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Abstract. Kronheimer-Mrowka recently proved that the Dehn twist along a 3-sphere in
the neck of K3#K3 is not smoothly isotopic to the identity. This provides a new example
of self-diffeomorphisms on 4-manifolds that are isotopic to the identity in the topological
category but not smoothly so. (The first such examples were given by Ruberman.) In
this paper, we use the Pinp2q-equivariant Bauer-Furuta invariant to show that this Dehn
twist is not smoothly isotopic to the identity even after a single stabilization (connected
summing with the identity map on S2

ˆ S2). This gives the first example of exotic
phenomena on simply connected smooth 4-manifolds that do not disappear after a single
stabilization.

1. Introduction

Understanding smooth structures on 4-manifolds remains one of the most difficult topics
in low dimensional topology. In this dimension, many results that hold in the topological
category will not hold in the smooth category. Such phenomena are called “exotic phe-
nomena.” To motivate our discussion, we list three major instances of exotic phenomena:

‚ By the groundbreaking work of Donaldson [13, 14] and Freedman [15] (and many
subsequent works), there exist many pairs of simply-connected, closed, smooth
4-manifolds that are homeomorphic but not diffeomorphic.

‚ Ruberman [26] gave the first example of self-diffeomorphisms on 4-manifolds that
are isotopic to the identity in the topological category but not smoothly so. Further
examples are given by Auckly-Kim-Melvin-Ruberman[4], Baraglia-Konno [7] and
Kronheimer-Mrowka [20].

‚ By the combined work of Wall [29], Perron [24], Quinn [25] and Donaldson [13],
there exist pairs of embedded 2-spheres in 4-manifolds with simply-connected com-
plement that are topologically isotopic to each other but not smoothly so. (See
[3, 4] for explicit families of such examples.)

Exotic phenomena appear in all these three problems, which we call as the “diffeomor-
phism existence problem”, the “diffeomorphism isotopy problem” and the “surface isotopy
problem”. A basic principle, as discovered by Wall [30, 29] in the 1960s, states that these
exotic phenomena will eventually disappear after sufficient many times of stablizations on
the 4-manifolds. (Here stabilization means taking connected sum with S2 ˆ S2.) More
precisely, now we know the following results:
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‚ Wall [30] proved that any pair of homotopic equivalent, simply connected smooth
4-manifolds are stably diffeomorphic. Namely, they become diffeomorphic after
sufficiently many stabilizations.

‚ Gompf [17] and Kreck [19] further proved that any pair of homeomorphic orientable
smooth 4-manifolds (not necessarily simply connected) are stable diffeomorphic.
They also proved that non-orientable pairs can be made stably diffeomorphic
by first doing a twisted stabilization (i.e., connected summing a twisted bundle
S2 ˜̂S2). In fact, for any G with H1pG;Z{2q ‰ 0, Kreck [18] constructed examples
of homeomorphic non-orientable smooth 4-manifold pairs with fundamental group
G which are not stably diffeomorphic. (Another constructing of such examples
were given by Akbulut [2].) This implies that a twisted stabilization is indeed
necessary in the non-orientable case.

‚ Quinn [25] proved that homotopic diffeomorphisms of any simply-connected smooth
4-manifold are smoothly isotopic after sufficient many stablizations. Here stabi-
lization means first isotoping the diffeomorphisms so that they all fix a small ball
B pointwisely and then taking connected sum with the identity map on S2 ˆ S2

along B.
‚ The work of Wall [29], Perron [24] and Quinn [25] shows that for any pair of

homologous closed surfaces of the same genus embedded in a 4-manifold with
simply-connected complement, they become smoothly isotopic after sufficiently
many times of external stabilizations. Here external means that the connected
sums with S2 ˆ S2 are taken away from the surfaces.

These results motivate the following natural question:

Question 1.1. How many stablizations are necessary in each of these three problems?

There has been a speculation that one stabilization is actually enough in all three
problems. This is based on several known results:

‚ It is shown in [11] that exotic pairs of nonspin 4-manifolds produced by ‘standard
methods’ (logarithmic transforms, knot surgeries, and rational blow downs) all
become diffeomorphic after a single stabilization.

‚ In the large families of examples (of embedded surfaces and self-diffeomorphisms)
established in [3, 4], exactly one stabilization is needed.

‚ Auckly-Kim-Ruberman-Melvin-Schwartz [5] proved that any two homologous sur-
faces F1, F2 of the same genus embedded in a smooth 4-manifold X with simply
connected complements are smoothly isotopic after a single stabilization if they
are not characteristic (i.e. rFis is not dual to the Stiefel-Whitney class w2pXq).
This shows that in the non-characteristic case, one stabilization is indeed enough
in the surface isotopy problem. (When the surfaces are characteristic, they proved
a similar result involving a single twisted stabilization.)

In this paper, we prove the the following theorem.

Theorem 1.2 (Main Theorem). Let δ be the Dehn twist along a separating 3-sphere in
the neck of the connected sum K3#K3. Then δ is not smoothly isotopic to the identity
map even after a single stabilization.
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To the authors’ knowledge, Theorem 1.2 provides the first example that exotic phenom-
ena on simply connected smooth 4-manifolds do not disappear after a single stabilization.
In particular, it implies that one stabilization is in general not enough in the diffeomor-
phism isotopy problem.

Note that Kronheimer-Mrowka [20] proved that δ itself is not smoothly isotopic to the
identity, using the nonequivariant Bauer-Furuta invariant for spin families. Our result is
based on Kronheimer-Mrowka’s theorem and makes use of the Pinp2q-equivariant version
of the Bauer-Furuta invariant. This invariant was defined in [10] (for a single manifold)
and in [31, 27] (for families). It has been extensively studied in many papers including
[6, 8] and it is the central tool in Furuta’s proof of the 10

8 -theorem [16]. The idea of using
gauge-theoretic invariant for families to study isotopy problem first appears in [26]. The
idea of using Pinp2q-equivariant Bauer-Furuta invariant to further study Dehn twists on
4-manifolds was suggested by Kronheimer-Mrowka in [20].

We outline the proof of Theorem 1.2 as follows: By taking the mapping torus of δ, we
form a smooth bundle N with fiber K3#K3 and base S1. Then it suffices to show that
the bundle Ñ , formed by fiberwisely connected sum between N and pS2ˆS2qˆS1, is not
a product bundle. This is proved by showing that the Pinp2q-equivariant Bauer-Furuta in-

variant BFPinp2qpÑq is nonvanishing for both spin structures. Note that BFPinp2qpÑq equals

the product of BFPinp2qpNq with the Euler class eR̃ (a stable homotopy class represented

by the inclusion from S0 “ t0,8u to the 1-dimensional representation sphere SR̃). We
prove by contradiction and assume that

BFPinp2qpNq ¨ eR̃ “ 0 (1)

Then we obtain extra information on BFPinp2qpNq and its S1-reduction BFS1pNq P tSR`2H,S6R̃uS
1
.

We can explicit compute the homotopy group tSR`2H, S6R̃uS
1

as Z ‘ Z{2. Based this

computation, information from (1) and the fact that BFS1pNq gives a vanishing family

Seiberg-Witten invariant, we can prove that BFS1pNq “ 0. This further implies that

the nonequivariant Bauer-Furuta invariant BFteupNq is vanishing, which contradicts with

Kronheimer-Mrowka’s result that BFteupNq equals the nonzero element η3 P π3.
The paper is organized as follows: In section 2, we give a brief review on some basic

Pinp2q-equivariant stable homotopy theory and recall definition of the equivariant Bauer-
Furuta invariant. We also use this section to set up notations and to adapt some standard
results to the setting we need. The actual proof of Theorem 1.2 is given in Section 3. Ex-
perts may directly skip to Section 3 and occasionally refer back to Section 2 for notations
and results.

Acknowledgement: This author is partially supported by NSF Grant DMS-1949209.
The author would like to thank Tye Lidman and Danny Ruberman for very enlightening
conversations and thank Mark Powell for pointing out Kreck’s work [18].
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2. Background Knowledge

2.1. Background on Pin(2)-equivariant Homotopy Theory. In this section, we col-
lect some standard results (mostly from [1, 23, 22]) on G-equivariant stable homotopy
theory in the case

G “ Pinp2q “ teiθu Y tj ¨ eiθu Ă H.
Instead of stating the most general form of these results, we will only focus on the special
cases that are actually needed in our argument. We refer to [1] for an introduction to the
equivariant stable homotopy theory (in the case of finite group) and to [23, 22] for a more
general treatment.

Since all objects we study here are finite G-CW complexes, for simplicity, we will work
with the G-equivariant Spanier-Whitehead category [1] (instead of the category of G-
spectra). Of course, there are a lot of drawbacks (e.g. one can not always take lim-
its/colimits). But it is enough for our purpose.

2.1.1. Basic facts and definitions. Let U be an infinite dimensional G-representation space
equipped with a G-invariant inner product, which we call as “universe”. We assume that
U contains the following concrete representation

p‘
8
Rq

à

p‘
8
R̃q

à

p‘
8
Hq.

Here R is the trivial representation; R̃ is the 1-dimensional representation on which S1

acts trivially and j acts as ´1; and H is acted upon by G via the left multiplication in
quaternion.

To apply the results in [23] directly without checking further conditions, we further
assume that U is “complete”. This means that U contains infinite copies of all isomorphism
classes of irreducible G-representations. 1

We will use H to denote either the group G or its subgroups S1 or teu. By restricting
the G-action on U , we can also use U as a complete H-universe. We use RH to denote
the set of all finite dimensional H-representations contained in U . We will treat RG as a
subset of RS1 and Rteu by restricting the G-action.

For any V P RH , we use SV to denote the 1-point compactification of V (called the
representation sphere) and use SpV q to denote the unit sphere. We set 8 as the base
point of SV and we use SpV q` to denote the union of SpV q with a disjoint base point.

Let X,Y, Z be based finite H-CW complexes (see for example [28, Chapter I] for def-
inition). We use the notation rX,Y sH to denote the set of homotopy classes of based
H-maps from X to Y (i.e. maps that preserve the base point and are equivariant under
H).

Given any V,W P RH with V Ă W , let V K be the orthogonal complement of V in W .

Then smashing with the identity map on SV
K

provides a map:

rSV ^X,SV ^ Y sH Ñ rSW ^X,SW ^ Y sH

1Since all G-CW complexes we consider in this paper can have only G,S1 or teu as the isotropy group,

all argument we make actually will still hold for the incomplete universe p‘
8
Rq

À

p‘
8
R̃q

À

p‘
8
Hq, which is

more relevant to the geometric setting.
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One can check that these maps make the collection

trSV ^X,SV ^ Y sHuV PRH

into a direct system. We define tX,Y uH as the direct limit of this system. As in the
nonequivariant case, the set tX,Y uH is actually an abelian group. A based H-map

SV ^X Ñ SV ^ Y for V P RH

will be called a stable H-map from X to Y . An element in the group tX,Y uH will be
called a stable homotopy class of H-maps.

Fact 2.1. Given any based H-map f : X Ñ Y , we form the mapping cone Cf and let
i : Y Ñ Cf be the natural inclusion. Then for any Z, the functor t˚, ZuH is a generalized
cohomology theory [23, Page 157]. As a result, there is a long exact sequence

¨ ¨ ¨ Ñ tSR ^X,ZuH
B
ÝÑ tCf,ZuH

i˚
ÝÑ tY, ZuH

f˚
ÝÑ tX,ZuH

B
ÝÑ tCf, SR ^ZuH Ñ ¨ ¨ ¨ (2)

associated to the cofiber sequence X
f
ÝÑ Y

i
ÝÑ Cf .

Fact 2.2. Suppose the H-action on X is free away from the base point. Then there is a
natural map

qH : tX,Y uH Ñ tX{H,Y {Huteu (3)

from the equivariant homotopy group to the nonequivariant homotopy group of the quotient
space. This map is constructed as follows: Since the H-action on X is free away from the
base point, any rf s P tX,Y uH can be represented by an H-map f : SV ^ X Ñ SV ^ Y
such that the H-action on V is trivial (see [1, Proposition 5.5]). The map f induces a
nonequivariant map between the quotient space.

f{H : SV ^ pX{Hq “ pSV ^Xq{H Ñ pSV ^ Y q{H “ SV ^ pY {Hq.

Then we define qHprf sq as rf{Hs. One can check that this does not depend on the choice
of f and V .

Fact 2.3. [1, Theorem 5.3] Suppose the H-action on X is free away from the base point
and the H-action on Y is trivial. Then the map qH is an isomorphism.

For the rest of the section, we assume X,Y are based, finite G-CW complexes. The
next few facts concern various relations between the G-equivariant homotopy groups and
the S1-equivariant homotopy groups.

Fact 2.4. [1, Theorem 5.1] There is a natural isomorphism

ι : tX,Y uS
1 –
ÝÑ tX ^ pSpR̃q`q, Y uG (4)

constructed as follows: Take any rf s P tX,Y uS
1

represented by an S1-map

f : SV ^X Ñ SV ^ Y.

By enlarging V if necessary, we may assume V P RG. Then we consider the G-map

f 1 : SV ^X ^ pSpR̃q`q “ ppSV ^Xq ˆ t1uq _ ppSV ^Xq ˆ t´1uq Ñ Y
5



defined by setting

f 1pxˆ t1uq “ fpxq and f 1pxˆ t´1uq :“ jfpj´1xq

for any x P SV ^X. We let ιprf sq “ rf 1s. This map ι turns out to be an isomorphism.

Next, we recall the two operations about changing groups, namely the restriction map

ResGS1 : tX,YuG Ñ tX,YuS
1

(5)

and the transfer map

TrGS1 : tX,YuS
1
Ñ tX,YuG. (6)

The restriction map is defined by simply ignoring the j-action. To define the transfer map,
we consider the Pontrjagin-Thom map

p : SR̃ Ñ SR̃ ^ SpR̃q`

that crushes all points outside a normal neighborhood of SpR̃q in SR̃. (Here we identify

the Thom space of the normal bundle of SpR̃q as SR̃ ^ pSpR̃q`q.) Then the transfer map
is defined as the composition

tX,Y uS
1 ι
ÝÑ tpSpR̃q`q^X,Y uG “ tSR̃^pSpR̃q`q^X,SR̃^Y uG

p˚
ÝÑ tSR̃^X,SR̃^Y uG “ tX,Y uG.

(7)
To describe the composition of transfer and restriction, we define the conjugation map

cj : tX,Y uS
1
Ñ tX,Y uS

1
(8)

as follows: Take any element rf s P tX,Y uS
1

represented by a S1-map f : SV^X Ñ SV^Y .
By enlarging V if necessary, we may assume V P RG. Then cjprf sq is represented by the
composition

SV ^X
j´1

ÝÝÑ SV ^X
f
ÝÑ SV ^ Y

j
ÝÑ SV ^ Y.

Note that when the S1-action on X is free away from the base point, the maps cj and the
map qS1 defined in (3) are compatible. That means

qS1pcjpαqq “ j ˝ qS1pαq ˝ j´1,@α P tX,Y uS
1
. (9)

Here j and j´1 are treated as elements in tY {S1, Y {S1uteu and tX{S1, X{S1uteu respec-
tively.

The following fact is a special case of the double coset formula [23, Chapter XVIII,
Theorem 4.3]. It can be verified directly by unwinding the definitions.

Fact 2.5. For any α P tX,Y uS
1
, one has

ResGS1TrGS1pαq “ α` cjpαq (10)

We end this subsection by an alternative description of the image of TrGS1 .
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Lemma 2.6. Let eR̃ P tS
0, SR̃uG be the element represented by the inclusion map

S0 “ t0,8u ãÑ SR̃. (11)

(This element is called the Euler class of R̃.) Then the kernel of the map

tX,Y uG
eR̃¨
ÝÝÑ tX,SR̃ ^ Y uG (12)

equals the image of the transfer map (6).

Proof. There is a cofiber sequence S0 ãÑ SR̃ p
ÝÑ SR̃^SpR̃q`. Smashing this sequence with

X and applying the functor t˚, SR̃ ^ Y uG, we get the exact sequence:

tpSR̃ ^ SpR̃q`q ^X,SR̃ ^ Y u
p˚
ÝÑ tSR̃ ^X,SR̃ ^ Y uG

eR̃¨
ÝÝÑ tX,SR̃ ^ Y uG

So we see that image of p˚ equals kernel of the map (12). The lemma follows from definition
of TrGS1 (see (7)). �

2.1.2. The characteristic homomorphism. In this subsection, we define the characteristic
homomorphism

t : tSaR`bH, SdR̃uS
1
Ñ Z,

following [10], where a, b, c are nonnegative integers with d ě a`2. This homomorphism is
of interest to us because the (family) Seiberg-Witten invariant can be obtained by applying

t on the Bauer-Furuta invariant. Note that although R̃ is trivial as an S1-representation,
we still distinguish it with R in order to keep track of the j-action.

To define t, we take the smash product of the cofiber sequence

S0 Ñ SbH Ñ SR ^ SpbHq`

with the sphere SaR and get the cofiber sequence

SaR Ñ SaR`bH Ñ Spa`1qR ^ SpbHq`.

This induces the long exact sequence

¨ ¨ ¨ Ñ tSpa`1qR, SdR̃uS
1
Ñ tSpa`1qR^SpbHq`, SdR̃uS

1
Ñ tSaR`bH, SdR̃uS

1
Ñ tSaR, SdR̃uS

1
Ñ ¨ ¨ ¨

(13)
Since d ě a ` 2, the equivariant Hopf theorem [12, Section 8.4] states that the stable

homotopy class of an S1-equivariant stable map from SaR or Spa`1qR to SdR̃ is determined
by its mapping degree on the S1-fixed point sets. Since this mapping degree is always zero
for dimension reason, we get

tSaR, SdR̃uS
1
“ tSpa`1qR, SdR̃uS

1
“ 0.

Therefore, we get an isomorphism

ξ : tSpa`1qR ^ SpbHq`, SdR̃uS
1 –
ÝÑ tSaR`bH, SdR̃uS

1
. (14)
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Note that the S1-action on Spa`1qR ^ SpbHq` is free away from the base point, with

quotient space Spa`1qR ^ CP 2b´1
` . By composing ξ´1 with the isomorphism qS1 given in

(3), we get the following isomorphism

ψ “ qS1 ˝ ξ´1 : tSaR`bH, SdR̃uS
1 –
ÝÑ tSpa`1qR ^ CP 2b´1

` , SdR̃uteu (15)

Definition 2.7. Suppose d´ a is an odd number less or equal to 4b´ 1. Then we define
the characteristic homomorphism

t : tSaR`bH, SdR̃uS
1
Ñ Z,

by setting tpαq as the image of 1 under the induced map on the reduced cohomology

pψpαqq˚ : Z “ H̃dpSdR̃q Ñ H̃dpSpa`1qR ^ CP 2b´1
` q – Z.

Here we use the standard orientations on SdR̃, Spa`1qR and CP
d´a´1

2 to identify the ho-
mology groups as Z. If either d ´ a is even or d ´ a ą 4b ´ 1, we simply define t as the
zero map.

To discuss the behavior of t under the conjugation map cj defined in (8), we prove the
following lemma.

Lemma 2.8. For any α P tSaR`bH, SdR̃uS
1
, we have

ψpcjpαqq “ p´1qdm ˝ ψpαq

where m P tCP 2b´1
` ,CP 2b´1

` uteu is the “mirror reflection map” defined as

mprz1, z2, z3, z4, ¨ ¨ ¨ , z2m´1, z2msq “ pr´z̄2, z̄1,´z̄4, z̄3, ¨ ¨ ¨ ,´z̄2m, z̄2m´1sq for zi P C.

Proof. By formula (9), ψpcjpαqq equals the composition of ψpαq with the elements

j P tSdR̃, SdR̃uteu

and

j´1 P tSpa`1qR ^ CP 2b´1
` , Spa`1qR ^ CP 2b´1

` uteu,

which are just p´1qd and a suspension of m respectively. �

Corollary 2.9. When d´ a is odd, we have tpcjpαqq “ p´1q
3d´a´1

2 tpαq for any α.

Proof. When restricted to CP 1, the map m is just the antipodal map so has degree

´1. Using the ring structure on H˚pCP 2b´1q, we see that m has degree p´1q
d´a´1

2 on

H̃dpSpa`1qR ^ CP 2b´1
` q. Now the result follows from Lemma 2.8. �

We end this section by the following result, which is essentially the algebraic version of
the vanishing result for Seiberg-Witten invariant of connected sums.

Lemma 2.10. Given any α1 P tS
a1R`b1H, Sd1R̃uS

1
and α2 P tS

a2R`b2H, Sd2R̃uS
1
, we have

tpα1α2q “ 0 if d1 ą a1 and d2 ą a2.
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Proof. The product α1α2 belongs to the group

tSpa1`a2qR`pb1`b2qH, Spd1`d2qR̃uS
1
.

Therefore, tpα1α2q can possibly be nonzero only if d1 ` d2 ´ a1 ´ a2 is odd. Without loss
of generality, we may assume d1 ´ a1 is odd and d2 ´ a2 is even.

Since di ą ai for i “ 1, 2, the group tSaiR, SdiR̃uS
1

is vanishing. By the long exact (13),
we see that αi is in the image of some element

βi P tS
pai`1qR ^ SpbiHq`, SdiR̃uS

1
.

By the naturality of the exact sequence (13) under smash product, we see that ξpα1α2q

can be written as the composition pβ1β2q ˝ γ for some specific element

γ P tSppb1 ` b2qHq`, SR ^ Spb1Hq` ^ Spb2Hq`u.

The explicit description of γ is not important here.
Moreover, checking the explicit construction of the map qS1 given in Fact 2.2, we see

that qS1 also natural under the smash product and composition. Therefore, we have

ψpα1α2q “ qS1pξpα1α2qq “ qS1pβ1β2q ˝ qS1pγq

and qS1pβ1β2q equals the composition

Spa1`a2`2qR ^ ppSpb1Hq` ^ Spb2Hq`q{S1q Ñ

pSpa1`1qR ^ pSpb1Hq`q{S1qq ^ pSpa2`1qR ^ pSpb2Hq`q{S1qq
qS1 pβ1q^qS1 pβ2q
ÝÝÝÝÝÝÝÝÝÝÑ Sd1R̃ ^ Sd2R̃

Because d2 ´ a2 is even, the cohomology H̃d2pSpa2`1qR ^ pSpb2Hq`q{S1qq “ 0. So qS1pβ2q
induces trivial map on the reduced cohomology. This implies that ψpα2α2q induces trivial

map on H̃d1`d2p˚q. Hence we have tpα1α2q “ 0. �

2.2. The Pin(2)-equivariant Bauer-Furuta Invariant for Spin Families. In this
section, we briefly summarize the definition and some important properties of the Bauer-
Furuta invariant for spin families. This invariant was originally defined in [10] for a single
4-manifold. The family version was first defined in [31] and [27] and later extensively
studied in [8, 6]. Because we want to construct the Bauer-Furuta invariant as a concrete
element in the G-equivariant stable homotopy group of spheres, some care must be taken
in the construction.

2.2.1. Spin structures on circle family of 4-manifolds. Let N be a smooth fiber bundle
whose fiber is a closed spin 4-manifold M and whose base is another closed manifold B.
For simplicity, we will make the following assumption throughout the paper:

Assumption 2.11. The bundle N satisfies the following property:

(1) M is simply connected;
(2) The signature σpMq ď 0;
(3) Let Mx be the fiber over the point x P B. Then the action of π1pB, xq on H2pMx;Zq

(given by the holonomy of the bundle) is trivial.
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We equip N with a Riemannian metric and let FrvpNq be the frame bundle of the vertical
tangent bundle of N . This is an SOp4q-bundle over N .

Definition 2.12. A spin structure s on N is a double covering map π : P Ñ FrvpNq that
restricts to a nontrivial covering map Spinp4q Ñ SOp4q on each fiber. Two spin structures
pπ, P q and pπ1, P 1q are called isomorphic if there exists homeomorphism P Ñ P 1 that
covers the identity map on FrvpNq.

Definition 2.13. The pair pN, sq is called a spin family. Two spin families pN1, s1q and
pN2, s2q over the same base B are called “isomorphic” if there exists a bundle isomorphism
f : N1 Ñ N2 such that f˚ps2q is isomorphic to s1.

We are mainly interest in the case that B is a circle or a point. By our Assumption
2.11, N has a unique spin structure when B is a point and has two spin structures when
B is a circle. We give an explicit description of these two spin structures as follows: Let
πM : PM Ñ FrpMq be the covering map given by the unique spin structure on M . Then
the bundle N is obtained by gluing the two boundary components of M ˆ r0, 1s via a
diffeomorphism f : M Ñ M . The diffeomorphism induces a map f˚ : FrpMq Ñ FrpMq,
which has two lifts f˘˚ : PM Ñ PM . These lifts differ from each other by the deck
transformation τ : PM Ñ PM . We use f˘˚ to glue the two boundary components of
PM ˆ I and form two spin structures on N .

Definition 2.14. When N “ M ˆ S1, the maps f˘˚ are just the identity map and the
deck transformation τ . We call the associated spin structures over N as the product spin
structure and the twisted spin structure respectively. Let s be the unique spin structure
on M . Then we use s̃ to denote the former and use s̃τ to denote the latter.

For general M , the product family and the twisted family are not isomorphic. For
example, Kronheimer-Mrowka [20] established the following example:

Example 2.15. The product family pK3 ˆ S1, s̃q and the twisted family pK3 ˆ S1, s̃τ q
are not isomorphic, as can be proved by the nonequivariant Bauer-Furuta invariant.

However, for the special case of S2 ˆ S2, these two families are indeed isomorphic:

Lemma 2.16. The product family ppS2ˆS2qˆS1, s̃q and the twisted family ppS2ˆS2qˆ

S1, s̃τ q are isomorphic.

Proof. There is an S1-action S2 with two fixed points t0,8u. We use ξ : S1ˆS2 Ñ S2 to
denote this action. As x varies from 0 to 2π, the induced map

pidS2 ˆ ξpx, ¨qq˚ : Tp0,0qpS
2 ˆ S2q Ñ Tp0,0qpS

2 ˆ S2q

gives an essential loop in SOp4q. Using this fact, one can verify that the the bundle
automorphism

f : pS2 ˆ S2q ˆ S1 Ñ pS2 ˆ S2q ˆ S1

defined by fpy1, y2, xq “ py1, ξpx, y2q, xq satisfies f˚ps̃q “ s̃τ . �
10



2.2.2. Definition of the Bauer-Furuta invariant. As in the case of a single 4-manifold,
a spin structure s gives rise to two quaternion bundles S˘ over N . Denote by S˘x the
restriction of S˘ to the fiber Mx. Then the spin Dirac operator

DpMxq : ΓpS`x q Ñ ΓpS´x q

is a quaternionic linear operator. We form the operator D over N by putting DpMxq

together.
Now we consider four Hilbert bundles V`,V´,U` and U´ over B. The fibers of V˘ are

suitable Sobolev completions of ΓpS˘x q. And the fibers of U` and U´ are completions of
Ω1pMxq and Ω2

`pMxq ‘Ω0pMxq{R respectively. We let G “ Pinp2q acts on V˘ by the left
multiplication in the quaternion, and we let G acts on U˘ by setting the S1-action to be
trivial and setting the j-action as multiplication by ´1.

The family Seiberg-Witten equations give a fiber preserving, G-equivariant map

SW : U` ‘ V` Ñ U´ ‘ V´

This Seiberg-Witten map can be written as l`c, where l is the fiberwise Fredholm operator

l :“ D ‘ pd`, d˚q

and c is a certain 0-th order operator.
To apply the finite dimensional approximation technique on the map SW, we carefully

choose finite dimensional subspaces of V˘ and U˘ as follows: First, we apply the Kuiper’s
theorem [21] to get canonical trivialization on the bundle

V´ – B ˆ L2pH8q and U` – B ˆ L2pR̃8q. (16)

Here L2p˚q denotes the completion with respect to the L2-norm. Choose m,n " 0 and
let U` Ă U` and V ´ Ă V´ be the subbundles corresponding to the bundle B ˆHm and
B ˆ R̃n under the isomorphism (16). Let H`2 be the subbundle of U´ consisting of all
self-dual harmonic 2 forms on Mx. We set

U´ :“ H`2 ‘ ppd
`, d˚qU`q Ă U´.

(Note that pd`, d˚q is injective by our assumption b1pMq “ 0.) We choose m large enough
so that V ´ is fiberwise transverse to D and we set V ` :“ D´1pV ´q Ă V`.

As explained [10], when m,n are large enough, one can apply the finite dimensional
approximation on the Seiberg-Witten map SW to obtain a proper map from W` :“
U` ‘ V ` to W´ :“ U´ ‘ V ´. This map induces a G-equivariant map

sw : W`
8 ÑW´

8

between the one point compactifications W˘
8 .

Restriction of (16) gives canonical trivializations of the bundles V ´ and U`. By As-
sumption 2.11, π1pBq acts trivially on H2pMxq. Therefore, as explained in [20], a homology
orientation of M determines a canonical trivialization of H`2 . At this point, we have ob-
tained canonical trivializations of U˘ and V ´. Using these trivializations, we get the
following composition map

pSmR̃ ^ V `8 q –W`
8

sw
ÝÑW´

8 – pS
pm`b`pMqqR̃`nH ^B`q

pj
ÝÑ Spm`b

`pMqqR̃`nH, (17)
11



where pj denotes projection to the first factor.
From now on, we specialize to the case that B is a circle or point. Note that V ` is

a quaternionic bundle of dimension pn ´ σpMq
16 q and the group Sppn ´ σpMq

16 q has trivial
πi for i ď 2. So the bundle V ` has a trivialization (canonical up to homotopy). This
trivialization allows us to fix an identification

V `8 – pSpn´
σpMq
16

qH ^B`q

and rewrite the map p17q as a G-map

Ăsw : SmR̃`pn´σpMq
16

qH ^B` Ñ Spm`b
`pMqqR̃`nH, (18)

which represents an element in rĂsws P tS´
σpMq
16

H ^ B`, S
b`pMqR̃uG. By checking the con-

crete construction of Ăsw in [10], one establishes the following fact:

Fact 2.17. Consider the map SmR̃ ^ B` Ñ Spm`b
`pMqqR̃ given by restricting Ăsw to the

S1-fixed point sets. This map can be explicitly described as the composition

SmR̃ ^B`
projection
ÝÝÝÝÝÝÑ SmR̃ inclusion

ÝÝÝÝÝÑ Spm`b
`pMqqR̃.

Definition 2.18. Suppose B is a point. Then M “ N and we have S´
σpMq
16

H ^ B` “

S´
σpMq
16

H. In this case, we define the G-equivariant Bauer-Furuta invariant as

BFGpM, sq :“ rĂsws P tS´
σpMq
16

H, Sb
`pMqR̃uG.

We will neglect the spin structure s in our notation when it is obvious from the context.

Example 2.19. BFGpS4q is an element in tS0, S0uG represented by a G-map from the

SmR̃`nH to itself. By the equivariant Hopf theorem [28, Chapter II.4 ], such stable homo-
topy class is determined by its restriction to the S1-fixed points. Hence by Fact 2.17, we
see that BFGpS4q “ 1.

Example 2.20. BFGpS2 ˆ S2q P tS0,SR̃uG is represented by a G-map from SmR̃`nH to

Spm`1qR̃`nH. Such map are also determined by its restriction on the S1-fixed points. By
Fact 2.17 again, we see that BFGpS2ˆS2q “ eR̃. Here eR̃ is the Euler class defined in (11)

When B is a circle, we identify it with the unit sphere Sp2Rq in S2R. Consider the
cofiber sequence

Sp2Rq Y t8u Ñ S0 Ñ S2R p
ÝÑ SR ^ pSp2Rq Y t8uq. (19)

The map p, which is just Pontryagin-Thom map for the inclusion Sp2Rq ãÑ S2R, can be
treated as a stable map from SR to B`. This stable map induces the map

p˚ : tS´
σpMq
16

H ^B`, S
b`pMqR̃uG Ñ tSR´σpMq

16
H, Sb

`pMqR̃uG

that sends α to α ˝ pid
S´

σpMq
16 H ^ pq.

Definition 2.21. When B “ Sp2Rq, we define the G-equivariant Bauer-Furuta invariant
as

BFGpN, sq :“ p˚rĂsws P tSR´σpMq
16

H, Sb
`pMqR̃uG.

12



In both cases, we define the S1-equivariant Bauer-Furuta invariant and the nonequivari-
ant Bauer-Furuta invariant as the restriction of the G-equivariant Bauer-Furuta invariant:

BFS1pN, sq :“ ResGS1pBFGpN, sqq

BFteupN, sq :“ ResGteupBFGpN, sqq.

In [20], Kronheimer-Mrowka gave an alternative definition of BFteupN, sq: Take a generic
section r of the bundle W´ that is transverse to the map sw. Then the preimage sw´1prq
is a manifold. When B is a point, the canonical trivilizations of the bundles W˘ determine
a stable framing on sw´1prq. When B is Sp2Rq, we fix a stable framing on B that bounds a
framed disk. Then together with the trivilizations of W˘, this determines a stable framing
on sw´1prq. In [20], the family Bauer-Furuta invariant is defined as the framed cobordism
class of sw´1prq.

Recall that the framed cobordism classes of smooth n-manifolds are classified by ele-
ments in the n-th stable homotopy group of spheres. The following lemma states that our
definition of BFteu is essentially identical to Kronheimer-Mrowka’s definition.

Lemma 2.22. The framed cobordism class of sw´1prq is classified by the nonequivariant

Bauer-Furuta invariant BFteupN, sq.

Proof. By Sard’s theorem, we can take r to be a constant section that sends the whole

B to a generic point r0 P S
pm`b`pMqqR̃`nH. Then sw´1prq “ Ăsw´1pr0q and it is also the

preimage of the point

t0u ˆ r0 P S
R`pm`b`pMqqR̃`nH

under the composition

pid
SR̃ ^ Ăswq ˝ pid

Spn´
σpMq
16 qH`mR̃ ^ pq : S2R`mR̃`pn´σpMq

16
qH Ñ SR`pm`b`pMqqR̃`nH. (20)

Because r0 is a regular value of Ăsw and any point in t0u ˆ B` is a regular value of p,
we see that t0u ˆ r0 is indeed a regular value of the map (20). Recall that an element in
the stable group of spheres defines a stably framed manifold by taking the preimage of a
regular value and taking the induced framing. The proof is finished by observing that the
stable framing on B that bounds a framed disk (the one we used to fix the framing on
sw´1prq) is exactly the framing induced by the inclusion B ãÑ S2R. �

2.2.3. Some properties of the Bauer-Furuta invariant. In this subsection, we summarize
some important properties of the Bauer-Furuta invairant. We start with a vanishing result.
Recall from Definition 2.14 that on the trivial bundle N “ M ˆ S1, there are two spin
structures: the product spin structure s̃ and the twisted spin structure s̃τ .

Lemma 2.23. The Bauer-Furuta invariants BFG, BFS1 and BFteu of the product spin
structure s̃ are all vanishing.

Proof. The cofiber sequence (19) induces a long exact sequence

¨ ¨ ¨ Ñ tS´
σpMq
16

H, Sb
`pMqR̃uG

q˚
ÝÑ tS´

σpMq
16

H^B`, S
b`pMqR̃uG

p˚
ÝÑ tSR´σpMq

16
H, Sb

`pMqR̃uG Ñ ¨ ¨ ¨

13



where q˚ is induced by the map q : B` Ñ S0 that preserves the base point and sends B
to the other point. By its definition, the map Ăsw for pM ˆ S1, s̃q is just pull-back of the
corresponding map for pM, sq via the map q. So rĂsws P Imagepq˚q, which implies

BFGppM ˆ S1, s̃qq “ p˚prĂswsq “ 0.

The invariants BFS1 and BFteu vanish because BFG is vanishing. �

Regarding the Bauer-Furuta invariant of the twisted spin structure, Kronheimer-Mrowka
[20] proved the following result by studying the stable framing on the moduli space.

Proposition 2.24. We have

BFteupMˆ S1, s̃τ q “

#

η ¨ BFteupM, sq when σpMq ” 16 mod 32

0 when 32 | σpMq.
(21)

Here η P tSR, S0uteu denotes the Hopf map.

Remark 1. It would be interesting to prove a generalization of Lemma 2.24 for BFGpMˆ

S1, s̃τ q and BFS1pMˆ S1, s̃τ q.

Next, we give a connected sum formula for the family Bauer-Furuta invariants. This
formula was orginally proved by Bauer [9] for a single 4-manifold.

To set up the theorem, we let pNi, siq pi “ 1, 2q be two spin families over B “ Sp2Rq with
fiber Mi, both satisfying Assumption 2.11. To form the connected sum, we pick sections
γi : B Ñ Ni. By our Assumption 2.11 (i), the section γi is unique up to homotopy. We
remove small, standard 4-balls around these sections to form the family Ni ´D

4 ˆ S1 of
4-manifolds with boundary. Then we can form the fiberwise connected sum by identifying
the collars of their boundaries. To fix such identification, we need to choose a smooth
family of orientation reversing isomorphisms

φ̃ :“ tφx : Tγ1pxqpM1qx
–
ÝÑ Tγ2pxqpM2qxuxPB.

We use N1#φ̃N2 to denote the resulting bundle over B, with fiber M1#M2. In general,

the result N1#φ̃N2 will depend on choices of φ̃ up to homotopy. Because π1pSOp4qq “ Z{2,

there are essentially two choices.

Lemma 2.25. There exists exactly one choice of rφ such that the spin structures s1, s2 can
be glued together to form a spin structure on N1#φ̃N2. We denote this choice as φ̃ps1, s2q

and denote the resulting spin structure by s1#s2.

Proof. Denote by φ̃˘ the two choices of φ̃. Then they provide gluing maps

f˘ : BpN1 ´D
4 ˆ S1q Ñ BpN2 ´D

4 ˆ S1q

which differ from each other by a Dehn twist on BpN2 ´D4 ˆ S1q. Under any boundary
parametrization BpN2 ´D

4 ˆ S1q – S3 ˆ S1, this Dehn twist can be written as

ιpv, xq “ pαpxqv, xq for pv, xq P S3 ˆ S1,

where α : S1 Ñ SOp4q is an essential loop. Because S3 ˆ S1, regarded as the product
S3-bundle over S1, has two family spin structures (the product spin structure and the

14



twisted spin structure), which are related to each other by ι. We see that exactly only
of the two maps f˘ sends s1|BpN1´D4ˆS1q to s2|BpN2´D4ˆS1q. This finishes the proof. We

also note that when φ̃ “ φ̃ps1, s2q, the gluing map on the boundary has two lifts to the
gluing map on the spin bundle, but they give isomorphic spin structures on the connected
sum. �

From the discussion above, there is a unique way to take connected sum of two spin
families pNi, siq together. The resulting spin family pN1#

rφps1,s2q
N2, s1#s2q will also be

written as pN1, s1q#pN2, s2q.
To talk about the Bauer-Furuta invariant of connected sum, we also need to specialize

a rule for homology orientation as follows: Given homology orientations on M1,M2, we let
the homology orientation on M17M2 be defined by putting the oriented basis for H2

`pM1q

in front of the oriented basis for H2
`pM2q.

Proposition 2.26. Let pMˆS1,rsq be the product family for some spin 4-manifold pM, sq.
Then we have

BFHppN1, s1q#pM ˆ S1,rsqq “ BFHpN1, s1q ^ BFHpM, sq

for H “ G,S1 or teu.

Proof. The proof is essentially identical with the single 4-manifold case in [9]. (See [20]
for a sketch proof for the family version (in the nonequivariant setting). A central step is
an excision argument that builds a homotopy between the approximated Seiberg-Witten
maps Ăsw (18) for the bundle

N1 Y pM ˆ S1q Y pS4 ˆ S1q,

viewed as a family over S1 with fiber M1 YM Y S4 and the bundle

pN#pM ˆ S1q Y pS4 ˆ S1qq Y pS4 ˆ S1q,

viewed as a family over S1 with fiber pM1#Mq Y S
4 Y S4. This homotopy is constructed

by multiplying various sections by scalar-valued real cut-off functions and applying various
terms in the Seiberg-Witten map, which are all G-equivariant. Therefore, this homotopy
is G-equivariant. �

As a corollary, we get the following result that computes the Bauer-Furuta invariant
under family stabilization:

Corollary 2.27. Consider the product spin structure s̃0 and the twisted spin structure s̃τ0
over the product bundle ppS2 ˆ S2q ˆ S1q. Then for any spin family pN, sq that satisfies
Assumption 2.11, we have

BFGppN, sq#pppS2 ˆ S2q ˆ S1q, s̃0qq “ BFGpN, sq ¨ eR̃, (22)

and
BFGppN, sq#pppS2 ˆ S2q ˆ S1q, s̃τ0qq “ BFGpN, sq ¨ eR̃. (23)

Here eR̃ P tS
0, SR̃uG is the Euler class defined in (11).

Proof. The formula (22) follows from Proposition 2.26, Example 2.20. The formula (23)
follows from (22) and Lemma 2.24. �
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3. Proof of the Main Theorem

3.1. The Key Proposition. In this subsection, we prove a homotopy theoretic proposi-
tion (Proposition 3.2), which will be the key ingredient in the proof of our main theorem.

Recall that the group tSR`2H, S6R̃uS
1

admits a conjugation action cj (see (8)). The
following lemma computes this group and this action.

Lemma 3.1. The characteristic homomorphism t : tSR`2H, S6R̃uS
1
Ñ Z is surjective and

has ker t “ Z{2. The conjugation action cj acts trivially on ker t.

Proof. Smashing the cofiber sequence S0 Ñ S2H Ñ SR ^ pSp2Hq`q with SR, we get a
cofiber sequence SR Ñ SR`2H Ñ S2R ^ pSp2Hq`q, which induces the long exact sequence

¨ ¨ ¨ Ñ tS2R, S6R̃uS
1
Ñ tS2R ^ pSp2Hq`q, S6R̃uS

1
Ñ tSR`2H, S6R̃uS

1
Ñ tSR, S6R̃uS

1
Ñ

By the equivariant Hopf theorem [28, Chapter II.4 ], we have tSR, S6R̃uS
1
“ tS2R, S6R̃uS

1
“

0. Hence we get the isomorphism

tS2R, S6R̃uS
1
– tS2R ^ pSp2Hq`q, S6R̃uS

1
.

Note that the S1-action on S2R ^ pSp2Hq`q is free way from base point. By Fact 2.3, we
have

tS2R ^ pSp2Hq`q, S6R̃uS
1
“ tS2R ^ pCP 3

`q, S
6R̃uteu.

The cofiber sequence CP 1
` Ñ CP 3

` Ñ CP 3{CP 1 induces the exact sequence

tS3R^pCP 1
`q, S

6R̃uteu Ñ tS2R^pCP 3
`q, S

6R̃uteu Ñ tS2R^pCP 3{CP 1q, S6R̃uteu Ñ tS2R^pCP 1
`q, S

6R̃uteu.

By the cellular approximation theorem, we have

tS3R ^ pCP 1
`q, S

6R̃uteu “ tS2R ^ pCP 1
`q, S

6R̃uteu “ 0.

So we obtain the isomorphism

tS2R ^ pCP 3
`q, S

6R̃uteu – tS2R ^ pCP 3{CP 1q, S6R̃uteu.

To understand the stable homotopy tpye of CP 3{CP 1 as a nonequivariant space, we let
x be the generator of H2pCP 3;Z{2q. Then the total Steenrod square is given by

Sqpxq “ Sq0pxq ` Sq2pxq “ x` x2.

By the Cartan formula, we get

Sqpx2q “ px` x2q2 “ x2 P H˚pCP 3;Z{2q.
In particular, we get Sq2px2q “ 0, which implies that the attaching map between the 6-cell
and the 4-cell in CP 3, regarded as an element in the stable homotopy group π1 “ Z{2, is
trivial. Therefore, we conclude that CP 3{CP 1 is stably homotopy equivalent to S6R_S4R.
This implies

tS2R ^ pCP 3{CP 1q, S6R̃uteu “ π2 ‘ π0 “ Z{2‘ Z.
The projection to the π0-summand can be alternatively defined as the mapping degree
on H6p˚;Zq, so it is exactly the characteristic homomorphism t. We have shown that
t is surjective with kernel Z{2. By Corollary 2.9, we have tpcjpαqq “ tpαq for any α P
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tSR`2H, S6R̃uS
1
. So cj must send ker t to ker t. Since cj is an involution, it acts trivially

on ker t. �

Proposition 3.2. Let α be an element in tSR`2H, S6R̃uG that satisfies the conditions

tpResGS1pαqq “ 0, and α ¨ eR̃ “ 0.

Then ResGS1pαq “ 0.

Proof. By Lemma 2.6, we see that α “ TrGS1pβq for some β P tSR`2H, S6R̃uS
1
. Therefore,

by the double coset formula (10), we have ResGS1pαq “ β ` cjpβq. By lemma 2.9, we get

0 “ tpβ ` cjpβqq “ 2tpβq.

So β is in the kernel of t, which is Z{2 by Lemma 3.1. By Lemma 3.1 again, we have
cjpβq “ β. So we get ResGS1pαq “ 2β “ 0. �

3.2. Proof of Theorem 1.2. Let X1 be the K3 surface and X0 “ S2 ˆ S2. Let si be
the unique spin structure on Xi for i “ 0, 1. We consider the Dehn twist

δ : X1#X1 Ñ X1#X1

along the separating S3 in the neck. We want to show that δ is not smoothly isotopic
to the identity map even after a single stabilization. Without loss of generality, we may
assume that the stabilization is done in the first copy of X1. Then we need to show that
the map

δs :“ idX0#δ : X0#X1#X1 Ñ X0#X1#X1

is not smoothly isotopic to the identity map. As in [20], we will prove this by forming the
mapping torus

Nδs :“ ppX0#X1#X1q ˆ r0, 1sq{px, 0q „ pδ
spxq, 1q

and show that it a nontrivial smooth bundle over S1.
By Corollary 2.23, the product spin structure over the trivial bundle has vanishing BFG.

Therefore, it suffice to show that both spin families associated to Nδs has nontrivial BFG.
To prove this, we consider the product family pXi ˆ S1, s̃iq and the twisted family

pXi ˆ S
1, s̃τi q. Then the bundle Nδs can formed as the fiberwise connected sum

pX0 ˆ S
1q#ϕps̃0 ,̃s1qpX1 ˆ S

1q#ϕps̃1 ,̃sτ1 q
pX1 ˆ S

1q

as well as the fiberwise connected sum

pX0 ˆ S
1q#ϕps̃τ0 ,s̃

τ
1 q
pX1 ˆ S

1q#ϕps̃τ1 ,̃s1q
pX1 ˆ S

1q.

Hence the two spin families associated to Nδs are

pX0 ˆ S
1, s̃0q#pX1 ˆ S

1, s̃1q#pX1 ˆ S
1, s̃τ1q

and

pX0 ˆ S
1, s̃τ0q#pX1 ˆ S

1, s̃τ1q#pX1 ˆ S
1, s̃1q.

We will show that

BFGppX0 ˆ S1, s̃0q#pX1 ˆ S1, s̃1q#pX1 ˆ S1, s̃τ1qq ‰ 0
17



and the other family is similar. We use α to denote the element

BFGppX1 ˆ S1, s̃1q#pX1 ˆ S1, s̃τ1qq P tS
R`2H,S6R̃uG.

By Proposition 2.26, ResGS1pαq can be decomposed as the product of the elements

BFS1pX1, s1q P tS
H,S3R̃uS

1
and BFS1ppX1 ˆ S1, s̃τ1qq P tS

R`H, S3R̃uS
1
.

By Lemma 2.23, the Seiberg-Witten invariant tpResGS1pαqq “ 0. (This can also be proved
by checking the explicit description of the Seiberg-Witten moduli space given in [20].)

By Corollary 2.27, we have

BFGppX0 ˆ S1, s̃0q#pX1 ˆ S1, s̃1q#pX1 ˆ S1, s̃τ1qq “ α ¨ eR̃

For the sake of contruction, we suppose α ¨ eR̃ “ 0 . Then by Proposition 3.2, we have

ResGS1pαq “ 0, which implies

BFteuppX1 ˆ S1, s̃1q#pX1 ˆ S1, s̃τ1qq “ ResGteupαq “ ResS
1

teu ˝ ResGS1pαq “ 0.

However, Kronheimer-Mrowka [20, Proposition 5.1] computed this nonequivariant Bauer-

Furuta invariant as η3 ‰ 0 P π3. (Kronheimer-Mrowka’s definition of BFteu coincides with
ours because of Lemma 2.22.) This is a contradiction and our proof is finished.
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