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Abstract. Let K be a knot in an integral homology 3-sphere Y , and Σ the

corresponding n-fold cyclic branched cover. Assuming that Σ is a rational ho-

mology sphere (which is always the case when n is a prime power), we give

a formula for the Lefschetz number of the action that the covering transla-

tion induces on the reduced monopole homology of Σ. The proof relies on a

careful analysis of the Seiberg–Witten equations on 3-orbifolds and of various

η-invariants. We give several applications of our formula: (1) we calculate the

Seiberg–Witten and Furuta–Ohta invariants for the mapping tori of all semi-free

actions of Z{n on integral homology 3-spheres; (2) we give a novel obstruction

(in terms of the Jones polynomial) for the branched cover of a knot in S3 being

an L-space; (3) we give a new set of knot concordance invariants in terms of the

monopole Lefschetz numbers of covering translations on the branched covers.

1. Introduction

Monopole Floer homology, as defined by Kronheimer and Mrowka [22] and

Frøyshov [17], is a powerful invariant of 3-manifolds. Orientation preserving self-

diffeomorphisms of the 3-manifold act on the monopole Floer homology. We ini-

tiated a study of this action in [33], where we calculated the monopole Lefschetz

number of an involution on a rational homology 3-sphere that makes it into a

double branched cover over a link in the 3-sphere. In this paper we continue this

study and extend our calculations to all finite order diffeomorphisms making a ra-

tional homology 3-sphere into a branched cover of a knot in an integral homology

3-sphere. Note that the case of free diffeomorphisms of finite order was dealt with

in [43].
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Given a knot K in an integral homology 3-sphere Y and an integer n ě 2,

consider the n–fold cyclic branched cover Σ Ñ Y with branch set K and denote

by τ : Σ Ñ Σ the covering translation. Assume that Σ is a rational homology

3–sphere (which is always true when n is a prime power). Observe that Σ admits

a unique spinc structure s such that τ˚psq “ s, and that this spinc structure is

actually a spin structure; see Remark 6.3. Our main theorem can now be stated

as follows.

Theorem A. Let τ˚ : HM redpΣ, sq Ñ HM redpΣ, sq be the map in the reduced

monopole Floer homology induced by the covering translation τ . Then

Lef pτ˚q “ n ¨ λpY q `
1

8
¨
n´1ÿ

m“1

signm{npKq ´ hpΣ, sq, (1)

where λpY q is the Casson invariant of Y , signm{npKq are the Tristram–Levine

signatures of K, and hpΣ, sq is the Frøyshov invariant.

The formula (1) was first conjectured in [33] but its proof here will use methods

completely different from those in [33]: we will first calculate the Seiberg–Witten

invariant λ SWpXq for the mapping torus X of τ using the original definition of

λ SWpXq from [39], and then apply the splitting theorem of [32] to derive (1).

Theorem B. Let Σ be a rational homology sphere as above and X the mapping

torus of the covering translation τ : Σ Ñ Σ with the standard orientation and

homology orientation. Then

´ λ SWpXq “ n ¨ λpY q `
1

8
¨
n´1ÿ

m“1

signm{npKq. (2)

We should mention that formula (2) was independently proved by Langte Ma

[34] using a different set of techniques. His result actually holds without the

assumption that Σ is a rational homology sphere.

1.1. Motivation. As in our previous work, the research in this paper is motivated

by a conjectural relationship between two gauge theoretic invariants of homology

S1 ˆ S3s, one from the Donaldson theory and the other from the Seiberg–Witten

theory. In this section, we discuss our motivation and provide some further impli-

cations.
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1.1.1. The Witten–style conjecture for finite-order mapping tori. Recall that clas-

sical gauge theoretic invariants of a smooth closed oriented 4-manifold X (the

Seiberg-Witten invariants and the Donaldson polynomial invariants) are only de-

fined when X satisfies the condition b`
2 pXq ě 1. However, with suitable modifica-

tions, some of these invariants can be defined for other 4-manifolds. In particular,

let X be a smooth closed oriented 4-manifold such that

H˚pX;Zq “ H˚pS1 ˆ S3;Zq and H˚pX̃;Qq “ H˚pS3;Qq, (3)

where X̃ is the universal abelian cover of X. Then there are two gauge theoretic

invariants for X. The first one is the invariant λ SWpXq we mentioned earlier. It

was defined in [39] by counting Seiberg–Witten monopoles on X and modifying

this count by an index-theoretic correction term. The second invariant, called

λFOpXq, was defined by Furuta and Ohta [18] as one quarter times the degree

zero Donaldson polynomial of X. Furuta and Ohta used somewhat more restrictive

hypotheses on X; we extended their definition to all manifolds X satisfying (3) in

our paper [33].

Conjecture C ([39, 33]). For any X satisfying (3), the following equality holds

λ SWpXq “ ´λFOpXq.

Note that Conjecture C relates a Seiberg-Witten type invariant to a Donaldson

type invariant. Therefore, it can be thought of as a Witten–style conjecture [49]

for homology S1 ˆ S3s.

The main results of this paper are inspired by Conjecture C for finite order

mapping tori, and we confirm this conjecture for the mapping tori of Theorem B.

More precisely, we have the following theorem.

Theorem D. Let Σ be a rational homology sphere which is a cyclic branched cover

of an integral homology sphere, with branch set a knot. Let X be the mapping torus

of the covering transformation τ : Σ Ñ Σ. Then X satisfies (3) and we have

λ SWpXq “ ´λFOpXq.

Note that, in their previous work [43], the second and third authors verified Con-

jecture C for the mapping tori of all finite order diffeomorphisms τ : Σ Ñ Σ of

integral homology spheres that generate a free group action on Σ.
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Corollary E. Let Σ be an integral homology sphere and τ : Σ Ñ Σ an orientation

preserving diffeomorphism of order n generating a semi-free action of Z{n on Σ.

If X is the mapping torus of τ then λ SWpXq “ ´λFOpXq.

1.1.2. Normalized Lefschetz number in monopole and instanton Floer homology.

Theorem D has an intriguing Floer theoretic interpretation in terms of an ex-

pected comparison of the reduced monopole homology groups HM red
˚ pY q of Kro-

nheimer and Mrowka [22] with the reduced instanton homology groups xHF˚pY q of

Frøyshov [16]. As an extension of Witten’s conjecture [49] on closed 4-manifolds,

such a comparison should also include the maps between the homology groups in

question induced by cobordisms. For the product cobordism between integral ho-

mology spheres, this manifests itself in the known relationship between the Casson

invariant and the Euler characteristic of the reduced homologies normalized by the

respective h-invariants:

χpHM redpΣqq ` hpΣq “ λpΣq,

1

2
χp xHFpΣqq ´ hDpΣq “ λpΣq,

(4)

where h and hD are respectively the monopole and instanton Frøyshov invari-

ants. Taking (4) as a model, let us define the normalized Lefschetz numbers of a

homology cobordism W from an integral homology sphere Σ to itself to be

Lef pW˚ : HM redpΣq Ñ HM redpΣqq ` hpΣq and

1

2
Lef pW˚ : xHFpΣq Ñ xHFpΣqq ´ hDpΣq

in the monopole and instanton cases, respectively. In the special case of an orienta-

tion preserving self-diffeomorphism τ : Σ Ñ Σ, the normalized Lefschetz numbers

of its mapping cylinder is referred to as the normalized Lefschetz numbers of τ .

Corollary F. If Σ is an integral homology sphere and τ : Σ Ñ Σ an orientation

preserving diffeomorphism of order n generating a semi-free action of Z{n on Σ,

then the normalized monopole and instanton Lefschetz numbers of τ agree.

This can be seen as follows. Let X be the homology S1 ˆ S3 obtained by gluing

up the two boundary components of W via the identity map. Then the normal-

ized monopole Lefschetz number of W equals ´λ SWpXq by the splitting formula

[32], and the normalized instanton Lefschetz number of W equals λFOpXq by the
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splitting formula of Anvari [1]. Comparing this with Corollary E completes the

proof.

Note that for any 3-manifold, it is conjectured [23] that the sutured versions

of monopole Floer homology and instanton Floer homology coincide. However,

relations between all other versions remain mysterious. It is possible that Corollary

F is a shadow of some deeper relation between these two theories.

1.2. Applications. Theorem A can be used to study knots in S3 and smooth

concordance between them. Given a knot K Ă S3 and an integer n ą 1, we let

ΣnpKq be the n-fold cyclic branched cover of K. Denote by LnpKq the Lefschetz

number of the map τ˚ : HM redpΣnpKqq Ñ HM redpΣnpKqq induced by the covering

transformation τ . Then we have the following corollary of Theorem A, which

generalizes [33, Corollary F].

Corollary G. Let n “ pm for p a prime number. Then the integer LnpKq is an

additive smooth concordance invariant.

Recall that a closed oriented 3-manifold Σ is called an L-space if H1pΣ;Qq “ 0

and HM redpΣ;Zq “ 0. Recent work of Boileau, Boyer, and Gordon [5, 6] has

focused attention on the question of which branched covers of knots are L-spaces.

This is of interest in its own right but also as a test case for the L-space conjec-

ture [7] equating the property of a rational homology sphere not being an L-space

with the left-orderability of its fundamental group. Using LnpKq, we can show

that the property of a knot K Ă S3 not having an L-space branched cover can

sometimes hold for an entire concordance class of K.

Theorem H. Let n “ pm for p a prime number. There is a knot Kn such that,

for any knot K that is smoothly concordant to Kn, its n–fold cyclic branched cover

ΣnpKq is not an L-space.

In a further application in this vein, we give a systematic obstruction of branched

covers being an L-space in terms of the Jones polynomial.

Theorem I. Let K Ă S3 be a knot with detpKq “ 1 and J 1
Kp´1q ‰ 0, where JKptq

is the Jones polynomial of K. Then, for any m ě 1, the 2m-fold cyclic branched

cover Σ2mpKq is not an L-space.

There are, of course, plenty of examples of knots K whose cyclic branched covers

ΣnpKq are not L-spaces for all n. The novelty of our result is in that it produces
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such examples in a systematic way. Note that Σ2mpKq in the above theorem may

fail to be an L-space simply because it is not a rational homology sphere. However,

since detpKq “ 1, the manifold Σ2mpKq is an m–fold cyclic branched cover of the

integral homology sphere Σ2pKq and so it is automatically a rational homology

sphere whenever m is a prime power.

Finally, recall the conjectural behavior [43, Remark 4.2] of the invariant λ SW

under orientation reversal.

Conjecture J. Let X be a smooth spin rational homology S1 ˆ S3 which is ori-

ented and homology oriented, and denote by ´X the manifold X with reversed

orientation but the same homology orientation. Then λ SWp´Xq “ ´λ SWpXq.

Note that proving this conjecture would provide an alternate route to the resolution

of the triangulation conjecture [36]. We can verify Conjecture J in a special case.

Theorem K. Let X be the mapping torus of an orientation preserving diffeomor-

phism (not necessarily of finite order) of a rational homology sphere. Then, for

any choice of spin structure on X, we have

´λ SWpXq “ λ SWp´Xq.

Theorem K will actually follow from our splitting formula [32]. We decided to

include Theorem K here because of its relevance to the main result of this paper,

Theorem B.

1.3. An outline of the proof. We will first prove Theorem B by computing the

invariant λ SWpXq directly from its definition [39],

λ SWpXq “ #MpX, g, βq ` wpX, g, βq,

where g and β are generic metric and perturbation, MpX, g, βq the Seiberg–Witten

moduli space, and wpX, g, βq an index theoretic correction term. In the special case

of the mapping torus X at hand, we have an orbifold circle bundle π : X Ñ Y o,

where Y o is the orbifold with the underlying space Y , the singular set K, and the

cone angle 2π{n alongK. According to Baldridge [4], for the right choice of metrics

and perturbations, the moduli space MpX, g, βq splits into a disjoint union of the

orbifold Seiberg–Witten moduli spaces corresponding to all possible orbifold spinc

structures on Y o. We relate these orbifold moduli spaces to the Seiberg–Witten

moduli space on Y in Section 2 using an argument reminiscent of the pillowcase
6



argument of Herald [20] in Donaldson’s theory. The correction term wpX, g, βq

for the mapping torus X is just a combination of the η–invariants of Y , which

we calculate in Section 3 and Section 4 using surgery techniques and the splitting

formula of Mazzeo and Melrose [37]. All of this gives us a formula for λ SWpXq

in terms of certain invariants of Y . It is converted into (2) in Section 5 using the

formula of Lim [31] for the Casson invariant in the Seiberg–Witten theory.

Theorem A follows easily from Theorem B using the splitting theorem of [32].

Theorem D is proved in Section 6. It can be viewed as a generalization of [45] to

rational homology spheres, or as a generalization of [33, Theorem 7.1] to n ě 2,

and it is proved by essentially the same methods. Proofs for all of the applications

are contained in Section 7.

Acknowledgments: We thank the organizers of the 2018 Conference on Gauge

Theory at the University of Regensburg, where the broad outline of this project

took shape. We thank Tye Lidman for pointing out the references [9, 15, 46] on

Heegaard–Floer L-spaces.

2. Counting Seiberg–Witten monopoles

Let K Ă Y be a knot in an oriented integral homology 3-sphere. Denote by

Y o the orbifold with the underlying space Y , the singular set K, and the cone

angle 2π{n along K. In this section, we study monopoles on Y o using the Seiberg–

Witten theory on manifolds with product ends. For the latter, we follow closely

the exposition in Lim [30, 31].

2.1. Monopoles on product end manifods. Let DpKq be a tubular neighbor-

hood of K Ă Y and N “ Y ´ IntpDpKqq the knot exterior, which is a compact

3-manifold with boundary a 2-torus T . Associate with N the product end manifold

N˚ “ N YT pr0,8q ˆ T q.

Fix a metric gpNq on N that restricts to a flat metric on the boundary and is

a product metric in its collar neighborhood. This metric extends in an obvious

fashion to a product end metric on the manifold N˚.

The manifold Y has a unique spin structure. It restricts to a spin structure on

N , which in turn extends to a spin structure on N˚ with spinor bundle E. Let A

be a unitary connection in the determinant bundle of E, and ϕ a spinor on N˚.
7



Let us consider the pω,αq-perturbed Seiberg–Witten equations

FA ` ω “ τpϕq, DApϕq ` α ¨ ϕ “ 0, (5)

where ω is a closed 2-form on N˚ and α is a 1-form on N˚, both with coefficients

in iR and with compact support in IntpNq. The solutions pA,ϕq of these equations

will be called monopoles. Denote by Mα,ωpN˚q the L2–moduli space of monopoles

on N˚ with respect to the gauge group action. The monopoles in Mα,ωpN˚q are

known to have asymptotic values at infinity, with a flat connection and the zero

spinor (a proof can be derived by crossing N˚ with S1 as in [48]; compare [42,

Chapter 4.2]). This gives rise to a map

R : Mα,ωpN˚q ÝÑ χpT q,

where χpT q is the moduli space of flat Up1q connections on detpE|T q, modulo gauge

transformation on E|T . Equivalently, we can view χpT q as the Up1q character

variety of π1pT q. One can easily see that χpT q is a 2-torus; we will introduce a set

of coordinates on χpT q as follows.

Choose simple closed curves m, ℓ on the 2-torus T so that m bounds a disk in

DpKq and ℓ bounds a Seifert surface in N . Let DpT q be the Dirac operator on the

2-torus T associated to the spin connection. An easy calculation shows that there

exists a unique point rA0s P χpT q for which the coupled Dirac operator DA0
pT q has

non-zero kernel. Then, for any rAs P χpT q, we can write A ´ A0 “ α P Ω1pT ; iRq

and define

mpAq “ ´2i

ż

m

α and ℓpAq “ ´2i

ż

ℓ

α.

The assignment of pmpAq, ℓpAqq to rAs gives a homeomorphism χpT q Ñ R2{p2Zq2.

For a, b P R{2Z, denote by rApa,bqs the point in χpT q with coordinatesmpApa,bqq “ a

and ℓpApa,bqq “ b. Note that the restriction of the unique flat Up1q connection on

Y to the torus T is the flat connection Ap1,1q.

We will treat rAp0,0qs “ rA0s as a singular point of χpT q. For sufficiently small

ǫ ą 0, denote by Uǫ the complement in χpT q of the closed ǫ–disk centered at

rAp0,0qs. Also, for future use, denote by Sa the circle in the torus χpT q which

consists of the points rApa,bqs with the fixed a and arbitrary b.

The monopoles in Mα,ωpN˚q having ϕ “ 0 will be called reducible, and all

other monopoles will be called irreducible. Denote by Mred
α,ωpN˚q and Mirr

α,ωpN˚q

the reducible, respectively, irreducible loci of Mα,ωpN˚q. The restrictions of the
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map R to Mirr
α,ωpN˚q and to Mred

α,ωpN˚q will be called, respectively,

Rirr : Mirr
α,ωpN˚q Ñ χpT q and Rred : Mred

α,ωpN˚q Ñ χpT q.

The following structure theorem for the moduli space Mα,ωpN˚q is proved in

Lim [30, Theorem 1.3] and [31, Theorem 3].

Theorem 2.1. For any sufficiently small ǫ ą 0 there are arbitrarily small pertur-

bations α and ω such that the following statements hold:

(1) The map Rred is a diffeomorphism onto its image, which is a circle con-

tained in Uǫ

(2) The closure of pRirrq´1pUǫq in Mα,ωpN˚q is a smooth compact 1-manifold

with boundary; its boundary points lie in Mred
α,ωpN˚q YR´1pBU ǫq

(3) Any boundary point of the closure of pRirrq´1pUǫq that lies in Mred
α,ωpN˚q

has a neighborhood in Mα,ωpN˚q which is modeled on the zeroes of the

map R ˆ R` Ñ R sending pt, zq to tz, with R ˆ t0u corresponding to the

reducibles

(4) The map R is smooth on pRirrq´1pUǫq

(5) Both pRirrq´1pUǫq and Mred
α,ωpN˚q are canonically oriented by the choice of

orientation on the real line H1pN˚;Rq.

From now on, we will always work with ǫ, ω, and α that satisfy the conditions of

Theorem 2.1. There will be further conditions that will require ǫ, ω, and α to be

sufficiently small. These conditions will be summarized in Remark 3.5.

One can say more about the map Rred, see discussion after Theorem 3 in [30] and

Section 7 of [31]. The reducible monopoles are given by the equation FA`ω “ 0. If

ω “ 0, these are just flat connections on N˚, which are mapped to the circle b “ ´1

in the torus χpT q. The same is true for any ω with the vanishing cohomology class

in H2
c pN˚;Rq “ H2pN, BN ;Rq “ R. In general, it follows by a direct calculation

that

ℓpAq “ ´1 ` i

ż

F

ω,

where F is a Seifert surface for ℓ Ă N . In particular, the image of Rred :

Mred
α,ωpN˚q Ñ χpT q is a circle given by the equation b “ ´1` cpωq, where cpωq P R

can be made arbitrarily small by choosing small ω. Such a circle is indicated near

the bottom of Figure 1.
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m 1 ´ δ

Uǫ

Figure 1. The image of Mα,ωpN˚q in Uǫ

2.2. Monopoles on orbifolds. Recall that we denoted by Y o the orbifold with

the underlying space Y , the singular set K, and the cone angle 2π{n along K,

and that we equipped the knot exterior N “ Y o ´ DopKq with a metric gpNq

which restricts to a flat metric on the boundary T . We will further assume that,

with respect to this flat metric, the meridian m and the longitude ℓ are orthogonal

geodesics of length u and v, respectively. We will equip Y o with an orbifold metric

obtained by gluing gpNq to an orbifold metric gou,v on DopKq. The latter metric

is defined as follows.

Definition 2.2. Let D2 ˆ S1 be a solid torus with the polar coordinates pr, θ, ξq,

where 0 ď r ď π{2 and θ, ξ P R{2π. For any u, v ą 0, define the metric gu,v on

D2 ˆ S1 by the formula

v2

4π2
dξ b dξ `

u2

4π2

`
dr b dr ` hprq2dθ b dθ

˘
,

where h : r0, π{2s Ñ R is a smooth function such that

‚ hprq “ sin r when 0 ď r ď π{6,

‚ hprq “ 1 when 5π{12 ď r ď π{2, and

‚ h2prq ă 0 when π{6 ď r ď 5π{12.

We call gu,v the smooth bullet-type metric. With respect to this metric, the bound-

ary of D2 has length u, and the circle factor has length v. We define the orbifold
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bullet-type metric gou,v as the quotient metric of gnu,v under the finite-order isome-

try ι of D2 ˆS1 taking pr, θ, ξq to pr, θ ` 2π{n, ξq. Note that both gu,v and gou,v are

flat near the boundary and have positive scalar curvature scalpgu,vq and scalpgou,vq

elsewhere.

We will need to perturb the Seiberg–Witten equations near K. To do this, we

let ν be the 2-form on D2 ˆ S1 obtained by pulling back an iR–valued 2-form on

the unit disk D2 which is supported in the region r ď π{6 and integrates to i{2.

We define the orbifold 2-form νo to be the quotient of the form n ¨ ν by the action

of the isometry ι. The following lemma is straightforward.

Lemma 2.3. There exists a constant δ0 ą 0 such that the inequalities

|δ0νpxq| ď scalpgu,vqpxq and |δ0ν
opyq| ď scalpgou,vqpyq (6)

hold for all x P DpKq and y P DopKq.

In what follows, we will choose ǫ ą 0 (the radius of the disk around the singularity

in χpT 2q) smaller than the constant δ0 ą 0 of Lemma 2.3.

Denote by gpY oq the orbifold metric on Y o “ N YT DopKq obtained by gluing

together the metrics gpNq and gou,v. Recall that the underlying space of Y o is an

integral homology 3-sphere. Therefore, the orbifold spinc structures sk on Y o can

be canonically parametrized by integers 0 ď k ď n ´ 1; see Baldridge [4, Theorem

7 and Theorem 4]. Given an orbifold spinc structure sk, consider the orbifold

Seiberg–Witten equations as in Baldridge [4, Section 2.4],

FA ` ωo “ τpϕq, DApϕq “ 0, (7)

where ωo is a closed orbifold 2–form on Y o with coefficients in iR. Equations

(7) give rise to the orbifold Seiberg–Witten moduli space, which will be called

MpY o, sk, gpY oq, ωoq. This moduli space can be recovered from Mα,ωpN˚q by

using the right choice of metric and perturbation on Y o. The metric will be the

metric gpY oqL on the orbifold

Y o “ N YT pr´L,Ls ˆ T q YT DopKq

obtained from gpY oq by ‘neck stretching’, and the perturbation 2–form ωo
δ “ ω `

δ ¨ νo being the sum of the 2–form ω supported in IntpNq, and the orbifold 2–form

δ ¨ νo supported in IntpDopKqq, which integrates to iδ{2 on each meridional disk.
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Proposition 2.4. For a generic δ P pǫ, δ0q, the map Rirr is transversal to S2k{n`1´δ

for all k. Moreover, for all sufficiently large L ą 0, the zero-dimensional manifolds

MirrpY o, sk, gpY oqL, ω
o
δ ´ dαq and pRirrq´1pS2k{n`1´δq

are orientation preserving diffeomorphic.

Proof. The transversality assertion follows from Theorem 2.1 and Sard’s Theorem.

The identification between MirrpY o, sk, gpY oqL, ω
o
δ ´ dαq and pRirrq´1pS2k{n`1´δq

is an orbifold version of [30, Theorem 1.4] and [31, Theorem 4], which is essentially

a gluing argument along a torus, hence the presence of orbifold points makes no

difference. The key ingredient is the inequality (6), which implies that the δ ¨ νo–

perturbed Seiberg–Witten equations on the cylindrical-end orbifold pp´8, 0s ˆ

T q YT DopKq have no irreducible solutions with finite energy. �

An argument similar to that in [31, page 637] then shows that the oriented

count of points in pRirrq´1pS2k{n`1´δq is given by the intersection number of

RpMirr
α,ωpN˚qq with the circle S2k{n`1´δ in the torus χpT q, where the torus χpT q

is oriented by B{Ba^ B{Bb, and the circle S2k{n`1´δ is oriented by B{Bb (again, the

presence of orbifold points makes no difference). By combining this observation

with Proposition 2.4, we obtain the following result.

Corollary 2.5. For a generic δ P pǫ, δ0q and for all L ą 0 sufficiently large, the

oriented count of points in the moduli space MirrpY o, sk, gpY oqL, ω
o
δ ´ dαq equals

the intersection number of RpMirr
α,ωpN˚qq with the circle S2k{n`1´δ in the torus

χpT q.

2.3. Monopoles on Y . Now we study the perturbed Seiberg–Witten equations

on the homology sphere Y . Let us consider the splitting Y “ N YT DpKq with

a metric gpY q which restricts to the metric gpNq on N and a smooth bullet-type

metric gu,v on DpKq “ S1 ˆ D2 (see Definition 2.2). For any constant L ą 0,

equip the manifold

Y “ N YT pr´L,Ls ˆ T q YT DpKq

with the metric gpY qL obtained from gpY q by ‘neck stretching’. In addition, let

ωδ “ ω ` δ ¨ ν be the sum of the form ω supported on N and the 2–form δ ¨ ν

supported on DpKq (as defined in Section 2.2), which integrates to iδ{2 on each
12



meridional disk. Then the pωδ, αq–perturbed Seiberg-Witten equations, as studied

by Lim [31], are of the form

FA ` ωδ “ τpϕq, DApϕq ` α ¨ ϕ “ 0. (8)

The corresponding moduli space Mα,ωδ
pY, gpY qq contains exactly one reducible so-

lution. We wish to compare Mα,ωδ
pY, gpY qq with the moduli space MpY, gpY q, βq

(which was used in [39] to define λ SW) given by the equations

FA “ τpϕq ` dβ, DApϕq “ 0. (9)

To this end, observe that any closed 2-form ωδ is exact on the homology sphere Y ,

hence can be written in the form ωδ “ dγδ, where γδ is a 1-form with coefficients

in iR.

Proposition 2.6. The choice of βδ “ α´ γδ establishes an orientation preserving

diffeomorphism between the moduli spaces Mα,ωδ
pY, gpY qq and MpY, gpY q, βδq.

Proof. The change of variables B “ A ` α in the Seiberg–Witten equations (8)

results in the equations FB ´ dα ` dγδ “ τpϕq and DBpϕq “ 0, which match the

equations (9) defining MpY, gpY q, βδq once we set βδ “ α ´ γδ. The result now

follows by comparing the orientation conventions for the two moduli spaces. �

The following result is a special case of Corollary 2.5 when n “ 1.

Corollary 2.7. For a generic δ P pǫ, δ0q, the map Rirr is transversal to S1´δ.

Moreover, for all L ą 0 sufficiently large, the oriented count of points in the

moduli space MirrpY, gpY qL, βδq equals the intersection number of RpMirr
α,ωpN˚qq

with the circle S1´δ in the torus χpT q.

2.4. The spectral flow formula. According to Part (1) of Theorem 2.1, the

moduli space Mred
α,ωpN˚q is a circle, for any sufficiently small generic perturbations

α and ω. This circle admits a parametrization by θpN˚, aq “ pRredq´1pSaq, thereby

giving rise to a family of twisted Dirac operators DθpN˚,aq on the product end

manifold N˚. The L2 completions of these operators are self-adjoint, which leads

to a well-defined notion of spectral flow; see for instance Cappell, Lee, and Miller

[10]. The points where the operators DθpN˚,aq have non-zero kernels are precisely

the points in Mred
α,ωpN˚q which serve as the boundary points of the closure of

pRirrq´1pUǫq. It then follows from Part (3) of Theorem 2.1 that, for any choice of

perturbations α and ω as in that theorem, the spectral flow is transverse, that is,
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the spectral curves of the family DθpN˚,aq intersect the a–axis transversely with

multiplicity one.

Lemma 2.8. For sufficiently small α and ω, the spectral flow of the family of

twisted Dirac operator DθpN˚,aq around the circle is equal to zero.

Proof. Let f : N˚ Ñ S1 be an arbitrary smooth function which induces an iso-

morphism f˚ : H1pXq Ñ Z and consider the family Da “ D ` ia df of twisted

Dirac operators on N˚. The unperturbed spin Dirac operator D is quaternionic

linear, hence the j–conjugate of Da is D´a, which makes the picture of the spec-

tral curves of Da symmetric with respect to the involution sending a to ´a. This

ensures that the spectral flow of the family Da, which was defined in [3, Section 7]

as the intersection number of the spectral curves with a small vertical shift of the

a–axis, vanishes. The family DθpN˚,aq is a deformation of the family Da hence its

spectral flow vanishes as well, as long as the perturbations α and ω are sufficiently

small. �

In what follows, we will choose a generic δ ą 0 such that following condition is

satisfied:

the operators DθpN˚,aq are invertible at a “ 2k{n ´ 1 ´ δ for all k. (10)

Proposition 2.9. For all sufficiently large L ą 0, sufficiently small generic per-

turbations α and ω, and generic δ ą 0, one has the relation

#MirrpY o, sk, gpY oqL, ω
o
δ ´ dαq “ #MirrpY, gpY qL, βδq

´ SFpDθpN˚,1´δq,DθpN˚ ,2k{n`1´δqq.

The spectral flow in this formula is calculated along any path in the circle θpN˚, aq

that leads from θpN˚, 1 ´ δq to θpN˚, 2k{n ` 1 ´ δq; according to Lemma 2.8, this

is a well defined quantity.

Proof. According to Corollary 2.5 and Corollary 2.7, we have the following identi-

ties

#MirrpY o, sk, gpY oqL, ω
o
δ ´ dαq “ #pRpMirr

α,ωpN˚qq XS2k{n`1´δq and

#MirrpY, gpY qL, βδq “ #pRpMirr
α,ωpN˚qq XS1´δq.

According to Theorem 2.1, the one-dimensional moduli space Mirr
α,ωpN˚q provides

an oriented cobordism between the points in Mirr
α,ωpN˚q XR´1pS1´δq, the points
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in Mirr
α,ωpN˚q XR´1pS2k{n´1´δq, and the reducible boundary points in Mred

α,ωpN˚q

that fit into the interval between θpN˚, 1 ´ δq and θpN˚, 2k{n ` 1 ´ δq; of the two

intervals in the circle Mred
α,ωpN˚q having the same endpoints, we chose the one that

does not contain θpN˚, 0q so as to stay within Uǫ. The reducible boundary points

in Mred
α,ωpN˚q correspond to the points where the Dirac operators DθpN˚,aq have

non-zero kernels hence these are precisely the points that contribute to the spectral

flow in the statement of the proposition. That they contribute with the right sign

follows from the description of the signs in [30, Section 11.3] and [31, page 635]:

when moving in the direction of the orientation of Mred
α,ωpN˚q, the contribution to

the spectral flow at θpN˚, aq is positive if and only if the orientation of Mirr
α,ωpN˚q

is into θpN˚, aq. �

3. Eta-invariant of the Dirac operator

Let X be the mapping torus of the covering translation τ : Σ Ñ Σ with the

standard orientation and homology orientation. A choice of spin structure on X

induces a spin structure on Σ. This induced spin structure is invariant under

τ hence it is the same spin structure that lifts the unique spin structure on the

integral homology sphere Y . We will have these particular spin structures in mind

when talking about the spin manifolds Σ and Y . In this section, we will compare

the η–invariants of the (twisted) spin Dirac operators on Σ and Y . The idea for

this comparison comes from Lim [31].

For the knot K Ă Y , consider its preimage rK Ă Σ under the branched cover

projection Σ Ñ Y . The knot rK can also be viewed as the fixed point set of the

covering translation τ : Σ Ñ Σ. Write

Y “ N YDpKq and Σ “ Nn Y rDpKq, (11)

where Nn Ñ N is a regular n–fold cover. Let Y p0q be the manifold obtained from

Y by 0-surgery on the knot K, and similarly Σp0q the manifold obtained from Σ

by 0-surgery on rK. Write

Y p0q “ N YDp0q and Σp0q “ Nn Y rDp0q, (12)

where Dp0q is a solid torus D2ˆS1 glued to N along its torus boundary by sending

its longitude and meridian to the curvem and l in T “ BN respectively (see Section

2.1), and similarly for rDp0q. The regular n–fold cover Nn Ñ N extends to a regular

n–fold cover Σp0q Ñ Y p0q. The aforementioned spin structures on Y and Σ give
15



rise to spin structures on Y p0q and Σp0q. Denote by gpY p0qq the metric on the

manifold Y0 that equals gN on N and the bullet-type metric gv,u on Dp0q. We

use the symbol gpΣq and gpΣp0qq to denote the pull back of the metrics gpY oq

and gpY p0qq. For any positive constant L, denote by gp˚qL the metrics on these

manifolds obtained from gp˚q by neck stretching as in Section 2; these metrics will

sometimes be suppressed in our notations.

Let θpY q be the unique reducible monopole in Mα,ωδ
pY, gpY qLq for the choices

of α, ωδ and L as Corollary 2.7; this monopole is the unique extension to Y of the

reducible monopole θpN˚, 1´ δq on N˚ whose limiting value is the flat connection

Ap1´δ,´1`cpωqq. Denote by θpΣq the lift of θpY q to Σ.

Note that each reducible monopole θpN˚, aq on N˚ admits a unique extension

to a reducible monopole on Y p0q, which will be called θpY p0q, aq. This follows

by applying Theorem 2.1 to the manifold Dp0q in place of N , and matching the

limiting values in χpT q by choosing an appropriate perturbation on Dp0q. This

perturbation can be made arbitrary small by choosing small α and ω. A similar

construction applied to Σp0q in place of Y p0q gives rise to the monopole θpΣp0q, aq

on Σp0q. The monopoles θpY p0q, 1 ´ δq and θpΣp0q, 1 ´ δq will be referred to as

simply θpY p0qq and θpΣp0qq.

Lemma 3.1. For any generic δ ą 0 that satisfied (10), there exist constants C1

and C2 which are independent of Y , Σ, K, and L (but may depend on δ) such

that, for all sufficiently large L ą 0, the following property holds

ηpDθpY qq “ ηpDθpY p0qqq ` C1 ` op1q, (13)

ηpDθpΣqq “ ηpDθpΣp0qqq ` C2 ` op1q, (14)

where op1q as usual denotes a quantity that limits to zero as L goes to infinity.

Proof. The restrictions of the monopoles θpY q and θpY p0qq to the tubular neigh-

borhoods DpKq and Dp0q give rise to the monopoles on the product end manifolds

D˚pKq “ pp´8, 0s ˆ T qYTDpKq and D˚p0q “ pp´8, 0s ˆ T qYTDp0q

which will be called, respectively, θpD˚pKqq and θpD˚p0qq. Since both man-

ifolds D˚pKq and D˚p0q have non-negative scalar curvature, the Dirac opera-

tors DθpD˚pKqq and DθpD˚p0qq are invertible. Combined with the invertibility of

DθpN˚,1´δq, this implies that, for all sufficiently large L ą 0, the operators DθpY q
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and DθpY p0qq are invertible. Moreover, it follows from Mazzeo and Melrose [37]

that

ηpDθpY qq “ ηpDθpN˚,1´δqq ` ηpDθpD˚pKqqq ` op1q and

ηpDθpY p0qqq “ ηpDθpN˚,1´δqq ` ηpDθpD˚p0qqq ` op1q.

Subtracting these two formulas, we obtain formula (13) with the constant C1 “

ηpDθpD˚pKqqq ´ ηpDθpD˚p0qqq, which is a linear combination of the η–invariants of

standard solid tori and hence is independent of Y , K, and L. Formula (14) is

proved similarly. �

Lemma 3.2. One has the following identity

ηpDθpΣp0qqq “
n´1ÿ

k“0

ηpDθpY p0q, 2k{n`1´δqq.

Proof. Since θpΣp0qq is the lift of θpY p0qq under the regular n–fold covering map

Σp0q Ñ Y p0q, the covering translation τ : Σp0q Ñ Σp0q induces an action on the

spinors, splitting each operator DθpΣp0qq into a direct sum of the operators Dα
θpΣp0qq

on its eigenspaces. This in turn leads to the identity

ηpDθpΣp0qqq “
ÿ

α

ηpDα
θpΣp0qqq.

One can easily check that the operators Dα
θpΣp0qq in this formula are precisely the

operators DθpY p0q, 2k{n`1´δq, which completes the proof. �

Lemma 3.3. For all sufficiently large L ą 0 and all k, one has

ηpDθpY p0q,2k{n`1´δqq “ ηpDθpY p0qqq ` 2 SFpDθpN˚, 1´δq,DθpN˚, 2k{n`1´δqq.

Proof. According to [3], the difference ηpDθpY p0q, 2k{n`1´δqq ´ ηpDθpY p0qqq equals

twice the spectral flow SFpDθpY p0qq,DθpY p0q, 2k{n`1´δqq. According to [10], for all

sufficiently large L ą 0, this spectral flow is the sum of the spectral flow over

D˚p0q and the spectral flow over N˚. The former vanishes because the metric on

D˚p0q has non-negative scalar curvature and the perturbation is small, and the

latter equals the spectral flow SFpDθpN˚, 1´δq,DθpN˚, 2k{n`1´δqq. �

Corollary 3.4. For any δ that satisfies (10), there exists a constant C 1 which,

for all sufficiently large L ą 0, is independent of Y , Σ, K, and L, and has the
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property that

ηpDθpΣqq “ n ¨ ηpDθpY qq ` 2
n´1ÿ

k“0

SFpDθpN˚, 1´δq,DθpN˚, 2k{n`1´δqq ` C 1 ` op1q.

Remark 3.5. So far, we have made choices of the following parameters:

‚ ǫ ą 0 : the radius of the disk around the singular point rAp0,0qs P χpT q,

‚ α, ω : differential forms on N˚ used to perturb the Seiberg–Witten equa-

tions, and

‚ δ ą 0 : a positive number whose products with the fixed 2-forms ν and νo

serve as the perturbations on DpKq and DopKq.

(Other parameters, such as the bullet type metric gu,v and the 2-form ν on DpKq,

have been fixed since the moment they were defined). We have imposed several

constraints on these parameters. To clarify that these constrains do not contradict

each other, we summarize them here: First, we choose ǫ ą 0 to be small enough

so that Theorem 2.1 applies. The parameter ǫ ą 0 also needs to be smaller than

the constant δ0 ą 0 of Lemma 2.3. Then we choose generic α and ω that meet

the requirements of Theorem 2.1. The perturbations α and ω also need to be

small enough so that Lemma 2.8, Proposition 2.9, and all results of Section 3

hold. Finally, we choose a generic δ P pǫ, δ0q to satisfy the condition (10) and the

condition of Corollary 2.5. We will fix all these choices from now on and will not

discuss them further.

4. Eta-invariant of the signature operator

In this section, we will analyze the eta-invariants of the odd signature operators

on the manifolds M “ Y , Σ, Y p0q, and Σp0q. As before, we fix the long neck

metrics gpMqL on these manifolds and use ηsignpMq to denote the corresponding

eta-invariants. Since ηsignpMq is closely related to a topological invariant (the

signature), its analysis is much easier than that of the eta-invariant of the Dirac

operator; cf. [38].

Lemma 4.1. One has the following identities

ηsignpΣq “ ηsignpΣp0qq and ηsignpY q “ ηsignpY p0qq.

Proof. This will follow from an excision argument for ηsignpMq. We will focus on

the second equality since the first one is similar. To keep better track of notation,
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we will denote by

f1 : BDpKq Ñ T “ BN and f0 : BDp0q Ñ T “ BN

the gluing maps for Y and Y p0q, and denote by gpT q the restriction of the metric

gpNq to T . We form a Riemannian 4-manifold with corners,

W “ pr0, 3s ˆ r´L,Ls ˆ T q Y pr0, 1s ˆ DpKqq Y pr2, 3s ˆ Dp0qq,

where r0, 1s ˆ DpKq is glued to r0, 3s ˆ r´L,Ls ˆ T via the map

idr0,1s ˆ f1 : r0, 1s ˆ BDpKq Ñ r0, 1s ˆ tLu ˆ T,

and r2, 3s ˆ Dp0q is glued to r0, 3s ˆ r´L,Ls ˆ T via the map

idr2,3s ˆ f0 : r2, 3s ˆ BDpKq Ñ r2, 3s ˆ tLu ˆ T.

A schematic picture of this region is depicted in Figure 2.

0 1 2 3

r0, 1s ˆ DpKq r2, 3s ˆ Dp0q

T ˆ r´L, Ls

Figure 2. gpW q

The metric gpW q on W is obtained by gluing together the product metrics

r0, 3s ˆ r´L,Ls ˆ gpT q, r0, 1s ˆ gu,v, and r2, 3s ˆ gv,u. The connected component

pt1u ˆ DpKqq Y pr1, 2s ˆ tLu ˆ T q Y pt2u ˆ Dp0qq

of the boundary of W is the sphere S3 with a non-smooth metric. We modify the

metric gpW q in a collar neighborhood of this S3 to obtain a new metric g1pW q that

equals the product metric with the standard smooth round metric gpS3q. Next,

we form the manifold W 1 “ W Y pr0, 3s ˆNq by gluing the two pieces together via

the map

idr0,3sˆT : r0, 3s ˆ t´Lu ˆ T Ñ r0, 3s ˆ BN.
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The metric gpW 1q is obtained by gluing together g1pW q and the product metric

r0, 3s ˆ gpNq. Note that pW 1, gpW 1qq is a smooth Riemannian manifold (without

corners). It has three boundary components, pY, gpY qLq, pY p0q, gpY p0qqLq, and

pS3, gpS3qq. The signature of W 1 is zero because the map H2pW 1, BW 1;Rq Ñ

H2pW 1;Rq is trivial. The eta-invariant of S3 vanished because pS3, gpS3qq admits

an orientation-reversing isometry. The Pontryagin form on r0, 3sˆN also vanishes

with respect to the product metric. Now, using the Atiyah–Patodi–Singer index

theorem [2], we obtain the equality

ηsignpY q ´ ηsignpY p0qq “ ´
1

3

ż

W 1

p1pg1pW qq

whose right hand side is a constant independent of N . To compute this con-

stant, we can set N “ D2 ˆ S1 and gpNq “ gu,v. Then both pY, gpY qLq and

pY p0q, gpY p0qqLq admit orientation reversing isometries hence their eta-invariants

vanish. Thus we conclude that, for any N , the equality ηsignpY q ´ ηsignpY p0qq “ 0

holds. �

Lemma 4.2. One has the following identity

ηsignpΣp0qq “ n ¨ ηsignpY p0qq ´
n´1ÿ

m“1

signm{npKq.

Proof. The manifold Σp0q is a regular (unbranched) n-fold cyclic cover of Y p0q.

By splitting the forms on Σp0q into eigenspaces for the induced action of τ , we

obtain the relation

ηsignpΣp0qq “ ηsignpY p0qq `
ÿ

α‰1

ηsign,αpY p0qq.

Since ραpY p0qq “ ηsignpY p0qq ´ ηsign,αpY p0qq, this immediately implies that

ηsignpΣp0qq “ n ¨ ηsignpY p0qq ´
ÿ

α‰1

ραpY p0qq.

Now, if α sends the meridian of K to m P Z{n, it follows from Gilmer [19, Theorem

3.6] that ραpY p0qq “ signm{npKq. Gilmer only states his result for Y “ S3 but his

method will work more generally for any integral homology sphere. �

Corollary 4.3. The eta-invariants of Σ and Y are related by the formula

ηsignpΣq “ n ¨ ηsignpY q ´
n´1ÿ

m“1

signm{npKq.
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5. Proof of Theorem B

Let X be the mapping torus of τ : Σ Ñ Σ. Since τ has finite order, X admits

an obvious circle action and the orbifold circle bundle π : X Ñ Y o. Let iη

be the connection form of this bundle. Any orbifold metric gpY oqL on Y o as in

Proposition 2.4 defines a metric g “ η2`π˚gpY oqL on X. Similarly, a perturbation

form ωo
δ ´ dα as in Proposition 2.4 lifts to a τ–invariant form ω on Σ. Since Σ

is a rational homology sphere, we can write ω “ dγ for some 1-form γ on Σ and

let β “ π˚γ. With respect to the metric g and perturbation β, we conclude as in

Baldridge [4] that

#MirrpX, g, βq “
n´1ÿ

k“0

#MirrpY o, sk, gpY oqL, ω
o
δ ´ dαq.

Remark 5.1. A fine point in this kind of argument is the discrepancy between the

spinorial connection and the Levi–Civita connection associated with the metric.

This discrepancy does not arise in our case because the two Dirac operators in

question differ by the Clifford multiplication by the 3-form η ^ dη (see Baldridge

[4, Lemma 17]) which vanishes because η is a flat connection.

Remark 5.2. It follows from Baldridge [4] that the irreducible part of the Seiberg–

Witten moduli space on X is non-degenerate. The definition of λ SWpXq in [39]

further requires that the (perturbed) blown up Seiberg–Witten moduli space on

X be free of reducibles. That this is the case for our mapping torus X follows

by a simple Fourier analysis argument from a similar property of the blown up

Seiberg–Witten moduli space on Y o.

Proposition 2.9 now implies that

#MirrpX, g, βq “

n#MirrpY, gL, βδq ´
n´1ÿ

k“0

SFpDθpN˚, 1´δq,DθpN˚, 2k{n`1´δqq. (15)

The correction terms of Lim [30] and Mrowka–Ruberman–Saveliev [39] in the prod-

uct end case are, respectively,

cpY, gL, βδq “
1

2
ηpDθpY qq `

1

8
ηsignpY q

and

wpX, g, βq “
1

2
ηpDθpΣqq `

1

8
ηsignpΣq.
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It follows from Corollary 3.4 and Corollary 4.3 that there is a constant C, which

is independent of Y,Σ, N,K,L but may depend on δ such that

wpX, g, βq “ n ¨ cpY, gL, βδq `
n´1ÿ

k“0

SFpDθpN˚, 1´δq,DθpN˚, 2k{n`1´δqq

´
1

8

n´1ÿ

k“0

signk{npKq ` C ` op1q. (16)

Combining formulas (15) and (16) with the Lim formula [30] for the Casson in-

variant, ´λpY q “ #MirrpY, gL, βδq ` cpY, gL, βδq, we obtain1

λ SWpXq “ #MirrpX, g, βq ` wpX, g, βq

“ ´n ¨ λpY q ´
1

8
¨
ÿ

m

signm{npKq ` C ` op1q.

Since λ SWpXq, λpY q, signk{npKq are metric independent and C is independent of

L, by passing to the limit as L Ñ 8, we obtain the formula

λ SWpXq “ ´n ¨ λpY q ´
1

8
¨

ÿ

m

signm{npKq ` C,

which further implies that C is a truly universal constant (independent, in partic-

ular, of Y , K, and δ). By applying this formula to Y “ S3 and an unknot K, we

conclude that C “ 0. This finishes the proof.

6. Computing the Furuta–Ohta invariant

Let as before K be a knot in an integral homology sphere Y , and Σ the n–fold

cyclic cover of Y with branch set K for n ě 2. We continue to assume that Σ

is a rational homology sphere. It comes equipped with the covering translation

τ : Σ Ñ Σ which is an orientation preserving diffeomorphism of order n. The

mapping torus of τ is the smooth 4-manifold X “ pr0, 1s ˆ Σq { p0, xq „ p1, τpxqq

with the product orientation.

Proposition 6.1. The manifold X has the integral homology of S1 ˆ S3.

1Our orientation conventions differ from those of Lim [31], hence the Casson invariant λpY q

shows up with the negative sign. This is the same issue we dealt in [43, Section 7].
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Proof. Let N be the knot K exterior, Nn Ñ N the n–fold cyclic cover of N ,

and N8 Ñ N its infinite cyclic cover. Denote by τ : N8 Ñ N8 the covering

translation; it descends to the covering translations τ : Nn Ñ Nn and τ : Σ Ñ Σ.

It follows from the Wang exact sequence

. . . // H1pΣq
τ˚´1

// H1pΣq // H1pXq // H0pΣq “ Z
τ˚´1

// H0pΣq “ Z

that all we need to prove is to show that τ˚ ´ 1 : H1pΣq Ñ H1pΣq is surjective. To

this end, choose a Seifert surface forK and a basis for its first homology yielding the

2h ˆ 2h Seifert matrix V . Then we have the following presentations [8, Theorem

8.8 and Proposition 8.20] for the first homology of N8 and Σ as modules over,

respectively, Zrt, t´1s and ZrZ{ns:

H1pN8q “
`
Zrt, t´1s

˘2h
{pV J ´ tV q,

H1pΣq “ pZrZ{nsq2h {pV J ´ tV q.

It is a standard fact [29] that τ˚ ´ 1 : H1pN8q Ñ H1pN8q is an isomorphism.

Writing π for the projection homomorphism

π : Zrt, t´1s ÝÑ Zrt, t´1s{ptn ´ 1q “ ZrZ{ns,

we obtain a commutative diagram

`
Zrt, t´1s

˘2h V J´tV
//

π

��

`
Zrt, t´1s

˘2h

π

��

pZrZ{nsq2h
V J´tV

// pZrZ{nsq2h

which readily implies that the map τ˚ ´ 1 : H1pΣq Ñ H1pΣq is surjective. �

Corollary 6.2. The automorphism τ˚ : H1pΣq Ñ H1pΣq has zero fixed point set.

Remark 6.3. The manifold X has a unique spinc structure. Its restriction to Σ

is the unique spinc structure s with the property τ˚psq “ s which appears in the

statement of Theorem A. This spinc structure is in fact a spin structure, obtained

by restricting to Σ either of the two distinct spin structures onX; see the discussion

at the beginning of Section 3.

The infinite cyclic cover X̃ Ñ X, which is just the product R ˆ Σ, has the

rational homology of S3, hence the conditions (3) are satisfied. According to [33,
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Section 7.1], the manifold X has a well-defined Furuta–Ohta invariant,

λFOpXq “
1

4
#M˚pXq P Q, (17)

where #M˚pXq stands for the signed count of points in the (possibly perturbed)

moduli space M˚pXq of irreducible ASD connections in a trivial SUp2q–bundle

E Ñ X, with the signs determined by a choice of orientation and homology orien-

tation on X. In this section, we will prove the following formula for this invariant.

Theorem 6.4. Let λpY q be the Casson invariant of Y , and denote by signm{npKq

the Tristram–Levine equivariant signatures of the knot K. Then

λFOpXq “ n ¨ λpY q `
1

8
¨
n´1ÿ

m“1

signm{npKq.

This formula was proved in [14] and [45] under the assumption Σ is an integral

homology sphere, and in [33] under the assumption that n “ 2. Our proof here

will rely on the extension of those techniques to the general case at hand.

6.1. Equivariant theory. We will first describe M˚pXq in terms of RpΣq, the

SUp2q–character variety of π1pΣq. To this end, consider the splitting

RpΣq “ tθu \ RabpΣq \ RirrpΣq,

whose three components consist of the trivial representation θ and the conjugacy

classes of abelian (that is, non-trivial reducible) and irreducible representations,

respectively. This decomposition is preserved by the map τ˚ : RpΣq Ñ RpΣq

induced by the covering translation. Denote by Rτ pΣq the fixed point set of the

map τ˚ acting on RpΣqztθu “ RabpΣq \ RirrpΣq so that

Rτ pΣq “ Rτ
abpΣq \ Rτ

irrpΣq.

The following algebraic lemma will allow us to obtain useful information about the

action of τ˚ on RabpΣq.

Lemma 6.5. Let G be a finite abelian group and s : G Ñ G an automorphism

with zero fixed point set. Then the induced automorphism s˚ : HompG,Up1qq Ñ

HompG,Up1qq of the character group of G has the trivial character as its only fixed

point.
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Proof. Let us consider the homomorphism u : G Ñ G given by the formula upgq “

spgq ´ g. Since s has zero fixed point set, u is injective and, since G is finite, u

is an isomorphism. This implies that u˚ is also an isomorphism, which completes

the proof because u˚pχq “ s˚pχq ¨ χ´1 on characters χ : G Ñ Up1q. �

The significance of the character group HompH1pΣq, Up1qq to us is that its quo-

tient by the equivalence relation identifying α with α´1 is precisely RabpΣq. We

call a character α P HompH1pΣq, Up1qq central if the representation obtained by

composing α with the inclusion of Up1q in SUp2q as a maximal torus is central;

the latter simply means that the image of α is contained in t˘1u Ă Up1q.

Proposition 6.6. The fixed point set Rτ
abpΣq consists of the equivalence classes of

non-central characters α P HompH1pΣq, Up1qq such that τ˚α “ α´1. In particular,

Rτ
abpΣq is empty for odd n, and Rτ

abpΣq “ RabpΣq for n “ 2.

Proof. A character α gives rise to a point in Rτ
abpΣq if and only if τ˚α “ α or

τ˚α “ α´1. The former only occurs for the trivial character by Lemma 6.5. For a

central character α, the condition τ˚α “ α´1 is equivalent to τ˚α “ α hence α is

again trivial. If n is odd, it follows that α “ α´1 so α is central and hence trivial.

If n “ 2, it follows from Lemma 6.5 that τ˚ acts as the negative identity on the

character group and therefore as the identity on RabpΣq. �

Proposition 6.7. Let i : Σ Ñ X be the inclusion map given by the formula

ipxq “ r0, xs. Then the induced map

i˚ : M˚pXq Ñ Rτ pΣq (18)

is well-defined, and is a one-to-one correspondence over Rτ
abpΣq and a two-to-one

correspondence over Rτ
irrpΣq.

Proof. The natural projection X Ñ S1 is a locally trivial bundle whose homotopy

exact sequence

0 ÝÝÝÝÑ π1pΣq ÝÝÝÝÑ π1pXq ÝÝÝÝÑ Z ÝÝÝÝÑ 0

splits, making π1pXq into a semi-direct product of π1pΣq and Z. Let t be a genera-

tor of Z then every representation A : π1pXq Ñ SUp2q determines and is uniquely

determined by the pair pα, uq where u “ Aptq and α “ i˚A : π1pΣq Ñ SUp2q is a

representation such that τ˚α “ uαu´1. In particular, the conjugacy class of α is

fixed by τ˚.
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If α is trivial, Amust be reducible. If α is non-trivial abelian, it cannot be central

by Proposition 6.6. Given a non-central abelian α, conjugate it to a representation

whose image is in the group Up1q of unit complex numbers in SUp2q. Then τ˚α “

α´1 by Proposition 6.6, hence α “ i˚A with u “ Aptq in the circle j ¨ Up1q. In

particular, A is irreducible and u2 “ ´1. Since any two elements of j ¨ Up1q

are conjugate to each other by a unit complex number, the map i˚ is a one-to-

one correspondence over Rτ
abpΣq. Finally, let α be an irreducible representation

with the conjugacy class in Rτ
irrpΣq. Then there is a unit quaternion u such that

τ˚α “ uαu´1, and therefore α is in the image of i˚. Moreover, there are exactly

two different choices of u such that τ˚α “ uαu´1 because if u1αu
´1
1 “ u2αu

´1
2

then u1 “ ˘u2 since α is irreducible. Therefore, the map i˚ is a two-to-one

correspondence in this case. Also note that the irreducibility of α implies that

un “ ˘1. �

Remark 6.8. It follows from the above proof that the characters in M˚pXq that

are mapped by i˚ to Rτ
abpΣq are binary dihedral, while those mapped to Rτ

irrpΣq

are not.

The Zariski tangent space to Rτ pΣq at a point rαs P Rτ pΣq is the fixed point

set of the map τ˚ : TrαsRpΣq Ñ TrαsRpΣq. Using an identification TrαsRpΣq “

H1pΣ, adαq and the fact that τ˚α “ uαu´1, this set can be described in cohomo-

logical terms as the fixed point set of the map

Adu ˝ τ˚ : H1pΣ, adαq Ñ H1pΣ, adαq.

We call Rτ pΣq non-degenerate if the equivariant cohomology groups H1
τ pΣ, adαq “

Fix pAd u ˝ τ˚ : H1pΣ, adαq Ñ H1pΣ, adαqq vanish for all rαs P Rτ pΣq. The

moduli space M˚pXq is called non-degenerate if cokerpd˚
A ‘ d`

Aq “ 0 for all rAs P

M˚pXq. Since indpd˚ ‘ d`
Aq “ dimM˚pXq “ 0, this is equivalent to kerpd˚

A ‘

d`
Aq “ 0 and, since A is flat and irreducible, to simply H1pX, adAq “ 0.

Proposition 6.9. The moduli space M˚pXq is non-degenerate if and only if

Rτ pΣq is non-degenerate.

Proof. The group H1pX, adAq can be computed with the help of the Leray–Serre

spectral sequence of the fibration X Ñ S1 with fiber Σ. The E2–page of this

spectral sequence is

E
pq
2 “ HppS1,HqpΣ, adαqq,
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where α “ i˚A and HqpΣ, adαq is the local coefficient system associated with the

fibration. The groups Epq
2 vanish for all p ě 2 hence the spectral sequence collapses

at E2–page, and

H1pX, adAq “ H1pS1,H0pΣ, adαqq ‘ H0pS1,H1pΣ, adαqq. (19)

The generator of π1pS1q acts on the cohomology groups H˚pΣ, adαq as

Adu ˝ τ˚ : H˚pΣ, adαq Ñ H˚pΣ, adαq,

where u is such that τ˚α “ uαu´1. If α is irreducible, H0pΣ, adαq “ 0 and the first

summand in (19) vanishes. If α is non-trivial abelian, we may assume without loss

of generality that it takes values in the group Up1q of unit complex numbers. Then

τ˚α “ uαu´1 for some u P j ¨ Up1q and H0pΣ, adαq “ i ¨ R as a subspace of sup2q,

with τ˚ “ id. One can easily check that Adu acts as minus identity on i ¨R hence

the first summand in (19) again vanishes. The second summand in (19) is the

fixed point set of τ˚ acting on H1pΣ, adαq, which is the equivariant cohomology

H1
τ pΣ, adαq. Thus we conclude that H1pX, adAq “ H1

τ pΣ, adαq, which completes

the proof. �

Let us assume that Rτ pΣq is non-degenerate. For any rαs P Rτ pΣq, its orienta-

tion will be given by

p´1qsf
τ pθ,αq

where sfτ pθ, αq is the mod 2 equivariant spectral flow defined in [45, Section 3.4]

for irreducible α. That definition extends word for word to abelian α after one

resolves the technical issue of the existence of a constant lift, which we will do

next.

Let P be an SUp2q bundle over Σ with a fixed trivialization and α an abelian

flat connection in P with holonomy in Rτ
abpΣq; we are abusing notations by using

the same symbol for the connection and its holonomy. Since Rτ
abpΣq is empty for

odd n (see Proposition 6.6) we will assume without loss of generality that n is

even. Then τ admits a lift τ̃ : P Ñ P such that τ̃˚α “ α. Since α is abelian

and non-central, this lift is defined uniquely up to the stabilizer of α, which is a

copy of Up1q in SUp2q. The lift τ̃ can be written in the base-fiber coordinates as

τ̃px, yq “ pτpxq, ρpxq ¨ yq for some function ρ : Σ Ñ SUp2q. We call it constant if

there exists u P SUp2q such that ρpxq “ u for all x P SUp2q.
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Lemma 6.10. By changing α within its gauge equivalence class, one may assume

that τ̃ is a constant lift with u2 “ ´1.

Proof. The equation τ̃˚α “ α implies that pτ̃nq˚α “ α, so the gauge transformation

τ̃n belongs to the stabilizer of the connection α. If x P Fixpτq then τ̃npx, yq “

px, ρpxqn ¨ yq hence ρpxqn is a unit complex number independent of x. This implies

that ρpxq itself is a unit complex number unless ρpxqn “ ˘1. The latter equation

actually implies that ρpxq2 “ ´1 because, at the level of holonomy representations,

τ˚α “ α´1 is conjugate to α by an element u P SUp2q with u2 “ ´1; see the proof

of Proposition 6.7. Since ρpxq2 “ ´1 describes a single conjugacy class tr ρpxq “ 0

in SUp2q, we may assume that ρpxq “ u for all x P Fixpτq.

To finish the proof, we will follow the argument of [45, Section 2.2]. Let u :

P Ñ P be the constant lift upx, yq “ pτpxq, u ¨ yq and consider the SOp3q orbifold

bundles P {τ̃ and P {u over the integral homology sphere Y . All such bundles are

classified by the holonomy around the singular set in Y . Since this holonomy

equals Adpuq in both cases, the bundles P {τ̃ and P {u must be isomorphic, with

any isomorphism pulling back to a gauge transformation g : P Ñ P relating the

lifts τ̃ and u. �

Proposition 6.11. Assuming that the moduli space Rτ pΣq is non-degenerate, the

map (18) is orientation preserving.

Proof. The proof from [45, Section 3] extends to the current situation with no

change. �

6.2. Orbifold theory. Under the continued non-degeneracy assumption, we will

now describe Rτ pΣq in terms of orbifold representations. Let us consider the

orbifold fundamental group πV
1 pY,Kq “ π1pNq{xµny, where N “ Y ´ IntpDpKqq

is the knot exterior and µ is a meridian of K. This group can be included into the

split orbifold exact sequence

1 π1Σ πV
1 pY,Kq Z{n 1,

π˚ j

where j is the abelianization homomorphism. Denote by RV pY,K;SOp3qq the

character variety of irreducible SOp3q representations of the group πV
1 pY,Kq, and

also introduce the character variety Rτ pΣ;SOp3qq of non-trivial representations

π1Σ Ñ SOp3q fixed by τ˚.
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Proposition 6.12. The pull back of representations via the map π˚ in the orbifold

exact sequence gives rise to a one-to-one correspondence

π˚ : RV pY,K;SOp3qq ÝÑ Rτ pΣ;SOp3qq.

Proof. One can easily see that a representation α1 : πV
1 pY,Kq Ñ SOp3q pulls back

to a trivial representation θ : π1Σ Ñ SOp3q if and only if α1 is reducible. The

same argument as in [14, Proposition 3.3] shows that all pull-back representations

belong to Rτ pΣ, SOp3qq. The inverse map for π˚ is constructed as follows: given

rαs P Rτ pΣ, SOp3qq choose v P SOp3q such that τ˚α “ vαv´1, and define a

representation α1 of πV
1 pY,Kq “ π1Σ ¸ Z{n by the formula

α1pg ¨ µkq “ αpgq ¨ vk. (20)

If α is irreducible, the element v is unique hence formula (20) gives an inverse map.

If α is non-trivial abelian, an argument similar to that in the proof of Proposition

6.6 shows that v “ Adu for some u P j ¨ Up1q. Since any two elements of j ¨ Up1q

are conjugate to each other by a unit complex number, formula (20) again gives

an inverse map. �

Representations πV
1 pY,Kq Ñ SOp3q need not lift to SUp2q representations;

however, they lift to projective representations πV
1 pY,Kq Ñ SUp2q sending µn to

˘1; see [44, Section 3.1]. The character variety of such projective representations

will be denoted by RV pY,Kq, and it will be oriented using the orbifold spectral

flow.

Proposition 6.13. The correspondence of Proposition 6.12 gives rise to an ori-

entation preserving correspondence RV pY,Kq Ñ Rτ pΣq which is one-to-one over

Rτ
abpΣq and two-to-one over Rτ

irrpΣq.

Proof. We first need to check that the map RV pY,Kq Ñ Rτ pΣq is well-defined

because the pull back of a projective representation πV
1 pY,Kq Ñ SUp2q is a priori

a projective representation α : Σ Ñ SUp2q. The only obstruction to it being an

actual representation is the second Stiefel–Witney class w2pAdαq P H2pΣ;Z{2q.

That this class vanishes can be seen as follows. The conjugacy class of α is fixed

by τ , therefore, w2pAdαq must belong to the fixed point set of τ˚ : H2pΣ;Z{2q Ñ

H2pΣ;Z{2q. Using Poincaré duality, this fixed point set can be identified with the

kernel of the map τ˚ ´ 1 : H1pΣ;Z{2q Ñ H1pΣ;Z{2q. This kernel vanishes because
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the map τ˚ ´ 1 : H1pΣq Ñ H1pΣq is injective by Corollary 6.2 and is therefore an

automorphism of the finite abelian group H1pΣq; cf. the proof of Lemma 6.5.

Let us now consider the adjoint representation Ad : SUp2q Ñ SOp3q and the

induced maps on character varieties,

Rτ pΣq Ñ Rτ pΣ;SOp3qq and RV pY,Kq Ñ RV pY,K;SOp3qq. (21)

The first map is a one-to-one correspondence, which can be seen as follows. We

showed in the previous paragraph that every equivariant representation π1Σ Ñ

SOp3q admits a lift to a representation π1Σ Ñ SUp2q. The number of all such lifts

is known to equal the cardinality of H1pΣ;Z{2q. However, we are only interested

in equivariant lifts, and their number equals the cardinality of the fixed point set

of τ˚ : H1pΣ;Z{2q Ñ H1pΣ;Z{2q. The latter cardinality is easily seen to be one

using Corollary 6.2.

The second map in (21) is the quotient map by the action of Z{2 sending the

image of the meridian µ to its negative. The fixed points of this action are pre-

cisely the binary dihedral projective representations α1 : πV
1 pY,Kq Ñ SUp2q. Now,

the proof will be finished as soon as we show that an irreducible projective rep-

resentation α1 : πV
1 pY,Kq Ñ SUp2q is binary dihedral if and only if its pull back

representation π˚α1 : π1Σ Ñ SUp2q is abelian.

If π˚α1 is abelian, its image belongs to Up1q Ă SUp2q and the image of α1 to its

Z{n extension. Since the only finite extension of Up1q inside SUp2q is the binary

dihedral group Up1q Y j ¨ Up1q, we conclude that α1 must be binary dihedral. In

particular, if n is odd, the representation π˚α1 cannot be abelian, which matches

the fact that Rτ
abpΣq is empty by Proposition 6.6. Conversely, it follows from the

orbifold exact sequence that π1Σ is the commutator subgroup of πV
1 pY,Kq. There-

fore, if α1 is binary dihedral, the image of π˚α1 must belong to the commutator

subgroup of Up1q Y j ¨ Up1q, which is of course the group Up1q.

Since the orbifold spectral flow matches the equivariant spectral flow used to

orient Rτ pΣq, the above correspondence is orientation preserving. �

6.3. Perturbations. In this section, we will remove the assumption that Rτ pΣq is

non-degenerate which we used until now. To accomplish that, we will switch from

the language of representations to the language of connections. Let P a trivialized

SUp2q bundle over Σ. Any endomorphism τ̃ : P Ñ P which lifts the involution τ

induces an action on the space of connections ApΣq by pull back. Since any two
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such lifts are related by a gauge transformation, this action gives a well defined

action on the configuration space BpΣq “ ApΣq{GpΣq. The fixed point set of this

action will be denoted by Bτ pΣq.

The irreducible part of Bτ pΣq was studied in [45] hence we will only deal with

reducible connections. In fact, we will further restrict ourselves to constant lifts u

because any flat abelian connection α admits such a lift; see Lemma 6.10.

Let AupΣq Ă ApΣq consist of all non-trivial connections A such that u˚A “ A,

and GupΣq Ă GpΣq of all gauge transformations g such that gu “ ug. The quotient

space AupΣq{GupΣq will be denoted by BupΣq. The following lemma is a key to

making the arguments of [45] work in the case of abelian connections.

Lemma 6.14. The group GupΣq acts on AupΣq with the stabilizer t˘1u. Moreover,

the natural map BupΣq Ñ Bτ pΣq is a two-to-one correspondence to its image on

the irreducible part of BupΣq, and a one-to-one correspondence on the reducible

part.

Proof. For the sake of simplicity, we will assume that reducible connections have

their holonomy in the subgroup Up1q of unit complex numbers in SUp2q, and that

u P j ¨Up1q. Let us suppose that g˚A “ A for a connection A P AupΣq and a gauge

transformation g P GupΣq. If A is irreducible, we automatically have g “ ˘1. If

A is non-trivial abelian, then g is a complex number, and the condition ug “ gu

implies that g “ ˘1.

To prove the second statement, consider a connection A such that u˚A “ A

and consider its gauge equivalence class in Bτ pΣq. It consists of all connections

g˚A such that u˚g˚A “ g˚A. Since A “ u˚A, we immediately conclude that

u˚g˚A “ g˚u˚A so that ug and gu differ by an element in the stabilizer of A. If

A is irreducible, its stabilizer consists of ˘1 hence ug “ ˘gu. The group of gauge

transformations satisfying this condition contains GupΣq as a subgroup of index

two, which leads to the desired two-to-one correspondence. If A is non-trivial

abelian, its stabilizer consists of unit complex numbers. Therefore, we can write

ug “ c2gu with c P Up1q or, equivalently, ucg “ cgu. This provides us with a

gauge transformation cg P GupΣq such that pcgq˚A “ g˚A, yielding the one-to-one

correspondence on the reducible part. �

With this lemma in place, the proof of Proposition 6.7 can be re-stated in gauge-

theoretic terms as in [45, Proposition 3.1]. The treatment of perturbations in our
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case is then essentially identical to that in [14] and [45], one important observation

being that the orbifold representations α1 that pull back to abelian representations

of π1pΣq are in fact irreducible. This fact is used in the proof of [14, Lemma 3.8],

which supplies us with sufficiently many admissible perturbations.

6.4. Proof of Theorem 6.4. The outcome of Section 6.1 and Section 6.2 is that,

perhaps after perturbing as in Section 6.3, we have two orientation preserving

correspondences,

M˚pXq ÝÑ Rτ pΣq ÐÝ RV pY,Kq,

both of which are one-to-one over RabpΣq and two-to-one over Rτ
irrpΣq (we omit

perturbations in our notations). These correspondences imply the existence of an

orientation preserving one-to-one correspondence between M˚pXq and RV pY,Kq.

The proof of Theorem 6.4 will be complete after we express the signed count of

points in RV pY,Kq in terms of the Casson invariant of Y and the equivariant knot

signatures of K.

The character variety RV pY,Kq of projective representations α1 splits into two

components corresponding to whether pα1pµqqn equals `1 or ´1. Let N be the

exterior of the knot K then this splitting corresponds to the splitting

RV pY,Kq “
nď

k“0

Sk{npN,SUp2qq, (22)

where SapN,SUp2qq comprises the conjugacy classes of representations γ : π1N Ñ

SUp2q such that tr γpµq “ 2 cospπaq. According to Herald [20], see also Collin–

Saveliev [14], the combined signed count of points in (22) equals

4n ¨ λpY q `
1

2
¨
n´1ÿ

m“1

signm{npKq.

Dividing this formula by four, we obtain the formula for the Furuta–Ohta invariant

λFOpXq claimed in Theorem 6.4.

7. Applications

In this section we supply proofs for the applications of our main theorem dis-

cussed in Section 1.2 of the introduction; for the convenience of the reader we will

restate each result before giving the proof.
32



Theorem 7.1 (Theorem H from the introduction). Let n “ pm for p a prime

number. There is a knot Kn such that, for any knot K that is smoothly concordant

to Kn, its n-fold cyclic branched cover ΣnpKq is not an L-space.

Proof. Since n is a prime power, it is standard that all of the Tristram–Levine

signatures are knot concordance invariants. Similarly, the h-invariant of the n-fold

cyclic branched cover, with the specified spinc structure, is a knot concordance

invariant [21]. It now follows from Theorem A that Lef pτ˚q is a knot concordance

invariant. Therefore, if Kn is a knot for which Lef pτ˚q ‰ 0, then the same is true

for any knot K in the concordance class of Kn. In particular, the n-fold cyclic

branched cover of K is not an L-space.

All that remains to prove the theorem is to find a knot Kn with Lef pτ˚q ‰ 0.

Pick relatively prime integers q and r both of which are greater than or equal to 2

and are relatively prime with p; we will exclude the triple p2, 3, 5q to avoid dealing

with the exceptional case of the Poincaré homology sphere. The n–fold cyclic

branched cover of the right-handed torus knot T pq, rq is the Brieskorn homology

sphere

Σpn, q, rq “ txn ` yq ` zr “ 0 u X S5

with its canonical link orientation and with the covering translation τpx, y, zq “

pe2πi{nx, y, zq. The homology sphere Σpn, q, rq admits a fixed point free circle

action tpx, y, zq “ ptqrx, tnry, tnqzq making it into a Seifert fibered manifold; see

Neumann–Raymond [41]. The covering translation τ is actually contained in this

circle action: it corresponds to the choice of t “ e2πip{n for any integer p such

that pqr ” 1 pmod nq. This implies that τ is isotopic to the identity and that

Lef pτ˚q “ χpHM redpΣpn, q, rqqq.

To show that χpHM redpΣpn, q, rqqq ‰ 0, we will use the identification of the

monopole and Heegaard Floer homology due to Kutluhan, Lee, and Taubes [24, 25,

26, 27, 28], or alternatively, Colin, Ghiggini, and Honda [11, 12, 13] and Taubes [47].

The non-vanishing of the Euler characteristic ofHM redpΣpn, q, rqq follows from this

identification and the corresponding result in Heegaard Floer homology [9] as well

as [15, 46]. �

For any prime power n, we can define a subgroup BLn in the smooth concordance

group C generated by knots that are concordant to a knot whose n-fold branched
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cover is an L-space. One would expect that, for a given n, the group BLn is rather

small; our Theorem 7.1 provides some evidence for that.

Corollary 7.2. Let n be a prime power. Then C{BLn has a Z summand.

Proof. It follows from the proof of Theorem 7.1 that Lef pτ˚q : C Ñ Z is a well-

defined non-zero map. Since both hpΣ, sq and the Tristram–Levine signatures are

homomorphisms, Theorem A implies that Lef pτ˚q is a homomorphism as well.

Thus there is a surjection from C{BLn to the image of this homomorphism, which

is isomorphic to Z. �

Remark 7.3. One could alternately deduce that the Lefschetz number is a ho-

momorphism from the splitting formula of [32] and the additivity of λ SW proved

in [35].

Theorem 7.4 (Theorem I from the introduction). Let K Ă S3 be a knot with

detpKq “ 1 and J 1p´1q ‰ 0, where JKptq is the Jones polynomial of K. Then, for

any m ě 1, the 2m-fold cyclic branched cover Σ2mpKq is not an L-space.

Proof. We may assume without loss of generality that Σ2mpKq is a rational homol-

ogy sphere. Since detpKq “ 1, Σ2pKq is a homology sphere, so this is automatic

when m is a prime power. Suppose Σ2mpKq is an L-space and apply the formula of

Theorem A to the covering translation τ and its square τ2. We obtain the formulas

hpΣ2mpKq, sq “
1

8

2m´1ÿ

j“1

signj{2mpK,S3q and

hpΣ2mpKq, sq “ m ¨ λpΣ2pKqq `
1

8

m´1ÿ

j“1

signj{mpK,Σ2pKqq.

Comparing them, we obtain

m ¨ λpΣ2pKqq “
1

8

2m´1ÿ

j“1

signj{2mpK,S3q ´
1

8

m´1ÿ

j“1

signj{mpK,Σ2pKqq.

On the other hand, we have the equality

1

8

2m´1ÿ

j“1

signj{2mpK,S3q ´
1

8

m´1ÿ

j“1

signj{mpK,Σ2pKqq “
m

8
¨ sign1{2pK,S3q,
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which can be proved as follows. By pushing a Seifert surface of K into the interior

of the 4-ball and taking the 2-fold and 2m-fold branched covers, we obtain 4-

manifolds W2 and W2m with

2m´1ÿ

j“1

signj{2mpK,S3q “ signpW2mq,

m´1ÿ

j“1

signj{mpK,Σ2pKqq “ signpW2mq ´ m ¨ signpW2q, and

sign1{2pK,S3q “ signpW2q.

This gives the desired formula. We therefore conclude that

λpΣ2pKqq “
1

8
sign1{2pK,S3q.

Comparing this with Mullins’s theorem [40]

λpΣ2pKqq “ ´
1

12
J 1p´1q `

1

8
sign1{2pK,S3q,

we obtain J 1p´1q “ 0, a contradiction. �

Theorem 7.5 (Theorem K from the introduction). Let X be the mapping torus

of an orientation preserving diffeomorphism (not necessary of finite order) of a

rational homology sphere. Then, for any choice of spin structure on X, we have

´λ SWpXq “ λ SWp´Xq.

Proof. Let X be the mapping torus of a finite order diffeomorphism τ : Σ Ñ Σ

of a rational homology sphere Σ. Given a spin structure on X denote by s its

restriction to Σ and observe that τ˚psq “ s. Let ´Σ be the manifold Σ with

reversed orientation and denote by ´s and ´τ the corresponding spin structure

and diffeomorphism, respectively. By the splitting theorem of λ SW [32, Theorem

A], we have

λ SWpXq “ ´Lef pτ˚ : HM redpΣ, sq Ñ HM redpΣ, sqq ´ hpΣ, sq and

λ SWp´Xq “ ´Lef pp´τq˚ : HM redp´Σ,´sq Ñ HM redp´Σ,´sqq ´ hp´Σ,´sq.

Since h is a homology cobordism invariant, it vanishes on the manifold Σ# p´Σq.

It now follows from the additivity of h (see [17, Theorem 3]) that hp´Σ,´sq “

´hpΣ, sq. Therefore, all we need is to check is that

Lef pp´τq˚q “ ´Lef pτ˚q.
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Lemma 7.6. There is a duality isomorphism ~HMap´Σ,´sq – zHM 1`apΣ, sq˚

with respect to the canonical mod 2 grading in monopole homology.

Proof. The monopole homology has two canonical gradings, the rational grading

grQ and the mod 2 grading grp2q. Kronheimer and Mrowka [22, Proposition 28.3.4]

construct a duality isomorphism ~HMp´Σ,´sq Ñ zHMpΣ, sq˚ which maps ele-

ments of rational grading j to elements of rational grading ´1 ´ j. Since the

relative rational grading matches modulo 2 the relative mod 2 grading, there is a

universal constant cpΣ, sq P Q{2Z such that grQ “ grp2q `cpΣ, sq pmod 2q. There-

fore, the above duality isomorphism maps elements of mod 2 grading a to elements

of mod 2 grading 1 ` a ` cpΣ, sq ` cp´Σ,´sq pmod 2q. The calculation of [32,

Lemma 2.6] implies that cpΣ, sq ` cp´Σ,´sq “ 0 pmod 2q, thereby completing the

argument. �

Recall from [22, (3.4)] that HM red
a pΣ, sq “ im jΣ,a for the connecting homomor-

phism jΣ,a : ~HMapΣ, sq Ñ zHMapΣ, sq. Moreover, it follows from the definition of

jΣ,a that, under the duality isomorphisms

~HMap´Σ,´sq – zHM1`apΣ, sq˚ and zHMap´Σ,´sq – ~HM1`apΣ, sq˚

of Lemma 7.6, the map j´Σ,a is the dual of the map jΣ,1`a. As a consequence, we

obtain an isomorphism

HM red
a p´Σ,´sq – HM red

1`apΣ, sq˚.

With respect to this isomorphism, p´τq˚ is the dual of τ˚, which implies that

Lef pp´τq˚q “ ´Lef pτ˚q. �
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