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1 Introduction

As an indirect consequence of Kassabov, Lubotzky and Nikolov’s paper [16], the
following theorem about non-abelian finite simple groups istrue.

Theorem 1.1.An ultraproduct of non-abelian finite simple groups is either finite
simple, or has no finite dimensional unitary representationother than the trivial
one.

Definitions related to ultraproducts are presented in Section 2 for those unfa-
miliar with them.

In this paper, we shall show that non-abelian finite simple groups are not the
only kind of groups exhibiting such a behavior. It turns out that such a behavior
has a very close link to the notion of quasirandom groups, defined by Gowers [9],
and the notion of minimally almost periodic groups, defined by von Neumann and
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2 Y. Yang

Wigner [17]. All representations considered in this paper are overC. We shall
informally say that a group is quasirandom when the group isD-quasirandom for
some largeD.

Definition 1.2.For a positive integerD, a groupG is D-quasirandomif it has no
non-trivial unitary representation of dimension less thanD.

Definition 1.3. An infinite group isminimally almost periodicif it has no nontriv-
ial finite dimensional unitary representation.

A group is minimally almost periodic iff it isD-quasirandom for allD. Then it
is natural to wonder whether some sort of limit of increasingly quasirandom groups
would give us a minimally almost periodic group. One such limit to consider is
the ultraproduct.

The author will prove the existence of classes of groups withsimilar results to
Theorem 1.1. The main theorem is the following Theorem 1.5.

Definition 1.4. For a groupG, we define itscosocleCos(G) to be the intersection
of all maximal normal subgroups ofG.

Letn be any positive integer. LetCn be the class of groups that are arbitrary di-
rect products (not necessarily finite) of finite quasisimplegroups and finite groups
G whose cosocles contain at mostn conjugacy classes ofG.

Theorem 1.5.For any sequence of groups inCn with quasirandom degree going
to infinity, their non-principal ultraproducts will be minimally almost periodic.

Quasirandom groups are first introduced by Gowers to find groups with no large
product-free subset. They can be seen as stronger versions of perfect groups.

Example 1.6(Gowers [9]).

(i) A group (not necessarily finite) is2-quasirandom iff it is perfect. The reason
is that a non-perfect group has a non-trivial abelian quotient, which in turn
has a non-trivial homomorphism intoU1(C). A perfect group, on the other
hand, can only have the trivial homomorphism into the abelian groupU1(C).

(ii) A finite perfect group with no normal subgroup of index less than n is at
least

√
logn/2-quasirandom. In fact, using a form of Jordan’s theorem[8],

a finite perfect group with no normal subgroup of index less thann is at least
c logn-quasirandom for some constantc.
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(iii) In particular, a non-abelian finite simple groupG is at leastc logn-quasirandom
if it hasn elements.

(iv) Conversely, anyD-quasirandom group must have more than(D − 1)2 ele-
ments.

(v) The alternating groupAn is (n− 1)-quasirandom forn > 5, and the special
linear groupSL2(Fp) is p−1

2 -quasirandom for any primep.

Morally, ultraproducts preserve all local properties at the scale of elements. In
particular, all element-wise identities are preserved. But global properties of a
group, like being finite or finitely generated, might be lost after taking ultraprod-
ucts. So one may wonder if a non-principal ultraproduct of increasingly quasiran-
dom groups is always minimally almost periodic. In another words, we want to
investigate if quasirandomness can be captured by element-wise properties. This
turns out to be false. In particular, we have the following counterexample, pointed
out by László Pyber.

Example 1.7.We recall that a groupG (not necessarily finite) is2-quasirandom
iff G is perfect. We claim that there is a sequence ofDi-quasirandom groups
(Gi)i∈Z+ with limi→∞Di = ∞, whose ultraproduct by any non-principal ultra-
filter is not even perfect.

Using the construction of Holt and Plesken[13, Lemma 2.1.10], one may con-
struct a finite perfect groupGp,n for each primep ≥ 5 and positive integern, such
that an element ofGp,n cannot be written as a product of less thann commutators,
and that the only simple quotient ofGp,n is PSL2(Fp), the projective special linear
group of2× 2 matrices over the field ofp elements. Then by Example1.6 (ii), for
anyD, Gp,n is D-quasirandom for large enoughp.

Let Gi be Gpi,i, where(pi)i∈Z+ is a strictly increasing sequence of primes.
ThenGi is Di-quasirandom for someDi with limi→∞Di = ∞. Let gi ∈ Gi be
an element which cannot be written as a product of less thani commutators. Then
g = (gi)i∈N corresponds to an element of the ultraproductG =

∏

i→ω Gi by any
ultrafilter ω. Whenω is non-principal, clearlyg cannot be written as a product of
finite number of commutators inG. Sog is not in the commutator subgroup ofG,
and thusG is not perfect.

However, a recent paper by Bergelson and Tao [5] showed the following theo-
rem, which shed some new light on this inquiry:

Theorem 1.8(Bergelson and Tao [5, Theorem 49 (i)]).The ultraproduct
∏

i→ω SL2(Fpi)
by a non-principal ultrafilterω is minimally almost periodic.

Inspired by this, we can make the following definitions:
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Definition 1.9. A classF of groups is aq.u.p. (quasirandom ultraproduct prop-
erty) classif for any sequence of groups inF with quasirandom degree going to
infinity, their non-principal ultraproducts will be minimally almost periodic.

Definition 1.10.A classF of groups is aQ.U.P. classif there is an unbounded
non-decreasing functionf : Z+ → Z+ such that any ultraproduct of any sequence
of D-quasirandom groups inF is f(D)-quasirandom.

Remark 1.11.A Q.U.P class is automatically a q.u.p. class. It is like an effective
version of q.u.p. class, where we are able to keep track of theamount of quasiran-
domness passed down to the ultraproduct.

In this paper, the proof of Theorem 1.5 in fact shows that the classCn is a Q.U.P.
class. And we immediately have the following corollary:

Corollary 1.12. The following classes are Q.U.P.

(i) The classCQS of finite quasisimple groups.

(ii) The classCSS of finite semisimple groups.

(iii) The classCCS(n) of finite groups with at mostn conjugacy classes in their
cosocles.

All Q.U.P. classes must have a uniformly bounded commutatorwidth, i.e., every
element can be written as a product of uniformly bounded number of commutators.
In view of this, the following conjecture was suggested by László Pyber.

Conjecture 1.13.For any integern, the class of perfect groups with commutator
width ≤ n (i.e., every element of these groups can be written as a product of at
mostn commutators) is Q.U.P.

So far, we do not know if there is a non-Q.U.P but q.u.p. class of groups.
Some applications of our results have already been found. Ina paper in prepa-

ration by Bergelson, Robertson and Zorin-Kranich [4, Theorem 1.12], it is shown
that a sufficiently quasirandom group in a q.u.p. class will have many “triangles”.
As another application, one may also use our method to find many examples of
self-Bohrifying groups. Both applications will be explained in Section 8 of this
paper.

Here we shall briefly outline the sections of this article:

(i) A model case of the alternating groups to illustrate the general idea. (Sec-
tion 3)
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(ii) A group with a nice covering property is very quasirandom. (Section 4)

(iii) Covering properties can ignore small cosocles. (Section 5)

(iv) Quasirandom finite quasisimple groups have nice covering properties. (Sec-
tion 6)

(v) Proof of Theorem 1.5. (Section 7)

(vi) Applications of our results. (Section 8)

2 Definitions relating to Ultraproducts

Definition 2.1. A filter onN is a collectionω of subsets ofN such that:

(i) ∅ /∈ ω;

(ii) If X ∈ ω andX ⊆ Y , thenY ∈ ω;

(iii) If X,Y ∈ ω, thenX ∩ Y ∈ ω.

An ultrafilter is a filter that is maximal with respect to the containment order. A
non-principal ultrafilter is an ultrafilter that contains no finite subset ofN.

Definition 2.2.Given a sequence of groups(Gi)i∈N, letG be their direct product.
Given an ultrafilterω onN, letN := {g = (gi)i∈N ∈ G : {i ∈ N : gi = e} ∈ ω},
which is clearly a normal subgroup ofG. Then we callG/N theultraproduct of
the groups(Gi)i∈N by ω, denoted by

∏

i→ω Gi.

Remark 2.1.An ultrafilter ω is principal (i.e., not non-principal) iff we can find
an elementn ∈ N such that for all subsetsA ⊆ N, we haveA ∈ ω iff n ∈ A. In
this case, the corresponding ultraproduct of groups(Gi)i∈N is isomorphic toGi.
Therefore, in practice, the useful ultrafilters are usuallynon-principal.

The particular choice of the ultrafilter is not that important. As long as we fix
a non-principal ultrafilter, then all the discussion for therest of the paper will be
true for the ultraproduct of this ultrafilter.

Ultraproducts have an interesting property, given by Łoś’ Theorem. Given an
ultraproductG =

∏

i→ω Gi for an ultrafilterω, any first-order statementφ in the
language of groups is true forG iff it is true for most of theGi, i.e., {i ∈ N :
φ is true forGi} ∈ ω. In particular, this implies that behaviors at the scale of
elements are preserved. We shall not need Łoś’ Theorem in this paper, but it could
be used as an alternative to Proposition 7.3.
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3 The Class of Alternating Groups

Let An denote the alternating group of rankn, and Sn denote the symmetry group
of rankn. We shall show that the class of alternating groups is a Q.U.P. class, as a
simple illustration of the general idea to attack Theorem 1.5.

3.1 Quasirandom Alternating Groups have nice Covering Properties

Definition 3.1.

(i) For any subsetsA,B of a groupG, we define the product setAB = {ab ∈
G : a ∈ A, b ∈ B}. And we defineAn := {a1a2 . . . an : a1, ..., an ∈ A}.

(ii) An elementg of a groupG is said to havecovering numberK if its conjugacy
classC(g) hasC(g)K = G.

(iii) Let m be any positive integer or∞. Then an elementg ∈ G hasthe covering
property(K,m) if gi has covering numberK for all 1 ≤ i ≤ m.

(iv) A group G hasthe covering property(K,m) if it has an element with the
covering property(K,m).

Remark 3.2.Note that we useAn to denote the set of elements that can be ex-
pressed as products of EXACTLYn elements ofA. For example, the cyclic group
of order2 has no covering property at all. The identity is always an even power
of the generator, while the generator is always an odd power of itself. There is
no uniform choice ofK where every element is a product ofK conjugates of the
generator.

Definition 3.3.An even permutationσ ∈ An is exceptionalif its cycles in the
cycle decomposition have distinct odd lengths, or equivalently, if its conjugacy
class in An is different from its conjugacy class in Sn.

Lemma 3.4(Brenner [6, Lemma 3.05]).If an even permutationσ ∈ An is fixed-
point free and non-exceptional, thenAn = C(σ)4.

Proposition 3.5.For anym ∈ Z+, An has the covering property(4,m) for large
enoughn.

Proof. Pick any odd primep > m, and pick another primeq > p.
Sincep, q are necessarily coprime, for any large enough integern, we can find

positive integersa, b such thatn = ap+bq. Letσ ∈ Sn be a permutation composed
of a p-cycles andb q-cycles, where all cycles are disjoint.
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Sincep, q are odd,σ is an even permutation in An. Furthermore, for large
enoughn, a or b can be chosen to be larger than 1, soσ will be non-exceptional.
Sinceσ is also fixed-point free by construction, Lemma 3.4 implies that An =
C(σ)4.

Now clearlyσi will also have a cycle decomposition ofa p-cycles andb q-cycles
for all 1 ≤ i ≤ p− 1, and this implies that An = C(σi)4 for all 1 ≤ i ≤ p− 1. So
An has the covering property(4, p − 1). Sincep − 1 ≥ m, An has the covering
property(4,m).

Corollary 3.6. For anym ∈ Z+, anyD′-quasirandom alternating group has the
covering property(4,m) for large enoughD′.

3.2 Covering Properties passes to Ultraproducts and implies
Quasirandomness

Lemma 3.7.Let Gi be a sequence of groups such that all but finitely many of
them have the covering property(K,m). Then any ultraproduct of them by a
non-principal ultrafilter will have the covering property(K,m).

Proof. Since non-principal ultraproducts ignore finitely many exceptions in the
sequenceGi, WLOG we may assume allGi have the covering property(K,m).

For eachGi, let gi be the element ofGi with the covering property(K,m).
Then I claim that in any ultraproduct ofGi, the element represented by the se-
quence(gi) would have the covering property(K,m).

Pick any 1≤ j ≤ m. Then any element ofGi is a product of conjugates ofgji
by ai,1, ..., ai,K ∈ Gi. As a result, any element of the ultraproduct is a product of
conjugates of(gi)j by (ai,1), ..., (ai,K). Here we use a sequence of elements(ai)
to represent an element in the ultraproduct.

We now state a special case of Proposition 4.4, proven in Section 4.

Lemma 3.8.There is a functionf : Z+ → Z+ such that for anym,K ∈ Z+ with
m > f(D)KD2

, any groupG (not necessarily finite) with the covering property
(K,m) is D-quasirandom.

Proposition 3.9.The class of alternating groups is a Q.U.P. class.

Proof. For anyD ∈ Z+, find m > f(D)4D
2

and findD′ ∈ Z such that any
D′-quasirandom alternating group has the covering property(4,m). LetG be an
ultraproduct ofD′-quasirandom alternating groups. ThenG will also have the
covering property(4,m). Then by Lemma 3.8,G is D-quasirandom.
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4 Covering Properties Imply Quasirandomness

This section is devoted to obtaining some element-scale properties that guarantee
the quasirandomness of a group.

Definition 4.1.

(i) An elementg of a groupG is said to havesymmetric covering numberK if
C(g)KC(g−1)K = G.

(ii) Let m be a positive integer or∞. Then an elementg ∈ G hasthe symmetric
covering property(K,m) if gi has symmetric covering numberK for all
1 ≤ i ≤ m.

(iii) A group G hasthe symmetric covering property(K,m) if it has an element
g ∈ G with the symmetric covering property(K,m).

(iv) A groupG hasthe (symmetric) covering property(K,m) modN for some
normal subgroupN if G/N has the (symmetric) covering property(K,m).

Definition 4.2.

(i) A pair of elements(g1, g2) of a groupG is said to havesymmetric double cov-
ering number(K1,K2) if we haveC(g1)

K1C(g−1
1 )K1C(g2)

K2C(g−1
2 )K2 =

G.

(ii) Let m1,m2 be positive integers or∞. A pair of elements(g1, g2) in G has
the symmetric double covering property[(K1,m1), (K2,m2)] if (gi1, g

j
2) has

symmetric double covering number(K1,K2) for all 1 ≤ i ≤ m1,1 ≤ j ≤
m2.

(iii) A group G hasthe symmetric double covering property[(K1,m1), (K2,m2)]
if it has a pair of elements(g1, g2) in G with the symmetric double covering
property[(K1,m1), (K2,m2)].

(iv) A groupG hasthe symmetric double covering property[(K1,m1), (K2,m2)]
modN for some normal subgroupN if G/N has the symmetric double cov-
ering property[(K1,m1), (K2,m2)].

Remark 4.3.

(i) SupposeK < K ′. Then an element with covering numberK has covering
numberK ′. In general, the (symmetric) covering property(K,m) implies
the (symmetric) covering property(K ′,m′) whenK ′ ≥ K,m′ ≤ m. A
similar statement is also true for the symmetric double covering properties.
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(ii) Any symmetric covering property is always weaker than the corresponding
non-symmetric covering property.

(iii) Any group with the symmetric covering property(K,m) has the symmetric
double covering property[(1,∞), (K,m)]. This is easily seen by takingg1 to
be the identity, and takingg2 to be the element with the symmetric covering
property(K,m).

(iv) In our definition of the symmetric double covering properties, sinceC(g1)
andC(g2) are conjugate invariant subsets ofG, they necessarily commute,
i.e., C(g1)C(g2) = C(g2)C(g1). So the order of(K1,m1) and (K2,m2)
does not matter.

(v) By imitating the definition of the symmetric double coveringproperties, one
can in fact define the symmetricn-tuple covering properties for groups. Asn
grows larger and larger, the corresponding covering properties will become
weaker and weaker. Note that most results throughout this paper would still
hold by replacing the symmetric double covering propertiesby the symmet-
ric n-tuple covering properties, though for our purpose here, the symmetric
double covering properties are enough.

The proof of Proposition 4.4 will be the main part of this section. Let us first
state the proposition and some corollaries.

Proposition 4.4 (Local criterion for quasirandomness).There is a functionf :
Z+ → Z+ such that, for anyK1,m1,K2,m2 ∈ Z+ with mi > f(D)KD2

i for
i = 1,2, any groupG (not necessarily finite) with the symmetric double covering
property[(K1,m1), (K2,m2)] is D-quasirandom.

We shall fix this functionf from now on.

Corollary 4.5. For any K,m ∈ Z+ with m > f(D)KD2
, any groupG (not

necessarily finite) with the symmetric double covering property (K,m) is D-
quasirandom.

Corollary 4.6. For any K,m ∈ Z+ with m > f(D)KD2
, any groupG (not

necessarily finite) with the covering property(K,m) isD-quasirandom.

Remark 4.7.We note here that a partial converse, Corollary7.5, of the above
result is true. I.e., quasirandomness implies a nice covering property mod cosocle.
The proof of this converse will be presented in Section7.

We shall first explore some geometric structures of UD(C).
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Definition 4.8. The Hilbert-Schmidt norm of an n-by-n complex matrixA is
||A|| =

√

Tr(A∗A).

Lemma 4.9.

(i) The Lie groupUD(C) has a Riemannian metricd : UD(C) × UD(C) → R

such thatd(A,B) = ||B − A|| for all A,B ∈ UD(C). The norm here is the
Hilbert-Schmidt norm.

(ii) This metric is bi-invariant in the sense thatd(AB,AC) = d(BA,CA) =
d(B,C) for all A,B,C ∈ UD(C).

(iii) This metric induces a Haar measure, and the volume ofUD(C) under this

Haar measure is finite, andvol(UD(C)) =
(2π)D(D+1)/2

1!2!...(D−1)! . We shall denote this
constant byvD from now on.

(iv) Under the metricd, UD(C) has non-negative Ricci curvature everywhere.

(v) There is a functionc : Z+ → R+, such that a geodesic ball of radiusr in
UD(C) will have volume bounded byc(D)rD

2
. We shall fix this functionc

from now on.

Proof. These are very standard facts. See, e.g., [19] and [7].

Definition 4.10.LetG be any group. A non-negative functionℓ : G → R is called
a length function if it has the following properties.

(i) ℓ(g) = 0 iff g is the identity element.

(ii) ℓ is symmetric, i.e.,ℓ(g) = ℓ(g−1) for all g ∈ G.

(iii) ℓ is conjugate invariant, i.e.,ℓ(ghg−1) = ℓ(h) for all g, h ∈ G.

(iv) ℓ satisfies the triangle inequality, i.e.,ℓ(gh) ≤ ℓ(g) + ℓ(h) for all g, h ∈ G.

A pseudo length functionis a non-negative functionℓ : G → R satisfying (ii),
(iii) and (iv) above.

Lemma 4.11.LetG be a group, and supposeg1, g2 ∈ G have symmetric double
covering number(K1,K2). Letφ : G → H be any homomorphism and letℓ be
a length function ofH. Then for allg ∈ G, we haveℓ(φ(g)) ≤ 2K1ℓ(φ(g1)) +
2K2ℓ(φ(g2)).
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Proof. For anyg ∈ G, g can be written as the product ofK1 conjugates ofg1, K1

conjugates ofg−1
1 , K2 conjugates ofg2 andK2 conjugates ofg−1

2 . So by triangle
inequality and the conjugate invariance ofℓ, we have

ℓ(φ(g)) ≤K1ℓ(φ(g1)) +K1ℓ(φ(g
−1
1 )) +K2ℓ(φ(g2)) +K2ℓ(φ(g

−1
2 ))

≤2K1ℓ(φ(g1)) + 2K2ℓ(φ(g2)).

Proposition 4.12.The functionℓ : UD(C) → R defined byℓ(A) = d(A, I) is a
length function.

Proof. LetA,B be any unitary matrices.
Positivity: Clearlyℓ(A) = d(A, I) ≥ 0. And we have

ℓ(A) = 0 ⇐⇒ d(A, I) = 0 ⇐⇒ A = I.

Symmetry:

ℓ(A) = d(A, I) = d(AA−1, IA−1) = d(I,A−1) = ℓ(A−1).

Conjugate Invariance:

ℓ(BAB−1) = d(BAB−1, I) = d(BA,B) = d(A, I) = ℓ(A).

Triangle Inequality:

ℓ(AB) = d(AB, I) ≤ d(AB,B)+ d(B, I) = d(A, I)+ d(B, I) = ℓ(A)+ ℓ(B).

We shall useℓ to denote this length function from now on.

Lemma 4.13.For any ǫ > 0 and any integerm > vD
c(D)ǫD

2 , any m points in

UD(C) will have two points with distance smaller thanǫ. HerevD andc(D) are
as in Lemma4.9.

Proof. This follows from a volume packing argument.
Since our metric is bi-invariant, each ball of radiusǫ

2 in UD(C) has the same
volume vol(Bǫ/2). So by our assumption onm, we have

m >
vD

c(D)ǫD2 ≥ vol(UD(C))

vol(Bǫ/2)
.
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Now for anym points in UD(C), suppose any two of them have distance larger
thanǫ. Then the balls of radiusǫ2 centered at thesem points will be disjoint and
contained in UD(C), which is impossible. So two of the points have distance
smaller thanǫ.

Lemma 4.14.Any non-trivial cyclic subgroup ofUD(C) contains an element of
length larger than

√
2.

Proof. LetA be any nontrivial element of UD(C) of finite order. Letλ1, ..., λD be
its eigenvalues, and WLOG sayλ1 6= 1. Thenλ1 is a primitiven-th root of unity
for somen. ReplacingA by a proper power of itself, we may assume thatλ1 is an
n-th root of unity closest to−1. Then in particular,|λ1 − 1| >

√
2.

Then we know

ℓ(A)2 = Tr(A− I)∗(A− I) =

D
∑

i=1

|λi − 1|2 ≥ |λ1 − 1|2 > 2.

Now supposeA has infinite order. Letλ1, ..., λD be its eigenvalues, and WLOG
sayλ1 6= 1. Thenλ1 is an element of infinite order on the unit circle. ReplacingA
by a proper power of itself, we may assume thatλ1 is arbitrarily close to−1. Then
in particular,|λ1 − 1| >

√
2. Then we are done by the same computation.

Proof of Proposition4.4. For any ǫ1, ǫ2 > 0, pick m1 > vD
c(D)ǫD

2
1

and m2 >

vD
c(D)ǫD

2
2

. For any unitary representationφ : G → UD(C) of a groupG with the

symmetric double covering property[(K1,m1), (K2,m2)], we may find elements
g1, g2 ∈ G for this symmetric double covering property.

Now consider the pointsI, φ(g1), φ(g
2
1), ..., φ(g

m1
1 ). By Lemma 4.13, since

m1 > vD
c(D)ǫD

2
1

, we can find two points with distance less thanǫ1. Sayd(φ(gs1), φ(g
t
1)) <

ǫ1 for some 1≤ s < t ≤ m1. Then

ℓ(φ(gt−s
1 )) = d(φ(gt−s

1 ), I) = d(φ(gt1), φ(g
s
1)) < ǫ1.

So we haveℓ(φ(gi1)) < ǫ1 for some 1≤ i ≤ m1. Similarly we haveℓ(φ(gj2)) < ǫ2

for some 1≤ j ≤ m2.
To sum up, there are elementsgi1, g

j
2 ∈ G with symmetric double covering

number(K1,K2), andℓ(φ(gi1)) < ǫ1, ℓ(φ(gj2)) < ǫ2. So by Lemma 4.11, all
elements ofφ(G) would have length smaller than 2K1ǫ1 + 2K2ǫ2.

Now pick ǫ1, ǫ2 small enough so that 2K1ǫ1 + 2K2ǫ2 ≤
√

2. (Sayǫ1 ≤
√

2
4K1

andǫ2 ≤
√

2
4K2

.) Then all elements ofφ(G) would have length at most
√

2. But by
Lemma 4.14, this meansφ(G) is trivial.
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Therefore, a group with the symmetric double covering property [(K1,m1), (K2,m2)]

will be D-quasirandom ifm1 ≥ f(D)KD2

1 andm2 ≥ f(D)KD2

2 , wheref(D) =
vD
c(D)(2

√
2)D

2
.

Remark 4.15.Note that the above argument proves Proposition4.4for all groups,
not necessarily finite. However, if one only needs to prove Proposition4.4for finite
groups, and only for the covering property(K,m), then a group isD-quasirandom
if m

K ≫ the length ratio of the longest and the shortest closed geodesics ofUn(C).
So one can interpret the optimal value ofm

K as a measure of the “shape” of the
finite group. The smaller this optimal value is, the “more rounded” the finite group
looks like.

5 Covering Properties and the Cosocle

In this section, we will show that a certain nice covering property mod cosocle is
equivalent to a weaker covering property of the whole group.

Lemma 5.1.LetG be a group, and letN be a normal subgroup ofG contained
in its cosocle. LetC be a conjugate invariant symmetric subset ofG, such that
CN = G. Then for any non-empty conjugate invariant subsetS ⊆ G, SC = S
iff S = G.

Proof. SupposeSC = S andS 6= G. Then we haveSCi = S for any positive
integeri. SoS must contain the subgroup generated byC. SinceC is conjugate
invariant, the subgroup generated byC is a normal subgroup, and it is a proper
normal subgroup since it is contained inS 6= G. In particular,C is contained in a
maximal normal subgroupM of G.

But sinceN is in the cosocle, it is contained inM . So

CN ⊆ MN = M ( G.

This is a contradiction.

Proposition 5.2.Let G be a group with the symmetric double covering property
[(K1,m1), (K2,m2)] modN for a normal subgroupN contained in the cosocle,
and suppose thatN contains exactlyn conjugacy classes ofG. ThenG has the
symmetric double covering property[((3n− 2)K1,m1), ((3n− 2)K2,m2)].

Proof. Find g1, g2 ∈ G such that(g1N, g2N) has symmetric double covering
number(K1,K2) in G/N . LetC := C(g1)

K1C(g−1
1 )K1C(g2)

K2C(g−1
2 )K2. Then
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by assumption,C is mapped surjectively ontoG/N through the quotient map. So
CN = G.

Now N contains exactlyn conjugacy classes ofG. I claim thatC3t contains
at leastt + 1 conjugacy classes ofG in N , which would imply thatC3n−3 ⊇ N .
ThenC3n−2 ⊇ CN = G, finishing our proof.

We proceed by induction. As a convention we defineC0 to be{e}. Then the
claim is true whent = 0.

Now assume the statement is true for somet < n. ThenC3t containst + 1
conjugacy classes ofG in N . Let them beC1, ..., Ct+1. Then we haveC3t+1 ⊇
C(

⋃t+1
i=1 Ci). Suppose for contradiction thatC3t+2 is disjoint fromC(N−⋃t+1

i=1 Ci).
Then we observe that

C(N −
t+1
⋃

i=1

Ci) ⊇ CN − C(
t+1
⋃

i=1

Ci) = G− C(
t+1
⋃

i=1

Ci) ⊇ G− C3t+1.

SoC3t+2 ⊆ C3t+1. Then Lemma 5.1 implies thatC3t+2 = C3t+1 = G. This
contradicts the assumption thatC3t+2 is disjoint fromC(N −

⋃t+1
i=1 Ci).

So,C3t+2 intersects withC(N − ⋃t+1
i=1 Ci). Let g be an element in this inter-

section. Theng ∈ CCt+2 for some conjugacy classCt+2 of G in N disjoint from
C1, ..., Ct+1. Findh ∈ Ct+2 such thatg ∈ Ch. Then sinceC is symmetric, we
haveh ∈ Cg ⊆ C3t+3. SoC3t+3 intersects withCt+2. SinceC3t+3 is conjugate
invariant, we conclude thatC3t+3 containsCt+2.

Finally, sincee ∈ C, we see thatC3t+3 also containsC1, C2, ..., Ct+1. SoC3t+3

containst+ 2 conjugacy classes ofG in N .

Proposition 5.3.LetG be a group with the symmetric covering property(K,m)
modN for a normal subgroupN contained in the cosocle, and suppose thatN
contains exactlyn conjugacy classes ofG. ThenG has the symmetric covering
property((3n− 2)K,m).

Proof. Same strategy as Proposition 5.2.

6 Quasirandom Finite Simple Groups have Nice Covering
Properties

In this section we shall show that, for finite quasisimple groups, large quasiran-
domness will imply a nice covering property. We shall first deal with finite simple
groups of bounded ranks in Subsection 6.1. Then we shall dealwith the case of al-
ternating groups in Subsection 6.2. Finally, we shall deal with finite simple groups
of large ranks by embedding alternating groups into them in Subsection 6.3. The
classification of finite simple groups is used in this section.
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Definition 6.1. For a finite quasisimple groupG, we define itsrank r(G) as the
following:

(i) When the only simple quotient ofG is abelian or sporadic, thenr(G) = 1.

(ii) When the only simple quotient ofG is the alternating group An, thenr(G) =
n.

(iii) When the only simple quotient ofG is a group of Lie type, thenr(G) is the
(twisted) rank of that finite simple group as an algebraic group.

6.1 Finite simple groups of bounded ranks

Lemma 6.2(Stolz and Thom [20, Proposition 3.8]).There is a functionK : Z+ →
Z+ such that, in any finite simple group of Lie type of rank≤ r, any non-identity
element will have covering numberK(r).

We shall fix this functionK(r) from now on.

Lemma 6.3(Babai, Goodman and Pyber [1, Proposition 5.4]).Letk be any posi-
tive integer. Then for any finite simple groupG, if |G| ≥ kk

2
, then|G| has a prime

divisor greater thank.

Proposition 6.4.LetG be a finite simple group of rank≤ r. For anym < ∞, G
has the covering property(K(r),m) if G is D-quasirandom for large enoughD.

Proof. By choosingD to be larger than some absolute constant, aD-quasirandom
groupG cannot be an abelian group, a sporadic group, or an alternating group of
rank≤ r. So we only need to consider finite simple groups of Lie type.

Recall that anyD-quasirandom group must have more than(D− 1)2 elements.
For anym ∈ Z+, let D be an integer> 1 +

√
mm2. Then allD-quasirandom

finite simple groups will have order> mm2
, and thus have an elementg of prime

orderp > m. Thengi are non-identity for all 1≤ i ≤ p − 1. Then Lemma 6.2
states that all these elements have covering numberK(r). SoG has the covering
property(K(r),m).

Corollary 6.5. LetG be a finite quasisimple group of rank≤ r. For anym < ∞,
G has the symmetric covering property(K(r)max(3r + 1,34),m) if G is D-
quasirandom for large enoughD.

Proof. If a quasisimple group isD-quasirandom, then the simple group it covers
is D-quasirandom. Therefore, it is enough to show that, if a finite simple groupG
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has the covering property(K,m), then any perfect central extensionG′ of it will
have the covering property(K max(3r + 1,34),m).

Let Z be the center ofG′. ThenZ will be the cosocle ofG′, and the Schur
multiplier of the simple groupG would provide an upper bound for|Z|. SinceG
has a rank at mostr, by going through the list of finite simple groups, its Schur
multiplier has a size at most max(3r + 1,34). So if G has the covering prop-
erty (K,m), Proposition 5.3 implies thatG′ has the symmetric covering property
(K max(3r + 1,34),m).

6.2 Alternating groups

Proposition 6.6.Let G be a quasisimple group over an alternating group. Then
for any m < ∞, G has the symmetric covering property(20,m) if G is D-
quasirandom for large enoughD.

Proof. If G is D-quasirandom for some largeD, then the alternating group it
covers must be An for some largen. Then Proposition 3.5 implies that An has the
covering property(4,m). Now whenn > 7, An will have a Schur multiplier of 2.
SoG has the covering property(20,m).

6.3 Finite simple groups of large ranks

The goal of this section is to prove the following proposition.

Proposition 6.7.There is an absolute constantK0, such that for anym < ∞, all
finite quasisimple groups of ranks≥ r will have the symmetric covering property
(K0,m) for large enoughr.

By the classification of finite simple groups, a finite simple group of rank larger
than some absolute constant will have to be a classical finitesimple group of Lie
type or an alternating group. Any classical finite simple group of Lie type is in one
of the following four classes:

(i) The projective special linear groups PSLn(Fq). For large enoughn, SLn(Fq)
are their universal perfect central extensions.

(ii) The projective symplectic groups PSpn(Fq). For large enoughn, Spn(Fq)
are their universal perfect central extensions.

(iii) The projective special unitary groups PSUn(Fq). For large enoughn, SUn(Fq)
are their universal perfect central extensions.
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(iv) The projective Omega groups PΩ+
2n(Fq), PΩ−

2n(Fq), or PΩ2n+1(Fq). Here
Ωn(Fq) are the commutator subgroups of the special orthogonal groups SOn(Fq),
and PΩn(Fq) = Ωn(Fq)/Z(Ωn(Fq)). The plus or minus signs indicate dif-
ferent quadratic forms used to obtain the groups in even dimensions. For
large enoughn, Ωn(Fq) are the universal perfect central extensions of PΩn(Fq).

The above statements can be found in any standard textbook inclassical groups
(e.g., See [10]). It is enough to show Proposition 6.7 for SLn(Fq), Spn(Fq),
SUn(Fq), andΩn(Fq), since they are the universal perfect central extensions of
the simple groups they cover, and since the order of the Schurmultipliers of these
groups are bounded above by a function ofr.

We start by analyzing a length function for groups of Lie typeover finite fields.

Definition 6.8. Letg be ann×n matrix over a finite fieldF . Letmg := supa∈F× dim(ker(a−
g)). Then theJordan lengthof g is ℓJ (g) := n−mg

n

Proposition 6.9.Let G be any subgroup ofGLn(F ) for some finite fieldF . The
functionℓJ onG is a pseudo length function.

Proof. Non-negativity:For anyg ∈ G,

mg = sup
a∈F×

dim(ker(a− g)) ≤ n.

SoℓJ (g) =
n−mg

n ≥ 0.

Symmetry:For anyg ∈ G, anya ∈ F×, and any vectorv ∈ Fn, we have

v ∈ ker(a− g) ⇐⇒ av = gv ⇐⇒ g−1v = a−1v ⇐⇒ v ∈ ker(a−1 − g−1).

As a result,

mg = sup
a∈F×

dim(ker(a− g)) = sup
a∈F×

dim(ker(a−1 − g−1)) = mg−1.

SoℓJ (g) = ℓJ (g
−1).

Conjugate-invariance:For anyg, h ∈ G, anya ∈ F×, and any vectorv ∈ Fn,
we have

v ∈ ker(a−g) ⇐⇒ av = gv ⇐⇒ ahv = (hgh−1)hv ⇐⇒ hv ∈ ker(a−hgh−1).

As a result,

mg = sup
a∈F×

dim(ker(a− g)) = sup
a∈F×

dim(ker(a− hgh−1)) = mhgh−1.
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SoℓJ (g) = ℓJ (hgh
−1).

Triangle inequality:For anyg, h ∈ G, anya, b ∈ F×, and any vectorv ∈ Fn,
we have

v ∈ ker(a−g)∩ker(a−abh−1) =⇒ gv = av = abh−1v =⇒ v ∈ ker(abh−1−g).

So we know ker(a − g) ∩ ker(a− abh−1) ⊆ ker(abh−1 − g). As a result, we
have

mgh ≥ dim ker(ab− gh)

≥ dim ker(abh−1 − g)

≥ dim(ker(a− g) ∩ ker(a− abh−1))

≥ dim(ker(a− g)) + dim(ker(a− abh−1))− n

≥ dim(ker(a− g)) + dim(ker(b− h))− n.

Since this is true for alla, b ∈ F×, thereforemg +mh − n ≤ mgh. SoℓJ (gh) ≤
ℓJ (g) + ℓJ (h).

Lemma 6.10.Given ann1 × n1 matrix A over a finite fieldF , and ann2 × n2

matrixB over the same finite field, thenℓJ (A⊕B) ≥ n1
n1+n2

ℓJ (A)+
n2

n1+n2
ℓJ (B).

Proof. For anya ∈ F×, we have the following

ker(a− A⊕B) = ker((a− A)⊕ (a−B)) = ker(a−A)⊕ ker(a−B).

So dim ker(a− A⊕B) ≤ mA +mB . Since this is true for alla ∈ F×, therefore
mA⊕B ≤ mA +mB . So we have

ℓJ (A⊕B) =
n1 + n2 −mA⊕B

n1 + n2

≥n1 + n2 −mA −mB

n1 + n2

≥n1 −mA

n1 + n2
+

n2 −mB

n1 + n2

≥ n1

n1 + n2
ℓJ (A) +

n2

n1 + n2
ℓJ (B).
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Lemma 6.11(Stolz and Thom [20, Lemma 3.11]).There is an absolute constant
c0, such that for any finite classical quasisimple group of Lie typeG, and for any
g ∈ G\Z(G), whereZ(G) is the center ofG, thenC(g)K = G for all K ≥ c

ℓJ (g)
.

In short, elements of large Jordan length will automatically have small covering
number.

The next step is to identify subgroups of these quasisimple groups of Lie type
isomorphic to the alternating groups. A key step is to treat elements in alternating
groups as matrices, namely the permutation matrices. Theseare the matrices with
exactly one entry of value 1 in each column and in each row, and0 in all other
entries. Such ann × n matrix will act on the standard orthonormal basis of an
n-dimensional vector space by permutation, and thus will provide an embedding
of Sn into GLn(F ) for any fieldF . Any such matrix is in An iff it has determinant
1.

Lemma 6.12.If P is ann× n permutation matrix where its cycle decomposition
hask cycles, then we haveℓJ (P ) ≥ n−k

n .

Proof. By cycle decomposition, after a change of basis in the vectorspace,P will
be a direct sum of many cyclic permutation matrices. By Lemma6.10, it’s enough
to prove the case whenP is a single cycle of lengthn, and show thatℓJ (P ) ≥ n−1

n .
SinceP is a single cycle of lengthn, its eigenvalues in the algebraic closure

of F are precisely all then-th roots of unity, with multiplicity 1 for each root of
unity. So dim ker(a− P ) ≤ 1 for all a ∈ F×. SoℓJ (P ) ≥ n−1

n .

Proposition 6.13.There is an absolute constantK0 such that, for anym < ∞,
for any finite quasisimple group of Lie type ofn × n matrices, if it containsAn

as permutation matrices, then it will have the covering property (K0,m) for large
enoughn.

Proof. Let K0 > 3c0 for the absolute constantc0 in Lemma 6.11. Then any
elementA of Jordan length≥ 1

3 will have covering numberK0 in any finite qua-
sisimple group of Lie type.

Pick any odd primep > m, and pick another primeq > p. For any large
enoughn, we haven = ap + bq for some integersa > 1, 0 < b < p + 1. Then
find σ ∈ An made up of exactlya p-cycles andb q-cycles, where all cycles are
disjoint. This element will be fixed-point free and non-exceptional, and it will have
at mosta+ b ≤ n

p + p cycles.
For any finite quasisimple group of Lie type ofn × n matrices, suppose it

contains An as permutation matrices. LetP be the matrix corresponding toσ.
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Then we have

ℓJ (P ) ≥
n− n

p − p

n
= 1− 1

p
− p

n
>

1
3
.

The last inequality follows becausep ≥ 3 andn ≥ 2p+ q > 3p.
So this element will have covering numberK0 in G. It clearly has orderpq, and

all of its powers coprime topq will also have the same covering number. SoG has
the covering property(K0, p − 1).

Corollary 6.14. For any m < ∞, all finite special linear groups of rankr for
large enoughr will have the covering property(K0,m). HereK0 is the absolute
constant in Proposition6.13.

Proposition 6.15.There is an absolute constantK0, such that for anym < ∞, we
have the following:

(i) For any finite quasisimple group of Lie type of2n×2n matrices, if it contains
An as{P ⊕ P : P ∈ An is a permutationn × n matrix}, then it will have
the covering property(K0,m) for large enoughn.

(ii) Let I1 be the 1 by 1 identity matrix. Then for any finite quasisimple group of
Lie type of(2n+1)×(2n+1)matrices, if it containsAn as{P⊕P⊕I1 : P ∈
An is a permutationn × n matrix}, then it will have the covering property
(K0,m) for large enoughn.

(iii) Let I2 be the 2 by 2 identity matrix. Then for any finite quasisimple group of
Lie type of(2n+2)×(2n+2)matrices, if it containsAn as{P⊕P⊕I2 : P ∈
An is a permutationn × n matrix}, then it will have the covering property
(K0,m) for large enoughn.

Proof. The strategy is identical to Proposition 6.13. Just takeσ ⊕ σ, σ ⊕ σ ⊕ I1

or σ ⊕ σ ⊕ I2 instead ofσ, and use Lemma 6.10.

Definition 6.16.A vector spaceV is a non-degenerate formed spaceif it has
a non-degenerate quadratic formQ (the orthogonal case), or a non-degenerate
alternating bilinear form B (the symplectic case), or a non-degenerate Hermitian
form B (the unitary case).

Lemma 6.17(Witt’s Decomposition Theorem).LetV be any non-degenerate formed
space over a finite fieldF . Then we have an orthogonal decompositionV =
W ⊕ (

⊕n
i=1Hi) whereW is anisotropic of dimension at most2, andHi are hy-

perbolic planes.
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Proof. These are standard facts in the geometry of classical groups(e.g., See [10]).

Proposition 6.18.For a non-degenerate formed space, the special isometry group,
i.e., the group of isometries of determinant 1, contains an alternating group in one
of the ways described by Proposition6.15.

Proof. Let V be any finite dimensional non-degenerate formed space over any
finite fieldF . Then we have an orthogonal decompositionV = W ⊕H with an
anisotropic spaceW of dimension at most 2, and an orthogonal sum of hyperbolic
planesH =

⊕n
i=1Hi.

Then let(vi, wi) be a hyperbolic pair generatingHi for eachi. For anyσ ∈
An, we can letσ act by permutation on the set{v1, .., vn, w1, ..., wn}, such that
σ(vi) = vσ(i) andσ(wi) = wσ(i).

Now clearly{v1, ..., vn, w1, .., wn} is a basis ofH. So the above action ofσ
induces a linear transformationP ⊕ P onH, whereP is then × n permutation
matrix for σ. And thisP ⊕ P is clearly an isometry onH by construction. Now
taking the direct sum ofP ⊕P onH and the identity matrix onW , we shall obtain
our desired embedding of An into the full isometry group.

Finally, sinceP is a permutation matrix for an even permutation, it has determi-
nant 1. Therefore the above embedding of An is in the special isometry group.

Corollary 6.19. For anym < ∞, any finite symplectic or special unitary group of
rank r has the covering property(K0,m) for large enoughr. K0 is the absolute
constant in Proposition6.15.

Corollary 6.20. For anym < ∞, any Ω+
2n(Fq), Ω2n+1(Fq) or Ω−

2n(Fq) has the
covering property(K0,m) for large enoughn. K0 is the absolute constant in
Proposition6.15.

Proof. Embed An in SO+
2n(q), SO−

2n(q) and SO2n+1(q) in the ways described
by Proposition 6.15. After taking the commutator subgroup,the groupsΩ+

2n(q),
Ω−

2n(q) andΩ2n+1(q) will still contain An through this embedding, because An

is its own commutator subgroup. So we may apply Proposition 6.15 toΩ+
2n(q),

Ω−
2n(q) andΩ2n+1(q) and obtain the desired result.

Proposition 6.7 is proven by putting Corollary 6.14, Corollary 6.19 and Corol-
lary 6.20 together.
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7 Proof of Theorem 1.5

The results of Section 6 can be summarized into the followinguseful lemma.

Lemma 7.1.For any integerD and any constantc, we can find integersD′,K1,K2,m1,m2

such that allD′-quasirandom finite quasisimple groups have the symmetric double
covering property[(K1,m1), (K2,m2)] such thatm1 > cKD2

1 , m2 > cKD2
.

Proof. Let K1 be max(20,K0) where the absolute constantK0 is as in Propo-
sition 6.7. Pick somem1 > cKD2

1 . Find large enoughr such that, according to
Proposition 6.7 and Proposition 6.6, all finite quasisimplegroups (including the al-
ternating case) of ranks≥ r will have the symmetric covering property(K1,m1).

SetK2 := K(r)max(3r + 1,34) as in Corollary 6.5, and pick somem2 >

cKD2

2 . Then for large enoughD′, all D′-quasirandom finite quasisimple groups
will have the symmetric covering property(K2,m2).

In all cases, aD′-quasirandom finite quasisimple group will have the symmetric
double covering property[(K1,m1), (K2,m2)].

Remark 7.2. In the above proof, one cannot substitute the double covering prop-
erties with the covering properties. To have a covering property (K,m), a finite
simple group must either have a large enough rank to accommodate the large m,
according to Proposition6.7, or it must have a small enough rank to accomodate
the small K, according to Proposition6.5. So there might be a gap between the
“large enough rank” and the “small enough rank”, where the finite simple sub-
groups in the gap would fail to have the covering property(K,m), no matter how
quasirandom they are.

In short, the covering properties of finite quasisimple groups are not necessarily
uniform. It is uniform when obtained through increasing ranks, and it is uniform
when obtained through base fields of increasing sizes. At least with the techniques
in this paper, we cannot combine the two uniformity into one.So we must use the
double covering properties.

Proposition 7.3.Let G be a group with the symmetric double covering property
for some parameters, and let(Gi)i∈I be an arbitrary family of groups with the
symmetric double covering property for some uniform parameters. Then the fol-
lowing are true:

(i) For any normal subgroupN , G has the symmetric double covering property
for the same parameters modN .

(ii) Any quotient group ofG has the symmetric double covering property for the
same parameters.
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(iii) The group
∏

i∈I Gi has the symmetric double covering property for the same
parameters.

(iv) As a result of the (ii) and (iii), any ultraproduct
∏

i→ω Gi has the symmetric
double covering property for the same parameters.

Proof. (i), (ii) and (iv) are straightforward.
To see (iii), letgi,1, gi,2 ∈ Gi be the pairs givingGi the symmetric double

covering property. Then I claim that(gi,1)i∈I , (gi,2)i∈I ∈
∏

i∈I Gi is the pair
giving the desired symmetric double covering property.

For any element(gi)i∈I ∈
∏

i∈I Gi, then eachgi is inGi. And by its symmetric
double covering property, we know

Gi = C(gi,1)
K1C(g−1

i,1 )
K1C(gi,2)

K2C(g−1
i,2 )

K2.

So we can findai,j, bi,j ∈ Gi for i ∈ I and 1≤ j ≤ K1, andci,j, di,j ∈ Gi for
i ∈ I and 1≤ j ≤ K2, such that

gi = (
∏

1≤j≤K1

(ai,jgi,1a
−1
i,j )(bi,jg

−1
i,1 b

−1
i,j ))(

∏

1≤j≤K2

(ci,jgi,2c
−1
i,j )(di,j(gi,2)

−1d−1
i,j )).

Since the above identity is true for alli ∈ I, we have

(gi)i∈I =(
∏

1≤j≤K1

((ai,j)i∈I(gi,1)i∈I(ai,j)
−1
i∈I)((bi,j)i∈I(gi,1)

−1
i∈I(bi,j)

−1
i∈I))

(
∏

1≤j≤K2

((ci,j)i∈I(gi,2)i∈I(ci,j)
−1
i∈I)((di,j)i∈I(gi,2)

−1
i∈I(di,j)

−1
i∈I)).

So we have proven (iii).

Corollary 7.4. Let CQS be the class of finite quasisimple groups. ThenCQS is a
Q.U.P. class.

Proof. For any integerD, and for the constantc = f(D) as in Proposition 4.4, we
can findD′,K1,K2,m1,m2 as in Lemma 7.1.

Let Gi be a sequence ofD′-quasirandom groups inCQS. ThenGi all have the
symmetric double covering property[(K1,m1), (K2,m2)]. Then any ultraproduct
G =

∏

i→ω Gi will have the symmetric double covering property[(K1,m1), (K2,m2)]

by Proposition 7.3. Sincem1 > f(D)KD2

1 ,m2 > f(D)KD2
,G isD-quasirandom

by Proposition 4.4.
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Corollary 7.5 (Quasirandomness implies a Nice Covering Property mod Cosocle).
For any integerD, and any constantc, we can find integersD′,K1,K2,m1,m2

such that all finiteD′-quasirandom groups have the symmetric double covering
property[(K1,m1), (K2,m2)] mod cosocle, withm1 > cKD2

1 , m2 > cKD2

2 .

Proof. Let D′,K1,K2,m1,m2 be exactly as in Lemma 7.1. LetG be any finite
D′-quasirandom group.

Let N be the cosocle ofG. ThenG/N is a direct product ofD′-quasirandom
finite simple groups. These simple groups all have the symmetric double covering
property [(K1,m1), (K2,m2)]. So by Proposition 7.3, their productG/N will
have this same symmetric double covering property.

Corollary 7.6. Let CCS(n) be the class of finite groups with at mostn conjugacy
classes in their cosocles. ThenCCS(n) is a Q.U.P. class.

Proof. Let c = f(D)(3n− 2)D
2
.

For any integerD, and for the constantc, we can findD′,K1,K2,m1,m2 as in
Corollary 7.5.

LetGi be a sequence ofD′-quasirandom groups inCCS(n). ThenGi all have the
symmetric double covering property[(K1,m1), (K2,m2)] mod cosocles. Since
the cosocles contain at mostn conjugacy classes, by Proposition 5.2,Gi all have
the symmetric double covering property[((3n − 2)K1,m1), ((3n − 2)K2,m2)].
Then any ultraproductG =

∏

i→ω Gi will have the symmetric double covering
property[((3n− 2)K1,m1), ((3n− 2)K2,m2)] by Proposition 7.3.

Sincem1 > f(D)[(3n − 2)K1]
D2

, m2 > f(D)[(3n − 2)K]D
2
, G is D-

quasirandom by Proposition 4.4.

Proof of Theorem1.5. For any integerD, let c = f(D)(3n − 2)D
2
. We can find

D′,K1,K2,m1,m2 as in Corollary 7.5 and Lemma 7.1.
Let Gi be a sequence ofD′-quasirandom groups inCn. Then eachGi is a

direct product ofD′-quasirandom groups inCQS ∪ CCS(n). These factor groups
must then have the symmetric double covering property[((3n−2)K1,m1), ((3n−
2)K2,m2)]. By Proposition 7.3,Gi must also have this symmetric double cover-
ing property[((3n− 2)K1,m1), ((3n − 2)K2,m2)]. Then any ultraproductG =
∏

i→ω Gi will have the symmetric double covering property[((3n−2)K1,m1), ((3n−
2)K2,m2)] by Proposition 7.3.

Sincem1 > f(D)[(3n− 2)K1]
D2

, m2 > f(D)[(3n− 2)K]D
2
, Proposition 4.4

implies thatG is D-quasirandom.
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8 Applications

8.1 Triangles in a quasirandom group

A quasirandom group usually contains many patterns. For example, Gowers has
shown the following result:

Theorem 8.1(Gowers [9, Theorem 5.1]).Pick anyǫ1, ǫ2 > 0,0 < α < 1. If G
is aD-quasirandom group for some large enoughD, then for any subsetA of G
such that|A| ≥ α|G|, there are more than(1 − ǫ1)α

2|G| elementsx ∈ G such
that |A ∩ xA| ≥ (1− ǫ2)α

2|G|.

Morally, if we define anx-pair to be a set{y, xy} for somey ∈ G, then this the-
orem means that any large enough subset of a quasirandom group G will contain
manyx-pairs for manyx.

Now given a q.u.p. class, we can obtain minimally almost periodic groups via
ultraproducts of sequences of increasingly quasirandom groups. Then by applying
ergodic theory on the ultraproduct, more patterns similar to that of Theorem 8.1
might emerge. It is proven by Bergelson, Robertson and Zorin-Kranich [4] that,
for a quasirandom groupG in a q.u.p class, any large enough subset ofG×G will
contain manyx-triangle for manyx.

Definition 8.2.Let g be an element of a groupG. Then ag-triangle is the set
{(x, y), (gx, y), (gx, gy)} ⊆ G×G for somex, y ∈ G.

Theorem 8.3(Bergelson, Robertson and Zorin-Kranich [4, Theorem 1.12]). Let
G be contained in a q.u.p. class. For anyǫ > 0,0 < α < 1, there are integers
D,K such that, ifG is D-quasirandom, then for any subsetA of G × G with
|A| ≥ α|G|2, the setTA = {g ∈ G : A contains more than(α4−ǫ)|G|2 triangles}
can coverG with at mostK left translates of itself.

8.2 Self-Bohrifying groups

The application in this section is related to topological groups. We shall treat all
groups in previous sections as discrete groups.

Definition 8.4.A Bohr compactificationof a topological groupG is a continuous
homomorphismb : G → bG such that any continuous homomorphism fromG to
a compact group factors uniquely throughb.

Remark 8.5.
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(i) The Bohr compactification exists for any group by the work of Holm [12]. It
is obviously unique up to a unique isomorphism.

(ii) Clearly, a discrete group is minimally almost periodic iff it has trivial Bohr
compactification. Note that for a discrete group, any abstract homomorphism
from it to another topological group is automatically continuous.

Definition 8.6. A topological groupG is said to beself-Bohrifying if its Bohr
compactificationbG is the same abstract group asG, but with a compact topology.

By the results and techniques of this paper, one can find many examples of
self-Bohrifying groups. In particular, we have the following theorem.

Theorem 8.7.Let n be a positive integer. LetGi be a sequence of increasingly
quasirandom groups inCn, the class defined as in Theorem1.5. Then

∏

i∈NGi is
self-Bohrifying as a discrete group.

Corollary 8.8. Let Gi be a sequence of non-abelian finite simple groups of in-
creasing order. Then

∏

i∈NGi is self-Bohrifying as a discrete group.

We will prove Theorem 8.7 by first showing that
∏

i∈NGi/
∐

i∈NGi is mini-
mally almost periodic, and then using a lemma by Hart and Kunen [11].

Definition 8.9. LetGi be a sequence of groups.

(i) Their sum is the group
∐

i∈NGi = {g ∈ ∏

i∈NGi : only finitely many
coordinates ofg is nontrivial}.

(ii) Their reduced productis the group
∏

i∈NGi/
∐

i∈NGi.

Lemma 8.10(Hart and Kunen [11, Lemma 3.8]).Let {Gi}i∈N be a sequence of
finite groups. Then

∏

i∈NGi is self-Bohrifying if all but finitely manyGi are
perfect groups, and

∏

i∈NGi/
∐

i∈NGi has trivial Bohr compactification, i.e.,
∏

i∈NGi/
∐

i∈NGi is minimally almost periodic.

Proof of Theorem8.7. All 2-quasirandom groups are perfect. So it is enough to
show that the reduced product ofGi is minimally almost periodic, i.e., it isD-
quasirandom for allD.

For any integerD, let c = f(D)(3n − 2)D
2
. We can findD′,K1,K2,m1,m2

as in Corollary 7.5 and Lemma 7.1.
Let Gi be a sequence of increasingly quasirandom groups inCn. Then all but

finitely manyGi will be D′-quasirandom. Since we are interested in the reduced
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product, which is invariant under the change of finitely manycoordinates, we may
WLOG assume that allGi areD′-quasirandom.

SinceGi ∈ Cn, eachGi is a direct product ofD′-quasirandom groups inCQS ∪
CCS(n). These factor groups must then have the symmetric double covering prop-
erty [((3n−2)K1,m1), ((3n−2)K2,m2)]. By Proposition 7.3,Gi must also have
this symmetric double covering property[((3n− 2)K1,m1), ((3n− 2)K2,m2)].

Now by Proposition 7.3, covering properties are preserved by arbitrary prod-
ucts and quotients. So

∏

i∈NGi will have this covering property, and the reduced
product

∏

i∈NGi/
∐

i∈NGi will also have this covering property.

Sincem1 > c[(3n − 2)K1]
D2

, m2 > c[(3n − 2)K]D
2
, the reduced product is

D-quasirandom by Proposition 4.4. So we are done by Lemma 8.10.
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