UNFOLDED SEIBERG-WITTEN FLOER SPECTRA, II: RELATIVE
INVARIANTS AND THE GLUING THEOREM

TIRASAN KHANDHAWIT, JIANFENG LIN, AND HIROFUMI SASAHIRA

We use the construction of unfolded Seiberg—Witten Floer spectrum of general 3-
manifolds defined in our previous paper to extend the notion of relative Bauer—Furuta
invariants to general 4-manifolds with boundary. One of the main purposes of this paper
is to give a detailed proof of the gluing theorem for the relative invariants.
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1. INTRODUCTION

Bauer-Furuta invariant, which was introduced in [2], can be regarded a stable homo-
topy refinement of the Seiberg—Witten invariants [15] for closed 4-manifolds. The invariant
takes value in equivariant stable cohomotopy group of spheres and can give interesting ap-
plication in 4-manifold theory, such as the 10/8-theorem [5]. On the other hand, Seiberg—
Witten Floer spectrum, which was first introduced by Manolescu for rational homology
3-spheres [I1], can be regarded as a stable homotopy refinement of monopole Floer ho-
mology [9]. Using this Seiberg—Witten Floer spectrum, Manolescu extended the notion
of Bauer—Furuta invariant to 4-manifolds whose boundary are rational homology spheres.
This “relative” invariant takes value in stable cohomotopy group of Seiberg—Witten Floer
spectrum of the boundary manifold.

In the previous paper [7], we have constructed the “unfolded” version of Seiberg—Witten
Floer spectrum for general 3-manifolds. It is then natural to extend Manolescu’s construc-
tion of relative Bauer—Furuta invariant to arbitrary 4-manifold with boundary. Recall that
the unfolded spectrum comes with two variations: type-A and type-R. Consequently, the
unfolded relative Bauer—Furuta invariant will also come with type-A and type-R variations.

Let X be a compact, connected, oriented, 4-manifold with nonempty boundary 90X :=
Y not necessarily connected. It is, in fact, more convenient to consider X as a cobordism,
i.e. we label each connected component of Y as either incoming or outgoing so that
Y = —Yin U Yout- We often denote such a cobordism by X: Yy — You. We equip X
with a Riemannian metric g, a spin® structure § and a spin® connection Ag. Denote the
restriction of s, A, g to Yin (resp. Yin) by Sin, Ain and gin (resp. Sout, Aout and gout)-

Theorem 1.1. For a spin® cobordism X : Y, — Your, the type-A unfolded relative Bauer—
Furuta invariant of X can be constructed as a morphism in the stable category &

bf4(X, 8 5"):
Z_(V;®WH)T(Xa ﬁ; Sl) A LWfA(Y%n,ﬁm, Aina Gin; Sl) — LVVfA(Youta Souts Aouta Gout; Sl)
The type-R unfolded relative Bauer—Furuta invariant of X can be constructed analogously
as a morphism in the stable category G*
bf*(X,5; 9"):
Ei(V;EBVOM)T(Xv ﬁ; Sl) A LVVfR(}/im Sin, Ain; Gin; Sl) — LVVfR(Youta Souts Aoutv Gout, Sl)

The object T(X, 8; S') is the Thom spectrum of virtual index bundle associated to the Dirac
operators.

Theorem 1.2. As one varies (g, flo), both domain and target OfM‘A(X./é; S1) are changed
by suspensding or desuspending same number of copies of C; the morphism M’A(X,é; S
1$ invariant as a stable homotopy class. Same result holds for M”R(X,ﬁ; S1). Moreover,
when c1(s|y) is torsion, one can construct further normalizations:

BF4(X,5;SY): - (Vx OV (X, 3; §1) A SWEA (Vin, 5n; S1) — SWEA(Your, Sous; ).
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BFE(X,5;8"): 0OV (X, 5; S1) A SWER(Yin, $in; S1) — SWER(Your, Sout; SY),

which are completely metric/base-connection independent.

Remark. First, we emphasize that our unfolded relative invariant is defined over the relative
Picard torus

Pic’(X,Y) 2 ker(H'(X;R) — H'(YV;R))/ ker(HY(X;Z) — H (Y Z)).
Secondly, the choice of labeling each boundary component corresponds to which side its
unfolded spectrum will appear in the morphism. Essentially, LWfA(Y) is the Spanier—
Whitehead dual of swff(—Y) and bf4(X) is the same as bfF(X1) where Xt: — Yy, —
—Yi, is the adjoint cobordism of X: Yy, — You. Finally, both M‘A and bff agree with
Manolescu’s construction when b;(Y’) = 0.

One of the main goals of the paper is to prove the gluing theorem for unfolded relative
Bauer—Furuta invariants. When decomposing a 4-manifold X to two pieces along a 3-
manifold Y, the gluing theorem can express the (relative) Bauer-Furuta invariant of X in
term of a “product” of relative invariants of the two pieces. The case when Y = S3 was
first proved by Bauer [1] using only invariants of closed 4-manifolds and positive scalar
curvature metric of S3. The case when Y is a homology 3-sphere was proved by Manolescu
[12]. Our setup and argument closely follow and generalize those of Manolescu.

Generally, our gluing theorem works when Y is any 3-manifold. Some mild homological
assumptions will be made. These conditions are not essential in the sense that they can
be removed under more generalized notion of category and unfolded spectrum (see the
upcoming remark for more explanation). We now state the gluing theorem which will
reappear in Section with more details.

Theorem 1.3. Let Xg: Yy — Yo and X1: Y1 — —Ys be connected, oriented cobordisms
and X : YoUY1 — 0 be the glued cobordism along Ys. If the following conditions hold

(i) Ya is connected,
(i) b1(Yo) = b1(Y1) =0,
(i) im(H'(Xo; R) — H'(Y2;R)) C im(H'(X1;R) — H'(Y2; R)),
then, under the natural identification between domains and targets, one has
BF(X)|pico(x,v2) = &(bf*(Xo), bt (X71)), (1)
where €(-, ) is the Spanier- Whitehead duality operation defined in Section .

Remark. The main limitation of unfolded construction is that one can recover only the
partial Bauer-Furuta invariant of X on the relative Picard torus Pic?(X, Y5) rather than
the full Picard torus. Regarding the hypotheses of the theorem,

e Condition is to avoid dealing with type-A and type-R of swf(Yy), swf(Y7), and
BF(X). If one tries to extend this direction, a category containing more general
kinds of diagrams in € will be required

e Condition is to control harmonic action of the relative gauge groups on Ya.
Otherwise, more generalized version of unfolded spectrum such as mixture of type-
A and type-R will be needed.
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Application of the gluing theorem will be focused on our subsequent paper [6]. Here we
mention some examples.

e If a closed 4-manifold X contains an embedded sphere which is essential, framed
with nonzero self-intersection, then BF(X) =0

e Surgery on a loop on a closed 4-manifold does not change fiberwise Bauer—Furuta
invariant.

e Computation of unfolded spectra of connected sum of 3-manifolds.

Acknowledgement: The first author was partially supported by the NSF Grant DMS-
170785. The third author is supported by JSPS KAKENHI Grant Number JP16K17590.

2. SUMMARY OF CONSTRUCTIONS AND PROOFS

Most required backgrounds in Conley theory are contained in Section |3 Backgrounds
for our stable categories and Spanier—Whitehead duality are contained in Section [d] We
summarize major constructions here.

2.1. Unfolded Seiberg—Witten Floer spectra. Here we will recall construction and
definition of the unfolded Seiberg-Witten Floer spectrum [7]. Let Y be a closed spin®
3-manifold (not necessarily connected) with a spinor bundle Sy-.

We always work on a Coulomb slice Coul(Y) = {(a, ¢) € iQ'(Y)®I'(Sy) | d*a = 0} with
Sobolev completion. With a basepoint chosen on each connected component, we identify
residual gauge group with the based harmonic gauge group gﬁ’o ~ HY(Y;Z) acting on
Coul(Y'). We consider a strip of balls in Coul(Y) translated by this action

Str(R) = {x € Coul(Y) | 3h € Gy’ s.t. |[h- |2 < R}. (2)

The boundedness result for 3-manifolds states that all finite-type trajectories are contained
in Str(R) for R sufficiently large.

The basic idea of unfolded construction is to consider increasing sequences of bounded
regions in the Coulomb slice. These regions are obtained from cutting Str(R) by level
sets of certian functions so that their boundaries are transverse to Seiberg—Witten flow in
specific direction. Let g;+ be functions on Coul(Y) which keep track of the g;ﬁ’o—action.
Define bounded region

JE=Str(R)n [ g;i(—00,0+m], (3)
1<j<b
where 6 is some generic real number. Pick a sequence of finite-dimensional subspaces V/\“n "
coming from eigenspaces and define JnE = JEn V/\‘; ",

The main point is that J%E becomes an isolating neighborhood with respect to the
approximated Seiberg—Witten flow ¢ on V/\’; " when n is large relative to m. We can now
define desuspended Conley indices

v
I,?n’—"_ =3 VMLI(]HV(J:%’JF): Son)a (4)
_ —VO . _
I =S v (%), ¢n)
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as objects in the stable category € (see Section . Here V)?n is the orthogonal complement
of the space harmonic 1-forms in V)?n. Note that these objects does not depend on n up
to canonical isomorphism of the form

n:t In:t(Y)—>In—fl7i<5/). (5)

The unfolded Seiberg-Witten Floer spectra are represented by direct and inverse systems
in the stable category € as follows

Sl,fA(y) ]+ ]+ B2,
(6)

swiR(Y) (7 &2 Iy &2 ...

Connecting morphisms in the diagram for swf(Y") are induced by attractor relation while
morphisms in MR(Y) are induced by repeller relation. More precisely, we have morphisms
between desuspended Conley indices

Tt I (Y) = I, (Y) and 357 I (V) = I, (Y).

Then, the morphisms j,, jm in @ are given by composition of ﬁﬁ{i’s and m{i appropri-
ately.

2.2. Unfolded Relative Bauer—Furuta invariants. Let X be a compact, connected,
oriented, Riemannian 4-manifold with boundary Y = —Yi, U Yout. We pick homological
data which corresponds to a choice of basis of H!(X;R) and keeps track of both kernel
and image of /*: HY(X;R) — HY(Y;R).

In this construction, we use the double Coulomb slice Coul®“(X) as a gauge fixing.
The main idea is to find suitable finite-dimensional approximation for the Seiberg—Witten
map together with the restriction map

(SW,r): Coul®C(X) —= Li_, (i3 (X) @ T(S)) @ Coul(Y). (7)

Note that there is an action of H*(X;Z) on both sides with restriction on Coul(Y). Com-
pactness of solutions can only be achieved modulo this action. However, the construction
of the unfolded spectra does not behave well under the action of H!(X;Z) on Coul(Y).
This is essentially reason we can define the unfolded relative invariant only on the rel-
ative Picard torus induced from ker:*. As one can see in the basic boundedness result
(Theorem , we need a priori bound on the im¢*-part quantified by the projection pg.

We will focus on type A relative invariant bf*(X). Although it is formulated as a
morphism from swf?(¥i,) to swf?(Yoy), the main part of the construction is to obtain
maps of the form

B(Wn5)/S(Wn,s) = (B(Un)/S(Un)) A (inv (g, (=Yin))) A (inv (" (Your)))- (8)

The left hand side is the Thom space of a finite-dimensional subbundle and B(U, ) /S(Uy)
is a sphere. We point out that the right hand side is intuitively swf’? (—=Yin) A swf4 (Yout),
which may be viewed as a ‘mixed’-type unfolded spectrum of Y. It is possible to formally
consider this in a larger category containing both & and &*, but we will not pursue in
this paper. Another remark is that W), 3 has extra constraint pg .y = 0 to control the
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im*-part mentioned earlier. The reason we only need the part on Y, is because we
start with a fixed mg and then choose sufficiently large m,. The order of dependency of
parameters is established at the beginning of Section

A notion of pre-index pair (see Section is also required to define the map . This
part closely resembles original Manolescu’s construction [I1] in the case b1(Y) = 0. The
last step to to apply Spanier—Whitehead duality (see Section between SlfR(—Yin) and
swi (Yin) and define the relative invariant as a morphism in &.

2.3. The Gluing theorem. Let Xy: Yy — Y5 and X;: Y7 — —Y5 be connected, oriented
cobordisms. We consider the composite cobordism X = Xy Uy, X; glued along Y3 from
Yo U'Y7 to the empty manifold.

The main technical difficulty of the proof of the gluing theorem is that two different
kinds of index pairs arise in the construction. On one hand, to define the relative invariant,
we require an index pair (N7, N2) to contain a certain pre-index pair (K71, K3). On the
other hand, we need a manifold isolating block when dealing with duality morphisms.
In general, a canonical homotopy equivalence between index pairs can be given by flow
maps (Theorem , but the formula can sometimes be inconvenient to work with and
the common squeeze time 1" can be arbitrary.

This is the reason we introduce the concept of T-tameness, which is a quantitative
refinement of notions in Conley theory (see Section and . The flow maps from 7-
tame index pairs can be simplified (Lemma . Most boundedness results in this paper
are stated for trajectories with finite length. As a result, the time parameter T', which
also corresponds to the length of a cylinder, has a uniform bound during the construction.

The proof of the gluing theorem can be divided to two major parts. The first part,
contained in Section [6.2] involves simplifying the flow maps and duality morphisms. We
carefully set up all the parameters needed to explicitly write down &(bf*(Xo), bff(X1)).
For instance, we can represent Conley index part of the map as a composition of smash
product of flow maps and Spanier—Whitehead duality map

g(Lo,Ll): Ko/SO /\K1/51 — NO/NJ /\.7\~/v1/.7\~/v1Jr /\B+(Vn2,€)

given by formula . After two steps, we deform the formula to the one given in Propo-
sition

The second part of the proof of the gluing theorem, contained in Section [6.4] is to
deform Seiberg—Witten maps on Xy and X to the Seiberg—Witten map on X. Many of the
arguments here will be similar to Manolescu’s proof [12] when b;(Y2) = 0. The crucial part
is to deform gauge fixing with boundary conditions and harmonic gauge groups on Xg and
X1 to those on X. For clarity, we subdivide deformation to seven steps. One of the most
recurring technique is to move between maps and conditions on the domain (Lemma.
Other ingredients such as stably c-homotopic pairs are contained in Section [6.3

3. CONLEY INDEX

3.1. Conley theory: definition and basic properties. In this section, we recall basic
facts regarding the Conley index theory. See [4] and [14] for more details. Note that all
the results can be adapted to the G-equivariant theory.
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Let € be a finite dimensional manifold and ¢ be a smooth flow on {2, i.e. a C"*°-map
v: 2 x R — Q such that ¢(z,0) = x and p(z,s +t) = p(p(x,s),t) for any z € Q and
s,t € R. We often denote by ¢(x,I) := {p(z,t) | t € I} for a subset I C R.

Definition 3.1. Let A be a compact subset of (2.

(1) The mazimal invariant subset of A is given by inv (¢, A) := {z € A | p(z,R) C A}.
We simply write inv(A) when the flow is clear from the context.

(2) A is called an isolating neighborhood if inv (A) is contained in int (A4), the interior of
A.

(3) A compact subset S of Q is called an isolated invariant set if there is an isolating
neighborhood A such that inv (A) = S. In this situation, we also say that A is an
isolating neighborhood of S.

A central idea in Conley index theory is a notion of index pairs.

Definition 3.2. For an isolated invariant set S, a pair (IV, L) of compact sets L C N is
called an index pair of S if the following conditions hold:
(i) inv(N\ L) =S C int(N \ L);
(ii) L is an exit set for N, i.e. for any x € N and ¢t > 0 such that ¢(z,t) ¢ N, there
exists 7 € [0,¢) with p(z,7) € L;
(iii) L is positively invariant in N, i.e. for z € L and ¢t > 0, if we know ¢(z, [0,t]) C N,
then we have ¢(z,[0,t]) C L.

We state two fundamental facts regarding index pairs:

e For an isolated invariant set S with an isolating neighborhood A, there always
exists an index pair (N, L) of S such that L C N C A.
e For any two index pairs (N, L) and (N’,L’) of S, there is a natural homotopy
equivalence N/L — N'/L’.
These lead to definition of the Conley index.

Definition 3.3. Given an isolated invariant set S of a flow ¢ with an index pair (N, L),
we denote by I(p, S, N, L) the space N/L with [L] as the basepoint. The Conley index
I(p, S) can be defined as a collection of pointed spaces I(p, S, N, L) together with natural
homotopy equivalences between them. We sometimes write I(S) when the flow is clear
from the context.

Given two index pairs, precise formulation of natural homotopy equivalence is given by
Salamon.

Theorem 3.4 ([14, Lemma 4.7]). If (N, L) and (N', L") are two index pairs for the same
isolated invariant set S, then there exists T > 0 such that

o o(x,[-T,T]) C N'\ L' implies x € N \ L;
o o(x,[-T,T)) C N\ L impliesx € N'\ L.

Moreover, for any T > T, the map st : N/L — N'/L' given by
ST = [L] otherwise
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is well-defined and continuous. For different T > T, the maps st are all homotopic to
each other and they give natural homotopy equivalence between N/L and N'/L'. We call
st the flow map at time T.

Next, we consider a situation when an isolated invariant set can be decomposed to
smaller isolated invariant sets.

Definition 3.5.
(1) For a subset A, we define

a(A) = tgocp(A, (—o0,t]) and w(A) = tgogo(A, [t,00)).

(2) Let S be an isolated invariant set. A compact subset 7' C S is called an attractor
(resp. repeller) if there exists a neighborhood U of T" in S such that w(U) =T (resp.
a(U)=T).

(3) When T is an attractor in S, we define the set T* := {z € S | w(x) N T = ()}, which
is a repeller in S. We call (T',T7%) an attractor-repeller pair in S.

Note that an attractor and a repeller are isolated invariant sets. We state an important
result relating Conley indices of an attractor-repeller pair.

Proposition 3.6 (|14, Theorem 5.7]). Let S be an isolated invariant set with an isolating
neighborhood A and (T,T*) be an attractor-repeller pair in S. Then there exist compact
sets N5 C Ny C N1 C A such that the pairs (]\72, Ng), (Nl, N3), (Nl, ]\72) are index pairs for
T, S and T* respectively. The maps induced by inclusions give a natural coexact sequence
of Conley indices

(0, T) 5 1(,5) 5 I(p, T*) = S1(p,T) = SI(,S) = --- .

We call the triple (N3, No, N1) an index triple for the pair (T,T*) and call the maps i and
r the attractor map and the repeller map respectively.

3.2. T-tame pre-index pair and 7T-tame index pair. Let us introduce the following
notation: For a set A and I C R, we define

Al = {z e Q| pz,I) C A}.
We also write Al0) and A(=220 a5 A+ and A~ respectively.
The following notion was introduced by Manolescu [11].
Definition 3.7. A pair (K, K2) of compact subsets of an isolating neighborhood A is
called a pre-index pair in A if
(i) For any x € K1 N AT, we have ¢(x,[0,00)) C int(A);
(ii) KoN AT =.
We have two basic results regarding pre-index pairs.
Theorem 3.8 ([11, Theorem 4)). For any pre-index pair (K1, K3) in an isolating neigh-
borhood A, there exists an index pair (N, L) satisfying
KicNCA, Ko CL. (9)
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Theorem 3.9 ([8, Proposition A.5]). Let (K, Ks) be a pre-index pair and (Np,Ls),
(N2, La) be two index pairs containing (K1, K2). Denote by vj: K1/Ko — Nj/Lj the map
induced by inclusion. Let sp: N1/Li — Na/Lo be the flow map for some large T. Then,
the composition s o 11 is homotopic to to.

Consequently, when (K1, K2) is a pre-index pair in an isolating neighborhood A, we
have a canonical map to Conley index

L:Kl/K2—>I(S), (10)

where S = inv(A) and the map is induced by inclusion.
Next, we discuss the quantitative refinement of Theorem which will be especially
useful in many situations. Let us introduce the following definition.

Definition 3.10. Let A be an isolating neighborhood. For a positive real number T, a
pair (K1, K2) of compact subsets of A is called a T-tame pre-index pair in A if it satisfies
the following conditions:
(i) There exists a compact set A’ C int(A) containing Al="T1 such that, if z € K;NALT"]
for some T > T, then ¢(x,[0,7" —T]) C A'.
(i) Kon ATl =g,

It is easy to see that a T-tame pre-index pair in A is pre-index pair in A. The converse
also holds.

Lemma 3.11. Let (K1, K2) be a pre-index pair in an isolating neighborhood A. Then,
there exists T > 0 such that (K1, K3) is a T-tame pre-indez pair in A for any T > T.

Proof. Tt is easy to see that Ky N A%T) = @ implies Ky N AT = () for a sufficiently
large T' > 0. We are left with checking that condition ({ij) of Definition holds for a
sufficiently large T" > 0.

Suppose that the condition does not hold for 7; > 0. Then we can find sequences
{zjr}, {Tj,} and {T}}} where x € K1 N ATkl and 0 < T}, < Tj; — T such that
{o(zjk, T7})} converges to a point on 0A as k — co. Now assume that there is a sequence
of such {T}} with T; — oco. Passing to a subsequence, one can find a sequence {k;} such
that zjx, — T € K1 N AY and cp(xjykj,T]’»”kj) — y € 0A. If Tj”kj — T", we see that
©(Zoo, T") = y. This contradicts with definition of the pre-index pair (K7, K2). On the
other hand, we observe that gp(:cj,kj,TJ{’/kj) e AT T
obtain that y € inv(A). This is a contradiction because A is an isolating neighborhood,
ie. inv(4A)NoA = 0.

If {T]”k]} goes to infinity, we

O
We next consider the T-tame version of index pairs.

Definition 3.12. For a positive real number 7', an index pair (N, L) contained in an
isolating neighborhood A is called a T-tame index pair in A if it satisfies the following
conditions:

(i) Both N, L are positively invariant in A;
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(i) AFTTI c N;
(iii) AOTIN L = 0.

One important reason why we are interested in 7T-tame index pairs is that the definition
of the flow maps can be simplified when one of the index pairs is T-tame.

Lemma 3.13. Let (N, L) and (N',L') be two index pairs in an isolating neighborhood A.
Let T be a sufficiently large number so that the flow map sp: N/L — N'/L’ is well-defined.
If the index pair (N, L) is T-tame, then flow map st can be given by a formula

o [ A i

Proof. We only need to show that the following two conditions are equivalent for x € N.
(1) ¢(,[0,3T]) € A and o(, [T,3T]) € N\ L;

(2) ¢(z,[0,2T)) € N\ L and ¢(z,[T,3T]) C N\ L.

It is easy to see that (2) implies (1) since N C A. Let us suppose that ¢(z,[0,37]) C A.
Since N is positively invariant in A, we have ¢(z,[0,37]) C N. Since By the property of

T-tame index pair, we have ¢(x,[0,27]) N L = () and we are done.
[l

We now show a quantitative refinement of [11, Theorem 4].

Theorem 3.14. For any T > 1, let A be a (T — 1)-tame isolating neighborhood and
(K1, K3) be a (T — 1)-tame pre-index pair in A. Then, there exists a T-tame index pair
in A which contains (Kj, K2).

Proof. The proof is an adaption of arguments in [I1] to 7-tame setting. Let us introduce
the following notation beforehand: for a subset B, we define the set

Pa(B) :={p(z,t) |z € B, t >0 and p(z,[0,t]) C A}.

Denote by K7 = K1 U AFTT] We claim that (f(l, K5) is a pre-index pair in A. Since
(K1, K>) is also a pre-index pair in A, it suffices to check that ¢(y,[0,00)) C int(A) for
any y € ATTI 0 A+ = AETl This is straightforward since A is (T — 1)-tame.

By Theorem there exists an index pair containing (f( 1, K2). More specifically, one
picks a compact subset C' C A and chooses an open neighborhood V of C such that the
following conditions hold:

(I) C is a compact neighborhood of AT NJA in A;

(I) CN A~ =

(IIT) C N Py(Ky) = 0;

(IV) V is an open neighborhood of A in A4;

(V) V\C Cint(A);

(VI) KonV =40.
Let us say that a pair (C,V) is good if it satisfies all of the above conditions. After
specifying a good pair (C, V'), a compact subset B can be chosen so that

(N, L) = (Pa(B) U P4(A\ V), PA(A\'V))
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is an index pair containing (K1, K3). We will carefully choose a good pair (C, V) so that
(N, L) is also a T-tame index pair in A which contains (K7, K2).

Since (K7, K2) is a T-tame pre-index pair (as 7' > T — 1), we can take a compact set
A" in A satisfying condition (i) of Definition Fix a compact set A” in A such that

A" c int(A"), A" C int(A)
and pick a real number T" € (T — 1,T). Consider a pair
(Co, Vo) = ((A\ int(4”)) n ALT] AI0.TT)

Note that Vj is closed. We have the following observations:

e AT NAA C Cp; This is obvious as A” C int(A) and AT c AL
e The distance between Cy and A~ is positive; Observe that

ConA™ = (A\int(4") N AC=TT ¢ (A\ int(A")) N AFTHLT=1 — )

where we have used the fact that AFT+LT=1 c A’ C int(A”). Since Cy and A~
are compact, the distance between them is positive.

e The distance between Cy and P4(K) is positive; Suppose that this is not true.
Since Cj is compact, there would be a sequence {z;} of points in K, and a se-
quence of nonnegative number {¢;} such that p(x;,[0,t;]) C A and y; = p(xj,t;)
converges to a point y in Cp.

If t; — oo, we would have ¢(y, (—o0,0]) C A, which means that y € A~. This
is a contradiction since Co N A~ = (.

After passing to a subsequence, we now assume that (z;,t;) — (x,t) a point
in K1 x [0,00). If z € K1, then z € K; N AT because ¢(z,[0,1]) € A and
y = o(x,t) € Cy ¢ APT']. By the property of A’, we have

o(z,[0,t +T" — (T —1)]) C A,

which implies that y € A’. This is a contradiction since Co N A" = 0. If z €
AFTT] then y € AFT-6TT < AETHLT-1] 0 This is also a contradiction since
CoN A[7T+1,T71] = 0.

e A" C Vj; This is clear from the definition of V;.

e 15\ Cy C int(A); We will actually prove that Vo \ Co € A”. Since A” is closed,
it is sufficient to show that Vy \ Cp € A”. Tt is then straightforward to see that
Vo \ Co = ADTTnint(A”) ¢ A”.

e The distance between K» and Vjp is positive; Since (K1, K2) is (T — 1)-tame, we
have Ko N AOT-1 — (. and consequently Ky N Vy = 0. Since Ko and Vp are
compact, the distance between them is positive.

For a sufficiently small positive number d, we define
C = {x € Aldist(x,Cp) < d}, V := {z € Aldist(z, Vp) < d}.

From the above observations, one can check that (C, V) is a good pair.
We finally check that (N, L) = (Pa(B) U Ps(A\ V), Pa(A\V)) is T-tame.



UNFOLDED SEIBERG-WITTEN FLOER SPECTRA, II 12

(i) Notice that P4(S) is positively invariant for any subset S C A and that the union of
two positively invariant sets in A is again positively invariant in A. Thus, N, L are
positively invariant in A

(ii) From our construction, we have AI="T) ¢ K} ¢ N.

(iif) We are left to show that ALTINL = §. Suppose that there is an element 2 € A0TINL,
From the definition, we obtain y € A\ V and t > 0 such that ¢(y,[0,t]) C A and
z = o(y,t). It follows that y € A0T+1, On the other hand, we have AT+ <
ATl — Vj ¢ V. This is a contradiction since y & V.

0

3.3. The attractor-repeller pair arising from a strong Morse decomposition. In
many situations, we obtain an attractor-repeller pair by decomposing an isolating neigh-
borhood to two parts. Sometimes, a decomposition satisfies the following definition.

Definition 3.15. Let (A1, A2) be a pair of compact subsets of an isolating neighborhood
A. We say that (A1, Ag) is a strong Morse decomposition of A if

e A=A1UAy;

e For any z € A; N Ay, there exists € > 0 such that

o(x,(0,€)) N A1 = 0 and ¢(x, (—¢,0)) N Ay = 0. (11)

Simply speaking, the flow leaves A; immediately and enters As immediately at any
point on A; N Ay (see Figure [I). A strong Morse decomposition naturally occurs when
we split A by a level set of some function transverse to the flow. Let us summarize some
basic properties of a strong Morse decomposition in the following lemma. The proof is
straightforward and we omit it.

FIGURE 1. A strong Morse decomposition

Lemma 3.16. Let (A1, A2) be a strong Morse decomposition of an isolating neighborhood
A. Then, we have the following results.

(1) Ay (resp. As) is negatively (resp. positively) invariant in A;

(2) A1 NAs =0A1NIJAs and 0A; = (8A N Al) U (Al N AQ) fori=1,2;

(3) A1 and Ag are isolating neighborhoods;

(4) (inv(Az2),inv(A1)) is an attractor-repeller pair in inv(A).

One can make extra assumption for an index triple of an attractor-repeller pair arise
from a strong Morse decomposition as follows.

Lemma 3.17. Let (A1, Ay) be a strong Morse decomposition of A. Suppose that (N3, Na, N1)
is an index triple for (inv(Ag),inv(A1)) and denote by Ny = No U (Ny N Az). Then,
(N3, Ny, Ny) is again an index triple for (inv(Asz),inv(Ay)). In particular, we can always
assume that an index triple (N3, No, N1) of (inv(As),inv(A1)) satisfies Ny N Ay C No.

Proof. We simply check each condition of index pairs one by one.
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. N2 is positively invariant in Ni; Since As is positively invariant in A, Ay N Ny is
positively invariant in N1 The set Ng is also positively invariant in N1 Because
(N 1 ]\72) is an index pair. It is easy to see that the union of two positively invariant
set is a positively invariant set.

° N2 is an exit set for N1 because NQ contains Ng, which is an exit set for N1

e inv(A;) = inv(Ny \ Nb) C int(Ny \ N5); Consider an element z € inv(N; \ Ny) =
inv(A;). Then, ¢(z, (—00,00)) is contained in (N1 \ No)Nint(A;). Since int(A1)N
Az =0, we see that p(z, (—00,00)) C Nl\(NQU(Nl NAp)). Thus, z € 1nV(N1\
and 1nV(N1 \Ny) C 1nt(N1 \ N}). Since N1\ N} ¢ Ny \Ng, we have inv(Ny \ V3)
1nv(N1 \ Ng) = inv (A;). Note that inv(4;) C int(N; \ N}) because inv(4;) C
1nt(N1 \ N) and inv(A;) N Ay = 0.

o Nj is posmvely invariant in N2 because N3 is positively invariant in N;, which
contains N2

e Nj is an exit set for Né; We only have to check that Nj is an exit set for Ny N As.
Suppose that z € Ny N A, but o(z,t) ¢ Ny N Ay for some ¢ > 0. Notice that a
flow cannot go from Ay to A since (Aj, Az) is a strong Morse decomposition. If
o(z,t) € N1, we would have ¢(z, ) ¢ Ag which implies p(z,t) ¢ A a contradiction.
When ¢(z,t) ¢ Ny, we can use the fact that N3 is an exit set for Nj.

e inv(Ay) = inv(N4\ N3) C int(N4\ N3); Suppose that we have z € inv(N4\ N3) such
that @(x,t) ¢ Na\ N3 for some t € R. Since ¢(z, (—00,00)) does not intersect Ns,
which is an exit set for both Ny and N;N Ay, one can deduce that ¢(z, (—o0, 00)) C
N; N Ay. This implies z € inv(A4s) = inv(Ng \ Ng) which is a contradiction.
Therefore, inv(N} \ N3) C inv(Ny \ N3) while the converse is trivial. Consequently,
inv(N} \ N3) = inv(Ay) is contained in int(Ny \ N3) C int(N5 \ N3).

l\’)\
~—

g

It turns out pre-index pairs behave nicely with attractor-repeller pairs arise from a
strong Morse decomposition. More precisely, we will show that the canonical maps are
compatible with the attractor and repeller maps in this situation.

Proposition 3.18. Let (A1, A2) be a strong Morse decomposition of A and let (K1, K2)
be a pre-index pair in As. Then, we have the following:

(1) (K1, K9) is also a pre-index pair in A;
(2) We have a commutative diagram

K1 /K1 —25 I(inv(Ag))

oy

I(inv(A))
where i, 12 are the canonical maps and i: I1(inv(Az)) — I(inv(A)) is the attractor map.

Proof.
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(1) Consider z € K satisfying ¢(z,[0,00)) C A. Since Ay is positively invariant
in A and ¢z € K; C Ag, we have ¢(z,[0,00)) C Ay. Consequently, we see that
o(z,[0,00)) C int(Ag) C int(A) because (K1, K3) is an pre-index pair in As. Now,
consider x € Ky N A'. Again, since Ay is positively invariant in A, we have
¢(z,[0,00)) C As. This is impossible because Ky N A = (.

(2) Let N3 € N € N; C A be an index triple for (inv(As),inv(A;)) such that
NiN Ay C Ny (cf. Lemma and let L C N C A (resp. Ly C No C Ag) be an
index pair for inv(A) (resp. inv(As)) that contains (K7, K3). By Theorem [3.14] we
may also assume that both (N, L) and (N2, L2) are T-tame. By possibly increasing
T, we also assume that we have flow maps s7: N/L — N1/N3 and sy.: No/Ly —
N, / Ns. Then, the map i o ¢ is represented by a composition

K1/Ky 43 NyJ/Ly “25 No/ N3 5 Ny /Ny
while the map ¢ is represented by the composition
Ki/Ky % N/L 25 Ny/Ns.

We will show that these two compositions are in fact the same map.
Applying Lemma one can check that i o s/, 0 19 sends [z] to [p(x,3T)] if

p(x,[0,3T]) € Az, @(,[T,3T]) C Na\ N (12)
and to the basepoint otherwise. On the other hand, s7 ot sends [z] to [¢(z, 3T)] if
p(x,[0,3T]) € A, (,[T.3T]) € Ny \ N3 (13)

and to the basepoint otherwise. It is obvious that condition implies . On
the other hand, condition ~implies for z € K1 C As simply because As is
positively invariant in A and N3 N As C No.
Il
Proposition 3.19. Let (A1, A2) be a strong Morse decomposition of A and let (K3, K4) be
a pre-index pair in A. Consider a pair (K}, K}) := (KsN A1, (K4N A1) U(K3sNA;NA)).
Then, we have the followings:
(1) The pair (K}, K}) is a pre-index pair in A;;
(2) A map q: K3/Ky — K/K) given by
x if v € K},
q([x]) = { L%ﬂ oj;fherwis?é,

s well-defined and continuous;
(3) We have a commutative diagram

K3/Ky — I(inv(A))

ql ) lr
K}/K) —— I(inv(4;))

where 1,1 are the canonical maps and r: I(inv(A)) — I(inv(Ay)) is the repeller map.
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We will check the two conditions of pre-index pair directly. Suppose that z € K}
and o(z,[0,00)) C A;. It is clear that p(z,[0,00)) N (41 N As) = (0 from the
property of strong Morse decomposition. Since (K3, Ky) is a pre-index pair in
A and z € K3N A" we have p(z,[0,00)) NOA = (). Consequently, we can deduce
that ¢(z,[0,400)) NOA; = 0 because 0A; = (0AN A1) U (41 N Ag).

Since (K3, K4) is a pre-index pair in A, we have K4N A" = (). It follows directly
that (K4NA1)NAT = 0. On the other hand, we can see that (K3NA1NA2)NAT =0
as a point on A; N Ay leaves Ay immediately. Therefore, Kj has empty intersection
with A7 .

Note that ¢ is continuous because (K3 \ K}) N K; = K3 N A1 N Ay C K. For
re KyNK, C KyNA C K, we see that ¢ is well-defined.

As in the proof of Proposition let N3 € No C N; C A be an index triple for
(inv(As),inv(A;)) with Ny N Ay € Ny and let L € N C A (resp. Ly C Ni C Ay)
be an index pair for A (resp. for A;) that contains (K3, K4) (resp. (K5, K})).
By Theorem we can assume that (N, L) and (Ny, L;) are both T-tame. By
possibly increasing T, we also assume that we have flow maps sp: N/L — N, / Ns
and sf: N1/Li — N1/Ny. Then, the map qo ¢/ is represented by

Ks/Ky % K4/ Ky 2 Ny /Ly 5 Ny /N,
and the map r o ¢ is represented by
K3/Ky = N/L 2% Ny /N3 5 Ni/Ns.

We will show that these two compositions are in fact the same maps.
Applying Lemma one can check that s/ o ¢/ o ¢ sends [z] to [¢(z,3T)] if

@(x,[0,3T]) € Ay and @(x, [T,3T]) € Ny \ Ny (14)

and to the basepoint otherwise. On the other hand, rosypo¢ sends [z] to [p(z, 3T)]
if

(x,[0,3T]) C A, @(x,[T,3T]) C N1\ N3 and o(z,37T) ¢ Ny (15)
and to the basepoint otherwise. Clearly, condition implies condition . We

will check that the two conditions are the same. Consider an element z € K3
satisfying . We see that p(x,3T) € N \NQ C A because N;N Ay C No. Since
A; is negatively invariant in A, we have ¢(x,[0,37]) C A;. Moreover, the facts
o(x,3T) ¢ Ny and ¢(z, [T, 3T]) N N3 = () imply that ¢(z, [T, 3T]) N Ny = () since
N3 is an exit set for No. We have proved that z satisfies condition .

g

3.4. T-tame manifold isolating block for Seiberg-Witten flow.
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Definition 3.20. For a compact set N in €2, we consider the following subsets of its
boundary:

nT(N) :={x € ON|Fe > 0 s.t. (—¢,0) N N = 0},

n~(N):={z € ON|Te > 0 s.t. p(0,¢) NN = 0}.
A compact set N is called an isolating block if ON = n*(N)Un~(N).

It is easy to verify that an isolating block N is an isolating neighborhood and that
(N,n™(N)) is an index pair.

Definition 3.21. If N is a compact submanifold of 2 and is also an isolating block, we
call N a manifold isolating block.

In [3], it is proved that, for any isolating neighborhood A, we can always find a manifold
isolating block N of inv A with N C A. We also introduce a notion of tameness for an
isolating block as quantitative refinement as in Section [3.2]

Definition 3.22. Let A be an isolating neighborhood and 7" be a positive number. An
isolating block N in A is called T-tame if AZTT] < int(N).

We turn into special situation involving construction of the spectrum invariants a 3-
manifold Y: swf4(Y,s, Ay, g; ') and swff(Y,s, Ay, g; S'). Let Ry be the universal con-
stant from [7, Theorem 3.2]. Take a positive number R with R > Ry, sequences A\, — —0o0,
pn — 00 and functions gj+: V — R. Put

Jh=Str(R)n [ gji(—00,0+mj,
1<j<b;
I = Jn v,
where V' is a certain Hilbert space and V)\’f " is its finite-dimensional subspace (see [T,
Section 5.1] for more details).

Lemma 3.23. For each positive integer m, there is a positive number T, independent of
n such that

(220 int { ()T
for all T > T, and n sufficiently large. In particular, (Jny 22T < int(Jw ™). Similar
results hold for Jyy, .

Proof. If the statement is not true, we have a sequence T,, — oo such that we can take
elements

2y € (JIH) 22Tl 4 g {( J$+)[—Tn7Tn}} '
In particular, we would have
O (T, [-2T, 2T7]) € J%T and @ (2, t,) € OJ%T for some t,, € [—T,, Th)
which implies @7 (2, t,,) € (Jpw)ZTwTrl. On the other hand, by [7, Lemma 5.4], we must

have @” (2, t,) € dStr(R). This is a contradiction to [7, Lemma 5.5 (a)].
O
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We now state the main result of this section.

Proposition 3.24. Let T, be the constant from Lemma[3.23. When T > 4T,, and n is

sufficiently large, we can always find a T-tame manifold isolating block Niz™ of inv( ZZJF)

with Nﬁ;—i_ C JanL’+. Similar result holds for Jpy~ .

Proof. Fix m and suppose that n is sufficiently large so that the statement of Lemma [3.23
holds. Take a positive number T" with T' > 47T,,,. By Lemma [3.23] we have

() ETTT g {(J;;Lﬁ)[—T/?’T/ﬂ} and (JH)ET/2T/2) - g {( J$,+)[_T/4,T/4]} '
We can take a smooth function 7 : V{"* — [0,1] such that
r=0on (J2HETT and 7 =1 on Vi (JrET/2T72)

Let ¢}, be the flow on V/\“n" generated by 7 ¢y, - (I + p’;: oc), where ¢, is the bump function

as in [7, p.21]. We will prove that J;y " is an isolating neighborhood of inv (@, Ji ™). If
this is not true, we can take

x € 0J0T Ninv(@, Ji ).
Put
P () = {om (@, )t = 0,95, (2,[0,1]) € J;77},
P (x) = {gp(z, )]t < 0,97, (x, [t,0]) C Jy "}

Suppose that Pt (z) N (Jix)ET/2T/2 = (. This means a forward ¢ -trajectory of z

inside Jjy" lie outside (JwT)=T/2T/21 o that a forward ¢! -trajectory agrees with a

forward @7 -trajectory. Consequently, we have 7 (z,[0,00)) = @7 (z,[0,00)) C Jm™.

Hence ¢" (z,T/2) € P*(z) and " (x,T/2) € (Jy")ET/2T/2 which is a contradiction.

We can now conclude that P (z)N(Jw ) ET/2T/2] £ § and, in particular, z € (Jp")0T/2],
Similarly we can deduce that = € (J%’Jr)[_T/ 2.0 These facts imply that

T € (J%,-F)[_T/QaT/Q] N a‘]gf-’_a
which is a contradiction because

(YT g { () ETATAT € i),

Therefore Jjy™ is an isolating neighborhood of inv(Qr, J,?{Jr). By the result of Conley
and Easton [3], we can find a manifold isolating block N of inv(gr, Jﬁfr) with N*1 ¢
J=T  Note that

(JE DT Cinv(ER, J7T) C int N

Since the directions of the flows ¢ and @, coincide on dNjy ™t C Jw™ \ 771(0), we see

that N/%" is also a manifold isolating block of inv(¢],, ffﬁ) Thus N»" is a T-tame

manifold isolating block of inv (e, Jim ™) in J ™.
0
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4. STABLE HOMOTOPY CATEGORIES

4.1. Summary. In this section, we will discuss the stable homotopy categories €, &, G*.
The discussion in this section will be needed to construct the gluing formula in Theorem
0. 1]

First let us briefly recall the definition of the categories. (See [7] for the details.) An
object of € is a triple (A, m,n), where A is a pointed topological space with S!-action
which is S'-homotopy equivalent to a finite S'-CW complex, m is an integer and n is a
rational number. The set of morphisms between (Aj,mi,n1) and (Ag, ma, ng) is given by

more((A1,m1,n1), (A2, ma,n2)) = ligl [(R“@Cv)+AA1, (R“+m1_m2@C”+”1_”2)+/\A2]S1

if n; — ng is an integer, and we define morg((Ay1, m1,n1), (A2, m2,n2)) to be the empty
set if ny — ng is not an integer. Here [-,-]g1 is the set of pointed S'-homotopy classes, R
is the one dimensional trivial representation of S and C is the standard two dimensional
representation of S'. The category & is the category of direct systems

7Bz, B
in ¢. Here Z,, and j,, are an object and morphism in € respectively. For objects Z, Z’' in
G, the set morphism is defined by
morg(Z,Z') = lim lim more(Zy,, Z),).

004—MmM N—00

The category &* is the category of inverse systems
7.z,
in ¢. Here Z,, and j,, are an object and morphism in ¢ respectively. For objects Z, Z' in
G*, the set of morphisms is defined by
morg:(Z,Z') = lim lim morg(Z,y,, Z}).

0N M—r00

In Section we will define the smash product in the category € and prove that € is a
symmetric, monoidal category (Lemma . In Section we will introduce the notion
of the S'-equivariant Spanier-Whitehead duality between the categories & and &*. We
will say that Z € ob& and Z € ob &* are S'-equivariant Spanier-Whitehead dual to each
other if there are elements
e€ lim lim more(Z, A Zp,S), n € lim lim (S, Z, A Z,),
o04—M N—>00 o04—n M—>00

which satisfy certain conditions (Definition [4.3). Here S = (S°,0,0) € €. The elements
€,n are called duality morphlsms In Sectlon@ we will prove that the Seiberg-Witten
Floer stable spectra swf“ (Y) € ob& and swf ) € ob&* are Sl-equivariant Spanier-
Whitehead dual to each other (Proposition “ We will construct natural duality mor-
phisms for swf4(Y) and swf?(—Y") which will be needed for the gluing formula of the
Bauer-Furuta invariants (Theorem [6.1)).

We will focus on the S'-equivariant stable homotopy categories. But the statements
can be proved for the Pin(2)-equivariant stable homotopy categories in a similar way.
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4.2. Smash product. In this subsection, we establish the symmetric monoidal structure
on the category €. To do this, we will define the smash product as a bifunctor A : €x€ — €.
First we define the smash product of two objects (A1, m1,n1), (Az, ma,n2) € €. Here A;
is an S'-topological space, m; € 2Z, n; € Q. We define the smash product by

(A1, m1,n1) A (A2, ma, ng) := (A1 A Az, mq + ma,n1 + na),

where A1 A Ao denotes the classical smash product on pointed topological spaces. Next
we define the smash product of morphisms. Suppose that for ¢ = 1,2 a map

fi: (Rk’i ® (Cli)"l‘ AA; — (Rki-i-mi—m; ® (Cli—i-ni—n;)—ir A Al

represents a morphism [f;] € more((A4;, m;, n;), (A, m;,n})). We may suppose that k; is
even. We define a map

finfo: R @RR2@Ch @ Cl2)t AAAAy —
(Rkﬁmrmi @ RFztma—my gy clitmi—ny g Cl2+n2—n’2)+ A AL A Al
by putting the suspension indices for f; on the left and those for fo on the right. We
define [f1] A [f2] to be the morphism represented by fi A fo. To prove that this operation
is well defined, we need to check that for a,b € Z~, we have
a b+ a b a b
E(R aC>) (fl /\f2) ~ (E(R ®C )+f1) A fa 2 fi A (E(R oC )+f2),

~

where = means S'-equivariant stably homotopic. The first equivalence is obvious. The
second equivalence follows from the fact that the following diagram is commutative up
to homotopy for uy = ki, k1 +mq1 —ml, us = ko, ka + ma —mb, v1 = l1,l1 +n1 — nj,
vy = lo,lg + no — n/2:

(R* @ R¥t @ R¥2)+ A (CP @ C¥ @ C¥2) 7

(Vge gu1 Didgus )Jr/\('ytcb,(c“l ®idevg )T (Ra+u1 +uz )-‘r A ((Cb-i-m-i-vz )-i-
/
(R“1 @ R* @ RU2)* A (C @ Cb @ C¥2)*

Here yge gu1 is the map which interchange R* and R*!. Similarly for ycs ¢, Note that
uy € 2Z by the assumption on ki, my, m].
There is an isomorphism

V(Arma ) (Azsmang) © (A1, m1,n1) A (A2, ma,n2) — (A2, ma,n2) A (A1, m1,n1)

represented by the obvious homeomorphism A; A As — Ay A Ay, It is not difficult to
see that v is natural in (A4;,m;,n;). That is, the following diagrams are commutative for
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fi € more((A;, mi, ni), (A7, m;, nl)):

(A1, m1,n1) A (A2, m2,n2) — (A2, m2,n2) A (A1, m1,n1)

f1/\f2l lfz/\ﬁ

(Allvmlbnll) A ( Ival27n/2) T> (Al%m/Qa nl2) A (Allv mllan,l)

(Again, we need the assumption that m; is even here.) Once the well-definedness of A
and the naturality are established we can prove the following lemma easily by checking
the axioms at the level of topological spaces.

Lemma 4.1. The category € equipped with N\ and 7 is a symmetric monoidal category
with unit S = (S°,0,0).

We briefly mention the Pin(2)-case. The smash product A and the interchanging op-
eration 7y can be defined on the category €p;, (o) in exactly the same way as before. As a
result, the category €p;y(2) is also an symmetric monoidal category.

4.3. Equivariant Spanier-Whitehead duality. In this subsection we will set up the
equivariant Spanier-Whitehead duality between the categories & and &*. Although we
will mostly focus on the S'-case for simplicity, all definitions and proofs can be easily
adapted to the Pin(2)-case. As a result, a duality between & Pin(2) and 6?m(2) can also
be set up in a similar way.

The following definition is motivated by [10, Chapter III] and [I3, Chapter XVI Section
7].

Definition 4.2. Let U, W be objects of ¢ and put S = (5°,0,0) € ob@. Suppose that
there exist morphisms

e WANU—=S n:S=UANW
such that the compositions

U= S UMY UawaAU 9 uas>u

and
WEWAS N wAauaw LY gaw=w

are equal to the identity morphisms respectively. Then we say that U and W are Spanier-
Whitehead dual to each other and call € and 7 duality morphisms.
We generalize this definition to the duality between G and G*.

Definition 4.3. Let

Z Ly — Ly — g —>---
be an object of & and

ZZZl<—Z2%23<—--'
be an object of &*. Suppose that we have an element

e€ lim lim more(Z, A Zpy, S)

cO<—MmMm N—r0o0
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represented by a collection {€,, : Zu N Zp — S }m>0n>m and an element

n € lim lim more(S, Zm A Zy,)
—00

oo—n m
represented by a collection {Nmn : S — Zm A Zntn>0ms>n which satisfy the following
conditions:
(i) For any m > 0 there exists n large enough relative to m and m' large enough relative
to n such that the composition

id A€m,n

;- Aid _
Ton &SN Ty 2 7 N A Dy L AS > 7

is equal to the connecting morphism Z,, — Z,,» of the inductive system Z.
(ii) For any n > 0, there exists m large enough relative n and n’ large enough to m such
that the composition

_ _ idADmn = = €y Aid _ _
I 2Ly NS ———= Zy NIy N Zyy ———— SNZ, = 7,
is equal to the connecting morphism Z,; — Z,, of the projective system Z.

Then we say that Z and Z are S'-equivariant Spanier-Whitehead dual to each other and
we call € and n duality morphisms.

We end this subsection with introducing a smashing operation €, which will be used to
give the statement of the gluing theorem for the Bauer-Furuta invariant.

Definition 4.4. Let Z € ob& and Z € ob &* be objects that are S'-equivariant Spanier-
Whitehead dual to each other with duality morphisms €,7. Suppose that we have objects
W eob€ (Cob&), W €ob€ (C ob&*) and morphisms

p € morg(W, Z), p € morg«(W, Z).

Choose a morphism p,, : W — Z,,, which represents p and let {p, : W — Zz}n>0 be the
collection which represents p. We define the morphism €(p, p) € more(W A W, S) by the
composition

W AW 2220 Zo N Zy 0 S
It can be proved that é(p, p) does not depend on the choices of m,n and p,,. (Note that
Pn, is determined by n and p.)

4.4. Spanier-Whitehead duality of the unfolded Seiberg-Witten Floer spectra.
Let Y be a closed, oriented 3-manifold with a Riemannian metric g and spin® structure s,
and let —Y be Y with opposite orientation. As in Section 2.1} the unfolded Seiberg-Witten
Floer spectrum MA(Y,s, Ao, g;S') € ob & is represented by

swiA(V): L 2 1 2

with I, := 3~V I(inv(V{"™" N J,;5), ¢n). Tt is not hard to see that the unfolded spectrum
swif(—Y,s, Ag, g; S') € ob&* can be represented by

swt(—Y): [ & L& -
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where I, := E_Vounl(inv(V;;" NJ,5),,) and P, is the reverse flow of ¢,. For integers
m,n with m < n we also write jy, n, 3mn for the compositions

j Jm—+1 Jn—1
[mﬂ)]mﬂ’"_)..._"__)[m
= Jn-1 7 Jn—2 Jm. =
YLy S i RN

We will define duality morphisms € and 1 between slfA(Y, s, Ao, g; S1) and LMR(—Y, s, Ao, g; S1).
as follows. Take a manifold isolating block N, for inv(V{" N J7). That is, Ny, is a com-

pact submanifold of V/\’L " of codimension 0 and there are submanifolds L,,, L,, of ON,, of
codimension 0 such that

L,UL,=0N,, OL,=0L,=L,NL,

and that (Np, L), (Np, Ly) are index pairs for inv(Vy" 0 J¥, ¢n), inv(V{" 0 JF 5,)
respectively. Fix a small positive number § > 0. For a subset P C V/\“: we write v5(P) for

{z € V{"|dist(z, P) < d}.
Choose S'-equivariant homotopy equivalences
an : Np — Ny \ vs(Ln), by : Ny — Ny \ vs(Ly)
such that
llan(x) — z|| < 20 for € Ny, angn) Cf/n, an(z) =z for x € Ny, \ v35(ON,,), (16)
1bn(y) — y|| < 20 for y € Ny, by(Ly) C Ly, by(y) =y for y € Ny, \ v35(ONy,).
Put Bs = {z € V{""|||z|| < 6} and S5 = dBs. Define

én,n : (Nn/fn) A (Nn/Ln) — (V/\'L;n)—’— = B5/S§
by the formula

* otherwise.

It is easy to see that €, is a well-defined, continuous S'-equivariat map. Taking the
desuspension by VA“” " we get a morphism

€nn : I, NI, — S.

For m,n with m < n, we define a morphism €, , : Zn N\ Zy — S to be the composition

- id Ajm,n

I, AT, =2 ToAT, 2 S,

Lemma 4.5. With the above notation, the morphism €y, , € more(Iy A Iy, S) is indepen-
dent of the choices of Ny, an,b, and é.
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Proof. The proof of the independence from ¢ is easy. We prove the independence from
Ny, an and by,. Fix an isolating neighborhood A(C V{™ N J;F) of inv(V}" N.J,1). Take two
manifold isolating blocks N, N/ for inv(V)\“n " N J;F) included in int A. Then we get two
maps

énn : (Nn/Ly) A (Nn/Ly) — Bs/Ss, nn (Nf@/f;) A (N} /L) — Bs/Ss.

It is sufficient to show that the following diagram is commutative up to S'-equivariant
homotopy:

(No/Tn) A (N /L) 2 Bs/Ss

SN\s ;
En,n

(N,/L) A (NL/LL,)

Here s = sp : Ny/Ly, — N /L', § = 57 : N,/L, — N/,/L, are the flow maps with large
T >0:
SUWE= otherwise.

am:{fW*WﬂigﬁxﬂwaAmMmkwﬁmcwmm,

The proof can be reduced to the case N/ C int N, since we can find a manifold isolating
block N/ with N}/ C int N,,,int N},. Assume that N} C int N,,. Taking sufficiently large
T > 0 we have

AFTT (N, \ v3(ON,)) © (N \ w35 (ON)).- (17)

It is easy to see that é,, is homotopic to a map éﬁBZl : (N./Lyp) A (Ny/Ly) — Bs/Ss
defined by

(2, [0,3T]) C Ny \ L,

) ([y]A[2]) = [bn(0(y, —3T)) — an(o(z,3T))] if{ (y, [-3T,0]) C Ny \ Ly,
Y 1bn(¢(y, —3T)) — an(p(z,37))|| < 6

* otherwise.
Suppose that € ([y] A [z]) # *. Then
p(@,3T) € N0 oy, =3T) € NP, |lo(y, —3T) — ¢(x,3T)| < 56.
Taking small § > 0 and the using the fact that N,, C int A, we may suppose that
o, 3T), oy, —3T) € AT,
which implies

an(@(x,3T)) = ¢(x,3T), bu(e(y, —3T)) = ¢(y, —3T).
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Here we have used and . We can assume that § is independent of x,y since N, is
compact. So we have

W] A 2] li(y. ~37) — (.37 < &

* otherwise.

On the hand, we can write

€nn © (s AS) ([l A [x]) =

n,n

(b7, (¢ (y, =3T)) — ap,(p(x,3T))]  if 3
—3T, T}) C N\ L,

\ 167, ((y, =3T")) — ap(p(2,3T))|| <0,
* otherwise.

As before, if &, 0 (s A 5)([y] A [¢]) # * we have
o(x,3T), p(y, —3T) € A3T3T]

and we can write

¢(2,(0,2T) C Np \ Ly,

¢(z,[T,3T]) C Ny, \ Ly,

[y, =3T) — (x,3T)] if§ ¢(y,[—2T,0]) C Np \ Ly,
[~

dz,n o(sA8)([y] Alz]) = ’ oy, " 3T, —T]) C N/ \L 7
(v, ~37)) - (e, 37)] <6,

[ * otherwise.

We will show that eﬁf’?l = &, 0 (5N 5). It is sufficient to prove that éLOZL([ | A [x]) # * if
and only if €, ,, 0 (s A 8)([y] A [z]) # *. It is easy to see that if &, ,, o (s A5)([y] A [z]) # *

then é;ozl([y} A [z]) # * using the assumption that N}, C int N,,. Conversely, suppose that
é,(lozl([y] A [z]) # *. Then o(z,3T), p(y, —3T) € AF3T3T) and we have

o(z, [2T, 3T)) = ¢(p(z,3T),[-T,0]) c A7212T] < int N,,,
o(y, [-3T,2T]) = o(p(y, —3T),[0,T]) c A?12T] < ing N,,.

This implies that e( ) n([y] A [z]) # =

A calculation similar to that in the proof of Lemma [4.5] proves the following:

Lemma 4.6. Suppose that X < A\, i > pn. Take manifolds isolating blocks Ny, N, for
inv (V" N J5), inv(VyY N J;5). Note that we have canonical homotopy equivalences

An — .
S (N,/Ln) = N,/ L}, $Vin (N, /L,) = N}, /L,
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See Proposition 5.6 of [7]. The following diagram is commutative up to S'-equivariant
homotopy:

W~

— n Z n,n
SViln (N /) A SR (N L) ————" s (VI +

ml /
ar
€n,n

(N. /L) A N,/ L)
Here W = V;‘” e V.

This lemma implies that the morpshim €, , (and hence €5, ,) is independent of the
choices of A\, .

We have obtained a collection {€m, 5 : In A Iy — S}n>m of morphisms. Since jy,, =
Jm+1,n © Jm,m+1, the following diagram is commutative:

LoAL, ™" s (18)
id /\jm,m-&-ll

Iy A Tt

Em+1,n

Lemma 4.7. For m < n, the following diagram is commutative:

IoAL, " s (19)

j Aid
Jnontl T €m,n+1

InJrl A Im

Proof. We have to prove that the following diagram is commutative up to S'-equivariant
homotopy:

(No/Ip) A (N /L) —"— Bs/Ss (20)
zn’n+1/\id1\ ~
€m,n+1

(Nn+1/zn+1) A (Nm/Lm)

By Lemma we can use the following specific manifold isolating blocks (with corners).
First take a manifold isolating block Nj,11 for inv(VY” ”:11 N Jf.1). We have compact

submanifolds Ly11, Lpy1 in ONp 41 with

a]\Tn—i—l = Ln+1 Uzn—i—ly 8Ln-i—l = 8Zn—i—l = Ln-‘rl mfn-i—l-
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Moreover (N, 11, Ly41) is an index pair for (inv(V/"+! OJL_I) ©ny1) and (Npy1, Lypy) is

Ant1
an index pair for (inv(V’““Ll NJF 1), Pry1), where B, is the reverse flow of ¢p41. Put
by
N := Npp1 N J% = Np41 0 ﬂ gj_’i((—oo,m +0]),
j=1

Ly i= Lyps1 N Ny,

by
Lin = (Lns1 N Np) U [ New N g1 (m 4 6),
j=1
b1
Ny = n+1m‘]7—z‘r: nt1 ﬂg;i((_oc%n"i'e]),
j=1

Ly := Lyy1 N Ny,
Ln = (Lps1 N Ny) UN Ng;t(n+0)

Then N,,, N,, are isolating blocks for mv(V””+1 nJh), mV(V/\’i”:ll NJ;5) and Ny, Ny, L,
L, Ln7 L, are manifolds with corners (for generic #). Moreover (N, L), (N, L),
(Np, Ly), (Ny, L) are index pairs for (mV(V’iL":ll JE), ont1), (inV(VﬁL’fll NJE), Brrt)s
(an(V;i ::’11 NJn)s Pntl), (inv(an ”:11 N Jn), Ppyt1) respectively. Also we have

Ly ULy, =0N,,, 0Ly, = 0Ly, = Ly, N Ly,

L,UL, =0N,, 0L, =0L, =L,,NL,.

The connecting morphisms Jjp, n : Iy = In, jmnt1 @ I — Iny1 and jn ntl - In+1 — 1,
are induced by the inclusions

Z.m,n : Nm/Lm — Nn/LTw Z.m,n—i—l : Nm/Lm — Nn+1/Ln+1

and projection

inp+1t Not1/Log1 — Nn+1/ Lnt1 U U ( w1 N g5y ([n+6 OO))) = Nu/Ln.

With the index pairs we have taken above, for z € N,y € Np4+1 we can write

emmi1 (Y] A [2]) = { E’”H(y) — ant1(2)] ﬂiﬁvﬁég) — anpa(@)]| <6,

Also we have

emn © (inni1 Aid)([y] A [2]) = { Lb”(y) ~ane] ftiefwﬁ"e" [nly) = an(@ll <.

We may suppose that a,(z) = apt1(x) for & € Ny,. Note that if €, n+1([y] A [z]) # * or
émm © (innt1 Aid)([y] A [z]) # x we have y € v35(Ny,). For small § > 0 we can suppose
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that v55(Np,) N Np+1 C N, and that by 41(y) = by (y) for y € vs5(Np,) N Nyt1. This implies
that commutes.
|

The commutativity of the diagrams and means that the collection {€n n}m.n

defines an element € of lim lim morg(I, A I, S).
004—MmM N—r00

Next we will define € lim lim more(S, I,, A I,). Take a manifold isolating block

0N M—r0o0

Np(C V™) of inv(V{" N JF). As usual we have compact submanifolds Ly, L, of N,
such that

ON, = L,ULy,, 0L, =0L,=1L,NL,
and that (Ny, L), (N, Ly) are index pairs for (inv(V{"™ N JF), on), (inv(VE" N JF),$,)
respectively. Taking a large positive number R > 0 we may suppose that N, C Bgs,
where Br/ = {2z € V{"|||z|| < R/2}. We define

Mnm s (Vi)T = Br/Sr — (Nn/Ln) A (Nn/Ln)

by
R _ [{Ij] A [.’L’] ifx e Nna
fnn([]) = { % otherwise.

We can see that 7, ,, is a well-defined continuous map and induces a morphism
Mn =S — In A I,.
For m > n, we define 7,,, : S — I,y A I,, to be the composition

Jn,mAid -
— Iy AN I

n,n

S = I, N,

Lemma 4.8. The morphism Ny, n € morg(S, I, A I,) is independent of the choices of R
and Ny,.

Proof. The independence from R is easy. We prove the independence from the choice of
Np. Take another manifold isolating block Nj, of inv(Vy" N JF). We may assume that
Np, N), C A for an isolating neighborhood A of inv(Vy"™ N J;). Tt is sufficient to show

that the following diagram is commutative up to S'-equivariant homotopy:

Nn,n

Br/Sr — (Nn/Lyn) A (Ny/Ly)

N J(s/\é
nn,n

(N3/Ly) A (N7 /L)
Here s = sy, § = 51 are the flow maps with 7' > 0. For x € Br we have
(s \5) 0 fnn([z]) =
¢(x,[0,2T]) C No \ Ln, ¢(,[T,3T]) C N\ Ly,
T =37 f - —
T R TI D O AR P A A

* otherwise
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and
. | [z]A]z] if x €int N},
fn,n([7]) = { * otherwise.

We can reduce the proof to the case N, C int N). Suppose N,, C int N/,. Also we may
assume that AIZTT] C int N,,, choosing a sufficiently large T. If (s A 5) 0 i ([7]) # *, we
have

o(z,[-3T,3T]) C int N,.
Conversely, suppose that ¢(z,[—3T,37T]) C int N/. Then we have = € Al=373T], Hence
o(x, [—2T,2T)) ¢ AT c int N,,.

Therefore ¢(z,[0,27T]) C Ny \ Ly, p(x, [—2T,0]) C Ny, \ L. Thus (s A 5) o Ay n([2]) # *.
We have obtained:

(5 A 5) 0 fjun(fa]) = { Lgo(m,3T)]/\[g0(a:,—3T)] gtférxv;i[s—esﬂ 3T)) C int N/,

This is homotopic to ﬁ;wm through a homotopy H defined by

H([z],s) =
{ [o(x,3(1 — s)T)] A [p(z, =3(1 — s)T)] if }gf(x, [—3(1 —$)T,3(1 — s)T]) C int N,
* otherwise.

g

Lemma 4.9. Let A < A\, u > pin. Take manifolds index pairs Ny, N,, for inv(J, N V)\’:L),
inv(J, N V)fL) Then we have the canonical S*-equivariant homotopy equivalence:

S (N /Ln) = N,/ L, SVén (N, /L) = N, /T,

See Proposition 5.6 of [7]. The following diagram is commutative up to S'-equivariant
homotopy:

EW An n —_
(Vi ——"" W (N, /Ln) A (Nn/Ly)
xﬁhn/\ J
(N./LL) A (NL/L)
Here W = V" @ Vi

This lemma implies that 7, , (and hence 7, ) is independent of the choice of Ay, fi.
Since jnm+1 = Jm,m+1 © Jn,m for m > n, the following diagram is commutative:

S I A (21)
ljm’m-Fl/\id

Im+1 A I_n

Nm+1,n
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Lemma 4.10. For m > n + 1, the following diagram is commutative:

S I AL (22)

idAj
Nt 1 T Jn,n+1

I, A jn+1

Proof. Let m > n + 1. We have to show that the following diagram is commutative up to
Sl-equivariant homotopy:

NMm,n

Br/Sp —™" 5 (N /L) A (Nn/In) (23)

. id /\;n,n-q—l
NMm,n+1

(Nom /L) A (Nn—s-l/zn-i—l)-
By Lemma we can use the following specific manifold isolating blocks Ny, Ny, Ny i1
(with corners). Fix a manifold isolating block N, for inv(V{"™ N J;f). Then we have
compact submanifolds L,,, L,, in N,, such that

ONy, = Ly, N Ly, OLy, = 0Ly, = Ly, N L.

Moreover (Ny, Li,) is an index pair for (inv(V{"™ N Jf), ¢m) and (N, L) is an index
pair for (inv(Vy™ N J5),@,,). Put

Np+1:=NpNJ =Ny ﬂg;i((—oo,n +144)),
Lyy1:= Npg1 N Ly,
b1
Lot = (Lm N Nyy1) U U(Nn+1 Ng;t(n+1+86)).
j=1
Then Nyt1, Lpt1 and L1 are manifolds with corners (for generic ), and (Npt1, Lnt1),
(Nnt1, Lny1) are index pairs for (inv(Vi™NJ5 ), om), (inv(VE" 0T ), B,,) respectively.
We define N,,, L,,, L,, similarly.
The attractor maps iy, : Np/Ly — Npy/Lm, int1m @ Npt1/Lns1 = Ny/Ly, are the
inclusions. The repeller map iy 41 : Nnt1/Lnt1 — Np/Ly is the projection:

by

Nn+1/fn+1 — Nn—H/ Zn+1 @] U(N”'H N g;i([n + 6, OO))) = Nn/fn
j=1

With these index pairs, for x € Bgr we can write

R _ [x]/\[:ﬁ] ifﬂ?GNna
mn([x]) = { * otherwise,

and
[z] A [x] if 2 € Np,

(id Aipnt1) © Dmont1([2]) { * otherwise.
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Thus the diagram is commutative. O

The commutativity of the diagrams , (22) implies that the collection {nmn}m.n

defines an element n € lim lim more(S, I, A I,).

Proposition 4.11. The morphisms € and n are duality morphisms between slfA(Y) and
swif(-Y).
Proof. Fix positive numbers R, with 0 < § < 1 < R. Let 7 : Br/Sr — Bs/Ss be the
projection

BR/SR — BR/(BR \ int B(;) = B(;/S(;,
which is a homotopy equivalence. We have to prove that the diagrams below is

commutative for m < n < m’ and that the diagram below is commutative up to
S'-equivariant homotopy for n < m < n’. (See Lemma 3.5 of [10].)

N Nd

(Br/SR) N (Nim/Lm) ———— (N /L) A (Nyp/ L) A (No/ L) (24)

lid Nem.n
m/

(Nm’/Lm’) A (B5/S(5)
Here B = B(V;L”j',R), Sk = OB(V;L"j’,R), Ny, Ny, N, are isolating blocks for inv(V)f‘”j'ﬂ

B, inv(Vym™ ng b)), inv(Vy ™ NJt,) and v is the interchanging map (Bs/Ss)A(Npy /Lys) —
(N /L) N (Bs/ Ss).-

YO (TN,

(Nt /L) A (Br/Sr) ——2" s (Nyy /L) A (No/ L) A (NufLa) (25

YOty Aw)l Jém’n/ Aid

(Bs/S5) A (Nn/Ln) (Bs/Ss) A (Nn/Ln)

oAid
Here Br = B(V{"',R), Sg = 0B(V{"', R), Nin, Ny, N,y are isolating blocks for inv(Vy "' N
JH), inv(V{™ 0 JF), inv(Vi™ N J%), v is the interchanging map (N,,/Ly,) A (Bs/Ss) —
(Bs/Ss) N (Nn/Ly) and o : Bs/Ss — Bs/Ss is defined by o(v) = —v.

First we consider . Let m < n < m/. Take a manifold isolating block N,, for
inv(Vy™ N .J!). As in the proof of Lemma from N,,, and the functions g; +, we get

index pairs
(Nn7Ln)’ (NTL?Z’H)? (Nm7Lm)7 (NWL?Lm)
for
(v (VY™ 05 o), (v (V3™ NI, B ), (v (V2 0T, o), (v (V™ O, Byt )-
The attractor map

immn : Nm/Lm — Nu/Lp, ipm : NofLy = Nyy [ Ly
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are the injections, and the repeller maps
gn,m’ : Nm//fm/ — Nn/fn, Em,n : Nn/fn — Nm/fm

are the projections.
For z € Ny, and y € Br(= B(Vy"™, R)), we can write

. Yy € Ny,
(1 Aémn) © (i AT)([y] A [a]) = Y17 B8] = an(2)] 1f}{1 1bn(y) - an(@)]| < 5,
* otherwise.

Note that if ||b,(y) — an(z)|| < J for some z € N,,, we have y € vs5(Ny,). Fix an S!-
equivariant homotopy equivalence

7 Us5(Np) — N
which is close to the identity such that
756 (Ln) Mv56(Nm)) C Lin, 7(v55(Lim)) C Lin.
Then (id Aém.n) © (M’ .n A id) is homotopic to a map
[+ (Br/Sr) N (Nm/Lm) = (N /L) A (Bs/Ss)

defined by
| € Np,y e NpNuss(Np),
it = § PO B —an] ] et S
* otherwise.
Define
H: (BR/SR) A (Nm/Lm) X [Ov 1] - (Nm’/Lm’) A (35/55)
by
H([yl A [z], s)
[ = s Al — ante] {7 Ny € B 0 ()
* otherwise.

We can easily see that H is well-defined. We will show that H is continuous. It is sufficient
to show that if we have a sequence (z;, y;, 55) in Np, x N, x [0, 1] with y; — y € ON,, = L, U
L, we have H([yj]\[z;], sj) — *. Ify € L,, we have ||b,(y;)—an(x;)|| > 0 for large j. Hence
H([y;] A [xj],55) — *. Consider the case y € L,. Assume that ]lggo H([y;] A [xj],85) # *.

After passing to a subsequence we may suppose that H([y;] A [z;],sj) # * for all j. Then
lly; — z;|| < 56 for all j. For large j we have (1 — s;)y; + sjz; € vss(Ly) N Vss(Npy).
Hence r((1 — s;)y; + sjz;) € Ly C Lyy, which implies H([y;] A [x;],s;) = *. This is a
contradiction. Therefore H is continuous.

We have H(-,0) = f and

. T € Ny, y € Ny,
H(y) Ala), 1) = { M@ Pn(y) = an(@)] 1f{ 1bn(y) — an(@)]| < 6,

* otherwise.
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Fix a positive number ¢ > 0 with 0 < ¢ < 6. Take an S'-equivaraint continuous map
al, : N, — N, such that

lan () — an(@)]| < 26", a5,(Nn) C Ny \ v (ON,).
Through the homotopy equivalence
Bs/Ss = VA’:;’ / (V/\“T:j/ — int Bs) — VA“T:j’ / (VA“T:;’ —int By) = By /Sy,
H(-,1) is homotopic to a map
f" (Br/SR) N (Nm /L) = (N [ L) A (Bst / Ss)

defined by

, | € Np,y € Ny,
£ A ) = V@”A““”‘““@]ﬁ{um@wﬂQ@M<ac

* otherwise.
There is a homotopy h : N,, x [0,1] — N,, from b,, to the identity such that
h(Lyn,s) C Ly, ||h(y,s) —y|| < 20
for all y € N,, and s € [0,1]. Then h naturally induces a homotopy
H' 5 (Bi/Sr) A (Noo/ L) = (N / L) A (B /i)
defined by

/ . z € Ny, y € Ny,
H'([y) A la], ) = WMAW@@‘%@”ﬁ{wmw—%@w<&

* otherwise.

It is easy to see that H' is well-defined. To show that H' is continuous, it is sufficient to
prove that if we have a sequence (z,y;, s;) in Ny X N, %[0, 1] with y; — y € ON,, = L,UL,
then H'([y;] A [z;],s;) — *. Suppose that y € L,,. Then for large j we have ||h(y;,s) —
a,(z)]| > ¢'. Thus H([y;] A [xj],sj) — *. Suppose that y € L. If lim;_,o H'([y;] A
[x}],55) # *, after passing to a subsequence, we may assume that H([y;] A [z;],s;) # * for
all j, which implies that |ly; — ;|| < 5. So we have x; € vs5(Ly) N vss(Np,) for large j.
Hence r(z;) € Ny,, which means H'([y;] A [z;],s;) = * . This is contradiction. Therefore
H' is continuous.

We can see that H' is a homotopy from f’ to a map f” : (Br/Sgr) A (Npm/Lpy) —
(Nm//Lm/) A (B(;//S(g/) defined by

, . x € N,y € Bp,
(A fe]) = W”“@‘%“”ﬁim—%uW<&
* otherwise.

Note that for y € Bg \ N,, we have f”([y] A [x]) = * since ||y — al,(z)|| > ¢’. Define
H" : (Br/SR) N (Num/Lm) % [0,1] = (Nt /Ly) A (Bs:/Sst)
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by
!/ : T € Nm7y € BR7
H"(ly] A [2], 5) = “W”A@‘“‘“”“@]ﬁiuy—u—smuwu<&
* otherwise.

It is easy to see that H” is well-defined and continuous. We have

. T € N,y € Bp,
H"([y] A [a], 1) = MMAMI%HW<&
* otherwise.

We can easily show that H”(-,1) is homotopic to v o (7 A iy ).
We have proved that (id Aép, )0 (fms nAld) is S'-equivriantly homotopic to Yo (7 Ay, ),
which implies that the diagram is commutative up to S'-equivariant homotopy.

Let us consider . We have to prove that for n < m < n’ the composition

id At
R

(Nn’/fn’)/\(BR/SR) (Nn’/zn’)/\(Nm/Lm)/\(Nn/fn) M (35/55)/\(Nn/zn)

is Sl-equivarilantly homotopic to (o Aid) oy o (iy n A ).
For z € B = B(V/\“’jl,R), y € N,y we have

(ém A id) 0 (id A ) ([y] A [2]) =

. x € N, )
m@wmeAMI%HW@—%@M<&
% otherwise.

Take a homotopy equivalence 7 : v55(N,,) — N,, which is a close to the indentiy such that
f(VScS(Zn’) N V55(Nn)) C Zna f(y56(zn)) - Zn (26)

Note that if ||b,/ (y) — an (x)|| < 6 for some z € N,, we have y € vs5(Np).
It is easy to see that (€&, ,/ Aid) o (id Ay ) is homotopic to a map

[+ (Nw/Ln) N (Br/Sr) = (Bs/Ss) N (Nn/Ln)
defined by

—al Al i x € N,y € Ny Nuss(Ny),
fAf) = b ® “”A[“]f{mmw—qu<a

* otherwise.

Define a homotopy H : (N /L) A (Br/Sr) % [0,1] = (Bs/Ss) A (Nn/Ly) by

H([yl A [z],5) =
b (y) — aw ()] A [F((1 = 5)z + sy)] if{ ﬁbj (]Zr)zj/ fn,f(\%"‘ﬁ:sg(f\fn),

* otherwise.
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Then H is a well-defined and continuous homotopy from (id Aé, ,,7) o (id Afjpm ) to H (-, 1).
We have

—a(x 7 i ."L‘ENn,yGNn/ﬂljg,(g(Nn),
H(y) A fal, 1) = § W) aw @I ) fl{l I 3) = o) < 5.
* otherwise.

Fix a positive number ¢’ with 0 < ¢’ < 4. Take a continuous map ¥/, : N,, — N,, such
that

by (N) © N\ 0 (DN, () — b (w)]| < 26° (for = € Ny).
Then though the homotopy equivariance Bs/Ss — By /Sy, f is homotopic to a map
f"+ (Nw /Lw) N (Br/Sr) = (By /Ss) A (Nn/Ln)
defined by
el — 4 B —an@)Apw) it] 12 N € M1l
* otherwise.
There is a homotopy h : N,y x [0,1] — N, from a,, to the identity such that that
h(Ly) C Ly, ||h(y,s) —y| < 20.

We can see that h induces a homotopy H’ from f’ to a map f” defined by

) — 2l AT ] € Br,y € No Nwss(Na),
P AL =4 ) “[@]fimww—w<&
* otherwise.

Note that for € Bg \ int N,, we have f'([y] A [z]) = * since ||b],(y) — z|| > ¢’. Define a
homotopy H” : (Nn//fn/) A (BR/SR) X [0, 1] — (B5//S§/) A (Nn/fn) by

oW () — 2 A ] € Bry € N Nuss(Ny),
g A ]y o 4 10~ ) 1Auw]f£WLﬁwﬂw_m<yv
* otherwise.

Then H” is well-defined and continuous, and we have

o 7 ; x € Br,y € Ny N 1/55(Nn),
H([y) A [a],1) = []A[@]f{wﬂ<&

* otherwise.

It is easy to see that H”(-,1) is homotopic to (¢ Aid) 0y o (ipn A m). Thus the diagram
is commutative up S'-equivariant homotopy.
0
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5. RELATIVE BAUER-FURUTA INVARIANTS FOR 4-MANIFOLDS

5.1. Setup. Let X be a compact, connected, oriented, Riemannian 4-manifold with
nonempty boundary dX := Y not necessarily connected. Equip X with a spin® struc-
ture 5§ which induces a spin® structure s on Y. Denote by Sx = ST @& S~ the spinor
bundle of X and denote by p the Clifford multiplication. Choose a metric § on X so that
a neighborhood of the boundary is isometric to the cylinder [—3,0] x Y with the product
metric and 0X identified with {0} x Y. To make some distinction, we will often decorate
notations associated to X with hat. For instance, let ¢ be the Riemannian metric on Y re-
stricted from g on X. Let Sy be the associated spinor bundle on Y and p: TY — End(Sy)
be the Clifford multiplication.

We write Y = [[ Y} as a union of connected component. From now on, we will treat X
as a spin® cobordism, i.e. we label each connected component of Y as either incoming or
outgoing satisfying Y = —Yi, UYout. We sometimes write this cobordism as X : Yi, — Yout.
Denote by ¢: Y — X the inclusion map. We also choose the following auxiliary data when
defining our invariants

e A basepoint 6 € X.

e A set of loops {ai,...,ap, ,} in X representing a basis of cokernel of the induced
map t.: Hi(Y;R) — Hi(X;R).
o A setofloops {f1,..., B, } in Yi, representing a basis of a subspace complementary

to kernel of the induced map ¢.: Hi(Yin;R) — Hi(X;R).

e A set of loops {8y, +1,- -+, 5} In Your such that {B1,..., By, ,} represents a ba-
sis of a subspace complementary to kernel of the induced map t.: Hi(Y;R) —
Hi(X;R).

o A based path data [7]], whose definition is given below.

Definition 5.1. A based path data is an equivalent class of paths (71,72, .., (v));
where each 7; is a path from 0 to a point in Y;. We say that (771,...,77b0(y)) and
(... ,néo(y)) are equivalent if the composed path 77} * (—n;) represents the zero class
in H1(X,Y;R) for each j =1,...,bp(Y).

Remark. (i) The set of loops {a1,...,ap, .} corresponds to a dual basis of kernel of
c HY(XGR) — HY(Y;R).

(ii) The set of loops {f1, ..., By, 5} corresponds to a dual basis of image of .*: HY(X;R) —
H'(Y;R).

(iii) It follows that by = dimkerc*, by g = dimim*, and by o + b1 g = b1(X).

As usual, we will set up the Seiberg—Witten equations on a particular slice of the
configuration space. For the manifold with boundary X, we will consider the double
Coulomb condition introduced by the first author [§] rather than the classical Coulomb—
Neumann condition. Let us briefly recall the definition.

Definition 5.2. For a 1-form @ on X, we have a decomposition a|ly = ta + na on the
boundary, where ta and na are the tangential part and the normal part respectively. When
Y =[]Y; has several connected components, we denote by t;a and n;a the corresponding
parts of a|y,. We say that a 1-form a satisfies the double Coulomb condition if:
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(1) a is coclosed, i.e. d*a = 0;
(2) Its restriction to the boundary is coclosed, i.e. d*(ta) = 0;
(3) For each j, we have ij tj(xa) = 0.

We denote by Q5 (X) the space of 1-forms satisfying the double Coulomb condition.

As a consequence of [8, Proposition 2.2], we can identify H!(X;R) with a space of
harmonic 1-forms satisfying double Coulomb condition

H'(X;R) = Hio(X) = {a € Qpe(X) | da = 0}.

Since X is connected, we observe that the cohomology long exact sequence of the pair
(X,Y) gives rise to a short exact sequence

0— RYM=1 5 HY(X,Y;R) = kert* — 0.

By classical Hodge Theorem, the relative cohomology group H'(X,Y;R) is represented
with harmonic 1-forms with Dirichlet boundary condition. Since condition from Def-
inition is of codimension by(Y) — 1, we can conclude that a space of harmonic 1-
forms satisfying both Dirichlet boundary condition and condition from Definition
is isomorphic to ker:*. Notice that such 1-forms trivially satisfy other double Coulomb
conditions. Hence, we make an identification

ker ¥ 2 HL o (X) == {a € Qbo(X) | da =0, ta=0}. (27)
The double Coulomb slice Coul®“(X) is defined as
Coul®(X) = Li 1 o100 (X) ©T(51)), (28)

where k is an integer greater than 4 fixed throughout the paper. Next, we introduce
projections from Coul®®(X) related to the loops {as, ... 0y oy and {B1, ..., By, 4} We
define a (nonorthogonal) projection

Pa: Coul®C(X) = H5o(X) (29)

by sending (a, (ﬁ) to the unique element in H},~(X) satisfying
/ a= 2/ Pald, ) for every j = 1,2,...,b14.
aj @j

On the other hand, we define a map
pp: Coul®(X) — ROs (30)

(d,g%)iﬁ(—i/ t&,...,—z’/ ta).
1 Boy s

Note that p, and pg together keep track of the H'(X;R)-component of (a, (5) We have a
decomposition

ﬁﬁ = ﬁﬁ,in @ ﬁﬁ,outy
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where

Bp,in(d, ¢) = (—i/ ta, .. —z/ ta),
Bl ﬂbin
PB.out (@, ) = (—i/ t&,...,—i/ ta).
By +1 By 5
We now proceed to describe the group of gauge transformations. Denote by Gx the
Li+3/2—completion of Map(X, S'). The action of an element @& € Map(X, S!) is given by

i (a,0) = (a—a 'da, 0d).
The proof of the following lemma is a slight adaption of [8, Proposition 2.2] and we omit

1t.

Lemma 5.3. Inside each connected component of Gx, there is a unique element @ : X —
St satisfying

a(6) =1, utdu € i (X).
These elements form a subgroup, denoted by g?f’, of harmonic gauge transformation with
double Coulomb condition.

Consequently, there is a natural isomorphism
Gh® = 1o(Gx) = HY(X; Z). (31)
We also denote by gﬁg‘;, the subgroup of g?f that corresponds to the subgroup ker(H'(X;Z) —

HY(Y;7Z)) of H'(X;Z). Observe that each element in gﬁ}‘;, restricts to a constant function
on each component of Y.
Now we define the relative Picard torus
. h,6
PIC(X, ¥) : = Hhe(X) /G55

(32)
>~ ker(H'(X;R) — H (Y;R))/ker(H (X;Z) — H (Y;Z)).

This is a torus of dimension b; . The double Coulomb slice Coul®“(X) is preserved by
h,o h,o
Gy~ and thus gxy.

Our main object of interest will be the quotient space Coul®“(X)/ g;%, regarded as a
Hilbert bundle over Pic’ (X,Y) with bundle structure induced by the projection p,. The
bundle will be denoted by A

Wy = Coul®®(X) /G5

Remark. A different Hilbert bundle structure of Wx can be induced by the orthogonal
projection

p1: Coul®C(X) = Hho(X).
However, we prefer p, because p, behaves better than p; and simplifies our argument in
the proof of gluing theorem for relative Bauer-Furuta invariants.

Definition 5.4. For a pair (a,$) € Coul®C(X), we denote by [a,¢] the corresponding
element in the Hilbert bundle Wx. We write || - || ¢ for the fiber-direction norm on Wx.
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Note that the norm || - ||p is not directly given by the restrlctlon of the L? norm

k+1/27
on Coul®®(X) because the latter is not invariant under Ghe ¥ y- However, we can construct

| - || = using a partition of unity and the compactness of Pic’(X,Y).
Let us fix a fundamental D C H},(X) through out this section. We only state equiv-
alence of the norms on D below without the proof.

Lemma 5.5. There exists a positive constant C such that for any (a, 45) € Coul®“(X)
such that py(a, ) € D, we have

& dlle o dyy,s

C - k+1/2

< C- (& dlllr +1).

Lastly, we will consider some restriction maps on the bundle. Recall that the Coulomb
slice on 3-manifolds is given by

Coul(Y) := {(a,¢) € L; (iQ"(Y) @ T(Sy)) | d*a = 0}.
From the definition of double Coulomb slice, we obtain a natural restriction map
r: Coul®“(X) — Coul(Y) (33)
(a,0) (b, 0ly).

We would want to also define a restriction map from Wx to Coul(Y). Notice that r(u -
(é,$)) might not be equal to r(a, ¢) even if & € QXY because 4|y # 1 in general. This is
where we use the based path data [7]] to define a “twisted” restriction map

bo(Y)
=1l Coul““(X) — H Coul(Y;) = Coul(Y)

bo(Y) ) (34)
1.6 [ e 7 G,
j=1

The following result can be verified by a simple calculation.

Lemma 5.6. For each 4 € g;?%,, we have (i - (@, 9)) = r'(a, ). Moreover, the twisted

restriction map v’ does not depend on the choice of the representative 1] in its equivalent
class.

As a result, we can define the induced twisted restriction map
r= ’F[ﬁ] : Wx — COUZ(Y) (35)

Note that 7 is fiberwise linear since pq(a, (;AS) is constant on each fiber. Moreover, there is
a decomposition (Fin, Tout): Wx — Coul(—Yin) X Coul(Yout)
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5.2. Seiberg—Witten maps and finite-dimensional approximation. On the bound-
ary 3-manifold Y, we fix a base spin® connection Ag. We require that the induced curvature
Fy¢ on det(Sy) equals 2mirg, where 1 is the harmonic 2-form representing —ci(s). Fur-
thermore, we pick a good perturbation f = (f,d) where f is an extended cylinder function
and ¢ is a real number (see [7, Definition 2.3] for details). Auxiliary choices in the con-
struction of the unfolded spectrum SWEF (Y, s) will be made but not mentioned at this
point.

On the 4-manifold X, we fix a base spin® connection Ay such that V ; Ay = jt + V4, on
[—3,0] x Y. As usual, the space of spin® connections on Sx can be identified with i (X)
via the correspondence A — A— Ag. For a 1-form a € iQ(X), we let I, : T'(ST) — ['(5)
be the Dirac operator associated to the connection Ay+a. We also denote by lD+ = ]ﬁar the
Dirac operator corresponding to the base connection flo, SO we can write lD; = lD+ +p(a).
On Y, we denote by lDAO—i-a the Dirac operator associated to the connection Ag+ a where
a € QYY) and denote by I := I 4,

Furthermore, we perturb the Seiberg—Witten map by choosing the following data

e Pick a closed 2-form wy € i2%(X) such that wol[—3,0/xy = milp.
e Pick a bump-function ¢: [-3,0] — [0, 1] satisfying ¢« = 0 on [-3,—-2] and ¢+ = 1
n [—1,0] and 0 < /(x) < 2. For t € [-3,0], denote by a; the pull back of a by
the inclusion {t} x Y — X and let ¢, = &\{t}xy. We define a perturbation on X
supported in the collar neighborhood of Y by

Q(&v é) = L(t)((dt A gradl f(ata ¢t) + * gradl f(at7 ¢t))7 grad2 f(at) d)t)) (36)
The (perturbed) Seiberg-Witten map is then given by
SW: Coul®“(X) = Li_ (i95(X) @ T(Sy)) (37)

(6,6) > (@0, 1" ) + (GES, — 0700 — i, H@)) + (@, ),
where (¢¢*)y denotes the trace-free part of ¢p¢* € I'(End(S¥)). We consider a decompo-
sition

SW=L+Q (38)
where
L(a,¢) = (d*a, Py, ) and Q = SW — L.
By similar computation, making use of the tameness condition on grad f (see [9, Definition

10.5.1]), we can deduce the following lemma:

Lemma 5.7. For any number j > 2, if a subset U C Coul®“(X) is bounded in L?, then
the set Q(U) is also bounded in L?.

We will next consider Seiberg—Witten maps on to the Hilbert bundle Wx. Notice that
the map

(SW,a): Coul®(X) — Li_y ;5103 (X) ®T(Sx)) x Hpe(X) (39)
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is equivariant under the action of gﬁlfy, where the action on the target space is given by
@ (w, ), h) = ((w, ), h — 4~ 'di).
Consequently, (SW, p,) induces a bundle map over Pic®(X,Y") denoted by
SW: Wy — (L1 (123 (X) @ T(Sx)) x Hpo(X))/9K5-

By Kuiper’s theorem, the Hilbert bundle (L7_, ,(iQ% (X) @ T(Sx)) x Hpe (X)) JGhe,
can be trivialized. We fix a trivialization and consider the induced projection from this
bundle to its fiber Li_l/Q(iQi(X) ®I'(Sy)). Composing the map SW with this projection,
we obtain a map

SW: Wx = L, (i3 (X) @ T(Sy)).

As the map (L, p,) is also equivariant under the action of gﬁ?f}, the decomposition |D
induces a decomposition

SW =1+Q,
where L is a fiberwise linear map.
On the 3-dimensional Coulomb slice Coul(Y'), a Seiberg—Witten trajectory is a trajec-
tory v: I — Coul(Y) on some interval I C R satisfying an equation
dy(t)

i (I+c)(v()),

where [ +c comes from gradient of the perturbed Chern—Simons-Dirac functional C'SD,, ¢
(cf. [7, Section 2]). Recall that [ = (xd, I)) and ¢ has nice compactness properties.

Let V{* C Coul(Y) be the span of eigenspaces of | with eigenvalues in the interval
(A, ] and let p‘)f be the L?-orthogonal projection onto V/\“ . An approximated Seiberg—
Witten trajectory is a trajectory on a finite-dimensional subspace v: [ — V; satisfying
an equation

dzl<tt> = (I+ P50 ) (x(1).

From now on, let us fix a decreasing sequence of negative real numbers {\,} and an in-
creasing sequence of positive real numbers {uy, } such that —\,, 1, — 00. As a consequence
of [8, Proposition 3.1], the linear part

(Lo 0 7): Wx — L3 (i3 (X) @ T(Sy)) @ V", (40)

is fiberwise Fredholm. Now we choose an increasing sequence {U,} of finite-dimensional

subspaces of Lz_lﬂ(iﬁi (X) @ I'(Sy)) with the following two properties:

(i) Asn — oo, the orthogonal projection Py, : inl/Q(iQi(X)@F(S;()) — U, converges
to the identity map pointwisely.

(ii) For any point p € Pic’(X,Y) and any n, the restriction of (L, p""_ o) to the fiber
over p is transverse to Up.
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Note that p,(a) = 0 on 90X and hence the family of the Dirac operators ﬁ;&(&) has no
spectral flow. Consequently, we see that
W, = (L, ", 0 7) " H(Un x V™) (41)

is a finite-dimensional vector bundle over the Picard torus Pic’(X,Y). We define an
approximated Seiberg-Witten map as

ﬁ/n:zi+PUnoQ:Wn—>Un. (42)

5.3. Boundedness results. In this section, we will establish analytical results needed to
set up our construction of the relative Bauer—Furuta invariants. Uniform boundedness of
the following objects and their approximated analogues will be our main focus here.

Definition 5.8. A finite type X-trajectory is a pair (Z,~) such that

e T € Wy satisfying SW(z) = 0;

e v:[0,00) = Coul(Y) is a finite type Seiberg—Witten trajectory;

e 7(Z) =~(0).
Recall that a smooth path in Coul(Y') is called finite type if it is contained in a fixed
bounded set (in the L?-norm).

With a basepoint chosen on each connected component Y}, we recall that we can define
the based harmonic gauge group gB’;’O =~ HY(Y;Z). The group g{;"’ has a residual action
on Coul(Y). Then we consider a strip of balls in Coul(Y') translated by this action

Str(R) = {x € Coul(Y) | 3h € Gy’ s.t. ||h- |2 < R}. (43)
Loosely speaking, a finite type X-trajectory corresponds to a Seiberg—Witten solution

on X*:= X U ([0,00) x Y). The following result resembles [§, Corollary 4.3] but we give
a more direct proof without relying on broken trajectories and regular perturbations.

Theorem 5.9. For any M > 0, there exists a constant Ro(M) > 0 such that for any
finite type X -trajectory (z,~y) satisfying

ps(T) € [-M, M]"7 (44)

we have
1Z[ < Ro(M) and ([0, 00)) C int(Str(Ro(M))).

Proof. Let {(Zn,vn)} be a sequence of finite type X-trajectories satisfying . Without
loss of generality, we may pick a representative &, = [(dn, ¢ )] such that

where D is the fundamental domain fixed before Lemma [5.5

Since 7, is finite type, we see that the energy of vy |1 41] goes to 0 as t — oo for any
n. In particular, the energy of yn\[t_u“] is bounded above by 1 for any n and any ¢ large
enough compared to n. Then, it is not hard to show that there is a constant R’ such that
Yn(t) € int(Str(R')) for any n and any ¢ large enough compared to n. Since C'SD,, ¢ is

bounded on int(Str(R’)) and CSD,, ¢ is decreasing along ~,, we can obtain a uniform
lower bound C7 of CSD,, ¢(vn(t)) for any n € N, ¢ > 0.
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We now consider solutions on X’ := X U([0,1] x Y) obtained by gluing together (a,, ¢,)
and 7y |j0,1]- Remark that the condition 7(#) = v(0) from the twisted restriction is slightly
different from the setup in [8, Corollary 4.3]. However, we can still glue in a controlled
manner since we control P (én, ¢n) in (45). The uniform lower bound C; of CSD,, (1))
implied that the energy of these solutions on X’ (see [0, (4.21),(24.25)] for definition)
has a uniform upper bound. We now apply compactness theorem [9, Theorem 24.5.2]
adapted to the balanced situation; after passing to a subsequence and applying suitable
gauge transformations, the solution on X’ converges in C* on the interior domain X.

In particular, we can find u, € Q;L(’é such that a,, - (G, QASn) converges in L%+1/2 to some

(oo, Poo) € Coul®C(X).
By 1' and , we have controlled values of p, and pg of (an, ). This implies

that {u,} takes only finitely many values in Q;L(’é. After passing to a subsequence, we can

2
k+1/2°

On the collar neighborhood [—1,0] X Y of X, the solution (d,, $,) can be transformed
to a Seiberg—Witten trajectory in a controlled manner. We subsequently glue this part
together with -, to obtain a Seiberg—Witten trajectory

assume that 4, does not depend on n and (a, qgn) converges in L

v [=1,00) = Coul(Y).

Since (G, ¢n) converges in Li+1/2’ we have a uniform upper bound C3 of CSD,, ¢(v,,(—1)).
As a result, the energy of a trajectory 'y?’%|[t_1,t+1] is bounded above by Cy — C; for any
t > 0 and n € N. We can then conclude that there is a constant R” such that v, (t) €
int(Str(R")) for any ¢t > 0 and n € N. This finishes the proof.

O

Corollary 5.10. There exists a uniform constant Ry such that for any finite type X-
trajectory (z,7), we have y(t) € Str(Ry) for any t € [0,00).

Proof. By looking at the lattice induced by the chosen basis on im /*, there is a constant
C such that, for any £ € Wy, one can find a gauge transformation o € g?f’ satisfying
pali- &) € [-C,Clns,

Let (Z,7) be an arbitrary finite type X-trajectory. We then apply Theorem to
(@-Z,(aly) - v) with M = C and @ chosen as in the previous paragraph. Consequently,
we may set R; = Ro(C') so that (uly) - y(t) € int(Str(R;) for any t € [0,00). This implies
v(t) € int(Str(Ry)) for any t € [0, 00).

O

Now we consider an approximated version of X-trajectories.

Definition 5.11. For n € N, € € [0,00), and T € (0, 00|, a finite type (n, €)-approximated
X-trajectory of length T is a pair (Z,~) such that

o T c W, satisfies ”§I\/V/n(j)”Li » <€

v:[0,T) — V{ is a finite type trajectory satisfying —d?i—gt) = +p)"oc)(7(1));
o 7(0) = p o ().
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Note that p*"_ o 7#(#) always belongs to Vi from the definition of W,.

The proof of the following convergence of approximated trajectories is a slight adaption
of [8 Lemma 4.4] and we omit it.

Lemma 5.12. Let S, S be bounded subsets of Wx and Coul(Y') respectively. Let {(%;,7;)}
be a sequence of finite type (nj, €;)-approzimated X -trajectory of length Tj such that Z; €
g,’yj C S for any j and (nj,€;,T;) — (00,0,00). Then there exists a finite type X-
trajectory (Too, Yoo) Such that, after passing to a subsequence, we have

e I; converges to Too n Wx;

® ; converges to Yoo uniformly in Li on any compact subset of [0,00).

As a result, we can deduce boundedness for approximated X-trajectories.

Proposition 5.13. Let M > 0 be a fized number. For any bounded subsets S c Wy
and S C Coul(Y), there exist eg, N, T € (0,00) such that: for any finite type (n,e)-
approzimated X -trajectory (Z,7) of length T > T satisfying

n>N, e<e, T€8,7CS and ps(i) € [-M, M]"#,
we have ||Z||p < Ro(M) where Ro(M) is the constant from Theorem [5.9,

Proof. Suppose the result is not true for some S, S. There would be a sequence {(&;,7;)}
of finite type (n;,€;)-approximated X-trajectory of length 7} with Z; € S,’yj C S and
(nj, €5, T;) — (00,0,00) such that ||Z;||p > Ro(M) and pg(Z) € [—M, M]Pré.

By Lemma after passing to a subsequence, we can find a finite type X-trajectory
(Zoo, Yoo) such that Z; = oo in Wx. In particular, this implies

|Zoollr = lim [|Z;]lp > Ro(M) and ps(zec) = lim pg(i;) € [—M, M]"2,
j—00 j—00
which is a contradiction with Theorem [5.01 O

Proposition 5.14. There exists a constant Ry with the following significance: for any
bounded subsets S C Wx and S C Coul(Y'), there exist e, N, T € (0,+00) such that for
any finite type (n, €)-approzimated X -trajectory (&,v) of length T > T satisfying

n>N, e<ey, €85 and vy C S
We have v|jg p_7) C Str(R2).

Proof. Recall that there is a universal constant Ry such that any sufficiently approximated
Seiberg-Witten trajectory 4 : [-T,T] — V{' with sufficiently long length 7" and with
v C S must satisfy v(0) € Str(Rp) (cf. the constant Ry from [7, Corollary 3.8]). We pick
Ry = max{ Ry, R} where R; is the constant from Corollary

Suppose the result is not true for some S,S. Then we can find sequences n;, €5, T, T;
with n; — oo0,T; < Tj;,T; — oo such that there is a sequence {(Z;,7;)} of finite type
(nj, €;)-approximated X-trajectory of length T with &; C S, v; C S and with ~;([0,T; —
T;]) & Str(Ra). B

We have a number t; € [0,7; — T}] such that v;(t;) ¢ Str(R2). The property of Ry
forces t; to converge to a finite number ¢, after passing to a subsequence.
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By Lemma there exists an finite type X-trajectory (Zeo,7o0) such that, after
passing to a subsequence, 7y; converges to 7 uniformly in Lz on any compact subset of
[0,00). In particular, v;j(t;) = Yoo(too) Which contradicts with Proposition

O

5.4. Construction. Majority of this section, in fact, is dedicated to construction of type-
A unfolded relative invariant. The construction of type-R invairant can be obtained almost
immediately after applying duality argument.

Let us pick R a number greater than the constant Ry from Proposition Recall that
the unfolded spectra swf?(Y,y) and swf(—Yi,) are obtained by cutting the unbounded
set Stry (R) into bounded subsets and applying finite dimensional approximations. With
a choice of cutting functions, we obtain increasing sequences of bounded sets {J,,(—Yin)}
contained in Stry, (R) and {J;:(You)} contained in Stry,,, (R) for each positive integer
n. See Section [2.1] for brief summary.

For a normed vector bundle V', we will denote by B(V,r) the disk bundle of radius r
and denote by S(V,r) the sphere bundle of radius r. We will consider a subbundle of Wx
given by

Wx g :=1{% € Wx | P,out(Z) = 0}.

We also denote W,, g = W,, N Wx g and let Sﬁ/nﬂ be the restriction of §W/n on W, .
For a fixed positive integer mo, since {.J,, (—Yin)} is bounded, we can find a number
M (myg) such that |fﬁj ia| < M(myg) for all (a,¢) € J,, (=Yw) and j = 1,...,b. We
then choose a number R greater than Ro(M (mg)) the constant from Theorem Since
Tout(B(Wx, R)) is bounded, we can find a positive integer m; such that
Fout(B(Wx, R)) N Stry,, (R) C J;h (Your)- (46)

For e > 0, n € N, we consider the following subsets of V/\“n";

K1(n7m0,R7 6) =
1

P o7 (SW,, 5(B(Un, ) 0 B(Was, B) 1 (T3 (<Yin) x Stry,,, (1))
Ks(n,mg, R,€) = (47)

(e o 7 (SW o s(B(Wn, €0) 0 S(Ws, B)) 0 (i (=Yin) x Sty (R)) )
u(p“n or(ﬁvglﬂ( (Un,e))mB(Wn,ﬁ,R))ma(ﬁ—( m)xStrym(é))).

Notice that Ki(n,mg, R,€) C Jmy (—Yin)X Jﬁlf (Yout) from our choice of my and Ka(n, mg, R, €)
plays a role of a boundary of K;(n,mg, R, €).
The following is the key result of this section (cf. [8, Proposition 4.5]).

Proposition 5.15. For a choice of mo,m1 and R chosen above, there exist N € N and
T,eo > 0 such that, for any n > N and € < €y, the pair (Ki(n,mg, R, €), Ko(n, mg, R, €))
is a T-tame pre-index pair in an isolating neighborhood Jiy (—Yin) X Jiit (Your).-
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Proof. We choose numbers (N, T,eg) which satisfy both Proposition and Proposi-
tion with S =BWx,R), S = T o (=Yin) X Jih (Your), and M = M (mg) . Moreover,
we may pick a larger N so that Ji (=Yin) X Jiit (You) is an isolating neighborhood
for all n > N (cf. [7, Lemma 5.5 and Proposition 5.8]). We will check directly that
(K1(n,mq, R, €), Ka(n,mo, R, €)) is a T-tame pre-index pair.

Suppose that y € Ki(n,mo, R,€) and ¢, (y,[0,T]) C Jia (=Yin) x Jiit (Your) with
T > T. From definition, there is & € W,, g such that H?W;(:E)H < eand p'_ o7 (Z) =y.
These give rise to a finite type (n,e)-approximated X-trajectory (Z,7) of length 7. By
Proposition we have ¢, (y, [0, T —T]) C Str(Rz) C int(Str(R)). From our choices of
Jimos iy » it is not hard to check that ¢, (y, [0,T — T1) lies in some compact subset inside
the interior of Jiyy (—Yin) X Jiit (Yout).

For the second pre-index pair condition, let us assume that y € Ks(n,mg, R, €) and
on(y,[0,T]) C Jhy (=Yi) x Jit (You). This also gives rise to a finite type (n,e€)-
approximated X-trajectory (Z,7) of length T. Since p""_ o 7in(Z) € Jm, (—Yin) and
& € Wy g, we can see that pg(i) € [—M (mq), M (mg)]b15.

By Proposition we have ||Z||p < Ro(M) < R, which implies that

y €9 (U (<Yi) x Stry, (R)).
Again, from Proposition we must have
y € {8%’;(—1@1) \aswn(ﬁe)} x Stry...(R).

This is impossible because the approximated trajectories on dJy, (—Yin) \ OStry, (R)
immediately leave Jp, (—Yi,).

O
The proposition allows us to consider a map
v(n, mg, R, €): B(W,,3,R)/S(W,.s,R) (48)
— (B(Un,€)/S(Up,€)) A (K1(n,mg, R, €)/Ka(n,mo, R, €))
given by
(SWp(@),p" 0 7(2)) i [SWap(@)llzz_ , < e and
v(n,mo, R, €)(x) := P o (@) € Jriy (= Yin) X Stry,,. (R)),

* otherwise.
It follows from our construction that this map is well-defined and continuous. By Proposi-
tion and Theorem we have a canonical map from Kj(n,mg, R, €)/Ka(n,mg, R, €)
to the Conley index of Jjy (—Yin) X Jiwi (Yout). This gives a map
1~)(7’L, mo, R7 6) : B(Wn,ﬁv R)/S(Wn”@? R)
= (B(Un, €)/S(Un, €))AI(inv (T (=Yin))) A T (inv (T (Your))).
It is a standard argument to check that ©(n, mg, R, €) does not depend on R or € as long
as they satisfy all the requirements to define v(n,mg, R, €).

(49)
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Before proceeding, let us describe the Thom space B(W,, g, R)/S(W, 3, R) in term of
index bundle. Consider a family of Dirac operators

D: Li\yo(S%) X Hpo(X) = Li_y o(Sx) % Hpy, X Hpo(X)
(d)ah) = (wh¢7 Dir(¢|Y)7 )7

where Hp,, is the closure in L2( (Sy)) of the subspace spanned by the eigenvectors of ]ﬁ
with nonpositive eigenvalues and let T, be the orthogonal projection. As in Sectlon
this map is equivariant under an actlon by Q Yy- We then take the quotient to obtain a

map between Hilbert bundles over Pic’(X,Y") and trivialize the right hand side so that
we have

D: (Li5(S%) x Hpo(X /GRS — Ly 1/2(Sx) x Hp,,..

Since D is fiberwise Fredholm, the preimage D! (U) is a finite-dimensional subbundle

for a finite-dimensional subspace U C Lk 1 /2(3 ) X Hp,, transverse to the image of the

restriction of D to any fiber. Here we use the fact that the rank of f)_l(U) is constant
because hly = 0 and there is no spectral flow.

We consider desuspension S~V B(D~(U), R)/S(D~(U), R) of the Thom space in the
stable category €. The following lemma follows from standard homotopy argument.

Lemma 5.16. The object S-UB(DL(U),R)/S(D~Y(U),R) does not depend on any
choice in the construction given that gly = g and Aoly = Ao. We will call this ob-

ject Thom spectrum of virtual index bundle associated to the Dirac operators, denoted by
T(X,3,Ao,g,0;S%).

Remark. For different choices of base points, one can construct an isomorphism by choosing
a path between them. However, isomorphisms given by different pathes are different unless
they are homotopic relative to Y.

Recall from Section that we have desuspended Conley indices
Iy (=Yan) = 574 Liny (7 (< in)),
It (You) = B o) I (imv (J75 (Your))-

mi

(50)

We see that if we desuspend the map ©(n, mg, R, €) by V/\ (=Yin) @ V)\ (Yout) ® Un, the

right hand side will become Iy, (= Yin) A It (Yout). As a consequence of Lemma we
can also identify the left hand side after desuspension as follows

Lemma 5.17. Let Vii be a mazimal positive subspace of Im(H?*(X,0X;R) — H?(X;R))
with respect to the intersection form and let Vi, be the cokernel of t*: H'(X;R) —
H'(Yi;R). Then, we have

3V (YR, Cowd U B, 5, R) /S(Wy g, R) = B~ OXOVT(X, 5, Ao, g, 6; 5",

Proof. This is a bundle version of index computation in [8 Proposition 3.1]. From there,
we are only left to keep track of H!(X;R) and H'(Y;R) as we pass to bundle and subspace,
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i.e. the base of the bundle is the torus of dimension b; , and we take a slice of codimension
b1 3—bin. Note that we desuspend by V)\ (Yout), the orthogonal complement of H!(Yoy; R)
in V)\ (Yout). One may compute the rank of the Thom space of the index bundle of the
real part of (L, p® o 7) suspended by H'(Y,u; R) as follows

b1(X) — b (X) — bi(Y) — bra — (brs — bin) + b1 (Your) = —b7(X) — (b3 (Yin) — bin).

The desired isomorphism follows in the same manner.

Consequently, we obtain a morphism

L 5KV T (X8, Ag, 9,03 5) = I (=Yin) A T (Your) (51)

Vmoymy -
in the stable category €. Note that such a morphism is defined for any positive integer
mo with m; large relative to mg and n large relative to mg, m;.

Recall that, to define unfolded spectra swf” (Yout) and MR(—Yin), we have canonical
isomorphisms

P (= Yin): I (=Yin) = It~ (= Yia) and o (You) : It (Yout) = It (Your)

mi

and also morphisms
DI (=Yi) = I

mo—1

(—Yin) and z"+ In+(Yout) I;;rﬂ(nut)

induced by repeller and attractor respectively. To have a morphism to the unfolded spec-
tra, we have to to check that the maps {1, ., } are compatible with all such morphisms.

mol

Lemma 5.18. When n is large enough relative to mg, my1, we have the following:
(1) (ﬁ?wo_( Yin) A Pm1 (Yout)) © w%o,ml = %}mls
(2) ( mo—1 "\ ldI" +(ym)) O Yo my = Crmo—1,my
(3) (1d1;yo—(_ym) Nimy ) o Uromr = Ymomai+1-
Proof. The proof of (1) can be given by standard homotopy arguments similar to [IT]

Section 9] and [7, Proposition 5.6]. Whereas (2) and (3) follow from Proposition and
3.19| respectively. O

The last step is to apply Spanier-Whitehead duality between I, (—Yi,) and I (Yin)
(see Section and for details). As a result, we can turn the morphism ¢y, .. to a
morphism

~ _ + 4 N N
oyt ST VXEVIT(X 8 Ag, g,058") A L (Yin) = It (Yous), (52)

which will define the relative Bauer—Furuta invariant.

Definition 5.19. For the cobordism X : Y;, — Y,ut, the collection of morphisms {anom L
mo € N, my > mg,n > mg,mi1} in € gives rise to a morphism

bf* (X5, Ao, g, 06, [i7]; S1):
E_(VX ®Vin)T(X7§a AUa g9, 6; Sl) A LVVfA(Y;namna Aim Jin, S ) — SWf ( outy Souts Aouta Jout; Sl)
in &. This will be called the type-A unfolded relative Bauer—Furuta invariant of X.
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Note that Lemma and compatibility of the dual maps ensure that {1, ., } are
compatible with the direct systems. When s = §|y is torsion, we can also define the nor-
malized relative Bauer—Furuta invariant. In this torsion case, let us define the normalized
Thom spectrum

T(X,5,6,5%) := (T(X,$5, Ay, g,0;5%),0,n(Y, s, Ao, 9)),

where n(Y, s, Ag, g) is given by 1 (n(IP) — dimc (ker D) + ) (see (21) of [7]).
Definition 5.20. When s = §|y is torsion, the normalized type-A unfolded relative Bauer—
Furuta invariant of X
BFA(X, 5,6, [i]; S1): £~ XEV) T (X, §,6; SY ) ASWEA (Vin, 8in; S1) = SWE (Yout, Sout; S)
is given by desuspending bf4 (X, §, Ag, g, 6, [7]; S) by n(Y,s, Ag, g).

We then define the type-R invariant by simply considering the dual of type-A invariant
of the adjoint cobordism X o — Yo — —Yiy. In particular, the dual of the morphism

Dy (X1 : 71 ST (T 5 0, 6,65.5%) A T (—Yous) = Tt (— Vi),

gives a morphism

By STVX V) T(X 5 Ay, g,6;8%) A T (Yin) = 207 (Your)-

mo,mi1

Note that Vi, (XT) is the cokernel of 1*: H'(X;R) — H'(You;R) and we denote by Vout
and such a morphism is defined for any positive integer m; with mg large relative to m;
and n large relative to mg, m1. We can now give a definition in a similar fashion.

Definition 5.21. For the cobordism X : Yj, — Yout, the type-R unfolded relative Bauer—
Furuta invariant of X is a morphism

b (X, 5, Ao, 9,0, [if}; S1):
Zf(V;GBVO“t)T(X,ﬁ, Ao,g, 0; Sl) VAN LVVfR(}/in,ﬁin, Ain, Gin; Sl) — LVVfR(Youtaﬁout’ Aout, Jout Sl)

in &* given by the collection of morphisms {'lZTTTLlO,ml | m1 € N, mg > mi,n > mg,m}.
When s = §|y is torsion, one can also desuspend bf*(X, 5, Ag, g, 6, [7]; S*) by n(Y, s, Ao, g)
to obtain the normalized type-R unfolded relative Bauer—Furuta invariant of X

BEF(X, 5,6, [ §1): ©~X V)T (X, 5,65 ") ASWER Vi, 51n; S1) = SWER (Yo, 5outs §7)-

Remark. One can also construct the maps 1y, ., directly by replacing (—Yin, Yout) with
(Yout, —Yin) in the construction through out this section.

5.5. Invariance of the relative invariants. In this subsection, we will show that the
morphism bf4 = Qf‘A(X,ﬁ,Ao,g, 6,[7]; S') and bfft = bff(X,5, Ay, g,6,[7]; S') depends
only on Ay, g, 0, [7j]. We have to check that they are independent of the choices of
(i) cutting function g, cutting value 6, harmonic 1-forms {h; };’-1:1 representing generators
of im(HY(Y;Z) — H'(Y;R)),
(ii) Riemann metric g, connection Ay on X with Jdly = g, /lo\y = Ao,
(iii) perturbation f: Coul(Y) — R.
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Moreover when ¢; (s) is torsion, we will show that BE4(X, 5, 6, [7]; ') and BF® (X, 5, 6, [77]; S1)
are independent of Ay, g too.
Choose two cutting functions g, g, cutting values 6,6 and sets of harmonic 1-forms
{h; }j 11 {h;}?lzl representing generators of 27miim(H'(Y;Z) — H'(Y;R)). We get two
inductive systems
LVVfA(K {h]}]agae) = (Il — I2 — )7
swi (Y, {}};,9,0") = (L = I, — --)

in €. Here I,y,, I,, are the desuspension of the Conley indices Ig1 (¢", inv(Jy ), Igi (¢, inv (T 1))
for n > m by V)\ ,and JT. JbT are the bounded sets in Str(R) defined by using
({n;};,9,0), ({h/ 1,5 0").

Choosing integers m; < m; < mj41, we can assume that inv(J,?{;r) is an attractor in
inv(J" ’j) and we have the attractor map

Igi(inv(J) ’+)) — I (inv(J? ;r))

which induces a morphism

Imj — dyn;-

Similarly we have a morphism
I ;=

mj41-°

These morphisms induce an isomorphism between swf (Y, {h;};, g, 0) and swf (Y, {ri}5,9,0).
The isomorphism between swf™(Y, {h;};,g,0), swt*(Y, {h}};,9,0') is obtained similarly.
The morphisms in inducing the relative invariants bf?, bf® are compatible with the

attractor maps and repeller maps as in stated in Lemma It means that bf?, bf? are
independent of the choices of {h;};, g, 6 up to the canonical isomorphisms.

Choose connections Ay, 1216 on X with A()’y = A{]\y = Ap and Riemannian metrics g, §’
on X with gly = ¢’|y = g. Then the homotopies
Ao(s) = (1— ) Ao + s, 4(s) = (1— )3+ sg'
naturally induce the homotopy between the maps v, v’ defined in associated with
(90, Ao), (¢, AL). Hence bf?, bff are independent of Ag, §.
Take sequences A, N, fin, fth, with —Xp, =] | fin, pi, — 0o. Then we get objects

I:brlo_( Yin) In+(Y0ut) I ; (=Yin) jn’+(Yout)-

rTma ’ Tmo Y Tma

We have canonical isomorphisms
Ly (=Yin) = I (=Yin), It (You) = I (Your)

for n large relative to mo, mi. The morphisms ¢y, . ~are compatible with these iso-

morphisms as stated in Lemma Therefore bf, bff is independent of A, un up to
canonical isomorphisms.
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Let us consider the invariance of bf4, bf® with respect to the perturbation f. Take two
perturbations fi, fo : Coul(Y) — R. Then we obtain two inductive systems

swi (Y, fi) = (hh = o — )
swid(Y, fo) = (I = I — --+)

in the category €, which are isomorphic to each other. Let us recall how to get the
isomorphism briefly. (See Section 6.3 of [7] for the details.) The perturbations fi, fa
define the functionals £1, L2, which induce the flows

" (L1), " (L) : V™ x R — V™.
The objects I, I,, are the desuspensions by V/\On of the Conley indices
Igi (9" (L), inv(Jih)), Isi (9" (La), inv ().
Choose integers ki, o with 0 < Ky < ko < km+1. Then we have
J,jm C py ([=em + Lem — 1)) N Str(R) C py ([—em, em)™) N Str(R) C jijm
for some large positive number e,,,. We have a map

im  Isi (9"(L1), inv(J 7)) — Isl(gon(ﬁ2),inv(j£:))a

which induces the isomorphism between slfA(Y, f1) and LMA(K f2). The map i is the
composition p; o po of

pr Isr ((£2, ), v (T2 ) = Isi (" (L), inv(J2 )

and
pa + I (" (L0), V() = Lsn(97(£2, ), v ().

m

Here £2 s a functional on Coul(Y’) such that
Egm = /L4 on p;[l([—em +1,e, — 1]b1),
Egm = L9 on p;[l(Rbl \ [—€m, em]bl) .

The map p; is the homotopy equivalence induced by a homotopy {o(L? )}o<s<1, where
L =sLi+(1-s)LY . Note that inV(J,ZLT’:r, " (LY ))(= inv(J,?’+, ©"(L1))) is an attractor

in inv(j]?:, ©"(LY ). The map ps is the attractor map.

Similarly the isomorphism between swf? (Y, f1) and swf?(Y, f5) is induced by the com-
position of the repeller map and the homotopy equivalence induced by the homotopy of
the flows.

To prove the invariance of bf4, bf with respect to perturbation f, we need to show
that the morphisms are compatible with the attractor maps, the repeller maps and
the homotopy equivalence induced by the homotopy of the flows. The compatibility with
the attractor maps and the repeller maps is already stated in Lemma We will show
the compatibility with the homotopy equivalence induced by the homotopy of the flows.

Take perturbations fo, f1 : Coul(—Yi,) [[ Coul(Your) — R. Let us consider the flow

@n VX" x [0,1] x R — V™ x [0,1]
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on V)f; " x [0, 1], induced by the homotopy

Ef’in,emo Hﬁffouheml : Coul(—Yin) HCoul(Yout) —-R (0<s<1). (53)
We also have the Seiberg-Witten map on X induced by the homotopy:
Coul®“(X) x [0,1] — L}_, Q" (X) @ Sx) @ V*7 x [0,1].
Using the flow and the Seiberg-Witten map, for a small positive number € > 0, we define
K1 = Ki(n,mo,€), Ko = Ky(n,mo,e) C B(V{",R) x [0,1]

as in . As before we can show that (K7, K3) is a pre-index pair and can find an index
pair (N, L) such that

I?l(n,mo,e) CN, IN(Q(n,mo,e) c L.
For s € [0, 1], put
K1 s(n,mo,€) := f(l(n,mo,e) N (V)\’i" x {s}),
Ks5(n,mo, €) := Ka(n,mg, ) N (V{" x {s}),
N = N (V" x {s}),
Ly:=LnN (V¥ x {s}).
We get the map
v : B(Wy 3, R)/S(Whp 3, R) = (B(Un,€)/S(Un,€)) A (K1,s(n,mo, €)/ Ko s(n,mg,¢€))
= (B(Un, €)/S(Un, €)) N (Ns/Ls).
The maps vy, v; induce morphisms
o 2 TR EVIT 5 I (—Yi)o A I (Youro,
Wy o T VROVT S 1 (Vi) A T (Your)t

for 0 < mg € m; < n as before. We have to check that the following diagram is
commutative:

SOV s 1 (< Yi)o A L (Your)o (54)
x J{E
I (=Yi)1 A I (Your)1

Here Iy (—Yin)o ALy (Yous)o = Ia (= Yin)1 A LT (Yous)1 is the isomorphism induced by
the homotopy . Consider the inclusion

is: Ny/Ls < N/L
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for s € [0,1]. By Theorem 6.7 and Corollary 6.8 of [I4], i, is a homotopy equivalence and
the following diagram is commutative up to homotopy:

No/Lo -2~ N/L (55)

| A

Ny /Ly

Here Ny/Lo = Ni/L; is the homotopy equivalence induced by the homotopy . With
the homotopy

is0vs: B(Wpn, R)/S(Wy.3) = (B(Up,€)/S(Up,€)) A (N/L)

between ig o vy and i1 o vy and the commutativity of the diagram , we can see that the
diagram is commutative. The invariance of bf4, bf with respect to perturbation f
has been proved.

Assume that c;(s) is torsion. We will prove that the normalized invariants ﬂA,ﬂR
are independent of Riemann metric g and base connection Ag on Y. Take Riemann metrics
g,¢" and connections Ay, A on Y. Let us consider the homotopy

Ao(s) = (1— 5)Ag + 545, g(s) = (1—s)g + 5 (s € [0, 1)),
Choose continuous families of Riemann metrics §(s) and connections Ag(s) on X with
g(s)ly = g(s), Ao(s)ly = Ao(s). Splitting the interval [0,1] into small intervals [0,1] =
[0,¢1] U - U [tn—1,tn], the discussion is reduced to the case when A, i, (for some fixed,

large number n) are not an eigenvalue of the Dirac operators Ds; on Y associated to
g(s), A(s). In this case, the dimension of W), g(s) is constant, where

Wi 5(s) = (Ls, )~ (Un x V" (5)) N W 5(5).
Then we can mimic the discussion about the invariance with respect to perturbation f to
get a homotopy v between vy and v; which are the maps in associated (g, Ao), (¢', Ap)-
Therefore the morphisms ¢, ., associated with (go, Ag) and (g1, A1) are the same. Note
that the objects (V) (s) @C(Y:95,45))+ of € for s = 0, 1 are isomorphic to each other. Tak-

ing the desuspension by VAOn (s)® C”(Y’QS’AS), we conclude that EA,ER are independent
of g, Ap up to canonical isomorphisms.

6. THE GLUING THEOREM

6.1. Statement and setup of the gluing theorem. In this section, let Xg: Yy — Y5
and X;:Y; — —Y5 be connected, oriented cobordisms with the following properties:

e Y5 is connected;

e Y), Y] may not be connected but b1 (Yy) = b1(Y7) = 0.
By gluing the two cobordisms along Y5, we obtain a cobordism X: Yo UY; — (. As in
Section[5] we choose the following data when defining the relative Bauer—Furuta invariants:

e A spin€ structure § on X.
e A Riemannian metric § on X, we require it equals the product metric near Y;.
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e A base connection A? on X ;

e A base point 6 € Y2 and a based path data [77;] on X; for i = 0,1. The path from
0 to Y3 is chosen to be the constant path. By patching [7;] and [7jz] together in
the obvious way, we get a based path data [7]] on X;

e Denote the restriction of § (resp. ¢ and A0 ) to X; by §; (resp. g; and A?) and the
restriction to Y; by s; (resp. g; and A?).

With the above data chosen, we obtain the invariants QfA(Xo,ﬁo,Ag, 40,0, [70]; S*) and
bf?(X1,51, A}, 91,06, [71]; S*) and BF(X, 5, 6, [7]). For shorthand, we write them as bf(X),
bf®(X,) and BF(X) respectively throughout this section.

Theorem 6.1. If the following condition holds
im(H'(Xo;R) — H'(Y9;R)) C im(H'(X1;R) — H'(Ya; R)), (56)
then, under the natural identification between domains and targets, one has
BF (X)|pico(x,vz) = €(bf(Xo), bE(X1)),
where €(+,-) is the Spanier- Whitehead duality operation defined in Section .
Corollary 6.2. When the map H'(Xo;R) — H'(Y2;R) is trivial, one has
BF(X) = &(bf*(Xo), b (X1)),

Corollary 6.3. When s9 is torsion and @ is satisfied, one has

BF(X) [pieo(x.v2) = EBEA(Xo), BEF(X1)).

We begin by setting up some notations. Let ¢;: Yo — X; be the inclusion map. We pick
a set of loops {af,- - ag(l) Aol ,aé% b {81, B, 5} with the following properties:

e For i = 0,1, the set {ali, e aéi } is contained in the interior of X; and represents
1,

a basis of cokernel of the induced map (ti)«: H1(Y2;R) — Hy (X4 R).
o {f1,- - Br,. ﬁ} C Y> represents a basis for a subspace complementary to the kernel
of ([,0)*: Hl(YQ;R) — Hl(Xo;R>.
Under the assumption , the above properties further imply the following two proper-
ties:
o {af, - ago Yu{ad, - ,ozll)l }U{B1, - Bp, 5} represent a basis of Hy(X;R);
1, 1, ’
o {af,---ay YU{ag,---, 0y } represent a basis of Hi(X,Y;R).
1, 1,

As before, we use G"° to denote the group of harmonic gauge transformations u on
X, such that u(6) = 1 and u~'du € i} (X;), and let g?(faxi be the subgroup of gﬁ;f
corresponding to ker(H'(X;;Z) — H'(0X;;Z)) . We have g?gfaXi =~ HY(X;,Ya;7Z). Recall
that bl(Yb) = bl(Yl) =0.

For i = 0,1, consider the bundles

Wy, = CoulCC(Xi)/g?(’iaXi’
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over Pic®(X;,0X;) and the subbundle
Wi, 1= {x € Wx, | ps(z) = 0},
where the projection jg: Coul““(Xy) — R.6 is given by

pﬁ(a,é):(—i/lt&, ,—i/ﬁ ta)

bLB
as in Section [B
We have the following boundedness result:

Proposition 6.4. There exists a constant R3 with the following significance: For any
tuple (Zo, Z1,Y0,71,72, L) satisfying the following conditions

o (Zo,21) € Wx, 3 X Wx, satisfies SW(z;) = 0;
e vi: (—00,0] = Coul(Y;) (i = 0,1) and vo: [-T,T) — Coul(Y2) are finite type
Seiberg- Witten trajectories;
e 7o(Zo) = 70(0), T2(Zo) = V2(=T), T2(Z1) = 72(T) and 71(Z1) = 1(0), where 7;
denotes the twisted restriction map to Coul(Yj);
one has [|%;||r < R3 for i =0,1 and v; C Stry,(R3) for j =0,1,2.

Proof. Suppose there exists a sequence not satisfying such uniform bounds. We also
assume that T' — 400 as the case when T is uniformly bounded is trivial. From the
condition pg(zg) = 0, the norm of vy and the norm ||Zo||# is controlled by Theorem
Notice that the solutions converge to a broken trajectory on the Ys-neck, which is contained
in Stry,(R) for some universal constant R by [7, Theorem 3.2]. As in the construction,
of swf(Y3), we consider a bounded subset J;& of Stry,(R) (cf. [7, Definition 5.3]). We
cut Stry,(Rs) into UJ}(Ys). Since ||Zo||p is uniformly bounded, #5(Zo) is contained in
JF(Y) for some fixed m. From the fact that J}(Y2) is an attractor with respect to the
Seiberg-Witten flow, we see that the whole broken trajectory is contained in J,/(Y3). In
particular, 72(%1) also belongs to J,"(Y2). We then apply Theorem again on Xj to
control ||Z1 || and the norm of ;. O

Following Section [5.4] we will start to consider finite-dimensional approximation of the
Seiberg—Witten map on both Xy and X;. Let us fix an increasing sequence of positive
real numbers {y,} such that p, — oo. For i = 0,1,2, let V! C Coul(Y;) be the span of
eigenspaces with respect to (xd, I)) with eigenvalues in the interval [— i, tt,]. Fori = 0,1,

we choose appropriate finite-dimensional subspaces U C L? | /2(1'(2; (X;)®I(Sy,)). The

preimages of U: x Vi x V2 under (L, p""_ o) give rise to finite-dimensional subbundles
WS’B C WXO,,B and W& C WXl-
We now state the boundedness result for approximated solutions.

Proposition 6.5. For any R > 0 and L > 0 and any bounded subsets S; of Coul(Y;)
(i =0,1,2), there exist constants €, N,T > 0 with the following significance: For any tuple
(Zo, T1, 70, 71,72, M, T, T") satisfying the following conditions:

en>N, T >T,and T < L.

o (&0, #1) € BW 4, R) x B(W,l, R) such that | SWa(#)llr2 < e (j=0,1);

-1/2
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o vi: (=T",0] = VinS; (i=0,1) and vo: [-T,T) — V2N Sy are finite type approz-
iamted Seiberg- Witten trajectories;

o p 0 70(Z0) = 70(0), P 0 Ta(To) = 2(=T), P o Fa(1) = 72(T) and pt7, o
1(21) = 71(0);

one has the following estimate

b ||£‘Z||F < R3 +1 fOT 1= Oa 17'

e vy C Stry,(Rs +1);

® il —1y0) € Byi(R3+1) fori=0,1.

Here Rs is the constant from Proposition [6.4)

Proof. The proof is analogous to that of Proposition and Proposition where one
applies Proposition instead. O

For ¢+ = 0,1, the manifold Y; is a rational homology sphere and a sufficiently large ball
By, (R;) in the Coulomb slice contains all finite type Seiberg-Witten trajectories (cf.[IT]).
On Ya, an unbounded subset Stry, (Rs) contains all finite type Seiberg-Witten trajectories
when Rj is sufficiently large. With a choice of cutting functions, we obtain increasing
sequences of bounded sets {Jf(Y3)} contained in Stry,(R»). Note that we can identify
T (=Ya) = Jui" (Ya).

Throughout the rest of the section, we will fix the following parameters carefully step
by step in term of dependency.

(i) Pick Ry > Rj such that any finite type Xo-trajectories (x,7) with x € Wx, g satisfies
|||z < Ro (cf. Theorem [5.9).

(i) Pick Ro, Ry > R3 + 2 such that #(B(Wx,.3, Ro)) C By, (Ro) x Stry,(Rz) and also
By, (Ry — 1) x Stry,(Rs — 1) contains all finite type Seiberg-Witten trajectories.

(ili) Choose a positive integer m such that 7o(B(Wx, g, Ro)) C J | (Ya).

(iv) Pick Ry > R3+1 such that any finite type X;-trajectory (x,~) with 7o(x) € J(Y3),
one has ||z||r < Rj.

(v) Choose a positive number Ry such that 7#5(B(Wx,, R1)) C By, (R;) and By, (R; —1)
contains all finite type Seiberg-Witten trajectory on Y;.

6.2. Deformation of the duality pairing. In this section, we will focus on describing
the right hand side &(bf*(Xp), bf?(X1)) and its deformation. As in Section we will
consider subsets of the following forms in order to define bf*(Xy) and bf?(X}):

Ko = p, o (W, (B(UY, ) N BWY 5, Ro)),

So = P 0 H(SW, (B(US,€) N S(W 4, Ro)),

Ky = p 0 #(SW,, (B(U,€)) N BWL R) N (V! x T~ (~Ya),

S = {pl, 0 #(SW, (B(UL€) N < R1) NV, x T (=Y2) } U {EL N (V! x 005 (Y

)}
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Note that some of the subsets are simplified because b1(Yy) = b1(Y7) = 0. The parameters
(Ro, R1, Ro, R1, Ro,m) are selected earlier. We will also consider a large number Ly with
the following property and then proceed to pick n and e.

(vi) Choose a positive number Ly such that, for any large n and small €, one has
(a) (Ko,S0) and (K7,S1) are Lo-tame pre-index pairs. This follows from Proposi-

tion applying to Xy and X7i;
(b) The pair (K, S°), as defined below

K° = {(y0,91) | (y0,9) * (y1,9) € Ko x Ky for some y}
S% = {(yo,v1) | (%0,y) X (y1,y) € So x K1 U Ko x S for some y},
is an Lg-tame pre-index pair for B(V,?, Ry) x B(V,}, Ry). This follows from
Proposition [6.5| with L = 0.
(c) Pick a shghtly smaller closed subset J! C 1nt(J$(Y2)) such that for any ap-
proximated trajectory 7: [—Lo, Lo] — B(V0 Ro) x B(V,}, Ry) x Jw ™ (Yz), one
has 7(0) € B(V?, Ry — 1) x B(V,}, Ry — 1) x J/, (cf. [7, Lemma 5.5]).
(d) Lo > 4T,,,(j) where T,,(j) is the constant which appeared in Lemma ap-
plying to the manifold Y.
vil) Finally, we pick a large positive integer n and a small positive real number € so that
ii) Finall ick a1 itive i d 1 positi 1 b h
(a) The above assertions for Ly holds;
(b) Proposition [6.5] holds for L = 3Lo, R = max(Ro, R1), So = By,(Ro) , S1 =
Byl (Rl) and SQ == J%(Yz)
With all the above parameters fixed, we have canonical maps to Conley indices
w: Ko/So — I(B(VY, Ry)) A I(J%H(Ya)),
1 K1/S1 = I(B(VY, R)) AT (—Y2)).

For simplicity, we will write A; = B(V;Z, R;) and Al = (Vg, R;—1) for j = 0,1. We also
let Ay denote Jiw " (Ya) and let A% be a closed subset satisfying
(Stry,(Ry — 1) N JMT (Vo)) U (J), NV2) C int(Ab) C A C int(Ay).
By our choice of Ly and Proposition there exists a manifold isolating block Nj
satisfying
AB_LO’LO] C int(N;) C N; C A}, (57)
Let ¢/ be the approximated Seiverg-Witten flow on A;. Denote by N ]+ (resp. N j_) be

the submanifold of ON; where ¢/ points outward (resp. inward).
By the choice of Ly and Lemma [3.13] and Theorem [3.14] we can express the smash
product of canonical maps

Lo/\L1:KQ/S()/\Kl/Sl—)Ng/Ngr/\Ng/N;/\Nl/Nfr/\NQ/Ng (58)

as a map sending (yo, y2, ¥1,%5) t0 (#° (40, 3Lo), ¢ (y2,3Lo), 9" (y1,3L0), $*(y2, —3Lo)) when
the following conditions are all satisfied

¢’ (yj,[0,3Lo]) C A;j and ¢’ (y;, [Lo,3Lo]) C Nj \ N} for j = 0,1; (59)
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©”(y2,[0,3Lo]) C Az and ¢?(y5, [=3Lo,0]) C Ay; (60)
(102(y2, [LQ, 3L0]) C NQ \ N; and @Z(yé, [*Lg, *3[/0]) C NQ \ N{ (61)

Otherwise, it will be sent to the base point. From here on, we will sometimes not mention
the part which is sent to the basepoint. We will see that some of the above conditions can
be simplified in specific setup.

Lemma 6.6. There exists a positive constant €y such that one can find a closed subset
By C int(N2) with the following property: For any (y2,vy5) satisfying and

107 (y2, 3Lo) — @(yh, —3Lo)|| < 5¢,

one has
g02(y2, [L(), 3L0]) C B() and <p2(y§, [—L(), —3L0]) (- Bo. (62)

In particular, (ya2,vh) will satisfy '

Proof. From l , we see that one can choose By = A[Q_LO’LO} if we consider the case €y = 0.

For positive €y, we pick By to be a slightly larger closed subset containing A[2_L°’L°] and
then apply continuity argument. O

To deform our maps, we also consider a variation of the above lemma.

Lemma 6.7. There exists a positive constant € such that for any L € [0, Lo] and any
(40, Y2 ¥h y1) € Ko x K1 satisfying (59) and

902(3/27 [07 3L]) C A2 and @2(y57 [_3La 0]) C A2> (63)
1% (y2,3L) — ¢* (3, =3L)|| < &, (64)

we have
©°(y2,[0,3L]) C Ay and ©*(yh, [-3L,0]) C Aj.

Proof. We first consider the case €, = 0. Then, by Proposition and our choice of (n,¢€),
we have ©?(ya, [0,6L]) C Stry,(Ra—1). From our choice, we also have yo € J/»" (Ya) C V2.
Since J»"(Ya) is an attractor in Jyw " (Yz), we have p?(ys2, [0,6L]) € J“T (Y2). Thus
©*(y2,[0,6L]) C (Stry,(Ry — 1) N JpF, (Ya)) C int(AD).
The general case follows from continuity argument. O
We will also consider the following subsets enlarging (K, S)
K= {(y0,91) | (o, y2) X (y1,95) € Ko x Ky for some ya,y5 with [lya — ys] < €},
S = {(yo, y1) | (o, y2) x (y1.93) € (So x K1) U (Ko x S1) for some ya,y5 with [ly2 — || < €}

Since (K, %) is an Lo-tame pre-index pair, the following can be obtained by continuity
argument.

Lemma 6.8. There exists a positive constant € such that the pair (K¢, S€) is an Lo-tame
pre-index pair for any 0 < € < é.
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For a vector space or a vector bundle, denote by B*(V, R) the sphere B(V, R)/S(V, R).
Recall that the Spanier-Whitehead duality map (see Section

€: NQ/N;— /\NQ/NQ_ — B+(Vnz,€)

can be given by

i) mee) = n=(vy) i Int(y2) — n-(wa)ll <&
E(y27y2) - .
* otherwise.

Here we pick € < min{€g, €1, €2} and ny: Ny — Ny are deformation retractions which are
identity on By C int(Ns) and satisfy ||nt(z) — x| < 2€ for any z. Here By is the closed
set in Lemma

Consequently we can write down the composition of g A ¢1 and € as a map

g(bo,bl): KO/S(] AN K1/51 — N(]/Nd’_ A Nl/Nf_ A\ B+(Vn2,€)
given by
(y0, y2, 91, ¥5) + (#° (50, 3L0), " (y1,3L0), ¢*(y2,3Lo) — ©* (¥4, —3Lo)) (65)

if and and
l*(y2,3Lo) — ¥*(y3, —3Lo)l| < € (66)
are satisfied. This follows from Lemma [6.6] and our choice of € and 7.
We now begin to deform the map €(t, ¢1).

Step 1. We will deform the map so that Lg in the last factor of goes from Ly to 0.
To achieve this, we consider a family of maps

Ko/So /\Kl/Sl — ]\70/]\76’— VAN Nl/Nf_ AN BJF(VTLZ,@)
(y()a Y2,Y1, yé) = (()Oo(y(b 3L0)7 gol (yla 3L0)7 Spo(y27 3L) - 902<yév _3L))
if together with
©*(y2,[0,3L]) C Az, 0*(y3, [-3L,0]) C Ap and [|¢*(y2,3L) — ¢ (y3, —3L)|| < €
are satisfied. Lemma guarantees that this is a continuous family. Thus, €(to,¢1) is
homotopic to the map €y(co,¢1) at L = 0, which is given by
(Y0, Y2, ¥, y1) = (¢° (0, 3L0), @' (y1,3L0), Y2 — ¥3) (67)
if and |ly2 — y4|| < € are satisfied.
Step 2. By Lemma (K¢, S%) is an Lg-tame pre-index pair and we have a canonical
map
15 K€/S° — I(B(V,2, Ry)) AI(B(V,}, Ry)).
It is not hard to check that a map given by
Ko/So A K1/S1 — I(B(V,, Ro)) ANI(B(V,!, Ry)) A (VHT. (68)

< —yy) if e —yhl| <€
’ N (¢5(yo,y1), Y2 — b bl <&,
(Y0, Y2, Y1, Y3) . othermice
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is well-defined and continuous. From Lemma we can represent (€ by a map
K¥/ST = No/Ni A N1/N7
(yﬂa yl) — (SOO(y()? 3L0)7 901 (yla 3L0))7

if is satisfied. Consequently, the map €(¢1,t2) can be written as the map .
Recall that bf4(Xy) is obtained from composition of a map

BY(W, 5, Ro) — B* (U}, €) A Ko/So

and the canonical map tg. The map bf®(X1) is obtained similarly. Then, & bf*(Xo), bf?(X}))
is given by applying Spanier—Whitehead dual map to their smash product. From previous
paragraphs, we can conclude the following result

Proposition 6.9. The morphism &bf* (Xo), bff(X1)) can be represented by suitable desus-
pension of the map

BY (W) 5, Ro) A BT(Wpt, Ry) = BY(US,¢) ABY(Up,e) ABY(V2,&) ANI™(=Yy) AI™(—Y1)
(Zo, Z1) (gﬁ/n(@o)y g\ﬁ/n(i'l); r2(Z0) — ro(Z1), L (ro(Z0), r1(Z1))

if |SWo(3:)|| < € and ||r2(Z0) — r2(21)|| < € and sending (o, %1) to the base point other-

wise. Here I"(=Y;) denotes I(B(V}}, R;)) fori=0,1.

6.3. Stably c-homotopic pairs. In this subsection, we recall notions of stably c-homotopy
and SWC triples which were introduced by Manolescu [12]. These provide a convenient
framework when deforming stable homotopy maps coming from construction of Bauer—
Furuta invariants. Although most of the definitions are covered in [12], we rephrase them
in a slightly more general setting which is easier to apply in our situation. We also give
some details for completeness and concreteness.

Let p; : E; — B (i = 1,2) be Hilbert bundles over some compact space B. We denote
by || - |l; the fiber-direction norm of E;. Let E; be the fiberwise completion of E1 using a
weaker norm, which we denote by |- |;. We also assume that for any bounded sequence
{z,} in Ey, there exist zo, € Ep such that after passing to a subsequence, we have

e {x,} converge to x,, weakly in Ej.
o {,} converge to x, strongly in Ej.

Definition 6.10. A pair [,c: E1 — E5 of bounded continuous bundle maps is called an
admissible pair if it satisfies the following conditions:

e [ is a fiberwise linear map;
e ¢ extends to a continuous map ¢: By — Fo».

At this point, we will specialize on the context of gluing theorem as in Section [6.1]
Let V' = Coul(Yp) x Coul(Y7) and recall that we assumed b1(Yp) = b1(Y1) = 0. There is
a Seiberg-Witten flow on V' given by negative gradient flow of the Chern-Simons-Dirac
functional. All critical points and finite types flow lines are contained in a sufficiently
large ball. As before, denote by V/\“ the subspace spanned by the eigenvectors of (xd, ID)
with eigenvalue in (A, p] and denote the projection V. — VI by p\. Motivated by the
Seiberg-Witten map on 4-manifolds with boundary, we give the following definition.
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Definition 6.11. Let (I, c¢) be an admissible pair from F; to Fo and let r: E1 — V be a
continuous map which is linear on each fiber. We call (I, ¢, ) an SWC-triple (which stands
for Seiberg-Witten-Conley) if the following conditions are satisfied:

(1) The map [ & (p° o, or): By — Ey ® VO is fiberwise Freedholm.

(2) There exists M’ > 0 such that for any pair of z € E; satisfying (I + ¢)(x) = 0
and a half-trajectory of finite type v: (—00,0] — V with r(xz) = 7(0), we have
llz||1 < M’ and ||y(¢)|| < M’ for any t > 0.

Two SWC-triples (l;,¢;,r;) (1 = 0,1) (with the same domain and targets) are called
c-homotopic if there is a homotopy between them through a continuous family of SWC
triples with a uniform constant M’.

Two SWC-triples (l;,¢;, ;) (i = 0,1) (with possibly different domain and targets) are
called stably c-homotopic if there exists Hilbert bundles E3, E4 such that ((I; ®idg,,c1 &
0f5),7m1 @ 0p,) is c-homotopic to ((l2 @ idg,,c2 ® 0g,), 72 ® 0g,) .

For any SWC triple (I,¢,7), we can define a relative Bauer—Furuta type invariant as a
pointed stable homotopy class

BF(l,c,r) € {Z"CT(ind(l,p° _ o 7)), SWF(=Y;) A SWF(-Y1)},

where n = n(Yp, sv,, gv,) + (Y1, 8v,, 9v;) by “SWC-construction” analogous to construc-
tion in Section [l described below.

Let us pick a trivialization ¢: EFs — Fb, an increasing sequence of A\, — oo and a
sequence of increasing finite-dimensional subspaces {F3'} of F5 such that the projections
pn: Fy — F} converge pointwisely to the identity map and ¢~ !(F}) x Vj\gn C Fy x Vj\go
is transverse to the image of (I, p)_‘*go or) on each fiber. Let E7 be the preimage (I, p’l’go o
r) g H(FR) x Vj\gn) which is a finite rank subbundle.

Consider the approximated map

fn=pnoqo(l+c): E! — F3.

From the definition of the SWC triple, one can deduce the following in the same manner
as the construction of relative invariants for Seiberg—Witten maps: for any R/, R > 0
satisfying r(B(E1, R)) € B(V, R'), there exist N, ¢y such that for any n > N and € < ¢,
the pair of subsets

(P o (£ (B(FS',€)) N B(Ev, R)), pe, o r(f H(B(F3, ) N S(E1, R))))

is a pre-index pair in the isolating neighborhood B (Vj‘;‘n, R).

From this, we can find an index pair (N, L) containing the above pre-index pair, which
allows us to define an induced map B(ET, R)/S(EY, R) — B(F3,€)/S(Fy',e)AN/L. After
desuspension, we obtain a stable map

h: X"CT(ind(1, p° o o 7)) — SWF(—Yp) A SWF(-Y7).

By standard homotopy arguments, the stable homotopy class [h] does not depend on the
parameter we chose. We define the stable homotopy class [h] to be the relative invariant
BF(l,c,r) for this SWC triple.
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It is straightforward to prove that two stably c-homotopic SWC triples give the same
stable homotopy class. This is the main point of introducing SWC construction. We end
with a very useful lemma which is proved in [12] and allows us to move between maps and
conditions on the domain.

Lemma 6.12. Let (I,¢) be an admissible pairs from E; to Ey and let r: E1 — V be a
continuous map which is linear on each fiber. Suppose that we have a surjective bundle
map g: By — Es3. Then the triple (I ® g,c¢ ® 0g,,r) is an SWC triple if and only if the
triple (lker g, Clxer gs Tlkerg) is an SWC triple. In the case that such two triples are SWC
triples, they are stably c-homotopic to each other.

6.4. Deformation of the Seiberg-Witten map. Throughout this section, we will de-
note by

G =HYX,YyZ) = H (X0, Y2;R) x H (X1, Ys;7Z)
and fix such identification . Furthermore, we introduce the notation

QN(X1, Y1, ab) = {a € QX)) | d*ty, (a) =0, /_(*a):o,/ a=0, Vj,k}
Ylj Oélle

and define Q!(Xy, Yo,a U 8) and Q'(X, Yy U Yy, a® Ual U B) similarly. Consider all the
following Hilbert spaces

° VXO = L2 (in(Xo, YE),O(O U ,6) & F(S)—’i—'o));

k+1/2
[ J VX1 = L%—‘,—l/Z(in(Xl’ Y].’al) @ F(S}?l))’
o Vi = L2, ,(iQ(X, Yo UY1,0® Ual UB) @ I(S));

V := Coul(Yy) x Coul(Y7);

Ux, = Lj_ ,(iQ°(X;) © i3 (X;) ® T(Sy,)) for i = 0,1;
o Uy := L§_1/2(¢98(X) @i (X) @ (Sy));

o H'(X,,Y5;R), where X, stands for Xg, X or X.

Here QJ(X) denotes the space of functions on X which integrate to zero. Note that G
acts on all these spaces as following:

e On differential forms, the action is trivial.
e On spinors, we use the identification

G =3y, (69)

where Q;L(’OYQ denotes the group of harmonic gauge transformations u on X such
that u ldu € Q5 (X) and uly, = e/ with f(6) = 0. The action is by gauge
transformation. Note that we will use the restriction of g?(’%ﬁ on Xy and X3

instead of the harmonic gauge transformation satisfying boundary condition on
XQ or X 1-
e On the homology H'(X,, Y2;R), the action is given by negative translation.
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We consider Hilbert bundles
Vx = (Vx x H'(X, Y2 R)) /G,
Ux = (Ux x HY(X,Y5;:R))/G
over Pic’(X,Y>) and a pair of maps
Ix,ex: Vx x HU(X, Ya;R) = L (105 (X) @ T(S)) x H'(X, Y; R)
given by

lX(&a ¢a h) = (d+d7 EO_H‘T(;L)(JSa h)a Cx = (F;l% - p_l(d)qb*)(]a p(d)¢a h)a

where 7(h) is the unique harmonic 1-form u on X representing h such that ty,(7(h)) is
exact and 7(h) € iQbo(X). It is straightforward to see that lx and cy are equivariant
under the G-action. Thus, we can take the quotient and obtain bundle maps

(d*@[X),(O@EX)i f/X —>Ux.

Let us recall the construction of Bauer-Furuta invariant BF(X) (cf. Section |5 or [§]).
We can see that the suitable double Coulomb slice in the construction is given by

~

{(a,¢) € Vx | d"(a) = 0}.

Let 7 : Vx — Coul (Y;) denotes the twisted restriction map as in Section It follows that
(ZNX\ker 45 €X |ker d*» (70, 71) ker a+ ) is @ SWC-triple and BF (X)|pico(x,ys) is precisely obtained
from the SWC-construction of this triple.

The goal of this section is to deform BF(X)|pico(x,y;) to the map é(bf4(Xo), b (X1))
represented in Proposition There will be several steps.

Step 1. We move the gauge fixing condition d* = 0 to stably c-homotopic maps. Since
d* QN (X, Yo U Y, a® Ul U p) = iQd(X)
is surjective, we directly apply Lemma and obtain the following:

Lemma 6.13. The relative Bauer-Furuta invariant BF(X)|pio(x y,) is obtained by the
SWC construction on the triple (d* & Ix,0 @& éx, (7o, 71)), where

7 Vx — Coul(Y;)
denotes the twisted restriction map to boundary Y;.

Step 2. We begin to glue configurations on Xy and X; to a configuration on X. Let us
consider a Sobolev space of configurations on the boundary

VI = LR (191 (V) @ iQ0(Y2) @ T(Sys)).

for 0 <m <k.
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For any 1-form b on X, we can combine the Levi-Civita connection on ANT*(X;) and

the spin® connection AO\XZ» + b to obtain a connection on NT*(X;) ® Sx,. We use VP to
denote the corresponding covariant derivative. Consider a map

D™V, x Vx, x HY(X,Yy;R) = VE™ x H'(X,Yo;R)
7(h T(h
(w0,21, 1) = (V5" ™a0) v, = (V7)) ),

where 77 is the outward normal direction of Yo C Xy. Here we applied obvious bundle
isomorphisms T*(X;)|y, = T*Y2 ® R and S}i ly, = Sy,.

It is clear that the map D™ is equivariant under the action of G. As a result, we can
take quotient and obtain a map

D(m) f/XO,Xl — V{,‘;—m,
where we set
Vxox, = (Vx, X Vx, x HY(X,Y2;R))/G
Vi = (V™ x HY(X, Y R))/G.

We state the gluing result of these spaces, which is a variation of the gluing result [12]
Lemma 3]. The proof is only local near Y2 and can be adapted without change.

Lemma 6.14. The bundle map

- koot
(D® ... DOY: Ve x, — Wy,

is fiberwise surjective and the kernel can be identified with the bundle V.

Analogous to the maps d* @ lx and 0 ® cx, we define
Ixg.x,: Vg X Vi, x HY(X,Y2;R) = Ux, x Ux, x H'(X,Y2;R) (70)
(a0, ¢o), (@1, é1), h) = ((d*ao, d™ ao, ]p?_Ao—i-iT(h)NXO ¢0), (d*a1,d"an, 'm?_Ao-‘riT(h))lxl ¢1), h),
cxo.xyt Vg X Vi, x HY(X,Y9;R) — Ux, x Ux, x H'(X,Ys;R)
(0, 60), (a1, 61), h) = (0. F, Ixo = ™" (d0@5)o, (o) o), (0, 4 [x, = p (1611, plén) 1), ).
Then, by taking quotient, we get bundle maps

Ix0.x1: Ex0,%1 ¢ Vo, X1 = Uxiouxs

where UXo,X1 = (Ux, x Ux, x H'(X,Y2;R))/G. By gluing of Sobolev spaces, the bundle
Ux can be identified as a subbundle of Ux, x,. Let pj be the orthogonal projection to this
subbundle. The following result is then a consequence of Lemma [6.14] and Lemma [6.12

Lemma 6.15. The triple
((p.] OZXOqu’ D(k)7 t aD(O))a (pJ OEXO,leoa T 70)7 (7;07 fl)) (71)
is a SWC-triple and is stably c-homotopic to (d* & lx,0 @ éx, (Fo,71)).
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Step 3. Next, we will glue the Sobolev spaces of the target. Let us consider a map
EM: Ux, x Ux, x H'(X,Yy;R) = V7™ x HY(X, Yo; R)

7(h 7(h
(o, y1, ) = (VL0 )y, — (Vi X0ymy s, b,

where we apply the standard bundle isomorphisms Ai(Xi)\yz = T*Ys, S;(i|y2 = Sy,. By
taking quotient with respect to the action of (G, we obtain bundle maps

E(m): ﬁXo,Xl - Viz_l_m‘
Proposition 6.16. The triple
((pJ OZXO,XU E(k_l) © ZX07X1’ T 7E(0) o ZX07X15 b((])),
(pj OEXO,XU E(kil) 0 EX07X1a T 7E(0) o 6X07X17 0)7 (7:0; fl))

is a SWC-triple and is c-homotopic to the triple .

(72)

Proof. We simply consider a linear c-homotopy between them as follows: For 1 <m < k
and 0 <t <1, define a map

DI = (1-1) DU 4 1 BN oy,

and the following maps from Vy, x, to Ux @ (@fnzo f/{fz_m>

lt = (pJ OiXo,Xla -Dygk)a 7Dt(1)7D(0))7

(k=1)

Ct = (pJ OEX07X17 t- E © EX07X17 et E(O) © EXO:XU 0)-

This will give a c-homotopy as a result of the following lemma. O

Lemma 6.17. For any 0 <t <1, the map

- . koo~
(lt7p(loo © (foﬂ 7:1)): VXO,X1 - UX S5 ( @0 V}Z_m) S5 Vgoo(_yb U _Yl)
m=
is fiberwise Fredholm. Moreover, the zero set (I; + ¢;)~'(0) C Vx,.x, is independent of t
and can be described as

{[(a,¢,h)] € Vx | d*a =0 and (Ag +it(h) + a, ¢) is a Seiberg- Witten solution}.

Proof. The key observation is that £ ol X1,X2 — D™+ contains at most m-th derivative
in the normal direction. Then, one can prove inductively that

(bgk)a 7D£1)>D(0))(x07x1) =0 = (D(k)v 7b(0))($0>$1) :()7

so that the kernel of [; does not depend on t. Similarly, one can show that (D,E’“), Sy ]_N)gl), E(O))
is fiberwise surjective for all . Since ¢ = 0 is the map from Lemma the map
(14, p° o, o (70, 71)) is fiberwise Fredholm for all ¢.

This second part is essentially proved in [12), Section 4.11] using similar inductive argu-
ment.

O
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Step 4. We now make the following identification:
Lemma 6.18. The bundle map (over Pic®(X,Y3))

~ ~ ~ ~ k—1 ~
(03, BE7V - BO€): Uy x, = Ux @ (@ V™) @R

is an isomorphism. The map & is given by &(x1,x2,h) = on fo+ le f1, where f; is the
0-form component of x;.

Proof. This also follows from gluing result of Sobolev spaces [12, Lemma 3]. The only
difference here is that the 0-form component Uy consists of functions which integrate to
0. From standard decomposition Q°(X) = QJ(X) ® R, we can see that the projection onto
R is given by &. U

On the other hand, we decompose D from the following decomposition of the Hilbert
space:
Vi = Coul(Ya) ® H @ R with H = L} (i(dQ°(Y2) ® Q)(Y2))). (73)
We denote the corresponding components of DO (resp. [?(0)) by Dy,,Dp and Dg (resp.
Dy2,DH and DR)
We make an observation that the SWC-triple in Proposition arises from a

composition

. . - k=1 -
Vxo,x1 — Uxo,x, @ Coul(Ya) & H = Ux & ( @Ov{gl—m) &R Coul(Ys) & H,
m=
where the first arrow is (l~ Xo,X1 +CX0,X15 Dyz, D 1) and the second arrow is the isomorphism
(pj, B~V ... EO) ¢ id, id). The only thing we need to check is that Dy = ¢ o Ix,,x, on
the 1-form component, which follows from Green-Stokes formula

/ t(*flo) —/ t(*dl) = d*ag + d*a,.
Y2 Yo Xo X1

Thus we conclude

Lemma 6.19. The SWC-triple (@ can be identified with the triple
((iXle ) DYw DH)a (5X0,X1 , 0, 0)’ (fO’ 7:1))- (74)

Step 5. In this step, we focus on deforming the DH—component which corresponds to
boundary conditions for gauge fixing. We sometimes omit spinors from expressions in this
step.

For a; € iQ'(X;), we have a Hodge decomposition ty,(a;) = a; + b; on Yz with a; €
kerd* and b; € imd. We also denote by e; := ¢; — {gfggl € iQ9(Yz2), where a;ly, =
ty, (a;) + ¢jdt. With this formulation, we see that Dy (ag,a1) = (bo — b1, e9 — €1).

Let us consider an isomorphism

d: Li(iQ0(Ys)) — Li(idQ°(Y3))
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defined by df := A~Ldf for any f € iQ)(Ya) with d*df = A\?f with A > 0 using the spectral
decomposition of d*d. We let

d*: LE(idQ°(Y2)) — LE(iQ20(Y2))

be its formal adjoint. Note that d* can also be obtained directly by d*« := \f for a = df
satisfying dd*a = A2« with A > 0 and sz f = 0. We then define a family of maps

DH,t5 VXO X VX1 — H

given by
DH,t(d(),dl) = (b() — bl,t . CZ*(b() + bl) + (1 — t) . (60 — 61)).

The main point here is to establish that the gauge fixing conditions Dy ; = 0 are isomor-
phic and vary continuously. In particular, we will find a harmonic gauge transformation
from the identity component relating them. For coclosed (ag,a1) € Q'(Xo, Yy, a® U B) x
OY(X1,Y1,al) with by = by, it amounts to solve for functions (fo, f1) € Q°(Xo) x Q°(X3)
such that

2t - d*d(folv,) + (1 = t)(Bfoly, — Difilys) = 2t - d*(bo) + (1 — t)(e0 — e1)

satisfying other gauge fixing conditions. We have the following existence and uniqueness
result.

Lemma 6.20. Let W C Li+3/2(X0;R) X Li+3/2(X1;R) be the subspace containing all

functions (fo, f1) satisfying the following conditions:
(2) fi(6) = 0;
(3) folve = filvas
(4) fi is a constant on each component of Y;, i = 0,1;
(5) Os fi integrates to zero on each component of Y;, i =0, 1.

Then the map pr: W — Li(Q9(Y2)) defined by
pe(fo, f1) = 2t - d*d(foly,) + (1 = ) (Dr foly, — O fuly)

18 an isomorphism.

Proof. We first show that p; is an isomorphism when ¢ = 1. For £ € L2(iQ)(Y2)), we want

to find f; such that fi|y, = % — @ and satisfies the other conditions. The existence and
uniqueness of such functions follow from the same argument as in the double Coulomb
condition (cf. [8, Proposition 2.2]).

Since each p; corresponds to Laplace equation with mixed Dirichlet and Neumann
boundary condition, it is Fredholm with index zero (from ¢ = 1). Thus, for t < 1, we
are left to show that p; is injective. Suppose p;(fo, f1) = 0. Then by Green’s formula, we
have

(1-1)( /X (dfo, dfo) + /X hdi) = (1=0) [ fo0ato-0n) = 2t [ fo- (@ dthily,)
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The first expression is nonnegative but fY fo(d*d(foly,)) fY2 fo)? ﬁ( fY2 fo)? is also
nonnegative by Cauchy—Schwartz mequahty Hence both fy and f; must be constant and

are in fact identically zero because f;(0) = 0.
O

As Dpg, is equivariant, we can form bundle maps f)H’t and obtain a c-homotopy.

Proposition 6.21. For anyt € [0,1], the triple ((Ix, x,» Dvy, D), (6x0.x,,0,0), (70,71))
is an SWC-triple. Consequently, this provides a c-homotopy between the triples.

Proof. The statement for ¢ = 0 follows from Lemma [6.19} For each element in the kernel
of (l Lxo, XI,DYZ, D ) there is a unique gauge transformatlon to an element in the kernel
of (l Xo, XI,DYZ, Dy 0) as a result of Lemma This provides a linear bijection, so the
kernel of (l Xo,X15 Dy2, Dy t) is also ﬁmte—dlmensmnal

The map (lXO X1 Dyz, DHt) differs from the map (lX0 X1 DYQ,DH 0) only at the QO(Y2)
component. By Lemma [6.20] the map p; is surjective, so the map (l Xo, X17DY27 DHt) is
surjective on the 0 (Yg) component This implies that the cokernels at each ¢ are in fact
the same. Therefore, (Ix, x,, Dy;, D) are Fredholm.

Applying Lemma [6.20] again, one can see that there is a unique gauge transformation
from a solution of ((Ix, x,, Dvy, D), (éx4.x1, 0, 0)) to asolution of ((Ix, x,, Dy,s Dirt), (€x4.5,50,0))
which depends continuously. This provides a homeomorphism between them. Then the

boundedness result follows from the case t = 0 and compactness of [0, 1].
O

Step 6. Here, we will basically change the action of G by identifying it with a group of
harmonic gauge transformations but different boundary conditions. Recall from our setup
that 7(h) for h € H'(X,Y2;R) is the unique harmonic 1-form on X representing h such
that ty,(7(h)) is exact and 7(h) € i, (X). Note that for ¢ € [0,1],

Dpe(m(h)|xo, 7(h)]x,) = (0,2td" (ty, (7(R))))-
We put
(€o.0(R), E1e(R)) = py (2t (ty, (T(R)))).
We then apply gauge transformation to 7(h) and define
Tt = (Txo,t: TX1t) HY(X,Y2;R) — Q) (Xo) x Q(X1)
h—= (7(h)|xo — dot(h), 7(h)|x, — d€1,:(h)).

From our construction, we have D ;(7(h)) = 0 and d&; o = 0.

We will consider harmonic gauge transformations corresponding to boundary condition
Dpy = 0. For h € G, we define w;(h) := (ux,(h),ux, +(h)) such that ux,(h) is the
unique gauge transformation on X; satisfying

ux,+(h)(06) =1, uy, tduX t =17x,t(h).

Notice that for uy; ¢ is the restriction of u € QX’OYQ and ux, ¢(h) = e‘gi’t(h)uxho(h).
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Consider a new action ¢; of G on the spaces Vy,, Ux,, H'(X;, Y2;R), Coul(Y;) and H
such that the action on spinors is given by the gauge transformations (ux, +(h), ux, +(h))

instead of restriction of v € g?(’(;é as earlier. We also consider a map
lé{o,X17C%XO,X1: VXO X VXl X HI(X Y2,R) — UXO X U)(1 X HI(X,Yé’R)

by replacing the term 7(h)|x, in the definition (cf. . ) with 7x, +(h).
It is not hard to check that the maps ZXO Xy cXO X, Dvy X idgi(xyy;r) and Dy X
id g1 (x,y,;r) are all equivariant under the action ¢;. By taking quotient, we obtain bundles

Vi x, = (Vxy X Vi, x HY(X,Y2;R)) /(G 1);
Uk, x, = (Ux, x Ux, x H'(X,Y2;R))/(G, 1)

and bundle maps litxo Xy 63(07 )517DY27t’D}{7t' We can c?nsider an obvious bundle iso-
morphism from Vy (resp. Uy, x,) to V)t(mX1 (resp. UXo,X1) by sending (a;, ¢;, h) to
(ai, €5t M i h). All of the above maps fit in a commutative diagram.

VX07X1 UXO,X1

L

V)t(O,Xl B 0§<0,X1
We can conclude:
Lemma 6.22. The triple ((i}(O’Xl,D%@,Dl ), (cX0 x,+0,0), (F0,71)) is an SWC triple and
is c-homotopic to ((Ixy,x,, Dys, DH1), (€x,x,:0,0), (Fo,71)).
Let us take a closer look at the SWC triple
((I%.x,- Dy, D), (8%, x,,0,0), (7o, 71)).

Observe that the boundary condition by — b1 = 0 and cz*(bo + b1) = 0 implies bg = b; = 0.
This allows us to recover double Coulomb condition on Xj;.

Lemma 6.23. The operator
(dy A, D) Vi X Vi, = Ly 5(i2°(Xo) @ iQ°(X1)) @ H
1s surjective and its kernel can be written as
Lzﬂ/z(iQéC(XO, a®Up) @ F(S)JEO)) X Lk+1/2(’mlco(Xla al) @ F(S)ng))-

Proof. We consider exact forms (dfy, df1). Then, surjectivity reduces to finding a solution
of Poisson’s equation with Dirichlet boundary condition on Xy and Xj.
O

Note that we can make an identification

Li 11210 (X0, 0’ U B) @ T(5%,)) x H' (Xo, Ya; R) = Coul®“(Xy, B) (75)
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by sending ((ao, ¢), h) to (ag + an, ¢), where ay is the element in HL,,(Xo) correspond-
ing to h (cf. from Section . Under this identification, the natural projection to
H*'(Xo, Y2; R) becomes the map pq_ x, (cf. ) Similarly, we have an isomorphism

Li sy jo(i96c(X1, ") @ T(S%) x H' (X1, Ya;R) = CoulC (Xy). (76)

Consequently, the action ¢! provides an action o fon Coul®“(Xy, ) x Coul®“(X;) via
an identification

[a¥) h’A h7A
G = H'(Xo,Ya) x H'(X1,Y2) 2 G¥2 ox, X Gt ox, -

This holds because Yy and Y; are homology spheres.
As in Section [5] we have Seiberg—Witten maps

SWx, = Lx, + Qx,: Coul“ (X, ﬂ)/gﬁéﬁaxo = (Li_ (193 (Xo) ® T(S,)) x Hbc(Xo))/g?éf,aXO,
SWx, = Lx, + Qx, : CoulCC(Xl)/Q?(’iaXI — (L3_1 (105 (X1) @ T(S%,)) % H})C(Xl))/gg(’l"’axl.

Since an element of Q?QO 0X; takes value 1 on Y5, there are well-defined restriction maps ro

from Coul® (X, B)/G% 5x, and Coul®C(X1)/G%? x, to Coul(Yz). We then consider a
map

Dy, : Coul®“ (X, 8)/G%C yxy X Coul®®(X1) /G 55, — Coul(Y2)
(1'0,1’1) —> 7“2(1’0) — 7“2(%‘1).

With this setup, we can identify the previous SWC triple with maps which almost represent
relative Bauer—Furuta invariants on Xg and X;.

Corollary 6.24. The triple ((Lx,,Lx,,Dy,),(Qxy,@x,,0),(Fo,71)) is an SWC triple

stably c-homotopic to ((Z}(O,Xl’ D%/Q, D}{), (5}(07)(1,0,0), (T0,71)).

Proof. This follows by applying Lemma/6.12]to the triple (1%, v, D, D}), (¢k, x,0,0), (Fo,71))
with g = (d¥,, d%,,Dp,1) as in Lemma [6.23 O

Step 7. This is the final step. Recall from Section[6.1] that we chose finite-dimensional sub-
spaces U} of L%_l/Q(iQ;(Xi) ©I'(Sy,)) and eigenspaces Vi of Coul(Y;). In the SWC con-
struction of the triple ((Lx,, Lx,, Dy;), (Qx,,@x,,0), (Fo,71)), the subbundles involved
are preimages of the map (Lx,, Lx,, Dy,, "™ oo, p"", o71) rather than preimages of the
product map (Lx,, p"", o 7o, """ o 72) x (Lx,,p"" o 71,p>,, ©T2) in the construction of
relative Bauer—Furuta invariants. Note that there is a choice of trivialization but we do
not emphasize here.

Using spectral decomposition, we see that ra(xg) — r2(x1) € V2 if and only if

P, o ra(wo) = py. o ra(21),

p_trorg(zy) = p b ora(xp).



UNFOLDED SEIBERG-WITTEN FLOER SPECTRA, II 70

We introduce a family of subbundles by ‘rotating’ the above condition: for 6 € [0, 7],

W, = {(z0, 21) €(Coul® (X0, B) /G x,) % (Coul®C(X1)/GR% 1)) |
p' Fi(x) € Vi Ly, () € UL,
pp. o 1r2(wo) = tand - p° o ra(x1),
p_hrorg(wy) =tanf - p_ L7 oro(xg)}-
We have boundedness result for this family.

Lemma 6.25. For any R > 0, there exist N, ey with the following significance: For any
n > N,0 €[0,%], (wo,z1) € BX(WY',R) and v : (—00,0] = BV (Yi), R) where
1= 0,1 satisfying the following conditions:

o (1P, (ra(zo) — ra(21))ll 2 < €
o llpug o SWxi(zi)llz_ , <€
e v; is an approzimated trajectory with ~;(0) = p’i’Ln o 7i(x;),

one has ||z;||r < R3+1 and H%(t)HLﬁ < R3+1, where Rg is the constant in Proposz'tion.

Proof. The proof is essentially identical to Proposition by using [12, Lemma 1] to

control [|pe o 7"2(370)HL§ (resp. ||p_hr o 7“2(:61)||Li) in terms of ”I:XO(QS())”Li_I/Q (resp.

1L, (@)llgz_)- O

k—1/2

As a result, one can apply the construction of the relative invariants, which should be
familiar by now, to define a stable homotopy class

[BY (Wi x,s R), BN (UL, €) A BY(Uy,€) A BY(V, €) AT (=Yo) AT (=Y1)]

from the map (SWx,, SWx,, Dy,,70,71). When 0 = 1> this is the same as SWC con-
struction for the original triple. Finally, we see that, at # = 0, we have

n,0  _ y5/0 1
WXO’X1 = Wnﬁ x W,

and we recover the homotopy class in Proposition [6.9] The proof of the gluing theorem is
finished.
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