
pr

log q0

log log q0
).

So, if pr > c1 log q0 for an absolute constant c1 such that c3
1+log c1

c1
< c0

2 , then we have

logM ≥|P+(P ∗δ − 1)| log((pr)
δ)

≥1

2
δ((pr)

δ − 1)(c0 − c3
log q0

log log q0

log pr
pr

)

≥1

2
δ((pr)

δ − 1)(c0 − c3
1 + log c1

c1
)

≥1

4
δc0((pr)

δ − 1).

Since δ > 2
3 , we can pick some constant such that c2(logM)3 ≥ (pr)

2.
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As a side note, for any improved value of δ in the Fouvry’s theorem, our diameter bound

in this paper would improve to qO(n(logn+log q)
2
δ ) for finite simple groups of Lie type of rank n

over Fq.
If one were to assume the Hardy-Littlewood conjucture on prime tuples, the δ could be

improved to 1− o(1). Combine this with the more efficient estimate S ≤ (pr)2

log pr
, the diameter

bound of this paper would improve to qO(n(logn+log q)2) for finite simple groups of Lie type of
rank n over Fq.

4. P-Matrices and Degree Reduction

This section aims to show that, given a P-matrix, we can reduce its degree by raising it to
a large power.

Definition 4.1. Let Fq be a finite field of characteristic p, and let p1, p2, ..., pr be the first
r primes coprime to p(q − 1). Then a matrix A over Fq is called a P(r)-matrix if, for each
i ≤ r, it has a primitive pi-th root of unity in the algebraic closure of Fq as an eigenvalue.

Lemma 4.2. Let A be a matrix over Fq, a field with characteristic p. Let m be any number.
Then if A has a primitive m-th root of unity as an eigenvalue, A must have all primitive m-th
roots of unity.

Proof. This is standard Galois theory.

Lemma 4.3. Let A be a non-identity matrix over finite field Fq of characteristic p. Suppose
A has a primitive m-th root of unity as an eigenvalue in the algebraic closure of Fq. Let
P (m) be the set of all prime divisors of m coprime to p(q − 1). Then A has degree at least
lcmx∈P (m)(x− 1). Here lcm denote the least common multiple.

Proof. There are at least lcmx∈P (m)(x− 1) primitive m-th roots of unity, and they must all
be eigenvalues of A, and they are all different form 1. So A has deree at least lcmx∈P (m)(x− 1).

Lemma 4.4. Let n be an integer, and let q be a prime power. Then we can find an integer
r and an absolute constant c, such that the following is true:

(i) If p1, p2, ..., pr are the first r primes coprime to p(q − 1), then lcmr
i=1(pi − 1) > n4, and∑r

i=1(pi − 1) < c(log n+ log q)3.
(ii) Let A ∈ GLn(Fq) where the field has characteristic p, and degA = k. If A is a P(r)-

matrix, then some large power of A will be a non-identity matrix of degree at most k
4 .

Further more, the eigenvalues of this matrix is either 1 or outside of Fq.

Proof.
The First Statement:
Let M be the least common multiple, and let S be the sum. Let c1 be the constant as in

Lemma 3.1.
Pick pr to be the smallest prime such that logM > n4 and pr > c1 log q. Then the second

condition guarantees that S < c2(logM)3, according to Lemma 3.1.
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Now, if pr ≤ 2c1 log q, then for some absolute constant c4 by prime number theorem, we have

logM ≤
r∑
i=1

log pr

≤c4pr
≤2c1c4 log q.

So S ≤ c(log q)3 for some absolute constant c.
Suppose pr > 2c1 log q. Then pr−1 > c1 log q. Let M ′ = lcmr−1

i=1 (pi − 1). Then by the mini-
mality of pr, we must have logM ′ ≤ n4. In particular, we have

n4 ≥ logM ′

≥(
pr−1√
c2

)
2
3 .

So, we have pr−1 ≤
√
c2n

6. Then pr ≤ 2
√
c2n

6.
Furthermore, we have

logM ≤ log(M ′pr)

≤ log(n4(2
√
c2n

6))

<10 log n+ log(2
√
c2).

So S < c1(logM)3 < c(log n)3 for some absolute constant c.
The Second Statement:
Let Mi denote the least common multiple of p1 − 1, p2 − 1, ..., pi − 1. Let t1 = p1 − 1 and

ti = Mi

Mi−1
for i > 1. Then

∏r
i=1 ti = Mr > n4.

Let N = {1, 2, ..., n}. Let d1, ..., dn be the eigenvalues of A in the algebraic closure of Fq.
For each j ∈ N , let Pj be the set of prime factors of the multiplicative order of dj among

p1, ..., pr. Then by Lemma 4.3, for each j ∈ N ,∏
pi∈Pj

ti ≤ lcmpi∈P (pi − 1) ≤ k.

Now let n(i) denotes the number of Pj that contains pi.
We take the weighted average T of these n(i) with weight log ti. The sum of the weights is∑r
i=1 log ti > 4 log n.

T =

∑
1≤i≤r n(i) log ti∑

log ti

=

∑
1≤i≤r

∑
j∈N (log ti)1pi∈Pj∑

log ti

=

∑
j∈N

∑
1≤i≤r(log ti)1pi∈Pj∑

log ti

≤
∑
j∈N

∑
pi∈Pj log ti

4 log n

≤ k log k

4 log n

≤ k

4
.
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So there is a pi such that n(i) ≤ k
4 . So if A has order m(A), then A

m(A)
pi is the desired non-

identity matrix of degree at most k
4 . The eigenvalue of this matrix is either 1 or a primitive

pi-th root of unity, which would be outside of Fq.

5. Commutators and Degree Reduction

In this section, we shall use repeated commutators with elements of a t-transversal set. This
way, we repeatedly create P-matrices and raise them to a large power, and would eventually
end up with a matrix of very small degree.

Definition 5.1. Given any element g of a group G and a symmetric generating set S for
G, the length of g is `(g) = min{d ∈ N : g = s1...sd for some s1, ..., sd ∈ S}.

Proposition 5.2. For any matrices A,B, deg(ABA−1B−1) ≤ 2 min(degA,degB).

Proof.

deg(ABA−1B−1) = rank(ABA−1B−1 − I)

= rank(AB −BA)

= rank((A− I)(B − I)− (B − I)(A− I))

≤ rank(A− I)(B − I) + rank(B − I)(A− I)

≤ rank(A− I) + rank(A− I)

= 2 rank(A− I).

Similarly, we also have deg(ABA−1B−1) ≤ 2 rank(B − I). So we are done.

Lemma 5.3. Fix any matrix A ∈ GL(V ) of degree k, such that the eigenvalues of A are
either 1 or outside of Fq. For any t ≤ k

2 , we can find a subspace W of V with the following
properties:

(i) dimW = t;
(ii) W ∩AW = {0}.

Proof. We shall prove by induction on the dimension of W . Let VA be the subspace of fixed
points of A in V .
Initial Step: Suppose t = 1. Simply pick any vector v outside of VA, and let W be the span

of v. We have W ∩ VA = {0} by choice of v. Since A has no eigenvalue in Fq other than 1, v
and Av must be linearly independent. So W ∩AW = {0}.
Inductive Step: Suppose we have found a subspace W of dimension t− 1 such that W ∩

AW = {0}. I claim that, when t ≤ k
2 , we can find another vector v, such that the desired

subspace is the span of v and W .
To prove the existence of v, let us count the number of vectors to avoid. We want v to

avoid VA +W +AW . Afterwards, it is enough to let Av avoid any linear combination of v and
W +AW . So we need v to avoid

⋃
x∈Fq (A− x)−1(W +AW ). Here we shall interpret (A− x)−1

as the pullback map of subsets.
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Now, since A has no eigenvalue in Fq other than 1, therefore A− x is invertible when x 6= 1.
And A− 1 has kernel exactly VA, which has dimension n− k. So, we have

|(VA +W +AW ) ∪ (
⋃
x∈Fq

(A− x)−1(W +AW ))|

≤qn−k+2t−2 + qn−k+2t−2 + (q − 1)q2t−2

<qn−k+2t.

So as long as 2t ≤ k, we have qn−k+2t ≤ qn. So it is possible to choose a vector v as desired.

Proposition 5.4. For any symmetric generating set S of GLn(Fq), GLn(Fq) has a non-
trivial element of degree at most C(log n+ log q)3 for some absolute constant C, of length less
than qC

′n(logn+log q)3 for some absolute constant C ′. The same statement is true with SLn(Fq)
replacing GLn(Fq).

Proof. We pick r and c according to Lemma 4.4. We may assume that c(log n+ log q)3 < n,
because otherwise the statement is trivial.

Let p1, ..., pr be the first r primes coprime to p(q − 1). Let fi(x) be the irreducible polynomial
over Fq for all the primitive pi-th roots of unity, and let Ci be the companion matrix of fi(x).
Initial Step:
Let us find our first P(r)-matrix. Let T be a c(log n+ log q)3-transversal set. Then by

definition, we can find A0 ∈ T that maps some subspace W of dimension c(log n+ log q)3 onto
itself, and that its restriction to this subspace is the matrix (

⊕r
i=1 Ci)⊕ I for some arbitrary

choices of basis on W , where I is some identity matrix of suitable size.
In particular, A0 is a P(r)-matrix. Since A0 ∈ T , by choosing T as in Corollary 2.4, A0 have

length bounded by qcn(logn+log q)3 .
By using Lemma 4.4, we can raise A0 to a large power, and obtain a non-identity matrix

A1 of degree ≤ deg(A0)
4 ≤ n

4 , with eigenvalues either 1 or outside of Fq. Since the order of A0

is bounded by qn, the length of A1 is bounded by qcn(logn+log q)3+n.
Inductive Step:
Suppose we have obtained a non-identity matrix Aj with eigenvalues either 1 or outside of Fq,

degree at most n
2j+1 , and length at most q2cn(logn+log q)3+j(n+2). If degAj ≤ 2c(log n+ log q)3,

then we stop. If not, then let us construct a non-identity matrix Aj+1 of even smaller degree.
First we shall transform Aj into a P(r)-matrix. Find a subspace Wj of dimension at least

c(log n+ log q)3 as in Lemma 5.3 using Aj . In particular, Wj has trivial intersection with AjWj .
Let T ′ be a 2c(log n+ log q)3-transversal set, then we can find Mj ∈ T ′ that fixes AjWj , and
restricts to a map from Wj to Wj as

⊕r
i=1 Ci ⊕ I for an arbitrary basis of Wj and some identity

matrix I of suitable size.
Consider the commutator MjA

−1
j M−1

j Aj . Since Mj fixes AjWj , we see that MjA
−1
j M−1

j Aj
restricted to Wj is identical to Mj restricted to Wj .

In particular, MjA
−1
j M−1

j Aj is a P(r)-matrix, and it has degree at most 2 deg(Aj). Now we

use Lemma 4.4 again, raising MjA
−1
j M−1

j Aj to a large power, and we would obtain a matrix

Aj+1 of degree at most
2 deg(Aj)

4 , with eigenvalues either 1 or outside of Fq.
Since Mj ∈ T ′, by choosing T ′ as in Corollary 2.4, Mj have length bounded by

q2cn(logn+log q)3 . And since the oder of MjA
−1
j M−1

j Aj is bounded by qn, the length of Aj+1 is
at most

qn(2q2cn(logn+log q)3 + 2q2cn(logn+log q)3+j(n+2)) ≤ q2cn(logn+log q)3+(j+1)(n+2).
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We repeat the above induction logn
log 2 − 1 times, or stop early if we hit degree 2c(log n+ log q)3.

The last Aj we obtained is the desired matrix of small degree and small length.

6. t-Transversal Sets for Orthogonal Groups, Symplectic Groups, and Unitary Groups

Let’s fix some notation for the discussion of the following threes sections. Let V be a non-
degenerate formed space of dimension n over the field Fq, with a non-degenerate quadratic
form Q (the orthogonal case), non-degenerate alternating bilinear form B (the symplectic
case), or non-degenerate Hermitian form B with field automorphism σ (the unitary case). In
the orthogonal case, we shall let B be the symmetric bilinear form obtained by polarizing Q,
i.e., B(v, w) = Q(v + w)−Q(v)−Q(w). Let G be the group of isometries for V .

Definition 6.1.

(i) A vector v ∈ V is singular if B(v, v) = 0 and (if applicable) Q(v) = 0.
(ii) A pair of singular vectors v, w ∈ V is called a hyperbolic pair if B(v, w) = 1.
(iii) The subspace generated by a hyperbolic pair is a hyperbolic plane.
(iv) A subspace W of V is anisotropic if it contains no singular vector.
(v) A subspace is totally singluar if the form B and (if applicable) the quadratic form Q

restricted to it is the zero form.
(vi) Given any subspace W of V , we define its orthogonal complement to be W⊥ :=

{v ∈ V : B(v, w) = 0 for all w ∈W}. Two subspaces are orthogonal if they are in each
other’s orthogonal complimant.

(vii) The radical of V is V ⊥.
(viii) A subspace W is radical-free if W ∩ V ⊥ = {0}.

Theorem 6.2 (Witt’s Decomposition Theorem). The non-degenerate formed space V has
an orthogonal decomposition V = Vani ⊕ (

⊕m
i=1Hi), where Vani is anisotropic of dimension

at most 2, and Hi are hyperbolic planes. In particular, V has a totally singular subspace of
dimention at least dim(V )−2

2 , and any anisotropic space in V has dimension at most 2.

Proof. See [Gro02].

Lemma 6.3. Recall that V is a non-degenerate formed space.

(i) V ⊥ = {0} unless the non-degenerate form for V is a quadratic form, and charFq = 2.
(ii) V ⊥ has dimenion at most 1.
(iii) For any subspace W , dimW + dimW⊥ is equal to dimV if W is radical free, and

dimV + 1 if W is not.
(iv) For any subspace W , (W⊥)⊥ = W + V ⊥.
(v) A totally singular subspace is always radical-free.

Proof. See [Gro02].

Definition 6.4. A subset S of G is called a singularly t-transversal set if, for any
isometric embedding X of a t-dimensional totally singular subspace W into V , we can find
A ∈ S that extends X on W .
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Lemma 6.5 (Witt’s Extension Lemma). G is a singularly t-transversal set for any t.

Proof. This is a special case of Witt’s extension lemma, which states that any bijective
isometry of radical-free subspaces of V could be extended to an isometry of the whole formed
space. See [Gro02] for a proof.

Now, since our focus are the finite simple groups, we don’t really use the full isometry group
G. Rather, we are interested in its commutator subgroup G′.

Lemma 6.6. For any t ≤ n−2
5 , the commutator subgroup G′ of G is singularly t-transversal.

Proof. Let W be a totally singular space of dimension t. Let X : W → V be any isometric
embedding from W to V .
Step 1: I claim that there is a totally singular subspace W ′, which is orthogonal to W and

X(W ), has trivial intersection with W and X(W ), and has the same dimension as W .
To see this, we have dimW⊥ = dimX(W )⊥ ≥ n− t. Therefore, dim(W⊥ ∩X(W )⊥) ≥ n−

2t. So in the subspace W⊥ ∩X(W )⊥, we can find a subspace W ′′ of dimension n− 3t with
trivial intersections with W and X(W ). Now, since W ′′ is a formed space (possibly degenerate),
it has a totally singular subspace of dimension at least dimW ′′−2

2 = n−3t−2
2 ≥ t. So, from this

totally singular space, we could simply pick any totally singular subspace of dimension t to be
the desired W ′.
Step 2:
Let Y : W →W ′ be any bijective linear map. Since both spaces are totally singular, Y is an

isometry. So we could find an extension A ∈ G.
Let Z : W ⊕W ′ → X(W )⊕W ′ be the linear map that restricts to X on W , and restricts

to the identity map on W ′. Then by our choice of W ′, this is a well-defined isometry of totally
singular subspaces, and it would have an extension B ∈ G.

Consider BA−1B−1A ∈ G′. This would restrict to X on W . So we are done.

Lemma 6.7. Let S be any subset of G. If the subgroup generated by S is singularly t-

transversal, then
⋃d=qnt

d=1 Sd is singularly t-transversal.

Proof. Let H be subgroup generated by S. Let W be any t-dimensional totally singular
subspace, and let L(W ) be the set of isometric embeddings of W into V . Then an element
g ∈ H acts on L(W ) by g(X) = (g ◦X)|W for any X ∈ L(W ). Let Γ be the corresponsing
Schreier graph of this action of H on L(W ) with generating set S.

Any isometric embedding from W to V is a linear map. Therefore, There are at most qnt

vertices for Γ, where t = dimW . And since H is singularly t-transversal, the graph Γ must be
connected. So Γ must have a diameter at most qnt.

Corollary 6.8. Given any symmetric generating set S for G or G′, the set
⋃d=qnt

d=1 Sd is
singularly t-transversal for t ≤ n−2

5 .

7. Degree Reducing for Orthogonal, Symplectic, Unitary Groups

Lemma 7.1. For any singular v ∈ V , there is a vector w ∈ V such that v, w form a
hyperbolic pair.
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Proof. Recall that V is a non-degenerate formed space with an alternating bilinear,
symmetric bilinear or Hermitian form B. In the case of characteristic 2, a symmetric bilinear
form B might be degenerate. Let σ be the field automorphism of the base field F for the
Hermitian form B, or identity if B is bilinear.

For any element k ∈ F , we define Tr(x) = x+ σ(x).
Now given a singular v ∈ V , since V is a non-degenerate formed space, we can find a vector

w′ ∈ V such that B(v, w′) 6= 0. By scaling w′, we can assume that B(v, w′) = 1.
Suppose we can find a element k ∈ F such that Tr(k) = B(w′, w′), then w = w′ − kv is the

desired vector forming a hyperbolic pair with v: B(v, w) = B(v, w′) = 1, and

B(w′ − kv, w′ − kv)

=B(w′, w′)− Tr(k)

=0.

Now, it remains to show that such k always exists.
Let E be the subfield of F fixed by σ. Then obviously B(w′, w′) ∈ E. So it is enough to show

that either E = Tr(F ), or B(w′, w′) = 0 for all w′.
Now, Tr(F ) is closed under addition, and it is also closed under multiplication by elements

of E. So Tr(F ) is a E-vector space contained in E. So either E = Tr(F ), or Tr(F ) = 0.
In the case that Tr(F ) = 0, then σ(x) = −x for all x ∈ F . But since σ is a field automorphism,

we must conclude that the field F has characteristic 2, and σ is the identity. Then the form B
is alternating, and B(w′, w′) = 0 for any w′ ∈ V .

Lemma 7.2. If a subspace H of V is an orthogonal sum of hyperbolic planes, then H ∩
H⊥ = {0}.

Proof. The subspace H is an orthogonal sum of hyperbolic planes. Then let us assume that
these planes are the linear span of hyperbolic pairs (v1, w1), (v2, w2), (v3, w3), ..., (vt, wt).

Suppose v ∈ H ∩H⊥. Then for some scalars ai, bi ∈ F , we have

v =

t∑
i=1

aivi +

t∑
i=1

biwi.

Now, since B(v, vi) = 0, we can deduce that bi = 0. Similarly, since B(v, wi) = 0, we can deduce
that ai = 0. So v = 0.

Lemma 7.3. Fix any nonzero elements a, b, c ∈ Fq. Then the equation ax2 + by2 + cz2 = 0
has a non-trivial solution in Fq.

Proof. If char(Fq) = 2, then (Fq)∗ is a multiplicative group of odd order. So every nonzero
element of Fq is a square.

Find x, y, z such that x2 = a−1, y2 = b−1 and z = 0. This is a non-trivial solution of the
equation.

Suppose q is odd. Let S be the set of squares in Fq. Then |S| = q+1
2 . Then |aS|+ | − c− bS| >

|Fq|. As a result, we have aS ∩ (−c− bS) 6= ∅. So −c ∈ aS + bS.
Pick x, y ∈ Fq such that ax2 + by2 = −c. Then the triple (x, y, 1) is a non-trivial solution to

the equation.
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Lemma 7.4. Fix any A ∈ G. Then given any totally singular subspace W ∈ V of dimension
d, we can find a subspace W ′ of W such that W ′ is perperdicular to AW ′, and W ′ has dimension
at least d

4 −
3
2 .

Proof. We proceed by induction on the dimension of W .
Initial Step: For the base case of the induction, suppose the dimension of W is 7 or 8 or

9 or 10. Then all we need is to find a nonzero vector v ∈W such that v ⊥ Av. Suppose for
contradiction that there is no such vector.

Pick any v1 ∈W . Let W1 be the intersection of W and span{v1, Av1, A
−1v1}⊥. Since v1 is not

perpendicular to Av1, it is not in span{v1, Av1, A
−1v1}⊥. So v1 /∈W1, and W1 has dimension

at least dimW − 3 ≥ 4.
Pick any v2 ∈W1. Let W2 be the intersection of W1 and span{v2, Av2, A

−1v2}⊥. Then W2

has dimension at least dimW1 − 3 ≥ 1 and similarly v2 /∈W2. Pick any v3 ∈W2.
Now, we know B(v1, Av1), B(v2, Av2), B(v3, Av3) are all in F∗q . We shall divide our discussion

into two cases:
Orthogonal or Symplectic Case: Let a = B(v1, Av1), b = B(v2, Av2), c = B(v3, Av3).

Then by Lemma 7.3, we can find a nontrivial triple x, y, z ∈ Fq such that ax2 + by2 + cz2 = 0.
Let v = xv1 + yv2 + zv3, then we have

B(v,Av) =x2B(v1, Av1) + y2B(v2, Av2) + z2B(v3, Av3)

=ax2 + by2 + cz2

=0.

Unitary Case: If B is a Hermitian form for a field automorphism σ of order 2, then let F
be the fixed subfield of σ. Let N : Fq → F be the field norm, which is surjective.

Now, Fq is an F -vector space of dimension 2. So B(v1, Av1), B(v2, Av2), B(v3, Av3) cannot
be F -linearly independent in Fq. So one can find non-trivial triple a1, a2, a3 ∈ F such that
a1B(v1, Av1) + a2B(v2, Av2) + a3B(v3, Av3) = 0.

Since the norm map is surjective, find x1, x2, x3 ∈ Fq such that N(xi) = ai. Let v = x1v1 +
x2v2 + x3v3. Then we have

B(v,Av) =N(x1)B(v1, Av1) +N(x2)B(v2, Av2) +N(x3)B(v3, Av3)

=a1B(v1, Av1) + a2B(v2, Av2) + a3B(v3, Av3)

=0.

So in either case, we could find the desired non-trivial vector v ∈W such that v ⊥ Av.
Inductive Step: Now let us proceed for general W of larger dimension. Since the dimension

of W is at least 7, by the argument in the base case of the induction, we can find v1 ∈W such
that B(v1, Av1) = 0. Let W1 be the intersection of W and span{v1, Av1, A

−1v1}⊥. Then W1

has dimension at least d− 3. Pick any subspace W2 of W1 linearly independent from v1. Then
W2 has dimension at least d− 4 and at most d− 1. Then by induction hypothesis, we can find
W ′2 a subspace of W2, such that W ′2 is perpendicular to AW ′2, and W ′2 has dimension at least
d−4

4 −
3
2 .

Let W ′ be the span of W ′2 and v1. Then W ′ will be perpendicular to AW ′, and has dimension
at least d−4

4 −
3
2 + 1 = d

4 −
3
2 . So we are done.

Lemma 7.5. Fix any A ∈ G where all eigenvalues of A are outside of Fq. Then there is a
t-dimensional totally singular subspace W of V such that W ∩AW = {0}, for any t ≤ n

6 .

Proof.
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Fix n, which we assume to be at least 3, so that V has at least one singular vector. We shall
prove by induction on the dimension of W .
Initial Step: Suppose t = 1. Simply pick any singular vector v, and let W be the span of v.

Since A has no eigenvalue in Fq, v and Av must be linearly independent. So W ∩AW = {0}.
Inductive Step: Suppose we have found a totally singular subspace W of dimension t− 1

such that W ∩AW = {0}. I claim that, when t ≤ n
6 , we can find another singular vector v,

such that the desired subspace is the span of v and W .
First of all, we want v to be a singular vector perpendicular to W . We know W⊥ has

dimension n− t+ 1, and by Witt’s decomposition theorem, V has a totally singular space of
dimension at least n−2

2 . This totally singular space will intersect W⊥ in a subspace of dimension
at least n−2

2 − t+ 1 = n
2 − t. So there are at least q

n
2−t singular vectors perpendicular to W .

Among these vectors, to prove the existence of a good v, we should count the number of
vectors to avoid. We need v to avoid W +AW . Afterwards, it is enough to have Av avoiding
the linear combination of v and W +AW are all linearly independent. To satisfy the second
requirement, we need v to avoid

⋃
x∈Fq (A− x)−1(W +AW ). Here we shall interpret (A− x)−1

as the pullback map of subsets.
Now, since A has no eigenvalue in Fq, therefore A− x are all invertible. So, we have

|(W +AW ) ∪ (
⋃
x∈Fq

(A− x)−1(W +AW ))|

≤q2t−2 + q × q2t−2

<q2t.

So as long as 2t ≤ n
2 − t, i.e., t ≤ n

6 , then it is possible to choose a vector v as desired.

Lemma 7.6. Fix any matrix A ∈ G of degree k, such that the eigenvalues of A are either
1 or outside of Fq. Then we can find a subspace W of V with the following properties:

(i) dimW = k
32 −

7
4 ;

(ii) W is totally singular;
(iii) W ∩AW = {0};
(iv) W ⊥ AW .

Proof. Let VA be the subspace of fixed points of A in V . Let Vr = VA ∩ (VA)⊥. Choose
any positive number a to be determined later. Then either Vr has dimension < a, or it has
dimension ≥ a.
Case of Large Vr:
Suppose Vr has dimension ≥ a. Pick any singular v1 ∈ Vr, then we can find w1 ∈ V such that

v1, w1 form a hyperbolic pair. Let Vr1 be the intersection of Vr with span{v1, w1}⊥. Pick any
singular v2 ∈ Vr1, then we can find w2 in span{v1, w1}⊥, such that v2, w2 form a hyperbolic
pair. Then let Vr2 be the intersection of Vr1 with span{v1, w1, v2, w2}⊥, and repeat.

As long as dimVri > 2, then Vri cannot be anisotropic. So we can keep going at least ba−2
2 c

times. Thus we obtained w1, ..., wb a−2
2 c

. They span a totally singular space Wr of dimension at

least a−3
2 . Then by Lemma 7.4, we can find a subspace W of Wr, such that W ⊥ AW and W

has dimension at least a−3
8 −

3
2 .

I claim that, ignoring the dimension requirement, this W satisfy all the desried property.
By construction of W , we have W totally singular and W ⊥ AW . We only need to show that
W ∩AW = {0}.

For any vector w =
∑b a−2

2 c
i=1 aiwi ∈W , suppose it is perpendicular to Vr. Then for each i,

since B(vi, w) = 0, we see that ai = 0. So w = 0. To sum up, W has trivial intersection with
(Vr)

⊥.
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Suppose w ∈W ∩AW . Then w −A−1w ∈W , and for any v ∈ Vr we have

B(v, w −A−1w) =B(v, w)−B(v,A−1w)

=B(v, w)−B(Av,w)

=B(v, w)−B(v, w)

=0.

So w −A−1w ∈W ∩ V ⊥r = {0}. So w = Aw, and w ∈W ∩ VA ⊆W ∩ (Vr)
⊥ = {0}.

To sum up, this W is the space we desired, with dimension at least a−3
8 −

3
2 .

Case of Small Vr:
Suppose Vr has dimension < a.
Step 1: We want to first find a subspace WA of (VA)⊥ where WA ⊥WA and WA ∩AWA =

Vr.
Now, the bilinear or Hermitian form B restricted to (VA)⊥ is still bilinear or Hermitian, with

exactly Vr as the radical. So the space V ′ = (VA)⊥/Vr has a induced bilinear or Hermitian form
B′, and now B′ is non-degenerate.

So V ′ is a non-degenerate formed space with dimension at least k − a. Furthermore, since Vr
and (VA)⊥ are both A-invariant, A induces a linear map A′ on V ′. Clearly A′ has no non-trivial
fixed point in V ′, so all eigenvalues of A′ are ouside of Fq. So by Lemma 7.5, V ′ has a totally
singular subspace W ′ of dimension at least bk−a6 c ≥

k−a−5
6 , such that W ′ ∩A′W ′ = {0}.

Let WA be the pullback of W ′ through the projection map (VA)⊥ → V ′. Since W ′ is totally
singular under B′, the form B vanishes on WA. (Note that in the orthogonal case, the quadratic
form Q might not vanish on WA, so WA might not be totally singular.)
Step 2: Now let us find a totally singular subspace Wr of WA avoiding Vr and has dimension

at least k−a−5
6 .

If charFq 6= 2, or if we are not in the orthogonal case, or if Q vanishes on Vr, then WA is
totally singular. Pick any subspace Wr of WA which has trivial intersection with Vr and has
dimension at least k−a−5

6 , and we are done.
Suppose now that charFq = 2, and we are in the orthogonal case, and we have a vector

v0 ∈ Vr such that Q(v0) 6= 0. Since charFq = 2, the squaring map is bijective on Fq, we can
assume that Q(v0) = 1 by scaling v0.

Define a map X : WA →WA such that X(v) = v +
√
Q(v)v0. Here the square root is well

defined because charFq = 2. Then we have Q(X(v)) = 0 for all v ∈WA.
Furthermore, X is linear. To see this, first we notice that for any v, w in WA, since B vanishes

on WA,

Q(v + w) = Q(v) +Q(w) +B(v, w) = Q(v) +Q(w).

So we have

X(v + w) =v + w +
√
Q(v + w)v0

=v + w +
√
Q(v) +Q(w)v0

=v + w + (
√
Q(v) +

√
Q(w))v0

=X(v) +X(w).

For any scalar a ∈ Fq, we also easily have X(av) = aX(v).
Now, since X is linear, X(WA) is a subspace of WA. So X(WA) is a totally singular subspace.
Now pick any subspace Wr of WA which has trivial intersection with Vr and has dimension

at least k−a−5
6 . Then X(Wr) is a totally singular subspace of WA. It remains to show that this

X(WA) avoides Vr and has the correct dimension.
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For any vector v, if X(v) ∈ Vr, then v =
√
Q(v)v0 +X(v) ∈ Vr. So X(Wr) only has trivial

intersection with Vr. And since the kernel of X is entirely in Vr, X(Wr) has the same dimension
as Wr.

So replace Wr by X(Wr), and we are done.
Step 3: Now we construct the desried subspace W .
By Lemma 7.4, we find a subspace W of Wr such that W ⊥ AW , and W has dimension at

least k−a−5
24 − 3

2 .
I claim that, ignoring the dimension requirement, this W satisfy all the desried property.
First of all, we know W is totally singular and W ⊥ AW . By construction, W is in (VA)⊥ but

has trivial intersection with Vr. Then since WA ∩AWA = Vr, we know that W ∩AW = {0}.
To sum up, this W is the space we desired, with dimension at least k−a−5

24 − 3
2 .

Find the Optimal a:
Picking the optimal a = k

4 + 1 for both cases above, we eventually find the desired subspace
W of dimension at least k

32 −
7
4 .

Proposition 7.7. For any symmetric generating set S of G or G′, there is a non-trivial
element of degree at most C(log n+ log q)3 for some absolute constant C, of length less than
qC
′n(logn+log q)3 for some absolute constant C ′.

Proof. We pick r and c according to Lemma 4.4. Let us assume that 2c(log n+ log q)3 <
n−2

5 , because otherwise the statement is trivial.
Let p1, ..., pr be the first r primes coprime to p(q − 1). Let fi(x) be the irreducible polynomial

over Fq for all the primitive pi-th roots of unity, and let Ci be the companion matrix of Fq.
Initial Step:
Let us find our first P(r)-matrix. Let T be a singularly c(log n+ log q)3-transversal set.

Let W be any totally singular subspace of dimension c(log n+ log q)3, which exists by Witt’s
decomposition theorem. Note that any bijective linear map from W to W is an isometry, and
is therefore subject to Witt’s extension lemma.

By definition of a singularly transversal set, we can find A0 ∈ T that maps the totally singular
subspace W onto itself, and that its restriction to this subspace is the matrix (

⊕r
i=1 Ci)⊕ I

for some arbitrary choices of basis on W , where I is some identity matrix of suitable size.
In particular, A0 is a P(r)-matrix. Since A0 ∈ T , by choosing T as in Corollary 6.8, A0 have

length bounded by qcn(logn+log q)3 .
By using Lemma 4.4, we can raise A0 to a large power, and obtain a non-identity matrix

A1 of degree ≤ deg(A0)
4 ≤ n

4 , with eigenvalues either 1 or outside of Fq. Since the order of A0

is bounded by qn, the length of A1 is bounded by qcn(logn+log q)3+n.
Inductive Step:
Suppose we have obtained a non-identity matrix Aj with eigenvalues either 1 or outside of Fq,

degree at most n
2j+1 , and length at most q2cn(logn+log q)3+j(n+2). If degAj ≤ 56 + 32c(log n+

log q)3, then we stop. If not, then let us construct a non-identity matrix Aj+1 of even smaller
degree.

First we shall transform Aj into a P(r)-matrix. Find totally singular subspace Wj of
dimension c(log n+ log q)3 as in Lemma 7.6. In particular, Wj ⊕AjWj is a well-defined totally
singular space. Let T ′ be a singularly 2c(log n+ log q)3-transversal set, then we can find
Mj ∈ T ′ that fixes AjWj , and restricts to a map from Wj to Wj as

⊕r
i=1 Ci ⊕ I for any

arbitrary basis of Wj and some identity matrix I of suitable size.
Consider the commutator MjA

−1
j M−1

j Aj . Since Mj fixes AjWj , we see that MjA
−1
j M−1

j Aj
restricted to Wj is identical to Mj restricted to Wj .
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In particular, MjA
−1
j M−1

j Aj is a P(r)-matrix, and it has degree at most 2 deg(Aj). Now we

use Lemma 4.4 again, raising MjA
−1
j M−1

j Aj to a large power, and we would obtain a matrix

Aj+1 of degree at most
2 deg(Aj)

4 , with eigenvalue wither 1 or outside of Fq.
Since Mj ∈ T ′, by choosing T ′ as in Corollary 6.8, Mj have length bounded by

q2cn(logn+log q)3 . And since the oder of MjA
−1
j M−1

j Aj is bounded by qn, the length of Aj+1 is
at most

qn(2q2cn(logn+log q)3 + 2q2cn(logn+log q)3+j(n+2)) ≤ q2cn(logn+log q)3+(j+1)(n+2).

We repeat the above induction logn
log 2 − 1 times, or stop early if we hit degree 2c(log n+ log q)3.

The last Aj we obtained is the desired matrix of small degree and small length.

8. The Conjugacy Expansion Lemmas

In this section, we shall show that any small degree element will quickly generate the whole
group with any symmetric generating set.

Lemma 8.1. Let S be any symmetric generating set for a subgroup H of GLn(Fq). Let A be
any matrix in H of degree k, and let B be any matrix conjugate to A in H. Then B = MAM−1

for some M ∈ H of length at most q2nk.

Proof. Since A has degree k, we know A = I +A′ for some matrix A′ of rank k. So we can
decompose A′ as a product XY where X is an n by k matrix of full rank and Y is a k by n
matrix of full rank. So A = I +XY .

Any conjugates of A can similarly be expressed as I +X ′Y ′ where X ′ is some n by k matrix
of full rank, and Y ′ is some k by n matrix of full rank. There are at most q2nk possibilities for
the pair (X ′, Y ′). So there are at most q2nk conjugates of A.

Now H acts on the conjugacy class of A in H by left conjugation, and the corresponding
Schreier graph must be connected. So the Schreier graph has diameter bounded by the number
of vertices, i.e., q2nk.

Proposition 8.2. Let G be SLn(Fq), Ωn(Fq), Spn(Fq), or SUn(Fq). Let S be any
symmetric generating set for G. Suppose we have an element A ∈ G of length d and degree k.
Then the diameter of G with respect to S will be O((2q2nk + d)nk ).

Proof. For any B conjugate to A, by the Lemma 8.1 above, B = MAM−1 for some M ∈ G
of length at most q2nk. So B has length at most 2q2nk + d. So every conjugate of A in G has
length bounded by 2q2nk + d.

Now by the resulf of Liebeck and Shalev [LS01], we know that every element of G can be
written as a product of O(nk ) conjugates of A. So the whole group G has a diameter bound of
O((2q2nk + d)nk ).

Corollary 8.3. The diameter of a finite simple group of Lie type of rank n over Fq are at

most O(qO(n(logn+log q)3)), independent of the choice of generating sets. The implied constants
are absolute.

Proof. Combine Proposition 8.2 with Proposition 5.4 or Proposition 7.7.
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9. Implications on Spectral Gap and Mixing Time

Given a group G and its generating set S. Let Γ(G,S) be its Cayley graph, and let A be the
normalized adjacency matrix of the graph. Then A has eigenvalues λ1, ..., λ|G|, ordered from
the largest one to the smallest one. Then the spectral gap of Γ(G,S) is λ1 − λ2.

Let µ be the random distribution 1
21{e} + 1

2|S|1S . Then a lazy random walk of length k is the

random outcome of the distribution µ(k) = µ ∗ µ ∗ µ ∗ ... ∗ µ. Using the definition of Helfgott,
Seress and Zuk [HSZ15], the strong mixing time of Γ(G,S) is the least number k such that
µ(k) is at most 1

2|G| away from the uniform distribution on Γ(G,S), in the `∞ norm.
One can bound the spectral gap using a diameter bound.

Proposition 9.1 ([DSC93], Corollary 3.1). Given a finte group G and a symmetric
generating set S, let Γ be the Cayley graph. Then the spectral gap of the Cayley graph is
bounded from below by 1

(diam Γ)2

In turn, one can bound the strong mixing time by the spectral gap.

Proposition 9.2 ([Lovsz], Theorem 5.1). Given a finte group G and a symmetric
generating set S, let Γ be the Cayley graph, and let λ be the spectral gap. Then the strong
mixing time of the Cayley graph is bounded by O( log |Γ|

λ ).

Then our main result implies the following corollary:

Corollary 9.3. Let G be a finite simple group of Lie type of rank n over Fq. The spectral

gap of Γ(G,S) is bounded by q−O(n(logn+log q)3), and the mixing time of Γ(G,S) is bounded
by qO(n(logn+log q)3).
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