THE SEIBERG-WITTEN EQUATIONS ON END-PERIODIC
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CURVATURE METRICS
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ABSTRACT. By studying the Seiberg-Witten equations on end-periodic manifolds, we
give an obstruction on the existence of positive scalar curvature metric on compact 4-
manifolds with the same homology as S* x S2. This obstruction is given in terms of
the relation between the Frgyshov invariant of the generator of H3(X;Z) with the 4-
dimensional Casson invariant Asw (X) defined in [I0]. Along the way, we develop a
framework that can be useful in further study of the Seiberg-Witten theory on general
end-periodic manifolds.

1. INTRODUCTION

A natural question in Riemannian geometry is: When does a closed manifold X admit a
Riemannian metric with positive scalar curvature? (See [12] for a survey on this problem.
We call such manifolds “psc-manifolds”.) The answer is fully understood in the following
two cases:

e X is 3-dimensional or less [11];
e X is simply connected and 5-dimensional or more [3], 17].

Now consider the case that X is a 4-dimensional psc-manifold. Then we have the
following three constrains on the topology of X:

(i) Suppose X is spin. Then the signature of X (denoted by sign(X)) must be zero.
Similar result holds for its covering spaces [4, [6];

(ii) Suppose b3(X) > 0. Then up to a nonzero multiple, any element of H3(X;R) can
be represented by an embedded, oriented psc 3-manifold. Similar result holds for its
covering spaces [15];

(iii) Suppose by (X) > 1. Then the Seiberg-Witten invariant SW (X, s) must equal 0 for
any spin¢ structure §. Similar result holds for its covering spaces [16].

In the current paper, we consider the following case:

Assumption 1.1. X is a 4-manifold with the same homology as S* x S3; the homology
group H3(X;Z) is generated by an embedded 3-manifold Y with b1(Y') = 0.

For such X, condition (i) tells nothing interesting and condition (ii) provides a cobor-
dism between Y and a psc 3-manifold. As for condition (iii), it can not be applied because
the Seiberg-Witten invariants are not well defined (since by (X) = 0).

The first purpose of the current paper is to obtain a new obstruction of positive scalar
curvature in the direction of (iii). Recall that for X satisfying Assumption although
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the original Seiberg-Witten invariant is not well defined, there are two other invariants
from the Seiberg-Witten theory:

¢ The 4-dimensional Casson-type invariant Agy (X ), defined by Mrowka-Ruberman-
Saveliev [10];

e The Frgyshov invariant h(Y, s), defined by Frgyshov [2], where s is the unique spin
structure on Y that can be extended to a spin structure on X. (It was proved in
[2] that this invariant does not depend on the choice of Y.)

Here is the main theorem of the paper:

Theorem 1.2. Suppose Agw(X) 4+ h(Y,s) # 0. Then X admits no Riemannian metric
with positive scalar curvature.

Remark 1. We conjecture one should be able to give an alternative proof of Theorem
by combining Schoen-Yau'’s result [I5] and monopole Floer homologyﬂ

Since it was proved in [I0] that the mod-2 reduction of Agw (X) is always p(Y,s) (the
Rohlin invariant of (Y, s)), we have the following corollary:

Corollary 1.3. Suppose X is a homology S x S' with H3(X;Z) generated by an embedded
rational homology sphere Y satisfying

h(Y,s) # p(Y,5) (mod 2).
Then X admits no Riemannian metric with positive scalar curvature.

This corollary gives a large family of interesting examples of 4-manifolds (with b = 0)
admitting no positive scalar curvature metric.

Example 1.4. Let X be obtained by furling up any homology cobordism from Y =
¥(2,3,7) (the Brieskorn sphere) to itself. Then X admits no Riemannian metric with
positive scalar curvature because p(Y) = 1 and h(Y) = 0.

We summarize the idea in the proof of Theorem [1.2|as follows: Let W be the cobordism
from Y to itself obtained by cutting X along Y. We consider the manifold

Z+ = ((—O0,0] X Y) vy w vy w vy ...

This non-compact manifold has two ends: one is cylindrical and the other one is periodic.
(The word “periodic” indicates the fact that we are gluing togegher infinitely many copies
of the same manifold W. See [18] for the precise definition.) For a Riemannian metric gx
on X, we can construct, using a cut-off function, a metric on Z; that equals the a lift of
gx over the periodic-end and restricts to the product metric on the cylindrical end. Now
consider the (suitably perturbed) Seiberg-Witten equations on Z,. More specifically, let
[b] be a critical point of the Chern-Simons-Dirac functional with certain absolute grading.
We consider the moduli space M([b],Z) of gauge equivalent classes of solutions that
approaches [b] on the cylindrical end and has exponential decay on the periodic end. By
adding end points to the moduli space M([b], Z. ), which correspond to “broken solutions”
on Z,, we get the moduli space M™([b], Z), which is a 1-manifold with boundary. Now

IThis has been verified [8 Theorem B] in a recent paper by the author, Ruberman and Saveliev.
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we use the assumption that gx has positive scalar curvature. Under this assumption, we
can prove that M*([b], Z,) is compact. Therefore, the number of points in M ™ ([b], Z,),
counted with sign, should be 0. This actually implies that a certain reducible critical point
[ag] can not be “killed by the boundary map” and hence survives in the monopole Floer
homology. By this argument, we show that —2h(Y,s) < 2Agw(X). By the same argument
on —X, we can also prove —2h(Y,s) > 2Asw(X), which completes the proof of Theorem

As can be seen from the above discussion, the study of Seiberg-Witten equations on
end-periodic manifolds plays a central role in our argument. We note that the first applica-
tion of gauge theory on end-periodic manifolds was given by Taubes [18] in the context of
Donaldson theory, where he proved that the Euclidean space R* admits uncountable many
exotic smooth structures. However, the Seiberg-Witten theory on end-periodic manifold
is still not well developed. One major difficulty in this direction is finding a reasonable
substitution for the assumption 7 (W) = 1 (which was used in [I8]) and prove the com-
pactness theorem under this new assumption. In the current paper, we use the positive
scalar curvature assumption, which tells something interesting but still not general enough.
One possible substitute is the end-periodic symplectic structure assumption. This moti-
vates the second purpose of the paper: we try to develop a framework that can be useful
in further study of the Seiberg-Witten theory on general end-periodic manifolds. Actually,
all the results (except Lemma in Section 2, Section 3 and the appendix are stated
and proved without the positive scalar curvature assumption.

We note that many of the results and proofs in the current paper follow the same line
as Kronheimer-Mrowka’s book [5]. The idea is that: by working with suitably weighted
Sobolev spaces, one can treat the non-compact manifold

X+:WUYWUY...

as a compact manifold whose signature equals the correction term —w(X,0, gx) (see Sub-
section 2.4).

The precise statements of all the results used in the current paper will be given. How-
ever, to keep the length of the paper somehow under control, we will omit the proofs that
are word by word translations from the corresponding parts of [5]. In order to help the
reader to follow the argument, we will always give the precise reference of the omitted
details. From now on, we will refer to [5] as the book.

The paper is organized as follows: In Section 2, we briefly recall the definition of the
monopole Floer homology, the Frgyshov invariant h(Y,s) and the 4-dimensional Casson
invariant Agw(X). We will also review and prove some results about linear analysis on
end-periodic manifolds. In Section 3, we start setting up the gauge theory on end-periodic
manifolds and define the moduli spaces. In Section 4, we prove the compactness result
under the positive scalar curvature assumption. In Section 5, we will put all the pieces
together and finish the proof of Theorem In the appendix, we prove (using Fourier-
Laplace transformation) Proposition which states the uniqueness and existence of the
solution of the Laplace equation on end-periodic manifolds. This may be of independent
interest for some readers.
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2. PRELIMINARIES

2.1. The set up and the notations. Let X connected, oriented, smooth 4-manifold
satisfying the condition

H\(X;Z) =~ 7, Hy(X;Z) ~ 0.

In other words, X is a homology S x S3. We further assume that H3(X;Z) is generated
by an embedded rational homology 3-sphere Y. (This is not always the case.) We fix
a homology orientation of X by fixing a generator [1] € H;i(X;Z). This induces an
orientation on Y by requiring that [1] u [Y] = [X]. Let W be the cobordism from Y to
itself obtained from cutting X open along Y. The infinite cyclic covering space of X has
a decomposition

X = ...uy Woq uy Wouy Wi U ... with all W, = W.
We choose a lift of ¥ to X and still call it Y. We let
Xy =Wouy Wyuy Wa u ...
be one of the two components of X\Y'.

Notation. In the current paper, we will use U to denote the disjoint union and use Uy
to denote the result of gluing two manifolds along their common boundary Y .

There are two spin structures on X. We pick one of them and denote it by §. It induces
spin structures on the various manifolds we constructed so far. In particular, we have an
induced spin structure on Y and we denote it by s. It is not hard to see that s does not
depend on the choice of 5. These spin structures will be fixed through out the paper and
we will suppress them from most of our notations. We denote by St and S~ the positive
and negative spinor bundles over various 4-manifold. The spin connection over 4-manifolds
are all denoted by Ag. For the 3-manifold Y, we denote the spinor bundle by S and the
spin connection by By. In both dimensions, we write p for the Clifford multiplication.

Other than X and X4, we also consider the following two (non-compact) spin 4-
manifolds

M, :=Muvuy X,y and Z, := Z uy X4,
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where Z = (—o0,0] x Y and M is a compact spin 4-manifold bounded by (Y,s). By doing
surgeries along loops in M, we can assume that

H'(M;R) =0 (1)
We denote by M the orientation reversal of M.
Now we specify Riemannian metrics on these manifolds: Let gx be a metric on X. We
consider a harmonic map
f: X ->S'>~R/z (2)
satisfying
f*(do) =[1] e HY(X; 7).
It was proved in [I4] that for a generic choice of gx, the Dirac operator
Dy LI(X;8%) - LX(X;87),

associated to the connection A = Ay + ia - f*(df) for any a € R, has trivial kernel. We
call such metric “admissible metric”.

Assumption 2.1. Throughout this paper, we fix a choice of admissible metric gx.

Remark 2. By the Weitzenbock formula, any metric with positive scalar curvature is
admissible. However, we will not impose this positive scalar curvature condition until
Section 4.

Let g; be the lift of gx on X and gy be an arbitrary metric on Y. Using a cut-off
function, we can construct a metric gx, on X, which is isomorphic to the product metric
[0,3] x gy near the boundary (with {0} x Y identified with X ;) and whose restriction
on X \Wy equals g¢. Let gps be a metric on M isomorphic to the product metric near
the boundary. By gluing g)s and gx, together, we get a metric gy, on M. Similarly, we
obtain the metric g7+ on Z* by gluing the metric gx, together with the product metric
on Z.

2.2. The monopole Floer homology and the Frgyshov invariant. In this subsec-
tion, we briefly review the definition of the monopole Floer homology and the Frgyshov
invariant. For details, we refer to the book and [2].

Let & = 3 be an integer fixed throughout the paper. To begin with, we define

Ap-172(Y) = {Bo + ala € Li_, 5(Y;iR)}

as the space of spin® connections over Y of class Liil /2 Consider the configuration space:
Cro12(Y) = Ap_12(Y) x Ly 55(Y5 5).

The pair (B, ¥) € Cj,_;5(Y) is called reducible if ¥ = 0. Denote by Ci‘iil/2(Y) the space

of reducible pairs. We will also consider the blown-up configuration space:
Clg—l/Q(Y) ={(B,s,¥)| Be A_12(Y),

3
s€Rxp and ¥ e Lifl/Q(Y; S) satisfies |W| 2 = 1}. )
5
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The gauge group
Gryrp(YV) = {u:Y = S Julpz <o)

k+1/2
acts on both Cj_;,(Y) and CZ—I/Q(Y)' Denote the quotient spaces by Bj_;.(Y) and
Bg_l/Q(Y) respectively. It was proved in the book that Cj_;/2(Y) and Bj_i,(Y) are
Hilbert manifolds without boundary, while Cj,_;2(Y) and By,_;/2(Y') are Hilbert manifolds
with boundary.
We define the Chern-Simons-Dirac functional £ (with By as the preferred reference
connection) on Cy_1/(Y) as

L(B,¥) = —é L(Bt — Bj) A (Fpi + Fpi) + % L@B\D, ) dvol, (4)

where B! and B{ denote the induced connections on the determine bundle det(S) and
Fpyt, FB@ denote their curvatures. We denote by grad £ the formal gradient of £. This

is a section of the L273 /Q-Completed tangent bundle of Cy_;/(Y). In order to get the

transversality condition, we need to add a perturbation q on grad £. The sum grad £ + q
is gauge invariant and gives rise to a “vector field”

Vg 82_1/2(3/) = Ti-372(Y),

where Tj,_3/5(Y’) denotes the Lz P completion of the tangent bundle of BY /2(Y). (We
put the quotation marks here because vg is not a section of the actual tangent bundle).
We call the perturbation q admissible if all critical points of vy are nondegenerate and the
moduli spaces of flow lines connecting them are regular. (See Page 411 of the book for an
exact definition.) Under this admissibility condition, the set € of critical points of vy is
discrete and can be decomposed into the disjoint union of three subsets:

e (% the set of irreducible critical points;

e €% the set of reducible, boundary stable critical points (i.e., reducible critical
points where vg points outside the boundary);

e C": the set of reducible, boundary unstable critical points (i.e., reducible critical
points where vg points inside the boundary).

The monopole Floer homologies HM (Y, s; Q), M(Y,s; Q) and W(Y,s; Q) are defined
as the homology of the chain complexes freely generated by €°, €% u €° and €° u €¥
respectively.

Our main concern will be HM (Y, 5; Q) and HM (Y,s; Q). To give the precise definitions,
we first recall that a two-element set A([b]) (called the orientation set) can be associated
to each [b] € € (see Section 20.3 of the book). After making a choice of preferred element
x([6]) € A([b]) for each [b], we can canonically orient the moduli spaces of trajectories
connecting them. Now let C (resp. C* and C*) be a vector space over Q with basis {ef}
indexed by elements [b] in €° (resp. €° and €"). We define the linear maps

00 :C°—C°% 07:C°—C°,
oy C" - (C° 0y :C"—>C°.
6
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by the formulae
P = >, #M([6],[6]) - ey ([b] € €°)
[6/]ece
and so on, where the integer #M([b],[6']) counts (with sign) the number of points in
M([6],[6]) (the moduli space of Seiberg-Witten trajectories going from [b] to [c]) that
has dimension 0. 5
By considering the number #M™4([b], [6']) instead (i.e., only counting reducible tra-
jectories), we can similarly define the linear maps
N O L LN ORI O
oL C" -5, v 0" — O™
(We note that 0% is different with o%.)
The following definition was given as Definition 22.1.7 of the book.

Definition 2.2. The monopole Floer homology groups HM,(Y,s; Q) and ESA//‘[* (Y,s;,Q)
are defined as the homology groups of the chain complexes C' = C*@C" and C = C°@C*
with the differentials

> s 04 s (05 —ayo;,

a:<az az)““"(az az—wz) ©)
respectively. There is a natural map i, : HM,.(Y,s;Q) — E]\//[*(Y, s; Q) induced by the
chain map i : C — C defined as

0 —ao¥
< 1 > (6)

To each [b] € €, we can assign a rational number gr®([b]) (called the absolute grading)
as follows (see Definition 28.3.1 of the book): Let gr(M, [b]) be the “relative M-grading”
of [b]. This number describes the expected dimension of the Seiberg-Witten moduli space
on the manifold M* = M uy ([0, 40o0) x Y) with limit [b]. It was proved in the book that
the quantity

— (M, [b]) — b (M) — § sign(M) 1 (7

does not depend on the choice of M and we define it as gr®([b]). This grading induces
absolute gradings on HM ,(Y,s;Q), HM.(Y,s;Q) and HM ,(Y,s;Q). The map i, in
Definition preserves this grading.

Remark 3. In (7), we use gr(M,[b]) instead of gr([ag], M\B*,[b]) as in the book. Here
[ag] denotes the first boundary stable critical point in B¢ . . (S3). These two gradings

k—1/2
satisfy the relation (see Lemma 27.4.2 of the book)
gr(M, [b]) = gr(B*, [ao]) + gr([ao], M\B*, [0]) = —1 + gr([ag], M\B*, [b]).

¢

This explains the extra term “—1” in our formula.

Remark 4. In general, one needs to specify a connected component of B (M) (the blown-
up quotient configuration space of M) to define the relative M-grading. However, in our

case the space Bf (M) is connected since b1(Y") = 0.
7
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Definition 2.3. [2] The Frpyshov invariant is defined as
1
h(Y,s) := —3 -inf{gr®([b])|[b] represents a nonzero elements in imi,}.

The following lemma was proved in [2] (in a (possibly) different version of monopole
Floer homology). The proof can be easily adapted to the version used in the book.

Lemma 2.4. For any rational homology sphere Y and any spin® structure s on Y, we
have h(—=Y,s) = —h(Y,s).

Definition 2.5. An admissible perturbation q is called a “nice perturbation” if ¢ = 0
when restricted to C;°, /Q(Y).

Remark 5. Since the tangent bundle of Cj,_y/»(Y) is trivial with fiber
Li 1 p(Y3iR) @ Ly 5(Y55),

we can write the perturbation q as (q°,q!), where q° denotes the connection component
and q' denotes the spinor component. Note that by the gauge invariance, the restriction

of q! to C};e_dl /2(Y) is always 0. Therefore, an admissible perturbation q is nice if and only

if q° = 0 when restricted to C;‘fil/Q(Y).

Under the assumption that ¢ is nice, there is only one reducible critical point downstairs
(up to gauge transformation), which is just (Bp,0). As for the critical points upstairs, the
sets €% and €° can be described explicitly as follows: Consider the self-adjoint operator

Da,s, : Li—1/2(y§ S) — Lﬁ_S/g(Y; S) (8)

U P,V +Dipy 0 (0,V).

Since q is admissible, 0 is not an eigenvalue of qu, B, and all eigenvalues have multiplicity
1 (see Proposition 12.2.5 of the book). We arrange the eigenvalues A, so that

LA <A <0< A< <.

For each i, we pick an eigenvector 1); with eigenvalue \; and |¢;|;2 = 1. We let [a;] =
[(Bo,0,1;)]. By Proposition 10.3.1 of the book, we have

¢ = {[ai]]i = 0}, € = {[a;]]i < O}.

From now on, we always use [a.] to denote these reducible critical points. Note that
gr®([a;]) — gr®([a;_1]) equals 1 when i = 0 and equals 2 otherwise.

Definition 2.6. Let q be a nice pertrubation. The height of q is defined as
ht(q) = gr%([ao))-

In other words, the height is defined to be the absolute grading of the lowest boundary

stable critical point.
8
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Consdier the operator

Dy: LY(M;S*) = L2y (M; S7) @ (L3, (Y3 S) n HY)

® > (Dya, 2,7 (2]y))

where lD: 4, is a perturbed Dirac operator over M which equals % + qu7 B, hear the
boundary; Hi (resp. Hi") is the closure in L*(Y;S) of the eigenvectors of Iy g, with
negative (resp. positive) eigenvalue; 7~ is the projection to Lifl/z(Y;S) N H; with
kernel Hit.

Lemma 2.7. For any nice perturbation q, we have
ht(q) = —2indg Dy — 28200, (9)

Proof. By the same argument as Page 508 of the book, we can identify grad(M, [ag]) with
the index of the Fredholm operator (24.41) in the book. A further deformation identifies
this index with the index of the operator Dy @ B, where B is the Fredholm operator

Li(M;iT*M) — L (M;iR @i AL T*M) @ Lj,_, 5(Y;iR) @ C~
a (d*a,dta,{a, Ty, a7).

Here C~ < (kerd* n Li_l/Q(Y;iT*Y)) denotes the negative eigenspace of the operator

xd and o~ € C~ denotes projection of a|y. By Lemma 24.8.1 of the book, we have
indgr B = —b; (M) — 1. Therefore, we get

grad(M, [ag]) = 2ind¢ D, — by (M) — 1.
By , this implies the lemma. O

Now consider the following subset of Q

00 ¢ gz,

Remark 6. m(Y,s) is actually determined by the Rohlin invariant p(Y,s) and hence inde-
pendent with the choice of M.

m(Y.s) = facQla=|

ht(a) _
2

Proposition 2.8. For any e € m(Y,s), there exists a nice perturbation q with e.

Proof. Let {t,|n € Zzo} be a complete, orthonormal set of eigenvectors of ). Let the
eigenvalue of v, be A,. For each n, we consider the the function

In: Ck—l/Q(Y) - R
(Bo + a,U) = (W, ) 2]

where £ : Y — R is the unique solution of

iAE = d*da, J £=0.
9 Y
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One can prove that f, is invariant under the action of G; 4 /Q(Y). We denote by q,, the
formal gradient of f,. A simple calculation shows that

D500 (0, ) = 200, Up)p2 - Y.
+00
We let ¢ = > ¢uqn, where {c,} is a sequence of real numbers. We require |¢,| decreasing
n=0
to 0 fast enough so that ¢’ is a tame-perturbation (see Definition 10.5.1 of the book). Now
consider the perturbed Dirac operator qu/’ B, (see ) Its eigenvalues are of the form
Al + 2¢, and the corresponding eigenvector is just ¢,. By choosing a generic sequence

{en}, we can assume
/\;L—i—QCn;é/\;n—i—cm, Vn # m and /\;1—1—20“ # 0, Vn € Z>g.

Note that the number —ind¢ Dy — % always belongs to m(Y,s). Moreover, as we
varies {c,}, this number changes by the spectral flow of qug B,- Therefore, by choosing
suitable {c,}, we may assume that

sign(M)

—

Under this perturbation ¢’, the reducible critical points are just [(Bo,0,y)] with n > 0.
All of them are non-degenerate by [5, Proposition 12.2.5]. Therefore, by the compactness
result of the critical points, we can find € > 0 such that the gauge invariant open subset

Ule) ={(B,®)||®[ 12 < €} < Ch1y2(Y)
contains no irreducible critical point. Now consider the Banach space

PU(€) :=={a" € P| 4"|u() = 0},
where P is the large Banach space of tame perturbations constructed in Theorem 11.6.1 of
the book. By repeating the proof of Theorem 15.1.1 of the book, we can find a perturbation
q" € P(U(e)) such that the perturbation q = q” + ¢’ is admissible. Since both q” and ¢’
vanishes on Cj;°4, /Q(Y), the perturbation q is nice. Moreover, since q” vanishes on U (€), we
have Dq = Dy. By Lemma [9} we have

htéq) = —indg Dg — 28 — _jndg Dy — M _ ¢,

This finishes the proof. O

e = —indc Dq/ -

Lemma 2.9. Suppose q is a nice perturbation with ht(q) < —2h(Y,s). Then we have
—2h(Y,s) =inf{gr®([a;])|j = 0; 3 n,my,....;my € Zigy and [b1], ..., [b;] € €° s.t.

(10)
do(mq[bi] + ... + my[b;]) = 0 and 07(m1[b1] + ... + my[b;]) = n[a;]}.

Proof. For the grading reason, all the maps 0¥ vanish. As a result, the set
{lefa;]17 € Z}
is a basis of HM ,(Y,s;Q). For j > 0, the map i, sends

[efa,)] € HM (Y, 5; Q)
10
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to
[era,1] € HM (Y, 5; Q).
Since we have ht(q) < —2h(Y’;s), the set
S ={jli =0, [e]] #0e€ HM.(Y,5;Q)}
does not equals Z~y and we have

—21(Y,s) = inf{gr®([a,])]j € ). (11)

= (050

=(%0):
in the current case, and coincide with each other. This finishes the proof of the
lemma. Il

Since we have

2.3. Linear analysis on end-periodic manifolds. In this subsection, we will set up
the appropriate Sobolev spaces on end-periodic manifolds and review the related Fredholm
theory. Our construction is inspired from [I8] and [10].

Let E be an end-periodic bundle (over X, X,, M, or Z ) equipped with an end-periodic
metric | - | and an end-periodic connection V (see [I§] for definition). For any j,p € Zx,
we can define the unweighted Sobolev norm of a smooth section s in the usual way:

J ) 1
sl = (5 J|V(Z)s|pdvol)p. (12)
g i=0
(We can also define the L? norm for negative j using integration.)

Remark 7. Other then a trivial real or complex line bundle, which we denote by R, C
respectively, two other types of end-periodic bundle will be considered: the spinor bundle
S% (associated to spin structures) and the bundle of differential forms. Both of them have
a canonical metric. As for the connection, we use the spin connection for the former and
the Levi-Civita connection for the latter.

In general, the differential operators that we will consider do not have Fredholm proper-
ties under the norms defined in Therefore, we need to use the weighted Sobolev norms
instead. To define them, recall that we have a harmonic map f : X — S' corresponding
to a generator of H'(X;Z). We lift f to a function f: X — R satisfying

fFH-1,1]) < jk\J[NWn for some N » 0.

n=
Now consider the following smooth cut-off functions:
5 S N
e 7p: X — [0,+00): a function that equals |f| on X\ uNWn;
n—_

e 71 : X1 — [0,400): the restriction of 7p;
e 7 : M; — [0, +00): an extension of 7y;
e 13: 7, — |0,400): an extension of 71 with the property that

TQ(t7y) = |t|7 V(t,y) € (_007 _1] xY.
11
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Definition 2.10. For § € R,j € Z,p € Z=q, we define the weighted Sobolev norm of a
smooth section s of E in different ways depending on the underlying manifold:
: SHLT;;

o Over My, we set |s|r = €772 - s] 2
7y J

e Over X, we set HSHLP& = |led™
J»

o Over X, we set |5 s = le” ™0 - 5| ;
J5—0, J

e Over Z., weset [s|pe = [ - s] 0.
Ji— J

8,0
(Note that we use two weight indices for manifolds X and Z, because they both have two
ends.) We denote the corresponding Sobolev space respectively by

L35(X4E), L3 5(MyE), Li_s5(X;E) and L2 5(Z4; E).

We remove j from our notations when it equals 0. We sometimes also suppress the bundle
E when it is clear from the context.

The following lemma is a straightforward corollary of [18, Lemma 5.2]. It asserts that
one can control the weighted Sobolev norm of a function using the weighted Sobolev norm
of its derivative. (Although [I8] only stated the result for smooth functions, we can prove
the general case easily using standard arguments, i.e., approximating a Sobolev function
by smooth functions.)

Lemma 2.11. For any d > 0,5 = 0, we can find a positive constant C' with the following
significance:

(1) For any u e L? | (X4+;R) with Hd“HL{; < o0, there exists a unique number u € R
’ s

such that |u — EHLQ.H , < 0. Moreover, in this case we have
J s
Ju sz, < Cldlz .
(2) Fiz a smooth function

T4 - Z+ — [0, 1] with T4|Z = 07T4|Wi =1V > 1.

2
1,loc

Then for any u € LY, .(Z+;R) with ||du2 s, < 00, there exists unique numbers
Ji=

u,u € R such that |u—u —u - 742 s <00 In this case we have
Jj+1;—o,

Jlu—u—u- 7'4HL§+1;_ s S CHdu”L?;—é,a

s,

Next, we summarize the Sobolev embedding and multiplication theorems. We focus
on the manifold X, (although similar results holds other manifolds) because that will
be our main concern. The proofs are straightforwardly adapted from the unweighted
case (Theorem 13.2.1 and Theorem 13.2.2 of the book) and the cylindrical end case ([7,
Proposition 2.9, Proposition 2.10]) so we omit them.

Proposition 2.12. Let E be an end-periodic bundle over X.. There is a continuous
inclusion
L§75(X+§E) - LZ&/(X% E)
forj=1, 6=0 >0, p<qand (j—4/p) = (I —4/q). This embedding is compact when
j>1 0>¢ and (j—4/p) > (1 —4/q).
12
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Proposition 2.13. Let E,F be two end-periodic bundles over X, . Suppose § + &' >
8", j,l=m and 1/p+1/q = 1/r, with 6,0',8" = 0 and p,q,r > 1. Then the multiplication

LEs(X4i B) x L (X4 F) = Ly, (X E®F)
s continuous in any of the following three cases:
(1) (a) (j —4/p) + (I —4/q) = m —4/r, and
(b) j—4/p <0, and

(c) 1 - 4/q < 0;
or

(2) (a) min{j — 4/p,L - 4/} > m — 4fr, and
(b) either j —4/p >0 orl—n/q> 0;
or

(3) (a) min{j —4/p,l —4/q} > m —4/r, and
(b) either j —4/p =0 orl—4/q = 0.
When the map is continuous, it is a compact operator as a function of second variable for
fized first variable provided | > m and ! —4/q > m —4/r.

The following corollary will be very useful because the differential operators we are
going to consider can often be composed into the sum of a first-order, linear operator with
a zeroth-order, quadratic operator.

Corollary 2.14. For any j > 2,0 > 0, the multiplication map
L 5(Xei B) % L35(Xo; F) = Ly (X4 EQF)
18 compact.

Proof. By Proposition this map factors through the natural inclusion

L3s(X E®QF) > Ly (X3 EQF),

which is compact by Proposition [2.12 O
Now we start discussing the related Fredholm theory.
Proposition 2.15. There exists a small 59 > 0 such that for any j € Z=o and 6 € (0, dp),

we have the following results:
(i) The operator

A(X;-6,0): L3, _55(X;R) = L _55(X;R)
u— Au
is a Fredholm operator with trivial kernel and two dimensional cokernel. The same
result holds for the manifold Z, .
(i) The operator
A(My;6) : L3,y 5(My;R) — L3 5(M;R)
u— Au

is a Fredholm operator with trivial kernel and 1-dimensional cokernel.

13
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(iii) The operator
A(Xy30) 1 Lo s(X 5 R) = LI s(X 4 R) @ L, (V3 R)
u — (Au, {du, v))

is Fredholm with trivial kernel and 1-dimensional cokernel, where U denotes the in-
ward normal vector on the boundary.

Proposition will be proved in the appendix.

Lemma 2.16. There exists a constant 61 € (0, dg) such that for any j € Z=o and 6 € (0,91),
we have the following results:

(i) For }my w e L?;7676(Z+;R) with SZ+wdvol = 0, we can find u € L?H’IOC(ZJF;IR)
satisfying

|dul 2 < ®, Au=w.
Jj+1;—96,6
(ii) The operator
D(My) : L?+1,5(M+;T*M+) - L?,&(M%]R@ A T* M)t oo (d¥a,d" o)
is Fredholm with index —(by (M) + 1);
(iii) The operator
D(Z4): Ly, 55(Z25 T Z4) = L5 5(Z6; RO AT Z4) s oo (d*rd T )
is Fredholm with trivial kernel and 1-dimensional cokernel. Its image equals
{(w, B)] wdvol = 0}.
Zy
(iv) The operator
D(X1): Ly s(X45T*X ) = Li;(X s RO AT X ) @ L2, h(YV;R) @ CH
given by
aw (d*a,da, {a, Ty, 77 (aly)) (13)
is Fredholm with trivial kernel and one dimensional cokernel, which can be canonically
identified with R. Here Ct (resp. C~ ) is the closure in L?H/Q(Y;T*Y) N kerd* of

the space spanned by the eigenvectors of xd with positive (resp. negative) eigenvalues
and

mt LY p(YViTY) — CF
is the projection with kernel C'~.

Proof. (i) We consider two vector spaces:

Vi={ue L?+2,10C(Z+;IR)| | 1,2 < oo}

Jj+1;—06,6

Vo ={we L} 5;(Z4:R) w dvol = 0}.
Zy
14
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Now assume § € (0, dp), where &g is the constant in Proposition 2.15] By Lemma we
also have

Vi=L%o 55(Z;R) @R ® Ry, (14)
Using this identification and integration by part, we can show that Au € V5 for any u € V7.
In other words, we have a well defined operator

AV — Vs

Comparing the domain and target of this operator with the one in Proposition m (1),
we see that it is a Fredholm operator with index 1. To finish the proof, we just need to
prove kernel of A consists only of constant functions. This is a simple consequence of the
maximum principle, noticing that all functions in V; are bounded (because of )

(ii) Consider the operator

d¥ i L3 s (M T* M) — L3 (M ATT*M.).
Note that H'(M.;R) = 0 by our choice of M (see ) By [18, Proposition 5.1], when

91 > 0 is small enough, both the kernel and the image of this operator (which we denote
by V3 and Vj respectively) are closed with the following properties:

Vs = L?+275(M+;R) TR TR (15)
dim(L25 (M AfT*M,)/Va) = b (M), (16)

By , the operator
V3 — L?,L(;(MJF;]R) ca— dia.

is essentially the same with the operator A(M.,d) in Proposition which is Fredholm
with index —1. This implies that the operator
L3 s(My;T*My) — L7y 5(MyR) @ Vit a o (d*a,d¥a)
is also Fredholm with the same index. Therefore, by , the operator
L 6(My; T*My) — L3 5(My;R) @ LS 5(My; AZT*My) - oo (d*r,d* )

is Fredholm with index —(by (M) + 1).
(iii) To apply the excision principle of the index, we consider the manifold M =
Z vy M. (Recall that M is the orentation reversal of M.) We choose a function

T:M_ — [0,40w) with 7(¢t,y) = |t|, Y(t,y) € (—0, —1] x Y
and define the weighted Sobolev norm of a section s over M_ as
.|| ,0T
Isllzz_, = €% sl .2
By similar argument as (ii), one can show that the operator
L2y s(M_sT*M_) > L3 (MR ATT*M_) : e (d*a,d" o)
is Fredholm with index — (b5 (M) + 1). Notice that we have the decompositions

M, =MuyX,, M_.=Zuy M, Z, =Z uy X,.
15
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By an exision argument, we see that the operator

(d*,d"): L3y, 55(24,T*Z4) = L3 _545(Z4, RO ALT* Z4)
is Fredholm with index

—(1+b5 (M) — (1 +b3(M))+ (1 +by (M uy M)) =—1.
Having proved this fact, we are left to show that the kernel is trivial. Suppose we have

aeL? . s5(ZT*Z,) with d*a = 0,d" o = 0.

Integrating by part, we get daw = 0. Since H'(Z;R) = 0, we have a = du for some
harmonic function u. Notice that HduHL?+1,,(§,5 < 0. By Lemma the function w is
bounded. By the maximal principle, u is a constant, which implies a = du = 0.

(iv) Consider the operator

D(M) : L3 (M; T*M) — L3 (M; R@® AL T*M) @ L, (Y R) @ C*

defined by the same formula as (13). By Lemma 24.8.1 of the book, D(M) is a Fredholm
operator with index —b* (M) — 1. We note that the boundary of M is —Y while the
boundary of the manifold in that Lemma is Y, this explains the reason we use C* while
the book use C~. We also note that the additional term “—1” in our index formula comes
from the 1-dimensional cokernel of the map

D(M) : L (M; T*M) — L} (M; R @i AL T*M) @ L7, 5(Y; R)

aw (d*a,dba, {a, D).
By an excision argument involving the operators D(X ), D(M), D(M.) and the operator

d*®d": Lj2+1(M vy M;T*(M vy M)) —>L3(M Uy M;R@® ALT*(M uy M)),

we can prove that D(X ) is Fredholm with index —1. Now suppose « € ker D(X ). Then
by the integration by part argument on page 502 of the book, we can prove da = 0.
Since H'(X,;R) = 0, we have a = df for some local L?H—function f. By Lemma
we can assume || f| r2,,, < © after adding some constant function. Then f satisfies
J >

Af =0, {df,v) = 0. By Lemma we see that f (hence also «) equals 0. We have
proved that the kernel is trivial, which implies that the cokernel is 1-dimensional. Using
integration by part again, one can easily see that a necessary condition for an element

(w1, B,wa,0') € L3 (X s RO ATT*X,) @ L§+1/2(Y; R)®C™T
belonging to im D(X ) is

f widvol + J wadvol = 0.
Xy Y
Since the cokernel is 1-dimensional, we see that this is also a sufficient condition. Moreover,

we have a canonical isomorphism

coker D(X.) =R : [(w1,B,ws,a)] < wydvol + J wadvol.
X5 Y

16
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Now we study the Fredholm properties related to the linearized Seiberg-Witten equa-
tions. Recall that we chose an “admissible metric” gx on X (see Assumption [2.1]). Under
this assumption, we have the following proposition.

Proposition 2.17 ([10]). There exists a number é2 > 0 such that for any § € (—d2,92),j €
Z=o, the end-periodic Dirac operator
Dy, L2 s(MT58T) - L25(M™;57)

1s Fredholm. Moreover, the number
sign(M)

inde(, (M) + 2
is an invariant of the pair (X, gx), which we denote by w(X, gx,0).

To end this subsection, let us consider the Atiyah-Patodi-Singer boundary problem on
the end-periodic manifold X . This will be essential in our study of local structure of the
Seiberg-Witten moduli space. To simplify our notation, we denote the following bundles
over X4

iT*X, ®ST and i(RO AZT*X, ) @S
respectively by Fy and Es. We also write F} for the bundle i(R@®T*Y) @S over Y.
Recall that k is a fixed integer greater than 2. First consider the linear operator
D =Dg+K: Lj (X5 E) - Ly 5(X4; Ea), (17)

where Dy = (d*,d+,lZ)AO) and K is an operator that can be extended to a bounded
operator

K L3 5(X15 Er) — L2 05(X 45 Es)
for any integer j € [—k, k|. Next, we define the restriction map

. L%,(S(XJr;El) - L2—1/2(Y;F1)

(CL, ¢) = (<CL, U>7 a|Y> ¢|Y)
Let H (resp. Hy ) be the closure in L? /2(Y; F) of the span of the eigenvectors eigenvalues
of operator
Ly: C®(Y; Fy) » C*(Y; Fy)
(u, 0, @) — (d*«, *da — du, lDA()(Z)).
with positive (resp. non-positive) eigenvalues. We write Il for the projection
L%/Q(Y; ) — L%/z(YQ F1)

with image H, and kernel Hj. It also maps L2(Y; Fy) to L2(Y; F) for all s. Consider
another projection
: L35 (Yi Fy) — LY p(Ys )
satisfying
(LY F1)) < LYY Fy)
for any s. We say that Il and Il are k-commonmensurate if the difference
IT— Tl : L]zfl/Q(Y; ) — LJQ;I/Q(Y; )
17
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is a compact operator, for all 1 < j < k. We write H~ for im(II) L?/Q(Y; Fy) and H

for im(1 —II) < L%/2(Y;F1).

Proposition 2.18. Let 01,09 be the constant provided by Lemma and Proposition
respectively. Then for any ¢ € (0, min(d1,d2)) and any 1 < j < k, the operator

D@®(1—M)or): L3 (X3 E) > L | 5(Xi5Ey) @ (H L;{l/z(y; F))

is Fredholm. In addition, if u; is a bounded sequence in L?5(X+; E1) and Du; is Cauchy
71/2(Y;F1). In partic-
ular, the maps Ilor and (1 —1I) or restricted to the kernel of D, are respectively, compact
and Fredholm.

mn LJQ;L(;(XJF; Es), then Ior(u;) has a convergent subsequence in LJZ

Proof. We consider the following two operators:

e The operator over M

(d*7d+7]pA0) S (1 - H) OThr - L?(M) - L?—l(M) S (H+ a L?71/2(Y))a

where ry; is the restriction map defined similarly as r;
e The operator over M,

(d*,d", Da,) : L?,&(MJF) - L?—l,(s(M+)~

By Proposition 17.2.5 of the book, Lemma and Proposition both of these two
operators are Fredholm. Note that they correspond to the operator Dy @ ((1 — II) o ) on
X .. We can prove the Fredholm property of Dy@® ((1 —II) or) using standard parametrix
patching argument (see Page 245 of the book). Since the embedding Lj2-725 — L?—l, PR
compact, the operator D @ ((1 — IT) o r) is a compact perturbation of Dy @ ((1 —II) o 7)
and we conclude that D@ ((1 —II) o r) is also Fredholm. To prove the second part of the
Proposition, we multiply the sequence {u;} by a bump function S supporting near 0.X
and follow the argument on Page 304 of the book. 0

2.4. The invariant A\gw(X). Now we review the definition of Agw(X). By [10, Lemma
2.1], for a generic pair (gx, /) with 5 € L%H(X;iT*X)7 the blown-up Seiberg-Witten
moduli space M(X, gx, ) consisting of the gauge equivalence classes of the triples

(A, 5,0) € Ap(X) x Rzp x LE(X:87), ]2 =1
that solve the Seiberg-Witten equation
Fi —5%(¢p*)o =d™f
{ DA(X,9x)(¢) =0

is an oriented manifold of dimension 0 and contains no reducible points (i.e. triples with
s = 0). We call such (gx, ) a regular pair. Now consider the end-periodic (perturbed)
Dirac operator

(18)

lZ)XO(M+,gM+) +p(8) : Ii%‘é%(M+;S+) — L*(My;S ).
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where /3’ is an imaged valued one form on M, that equals the pull back of 3 when restricted
to X;. As proved in [10], this operator is Fredholm and the quantity

inde (B, (M- gur,) + () + 25200

is an invariant of (X, gx, ), which we denote by w(X, gx, ).

Theorem 2.19 ([10]). The number #M(X, gx, 5) — w(X, gx, ) does not depend on the
choice of regular pair (gx, ) and hence is an invariant of the manifold of X, which we

define as Asw(X); morveover, the reduction of Asw(X) modulo 2 is the Rohlin invariant
of X.

Lemma 2.20. Suppose gx is a metric with positive scalar curvature. Then the pair (gx,0)
is reqular and Agw(X) = —w(X, gx,0).

Proof. This is a simple consequence of the Weitzenbock formula. O

Lemma 2.21. Suppose X admits a metric gx with positive scalar curvature. Then we
have Asw(X) = —Asw(—X).

Proof. By Lemmal[2.20] we have Asw(X) = w(X, gx,0). Similarly, Agw(—X) = w(—X, gx,0).
Notice that

sign(M) + sign(M) = sign(M vy M) = 0.
By an excision argument relating indices of the Dirac operator on M, u M, (where M,
denotes the orientation reversal of M, ) and the Dirac operator on (M uy M) u X, we get

w(XagXao) + w(_XagX70) =ind¢ ]sz(MngMJr) + ind¢ EXO(M-HQMJr)

- 19
=ind¢ ]ng(ngX% 1)

where R 3 R

Py,(X.g5) : LI(X;87) — L*(X;57)
is the (unperturbed) Dirac operator on X. As in the proof of [I0, Proposition 5.4], this
operator has index 0. Therefore, we have proved the lemma. O

Remark 8. It was conjectured in [10] that the relation Asw(X) = —Asw(—X) holds for
a general homology S x S! (without any assumption on the metric). This conjecture is
still open.

3. GAUGE THEORY ON END-PERIODIC MANIFOLDS

In this section, we study the gauge theory on the end-periodic manifolds. First, we
will carefully set up the (blown up) configuration space, the gauge group and the moduli
spaces. Once this was done correctly, the arguments in Section 24 and 25 of the book can
be repeated without essential difficulty. For this reason, some proofs in this section will
only be sketched and we refer to the book for complete details.

Let 0 be a positive number smaller than min(d1, d2), where d1, 02 are constants provided
by Lemma and Proposition respectively. We let

Aps(X4) = {Ao + G|16(3€ Lip 5(X154T* X 1)}
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be the space of spin® connections of class L% s- The configuration spaces are defined as
Crs(Xy) = Aps(Xy) x L%,(S(XHSJF);
Clo(X1) = {(A s, 9)|A € Aps(Xy), 6 € L 5(X4357), 9] 12 = L, s € Rxo}.

It is easy to see that Cj 5(X ) is a Hilbert manifold without boundary, while C} 5(X) is
a Hilbert manifold with boundary. There is a map 7 : C7 5(X+) — Crs(X+) given by

(A, s,0) = (A, so).

(20)

Next, we define the gauge groups
Grers(Xt) = {u: Xy = SY(1—u) € Liy 5(X45O));

Ort1,6(X 1) = Ge X gl(c)+1,6(X+)’
where G. =~ S! denotes the group of constant gauge transformations. Note that we impose
the L,2€+175—t0pology on g,gHﬁ(XJr) and the product topology on Gy 5(X1). Using the
equality
l—w=_01-u)+(1—-v)—(1—-u)(1l-0)

together with the Sobolev multiplication theorem, one can prove that gg 415 (and hence
Gk+1,6) is a group. A standard argument (see [I8] and [I] for the non-abelian case) shows
that they are actually Hilbert Lie groups. The Lie algebra of Gy 4 is given by

TeGr1,6(X1) = R® Ljy 5(X154R). (21)

Remark 9. Our main concern will be the group Gy15(X+), while the group g,2+1 s(X4)
is introduced to smooth the arguments.

The actions of Gi+1,6(X+) on Cys(X4) and Cf 5(X4) are respectively given by
u-(A,®) = (A—utdu,ud)
and
u- (A, s,¢) = (A—utdu,s,up).
Note that the latter action is free. We denote the quotient spaces by By s(X;) and
B7 s(X ) respectively.
Lemma 3.1. B 5(X) is Hausdorff.

Proof. By standard argumet, the proof is reduced to the following claim:

Claim. : Suppose we have sequences {un,} < C7 5(Xy), {gn} © Grt1,5(Xy) such that
Up = Uco and gnln — Voo fOT s0me Usp, Voo € CF 5(X ). Then we can find goo € Gr1,6(X+)
such that geotiey = Voo -

To prove the claim, we let u,, = (A, sp, ¢n). Then both A,, and A,, — g,, dg, converges
in Lerm norm, which implies that the sequence {g,, 1dg,} is Cauchy in Li,5(X+; iR). Let
gn = €. Then {d¢,} is Cauchy in L%75(X+; iR). By Lemma we can find numbers

20
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&, € iR such that {&, — &,} is a Cauchy sequence in L%Hﬁ(XJr; iR). Using the fact that
the exponential map

Ly s(XiT* X ) > G s(X0) 0 £ e

is well defined and continuous (which is a consequence of the Sobolev multiplication the-
orem). We see that {e$» 7} is a Cauchy sequence in Q2+1?5(X+).

On the other hand, by replacing &, with &, — 2m,mi for m,, € Z. We can assume
&n € [0,27). After passing to a subsequence, we may assume &, converges to some number
€, which implies ef» converges to gﬁ““ as elements of G..

Now we see that g, = e® - €2 ¢ has a subsequencial limit go, in Gy1,6(X4). Since
the action of Gy 1 5(X ) is continuous, we get goo - Uw = Voo O

Next, we define the local slice S7 5 of the gauge action at v = (Ao, s0, ¢o) € Cf 5(X+).
By taking derivative on gauge group action, we get a map
d3 i TeGry1,6(X4) — T,CF 5(X+)
E = (_d£7 07 £¢0)
We denote the image of df by J/; ” which is the tangent space of the gauge orbit. To

define its complement, we consider the subspace ICZ’ 5y C T ,YC,‘C” 5(X ) as the kernel of the
operator (c.f. formula (9.12) of the book)

A7’ L} 5(X 4 iR) @R @ L} 5(X4; S7) — Li 1 p(YV3iR) © L 5(X 43 iR)

(a,5,6) > ((a, Ty, —d*a + is2Relidy, &) + ilgo|? - f Redido, ¢) dvol)

Xy

(22)

Remark 10. To motivate this construction, we note that when so > 0, K ; . is obtained

by lifting the L?-orthogonal complement of the tangent space of the gauge orbit (through
(7)) in Crs(X+).

Remark 11. We also note that in the book, the integral in the formula corresponding
to is divided by the total volume of the 4-manifold. However, this difference is not
essential because the kernel is not affected.

Lemma 3.2. For any vy, we have a decomposition T,YC;;(;(XQ =T s, O s

Proof. We want to show that for any (a,s,¢) € TWC,‘;(;(XJF), there exists a unique £ €
TeGr+1,5(X4) such that
(av S, ¢) - dgf € ICZ,J,'y'
This is equivalent to the condition
DE = (a9 —ish Reidn. &) — ifonl? | ReCion, dyivol + ) (23)
Xy
where the operator

D : TeGri1,5(X+) = Li_yp(Y3iR) © Li_y 5(X 15 iR)
21
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is given by

€ o (e, B, AL + 53)60l2€ + il ol f (—i€)|go|2dvol)

X+
Notice that the map
€ Blonl’e +ilonl® [ (~i)l6oPdvol
X4
actually factors through the space L%Q 5(X;iR). Therefore, the operator D is a compact
perturbation of the operator D’ given by

£ — ((d€, ), A).
The index of D’ (hence D) equals 0 by Proposition [2.15] (iii). Here the index is increased
by 1 because we have an additional summand R in the domain (see (21))). As in the proof
of Proposition 9.3.5 of the book, we can show that D has trivial kernel using integration
by part. Therefore, D is an isomorphism and has a unique solution. U

Remark 12. The integration by part argument over the noncompact manifold X is justi-
fied by the following fact (which can be proved using bump function): For any § > 0 and

0e Li’(s(XJr; AST*X ), we have
f df = f 6.
X+ X4

We define the local slice S7 ;. < Cf ;(X4) (at ) as the set of points (A, s, ¢) satisfying
%" (A — Ag,s,¢) =0
By Lemma 9.3.2 of the book, Lemma [3.2] has the following corollary.
Corollary 3.3. By 5(X.) is a Hilbert manifold with boundary. For any v € C7 5(X4),
there is an open neighborhood of v in the slice
U< Sion

such that U is a diffeomorphism onto its image under the natural projection from C 5(X)
to By 5(X4), which is an open neighborhood of [v] in By 5(X4).

Now we study the Seiberg-Witten equations on the manifold X,. Let V{ ;(X) be the
trivial bundle Cf 5(X ) with fiber L2 | s(isu(ST)@®S ™), where su(S™) denotes the bundle
of skew-hermitian, trace-0 automorphisms on S*. We consider a smooth section

37 CFs(X4) = Vi s(X5)
given by
1
37(A,5,0) = (Gp(FER) — °(06")o, D40)
The zero locus of §7 describes the solution of the (blown-up) Seiberg-Witten equations.

To obtain the transversality condition, we introduce a perturbation on §°. This was
done in the same way as the book: Recall that the boundary éX, has a neighborhood N
which is isomorphic to [0, 3] xY (with {0} xY identified with X ). Pick two 3-dimensional

tame perturbations q and pg. We impose the following assumption on q:
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Assumption 3.4. q is a nice perturbation with ht(q) = —2w(X, gx,0). Such perturbation
exists by Proposition [2.8

These two perturbations induce, in a canonical way, 4-dimensional perturbations 47, pg
on N (see Page 153 and 155 of the book). Pick a cut-off function § that equals 1 near
{0} xY and equals 0 near {3} x Y and a bump function Sy supported in (0, —3) x Y. Then
the sum

p7 =54+ Bo-pg (24)

is a section of V7 s(Xy) with the property that: p7(4,s, ) € Li7175(i5u(3+) @®S7) is
supported in N and only depends on (A|y, s, ¢|n).

We denote by p the 4-dimensional perturbation given by the section p°. Let Sp =
§° + p?. We can define the moduli spaces

M(Xy) = {(A,5,9)[85 (A, 5,0) = 0}/Gr11,6(X+) < B 5(X4)
M*UXL) = {[(A5,9)] € M(X2)| s =0}

as the set of gauge equivalent classes of the solutions of the perturbed Seiberg-Witten
equations. ( For simplicity, we do not include p in our notations of moduli spaces.)

Lemma 3.5. For any choice of perturbations q,po, the moduli space M(X4) is always a
Hilbert manifold with boundary M™3(X ).

Proof. The proof is essentially identical with Proposition 24.3.1 in the book. Just replace
the manifold X there with X, and use weighted Sobolev space through out the argument.
O

Because of the unique continuation theorem (see Proposition 10,8.1 of the book), we
have ¢|ax, # 0 for any [(4,s, )] € M(X,). Therefore, we have a well defined map

R M(X.)— Bzfl/Q(Y) )
given by 9|
X
(A,s,0) = (Alax, ,s|dlox, | 125 m)'
+

Now we attach the cylindrical end (—o0,0] x Y on X and consider the Seiberg-Witten
equations on the manifold Z,. We define the configuration space as

Ck;loC,5(Z+) = {(AO +a, (I))|(a’7 (I)) € Li,loc(Z-l-; iT*Z—i— S SJF)? ”(a’7 (I))|X+HLi 5 < OO}
and gauge group as
Gkstiocs(Z4) = {u: Z4 = S we L, 10.(Z4:C), ulx, € Gre1,s(X1)}-

Note that in the above definitons, we only impose the exponential decay condition over the
periodic end. As before, the action of Gy11.10c,5(Z+) on Ciloc,5(Z+) is not free. Therefore,
we need to blow up the configuration space. Since Cpoc,5(Z+) is not a Banach manifold
now, the blown-up configuration space should be defined in the following manner: Let $
be the topological quotient of the space

(B € L3 10c(Z: SDIBLx, 13 , < 0)\(0)
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by the action of R~y. The blown-up configuration configuration space is defined as

Chiocs(Z+) = {(A, @,0)[(A, ®) € Crioc,s(Z+), p€S, ®€ R0}

Now we define the blown-up quotient configuration space as

Bg;loc,é(ZJr) = Clg;loc,&(ZJr)/gk+1;loc,5(Z+)'

The bundle V7. ;(Z+) and its section §7(Z;) are defined similarly as the book. The
section Sg(ZJr) is invariant under the action of Gy y110¢,5(Z+). We omit the detail here
because the specific definition is not important for us. Just keep in mind that the per-
turbation equals G7 over the cylindrical end Z, equals p over [0,3] x Y and equals 0 on
Z:\(=0,3] x Y. We call (A,¢,®) a “Z -trajectory” if §7(Z+)(A,¢,®) = 0. This is
equivalent to the condition that (A, ®, ¢) satisfies the blown-up perturbed Seiberg-Witten
equations

~0,0
Fi —(99%)g = p,7 (A, ®)
+ A1
where ﬁ%i(A, ®) and ﬁlzj(A, ¢) are certain perturbation terms supported on (—o0,3] x Y.
The second equation should be thought as a homogeneous equation in ¢, i.e., both sides

of the equation will be rescaled by the same factor as we change the representative of ¢.
By the unique continuation theorem, we have ¢|{t}><y # 0 for any t < 0. As a result,

the triple (Algy.y, [Pixy |, W) gives a point of C,‘;_l/Q(Y), which we define to be
xyllL
the restriction (A, ®,$)[(yxy. By restricting to (—o0,0] x Y, a gauge equivalent class

[(A, @, ¢)] € B}, 5(Z+) of Z.-trajectory gives a path (—o0,0] — Bgﬁl/Q(Y).

Let [b] € Bgil/Q(Y) be a critical point of §7(Y). We consider the moduli space
M([b], Z+) = {[V] € Biocs (Z+)] $5(Z4)(v) = 0, 1im [7]gy.v] = [b]}-

It consists of Z,-trajectories that are asymptotic to [b] over the cylindrical end. By
restricting to the submanifolds Z and X, we get a map

p s M([B], Z4) — M([b], Z) x M(X.). (26)

Here M([b], Z) denotes moduli space of Seiberg-Witten half-trajectories with limit [b].
In other words, M([b], Z) consists of gauge equivalent classes of paths

1 (00,0 = €7y p(¥) with 04(1) + §7(0V)(7(1) = 0, lim (1) = b.

Just like M(X ), the moduli space M([b], Z) is always a Hilbert manifold with boundary
Md([b], Z) (the moduli space of reducible half-trajectories) for arbitary perturbation.
Note that we have a well defined restriction map

Ry : M([b], Z) — B, »(Y) given by [] = [(0)]. (27)

Lemma 3.6. The map p is a homeomorphism from M(Z,|[b]) to its image, which equals
the fiber product Fib(R_, R.). (The maps Ry are defined in and respectively.)
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Proof. This lemma is essentially a result on gluing two monopoles (or gauge transforma-
tions) on Z and X, along the common boundary Y. In particular, all the analysis are
carried out in a collar neighborhood of Y. With this in mind, the proof of this lemma is
identical with Lemma 24.2.2 in the book, which treats the case when X is a compact
manifold with boundary. O

Now we start discussing the regularity of the moduli spaces. Recall that for any point
[c]e B, P (Y'), we have a decomposition

TigBi (V) = K @ KT

given by the spectral decomposition of the Hessian operator Hessg(c) (see Page 313 of the
book).

Lemma 3.7. For any ([71],[12]) € Fib(R+, R_). Let [c] be the common restriction of
[vj] ( = 1,2) on the boundary Y. Denote by m the projection from T[C]B,‘C’_l/2(Y) to K
with kernel K. Then we have the following results.

(i) The linear operators
(1 —m) o DRy : Tp,,iM([b], Z2) — K and wo DRy : Ty, 3 M([b], Z) — K

are respectively compact and Fredholm.
(i) The linear operators

(1—7)oDR_: T[VQ]M(XjL) — ]Cj_ and moDR_ : T[W]M(XJF) — K.

are respectively Fredholm and compact.
(iii) The linear operator

DR, +DR_: T[’n]M([b]? Z) @T[W]M(XJr) — T[C]Bg—l/Q(Y)
is Fredholm.

Proof. (i) was proved in Theorem 17.3.2 of the book. We sketch it here: Proposition 17.2.5
of the book states the following: Let D, r, II be as defined in Subsection 2.3, but over the
cylindrical-end manifold Z instead of the end-periodic manifold X (see (17))). Then (1 —
IM)or and ITor, restricted to the kernel of D, are respectively compact and Fredholm. Note
that ker D and II are “extended version” of Tj,,1M([b], Z) and 7, respectively. Therefore,
(i) is a directly consequence of this proposition.

To prove (ii), we use Proposition we proved, in place of Proposition 17.2.5 in the
book. Then all the arguments there can be repeated with no essential change. (iii) is
directly implied by (i) and (ii). O

The following definition is parallel to Definition 24.4.2 of the book.

Definition 3.8. Let [y] € M([b],Z;). If [y] is irreducible, we say the moduli space
M([b], Z) is regular at [7] if the maps of Hilbert manifolds

Ry : M([b], Z) — 82—1/2(5/) and R_: M(Xy) — Bg—l/z(y)
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are transverse at [y]. If [y] is reducible, we say the moduli space M(Z.;[c]) is regular at
[v] if the maps of Hilbert manifolds

Ry s M([b],2) — OB7_,(¥) and R : MY (X,) — 0B, (V)

are transverse at p([y]) (see (26). We say the moduli space is regular if it is regular at
all points.

Recall that the perturbation p on Z is determined a pair of 3-dimensional perturbations
(4,p0) (see (24)), where q is a nice perturbation that is fixed throughout our argument (see
Assumption . We want to obtain the transversality condition by varying the second
perturbation pg. To do this, let P(Y) be the large Banach space of 3-dimensional tame
perturbations provided by Theorem 11.6.1 of the book. We have the following result.

Proposition 3.9. There exists a residual subset Uy of P(Y') such that for any po € Uy, the
moduli space M([b], Z) corresponding to (q,po) is regular for any critical point [b] € €.

Proof. The proof follows the standard argument as in the proof of Proposition 24.4.7 of
the book: We consider parametrized moduli space

M(X 1) = BLs(X4) x P(Y)

m(X'f‘) = {(Av S, ¢7 p0)| Sg = 0}/gk+1,5(X+)'
For any [b] € €, we can prove that the map

Ry xR s M([b]. 2) x M(X4) = BY (V) % B, (Y)

is transverse to the diagonal by the same argument as the book. Here the map PR is
defined similarly with R_ (but with larger domain). Now we apply the Sard-Smale lemma
(Lemma 12.5.1 of the book) to finish the proof. We note that Lemma (iii) is used
essentially in this last step. O

The proof of the following proposition is by standard transversility argument and we
omit it. (Compare Proposition 24.4.3 of the book.)

Proposition 3.10. Suppose the moduli space M([b], Z) is reqular and non-empty. Then
the moduli space is

(i) a smooth manifold consisting only of irreducibles, if [b] is irreducible;
(ii) a smooth manifold consisting only of reducibles, if [b] is reducible and boundary-
stable;
(117) a smooth manifold with (possibly empty) boundary, if [b] is reducible and boundary-
unstable.

In the last case, the boundary consists of the reducible elements of the moduli space (i.e.,

we have OM([b], Z1) = M™4([b], Z)).

Recall that we associated a rational number gr@([b]) to each critical point [b]. We have
the following result.

Proposition 3.11. Suppose the moduli space M(|b], Z) is regular. Then the moduli
space s
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(i) the empty set, if gr®([b]) + 2w(X, gx,0) < 0;
(ii) a manifold with dimension gr2([b]) + 2w(X, gx,0), if gr®([6]) + 2w(X, gx,0) = 0.

Proof. We just need to show that the expected dimension of M([b], Z;) (which we denote
by gr(Z;[b])) can be expressed as

gr(Z4: [b]) = gr®([b]) + 2w(X, gx,0).

This can be done by direct computation. But we follow an alternative argument here.
Recall that M is a spin manifold with bounded by (Y, s) with b (M) = 0. We let M* =
M vy ([0,+0) x Y). As discussed before, the M-grading of [b] (which we denoted by
gr(M;[b])) equals the expected dimension of the moduli space consisting of solutions
on M* that are asymptotic to [b]. Since one can deform the linearized Seiberg-Witten
equations over the manifold M*u Z, first to the corresponding equations over the manifold

M Uy ([-T,T] x Y) Uy X, with T > 0

and then to the manifold M. We see that the grading is additive in the sense that the
sum gr(M;[b]) + gr(Z;;[b]) equals the expected dimension M(M, ), the moduli space
consisting of gauge equivalent classes of solutions over M, that decay exponentially on
the periodic end. The linear operator that determines the local structure of M(M) is a
compact perturbation of the operator

L s(MysiT* My @S7) — Li_y s(M; iR @i AT T*ML D S™)

(a,®) — (d*a,d+a,]ﬂA0<I>).
By Lemma and Proposition the (real) index of this operator equals

—SigZ(M) + 2w(X, gx,0) + by (M) — 1.
By (7)), this implies
r(Zea[6]) = =" 20X 0+ B O 1= OLB)
= gr([b]) + 2w(X, gx,0).
O

Recall that we denote the lowest boundary stable reducible critical point by [ag]. Re-
call that the absolute grading [ag] equals the height of the nice perturbation q, which
has been chosen to be —2w(X,gx,0) (see Assumption [3.4). By Proposition and
Proposition for any p € U; (the residue set provided by Lemma , the moduli
space M([ag],[Z+]) consists of discrete elements, all of which are reducible because [ag]
is boundary stable. The moduli spaces M([a;],[Z+]) (¢ < 0) are all empty.

Proposition 3.12. There exists an open neighborhood Uy — P(Y') of 0 such that for any
po € Usa, the moduli space M([ag],[Z+]) corresponding to (q,po) contains a single point.
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Proof. Since the moduli space only consists of reducibles, we do not need to consider
the nice perturbation q since it vanishes on the reducibles. Moreover, we can describe the
moduli space explicitly: each gauge equivalent class of solutions of the downstairs equation

d+a - BO ' p_l(ﬁg(AO +a, 0)) = 07 a€ L%Jrl;loc,é(ZJr; ZIE)”) (29)

contributes a copy of CP" '\CP" 2 in M([ag],[Z+]), with n being the index of the Dirac
operator lDAOJra. See page 567 of the book. (Here Sy is the bump function in and 138 is a
component of the 4-dimensional, downstairs perturbation py induced by the 3-dimensional
perturbation pp.) In our situation, since the dimension of M([ag],[Z+]) equals zero, we
have n = 1. We want to show that when pg (hence }38) is small enough, has exactly
one solution up to gauge equivalence. By the exponential decay result Theorem 13.3.5 of
the book (applied to a|z) and Lemma (i), we see that each equivalent class contains
a unique representative satisfying

* o
HCLHL;_M <0, da=0.

In other words, we just need to prove has a unique solution satisfying the above gauge
fixing condition when the perturbation is small. To do this, we consider the map

P P(Y) x Li,_55(Z43iT*Z4) > VO L}, _55(Z4;i A% T*Z,),
where V = {£ € L%,,g,g(zﬁ iR)| SZ+ &dvol = 0}, given by

(po,a) = (d*a,d"a — By - p*(p)(Ao + a,0))).

By Lemma [2.16] (iii), the restriction of P to {0} x L} ,(Z4+;iT*Z,) is a (linear) iso-
morphism. Therefore, by the implicit function theorem: there exists a neighborhood U of
0e€ LZ;_M(ZJF;Z'T*ZJF) and a neighborhood U’ of 0 € P(Y) with the property that: for
any po € U’, there exists a unique solution of the equation P(pg,a) = 0 with a € U. Now
we claim that we can find another neighborhood U” of 0 € P(Y') such that for any pg € U”,
PB(po,a) = 0 implies a € U. This will finish the proof because we can set Uy = U’ n U”.
Now we prove our claim by contradiction. Suppose there exist po, — 0 and a,, ¢ U such
that B(pon,an) = 0 for each n. Integrating by part on (—oo, —0] x Y and X \[3, 4+00)
respectively, we see that

CSD((Ao + an)ly 03, 0) <0, CSD((Ap + an)ly x3},0) > 0.

Using these energy estimates, one can easily adapt the proof of Theorem 10.7.1 of the book
(from the single perturbation case to the case of a convergent sequence of perturbations)
and prove that: after passing to a subsequence and applying suitable gauge transformations
Uy, the sequence uy, - ((Ao + an)ly x[1,2],0) converges smoothly. Notice that the gauge
invariant term [y - p_l(ﬁg,n(Ao + ap,0)) is supported on Y x [1,2] and only depends on
(Ao + an)ly x[1,2] (because the bump function By is supported on [1,2] x Y'). We see that

[ d*a)lzz . =160-p ' B3(Ao+an 0z —0asn—w

—1;-6,6 —1;-6,6

since pg, — 0. By Lemma (iii) again, we get HanHL%_“ — 0. This contradicts with

our assumption a, ¢ U and completes our proof. 0
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Assumption 3.13. From now on, we fix a choice of perturbation pg € Uy nUs, where U,
Us are subsets of P(Y') provided by Proposition and Proposition respectively.

As in the cylindrical case, a sequence of Z,-trajectories (even with unifomly bounded
energy) can converge to a broken trajectory. For this reason, we have to introduce the
moduli space of broken trajectories before discussing the compactness property. Although
our construction can be generalized to moduli space of higher dimension without essential
difficulty, we focus on 1-dimensional moduli spaces for simplicity. This will be enough for
our application.

We start with recalling the “7-module” for blow up. (See Section 6.3 of the book for
details.) Let I < R be an interval. Denote the product manifold I x Y by Z;. There are
two cases:

e Suppose [ is compact, we define the configuration space
CL(Z1r) ={(Ao + a,5,0)|(a,¢) € Li(Z1;iT*Z1 @ S*), s € LE(I;R)

30
satisfies s(t) = 0, |lyxnllr2(yy =1 for any t € I} (30)

The gauge group Gi+1(Zr) acts on C(Z) as
u-(Ag +a,s,¢) = (Ayg +a —utdu, s, ue).

We denote the quotient space by BJ(Zr).
e Suppose [ is non-compact, we define C,QIOC(ZI) by replacing L7 with L%’loc in .
We let BY 1,.(Z1) = Cf 10c(Z1)/Gk+1,10c(Z1).
In both cases, we impose the quotient topology on the quotient configuration space. For
any [b], [b'] € €, the moduli space M([b], [0]) is a subset of B },.(Z(—co,+00)) and consists
of the non-constant Seiberg-Witten trajectories going from [b] to [6']. We let M([b],[V)]) =
M([6],[V'])/R, where R acts as translation (reparametrization).
Now we define the moduli space of broken trajectories. Let [bg] be a critical point with
grQ([bo]) = —2w(X, gx,0) + 1. By our assumption about ht(q), [bg] must be irreducible.
We consider the set

M ([bo], Z1) = M([bo], Z1) L ([biJEQM([bO]’ [6]) > M([b], Z+)).

By our regularity assumption, M([bo], Z+) is a 1-dimensional manifold (without bound-
ary). The set M([bo], [6]) x M([b], Zy) is nonempty only if gr®([b]) = 2w(X, gx,0), in
which case it is a discrete set.

To define the topology on M*([bg], Z, ), we need to specify a neighborhood base for
each point. For those points in M([bg], Z; ), we just use their neighborhood basis inside
M([bo], Z4). For a broken trajectory ([v_1],[0]) € M([bo], [b]) x M([b], Zy), we let
[v—1] be represented by a parametrized trajectory

V-1 € M([bo], [b]).
Let Uy be a neighborhood of [v] in Bglocﬁ(ZJr) and let I < R be a compact interval
and U_y © BJ(Zr) be a neighborhood of [y_1|7]. For any 7" € R~ with the property

that I — 7' (the translation of I by —7') is contained in R<p, we define Q(U_1, Uy, T) to
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be the subset of M*([bg], Z;) consisting of the broken Z,-trajectory ([v-1],[7]) and
(unbroken) Z, -trajectories [y] € M([bo], Z,) satisfying the following conditions:
* [v] € Up;
e There exists Ty > T such that [rr , (y|7—7_,)] € U_1, where 70, (7y|r—7 , ) denotes
the translation of «|;_7 , by T_1 (in the positive direction).

We put the sets of the form Q(U_1,Up,T') form a neighborhood basis for ([y_1], [y0])-
With the topology on M*([bg], Z,) defined, we have the following gluing theorem, whose
proof is a word by word translation from the proof of Theorem 24.7.2 in the book and we
omit.

Theorem 3.14. For each broken Z-trajectory ([y-1], [y0]) € MT([bo], Z+), we can find
its open neighborhood U with U\([v=1],[w]) < M([bo], Z+) and a homeomorphism f :
(0,1] x ([y=1]: [70]) = U that sends {1} x ([v-1], [v0]) to ([y-1],[0]) € U.

Remark 13. Theorem 24.7.2 in the book actually contains the two parts: the boundary
obstructed case and the boundary unobstructed case. The second case is much easier
than the first case. Theorem here corresponds to the second case with the additional
assumption that the moduli space is 1-dimensional and the boundary of the 4-manifold is
connected. This further simplifies the statement of the result.

Now we consider the orientation of the moduli spaces. As mentioned in Subsection
2.2, a choice of x([b]) in the orientation set A([b]) for each [b] canonically induces an
orientation of the moduli space M([b],[b]) for any critical points [b],[6']. It was also
proved in Threorem 24.8.3 of the book that a choice of x([b]) and a homology orientation
of M determines an orientation of M(M*,[b]) (the moduli space of gauge equivalent
classes consisting of solutions on M* = M Uy [0, +00) x Y that are asymptotic to [b]). By
replacing the compact manifold M with the non-compact manifold X and working with
the weighted Sobolev spaces instead of the unweighted ones, one can repeat the argument
there and prove the following similar result. Note that we do not need any homology
orientation of X . This is essentially because of Lemma [2.16] (iv) (compare Lemma 24.8.1
of the book). An alternative viewpoint is that H'(X ;R) = H?(X;R) = 0.

Theorem 3.15. A choice of {x([b])|[b] € €} canonically induces an orientation on the
moduli space M(|b], Z+) for any critical point [b]. These orientations are compatible with
the gluing map in the following sense: the map f provided by Theorem s orien-
tation preserving when restricted to (0,1) x ([v=1],[y0]), if we orient the moduli spaces
M([bo], [6]), M([b], Z)) and M([bo], Z4)) by the same choice {x([b])|[b] € €} and use
the positive orientation on the interval (0,1).

4. COMPACTNESS
In the current and the next section, we impose the following assumption:

Assumption 4.1. The scalar curvature scal of gx to be everywhere positive. In other
words, we have

so = inf scal(x) > 0.
zeX
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This assumption implies that the restriction of gz, on Y, W, which is a lift of gx, has
n=z

uniformly positive scalar curvature. Under this assumption, we will prove the following
compactness theorem:

Theorem 4.2. For any [bo] € € with gr®([bo]) = —2w(X, gx,0) + 1, the moduli space
M ([bo], Z4) is compact.

(Again, the result can be generalized to arbitrary [bp]. But we focus on the current
case because that is all we need.)

4.1. The topological energy £*°P and the quantity Aq. We start with some standard

definitions in the book, which will be useful in our proof of compactness theorem. Let X
be a general spin® 4-manifold and (A, ®) be a point of the configuration space (i.e., A is
a spin® connection and ® is a positive spinor over X). Its topological energy is defined as

£ (A, B) — 1JA Fuo n Py —f A<<I>|6X,lDB(<I>|aX)>dvol+J (H/2)®Pdvol  (31)
4 Jx ox ox

where B = A|,¢ and H denotes the mean curvature of the boundary, which will be
vanishing if we use the product metric near the boundary. Note that in our situation,
the integrals in are always convergent (even if X is not compact) because Fy: decays
exponentially over the end of X. We also talk about the topological energy of a point in
the blown-up configuration space (i.e., a triple (A, e, ¢) with e > 0 and |¢|r2 = 1). In this
case, we define EP(A, s, ¢) to be EP(mw(A, s, ¢)) where

(A, s,0) = (A, 5¢)

as before. Since the topological energy is invariant under gauge transformation, it also
makes sense to talk about the topological energy of a gauge equivalent class.

Now we return to our end-periodic manifold X . Recall that q is a nice perturbation
(of height —2w(X, gx,0)). After choosing a gauge invariant function

v:Crho12(Y) = R. (32)

whose formal gradient equals q. We can define the perturbed topological energy of a point
7€ Cljoc(X+) as

E°P(7) = 7P (y) = 2v(m()ly).
Let € be a number lying in (0, %) We consider two other manifolds:
X, = X \([0,2¢) x Y), X, = X, \([0,€) x Y)
We can define the blown-up configuration space Cy] 5(X ;) similarly as C7 5(X4). There is
a partially defined restriction map

Cls(Xy) > CLs(X))

¢ly

X

(A73a¢) - (A| ! 73H¢| ! HL277+
1ol b T

31
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whose domain contains triples (A, s, ¢) with <;5|X/+ # 0. We denote by (A,s,<;5)|X3r the
image of (A, s,¢) under this map. Under the assumption ¢|y .y # 0, we can define
(A,5,9)lyxie € C7_4 /Q(Y) in a similar vein. Note that since we are considering the
solution of the perturbed Seiberg-Witten equations, these conditions are always satisfied
by the unique continuation theorem:.

Other than the (perturbed) topological energy, there is another quantity that will be

useful when dealing with the blown-up configuration space. Let (B,r,1) be a point of
C7_1/5(Y). We define the quantity

—1/2
Aq(Bv T, ¢) = Re<¢7 wa + Ell(Bv T, ¢)>L2
where (B, r,1) is defined as (see Remark

1
3B, ) = | Darina! 0.0
(Recall that q' denotes the spinor component of the perturbation g.)

4.2. Exponential decay. In this subsection, we prove exponential decay results for so-
lutions on the manifold X, = Wy uy Wi uy .... To simplify the notation, we denote by
Wy, the manifold

Wn Uy Wn+1 Uy ... Uy Wn/ C X+,
and write || - HL?(W,L ) for the L? norm of the restriction to W,,,,. We will use similar
notation for other manifolds.

Let us start with the following lemma, which was communicated to the author by
Clifford Taubes.

Lemma 4.3. There exists uniform constants C, 63 > 0 with the following significance: for
any 6 € (0,d3) and any solution v = (A, s,¢) € Cf ;(X+) of the equation g (vy) = 0, we
have

18]l 20w,y < Ce®", ¥n > 0.

Proof. We first consider W, for n = 1. Over these manifolds, the perturbation p equals 0
and hence we have

pFL) = 25%(6¢")0 = 0
D¢ =0.
We choose an integer N large enough such that there exists a bump function
T W1’3N — [O, 1]

with the following properties: i) 7 is supported on W 3n_1; ii) 7 equals 1 when restricted
to Wi41.2n; iil) |d7(2)]? < s0/10 for any z € Wi an. By the covering tranformations, 7
induces a bump function on

(33)

Tm - WmN+1,(m+3)N - [07 1] (m > O)
Let ¢y = T - ¢. Then lﬁngm = p(d1p)¢. Notice that dr,, is supported on

WoN1mN+N Y WiN 2N+ 1,mN +3N-
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Therefore, for any m > 1, we have

+
HEA¢mH%2(X+) < |ldrm)Zo - (H¢H2L2(WmN+LmN+N) + H¢H%2(WmN+2N+LmN+3N)) (34)
50 2 2
< E(Hgbmflum(xg + H¢m+1HL2(X+))~

On the other hand, since ¢,, is supported on Wy, n41,mn+3v—1, by the Weitzenbock for-
mula, we have

HmAQbmH%Q(X_,_) = JX <¢zmz¢m7¢m>

~ [ «wivat o) + Dy, 6,0
X+
1(x
= [ aaomom + 28 [ oo+ [ 0w

S[) 2
z o 1omlTacxy)
(35)

Let a, = \|¢m|\%g(x+). By and , we have
S5am < 2(am—1+ ams1), Ym =1,
which is the same as
2(2am — am-1) < 2am+1 — Am, Ym = 1.

Notice that a,, < HqﬁH%g(XJr) = 1 for any m. We must have 2a,, — ap—1 < 0 for any m > 1
because otherwise 2a,, — a;y;—1 (and hence a,,) will increase exponentially. Therefore, we
get apy < 27"Mag < 27 for any m > 0. For any n > N, we have
161720,y < @y <2 24Ny,
Since H(Z)H%Z(Wn) < H¢|\%2(X+) =1 for any n > 0. We can set C' = 21/2 and 63 = (In2)/2N.
O

Next, we prove an exponential decay result for energy of solutions. We start with the
following lemma. Recall that A is the flat base connection on X .

Lemma 4.4. There exists uniform constants eq, D > 0 with the following significance: for
any m = 1 and any solution (A, ®) of the unperturbed Seiberg- Witten solution on Wy, m 16
satisfying the following conditions:

(1) d*(A — Ag) = 0;

(2) (A — Ag, Uy = 0, where Uy, is the outward normal vector field on W, m+6;

(3) EVP(A, ®) < e,

One has the inequality

H(A - AO, Q)‘|L%+1(Wm+2,m+4) < D « A/ gtOP(A, @)
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Proof. This is a modification of an argument in the proof Theorem 5.1.1 of the book. For
completeness, we give a detailed argument here. To simplify the notation, we use E to
denote E™P(A, @) and use a to denote A — Aj. In the proof, we will write C; for certain
universal constants independent of (A, ®) and ¢y. Without loss of generality, we can set
m = 1. Since (A, ®) is a solution, the topolocical energy E equals the analytical energy:

1
E(A,®) = 5 JW (4]da|* + 4|V 4®|* + |®|* + scal(z)|®|?)
1,7

(See formula (4.16) of the book.) Because scal(x) = sy > 0, we get

(1) [ L4,z <

(i) [®]20r,7) < C1E?
(ili) [da| 2w, 5y < C1E3;

(iv) |Va0® + p(a)®] 2w, 1y < CLE.
Note that b1 (W) = 0, by condition (1), (2), (iii) and [9, Lemma 2], we get

1
HaHL%(le) < C2E2 :

By the continuity of the embedding L? — L* and the multiplication L* x L* — L2, we
get
3 1
lp(a)®| 2w, ;) < C3E2 < eoC3E™.

By condition (ii) and (iv), this implies

N |=

2] L2, ) < (2C1 + €0C3) E2.

Set v = (a, ®). Then we have

I L2qw, ) < 2C1+ Ca + €0C3)E? < (201 + Ca + 6003)6§
and ~y satisfies the equation
Py +~#y=0 (36)
where
P(a,®) := (da,d*a, ]Dzoé)

is a first-order elliptic operator and # is bilinear operator involving only pointwise multi-
plication. Choose a cutoff function

/8 : W177 — [0, 1]
that equals 1 on Wy and equals 0 near W7 7. Then implies

P(By) = (—ﬁ’y?ﬂév +o(P,dB)y.
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Here o(P,df3) denote the symbol of P evaluated at d3. One gets
1873wy < CallPBY | Laown 7y + 187V L3ws )
= Ca(|[(=B)#y + o(P, dB)V 3wy 7y + 1BV Lswr.0))

< Cs (M zqwr )l ¥ 3w py + 1723w ) (37)

1
< C5(2C1 + C2 + €0C3)€5 18] 3w, ) + Csl vl )

Here the first inequality is by Garding inequality for interior domain (see Theorem 5.1.4
of the book) and the third inequality uses the continuity of multiplication L? x L3 — L3.

By setting g small enough such that C5(2C; + Co + 6003)6% <1

5, we obtain from

1
IV s wa,e) < 18V 3w ) < 20510 3wy < ColVl 2wy 5y < CrE=.

One can irritate this rearrangement argument twice more: first time use the continuity
of L3 x L3 — L? in place of L? x L3 — L3 to bound L3-norm of v and second time use
the continuity of L3 x L3 — L3 to bound L3-norm of . Each time we pass to a slightly
smaller subdomain. Note that the Lg—SObOIGV space is closed under multiplication for
any p > 3. As a result, once we control the L3-norm, the elliptic bootstraping method
can be proceeded directly (without rearrangement argument) to finish the proof of the
lemma. O

Consider the common boundary of W, and W41 (in X;) and denote it by Y,,. We
define the modified Chern-Simons-Dirac functional on Y,,

L:Cuip(Ym) >R
by the formula
- H
L(B,V) := L(B,7¥) +J 5|\11|2dv01

where £ is the usual Chern-Simons-Dirac functional as defined in (])(with By = Agly;,)
and H is the mean curvature of of the psc metric on Wi . Note that just like £, the
functional £ is also gauge invariant. Moreover, applying the Stocks formula to , one
has

1 1
LA D)) — £(A D)) = LEP(AB) = E7(A2) 20 (39
for any solution (A4, ®) on W,, (m = 1).

Lemma 4.5. Let ¢y be the constant in Lemma[{.4. Then there exists another constant
D’ such that for any solution (A, ®) over Wy, m+6 (m = 1) satisfying EWP(A, ®) < e, one
has

IL((A, 9)ly;, )| < D'EP(A, @), (39)

Proof. Note that both side of are gauge invariant. Therefore, we can apply a suitable
gauge transformation u : Wi, ;16 — S* and assume that condition (1) and (2) in Lemma
4.4] are also satisfied. Then by that lemma, we get

[(A = A0, D)ly,aliz. vy < CLDA/EOP(A, D),
35
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Then the proof is finished by Cauchy-Schwarz inequality. O
Now we can prove the exponential decay result for energy:

Proposition 4.6. For any constant C > 0, there exists a constants §(C') the following
significance: for any 6 € (0,0(C)] and any solution (A, ®) € Ly 5(W1 ) of the unperturbed
Seiberg- Witten equations with E°P(A, ®) < C, one has

ENP((A, ®)|w,) < 20O wp > 1.
Proof. For ma > mq > 1, we let by, m, = EPP((A, D)Wy my) a0d @y = L((A, D)y, )-
Then

my1,me = @m; — Qmy-

0<b
= 0 for any m. We set

Since limy,, e G = 0, we get a,,

N = max{[g], 2D'},
€0

where ¢y and D’ are the constants in Lemma and Lemma respectively. For any
n = 0, consider the set
{bor+1,6047 | nN <1< (n+1)N}.

We assume that the minimum is achieved at bgj(n)+1,61(n)+7- Then

benNt1,6(mnr1)Nt1 _ C
D6i(n)+1,61(n)+7 < — ]\; <y Se

By Lemma we have

/
A+ 1)N+1 < Gei(n)+4 < D'bginy+1.61(n)+7 < %bGnN-i-l,G(n-i-l)N-i-l
This implies
D’ 1
b6(n+1)N+1,6(n+2)N+1 < A6(nt1)N+1 < Wb6nN+1,6(n+1)N+1 < §b6nN+1,6(n+1)N+1-
Hence we have

1
b6nN+1,6(n+1)N+1 < (i)n “b1eNt+1 < o

By setting §(C) = 12%2’ we finish the proof. O

4.3. Compactness: local result. After preparations in last subsection, we are ready
to prove compactness result for solutions on the manifold X,. The main result of this
subsection is the following theorem:

Theorem 4.7. There is a constant d4 such that for any 6 € (0,d4), the following com-
pactness result holds: Let yn € C 5(X+) (n = 1) be a sequence solutions of the perturbed
equation Sg(y) = 0. Suppose that there is a uniform bound on the perturbed topological
enerqgy:
£ (1) < C1,
and a uniform upper bound
Aq(7n|{e}><Y) < Cs.
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Then there is a sequence of gauge transformations uy € Gy11,5(Xy) such that the sequence
un(Vn)|xr converge in the topology of C 5(X') to a solution vu € CF 5(X').

The proof of this theorem uses Lemma [4.3] and the bootstraping argument. To make
it easier to follow, we break it into several lemmas. First, we let v, = (A,, $n, ¢n) and
®,, = s,¢n. The topological energy of v, can be broken into three parts (we treat the last
two terms as one part)

E4°P (1) =E"P((An, @)l x \wo) + EP((An, Bn)lwo\([0,31xY))
+ (Q‘Cq((An» (I)n)|{0}><Y) - 2[’((Ana (I)n)|{3}><Y)a

where L, = L —v (see ) We denote the first, second and third part on the right hand
side of by &1n, &2, and &3, respectively.

(40)

Lemma 4.8. The energy terms &1, E2,n and E3,, are all uniformly bounded above by red
some constant E.

Proof. Since the restriction of (A, ®,) on X;\([0,3] xY) is a solution of the unperturbed
Seiberg-Witten equations. By the relation between the topological energy and analytical
energy (see Page 96 of the book) and Lemma 24.5.1 of the book, we have the following

estimates .
En=g | B P VA, (8] scal(o)@f?)
X+ \Wo

Eam = scal(x)?

uE%F+MvM@f+«@F+wmwwm%—j

1l
4 Jwo\([0,3]xY) Wo\([0,3]xY) 16

1
Ein> g | UE P ATa 0 (20 = D)) - Dy
,3]

where Dy, Dy are certain uniform constants. Note that scal(x) is positive on X \Wy. It
is easy to see that &1, &2, and &3, are all uniformly bounded below. Since the sum of
these three terms is bounded above, each of them should also be bounded above. O

For each m > 0,n > 1, we let Umn : Winmi6 — S1 be a gauge transformation with the
following properties (recall that Ay denotes the spin connection):

(i) d*(A, — u,_n}ndum,n —Ap) =0;

(ii) (4, — u;ﬁndumm — Ag, Uy = 0;

(iil) u1,n(03) = u0,n(03), Umt2(0m+4) = Um(Om+a), Ym = 1;
where v, is the normal vector on 0Wy, y,+6 and o,, € W, corresponds to a fixed base
point o € int(W). Such wu,,, can always be found by solving the Laplace equation (with
Neumann boundary condition) on Wy, m+6 (see Page 101 of the book). We let

Am,n = A, — u;:ndum,ny (I)m,n = um,nq)na ¢m,n = Um,n(bn-
We set the constant )
b4 = min{dy, -3(E)}, (41)

where the constants d3, E and the fucntion 6(—) are defined in Lemma Lemma
and Proposition [£.6] respectively.
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Lemma 4.9. There exist a constant C' such that the following bounded results hold:
(i) sp <C, ¥n>=1;

(27/) H(Am,n - A07 q)m,n)‘|L%+l(Wm+l,m+5) <C,Vnz1lm2=1,;

(iii) [(Aon — Ao, Po,n) 2

< 5
(10) [ (Amn — A0 ) 12 Wz < CE™, ¥ > 1im > 1
(

(v) [(Ao.n — Ao, do.n)ll L2

k+1
Proof. (i) By Lemma the energy terms & p,&2.,&3, are all bounded above. They
provide upper bounds on | @y ||z2(x ,\we)> [PnlLawo\(jo.31xyy) and [Pnlzago31xy) respec-
tively. Hence we get an upper bound [®y|2(x, ), which is exactly sp,.

(ii) Suppose we do not have a uniform bound. Then there exists sequences of positive
numbers {m;}, {n;} such that

(Wos\([0,e]xY)) S C, Vn>1;

(Wo,4\([0,2¢] xY')) <O, Vn>=1.

A = A0 B 1z (s sy = 0.
Notice that the upper bound on &, gives a uniform upper bound on
gtop((An7 (bn) |Wm,m+6)

for all m,n > 1. Suppose we treat the restriction of A, n, (resp. Pm,m,)) o0 Wi 11.m,+5
as a connection (resp. spinor) on a fixed manifold W uy W uy ...uy W for each I. Then by
Theorem 5.1.1 of the book, they converge in C* topology after passing to a subsequence,
which is a contradiction.

(iii) The proof is similar with (ii): just use &, + &3, to control the topological energy
on Wy then apply Theorem 5.1.1 of the book.

(iv) By Lemma the norm ||¢m,n | £2(w,,4 1 ss) 18 bounded above by e
constant). Then we apply the elliptic bootstraping argument on the equation

lDzoﬁbm,n + P(Am,n - AO)¢m,n =0
)- Note that (ii) is used here to give a

~%m (up to a

to obtain the desired bound on ||¢, », |L§+1(Wm+2,m+4

uniform bound on |p(Amn — A0)|‘L%+1(Wm+l,m+5)'

Next, we control the norm ||(Ay,, — AU)HLiH(WmH i)t Using Proposition 4.6, we get

the estimate
EP((Amn @)Wy o) < 10Be 0™,

There exists a constant mg such that 10Ee %)™ < ¢; (the constant in Lemme {4.4)).
_o(E)
When m > mg, we use can Lemma to bound ||(Apn — AO)|‘Li+1(Wm+2,m+4) by e” "2

(up to a constant). For m < mg, we simply use the uniform bound (ii).

(v) The uniform bound on |4y, — AOHLiﬂ(Wo A([0.2¢]xv)) 18 trivial from (iii). To get

the uniform bound on ||¢g (Wo.a\([0,2] xY))» We use the fact

|L§Jr1

I Bo.nll 2wy a\([0,2] x 7)) < 1

(which follows from the definition) and apply the elliptic bootstraping argument on the
Dirac equation

D, on + p(Aon — Ao)bon = P17 (Ao, don)
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Note that the perturbation term p? (A, ¢0.) does not affect the bootstraping argument
because it is tame. (See the proof Theorem 10.9.2 in the book for a similar but more
detailed argument.) O

Lemma 4.10. Let 64 be the constant in and let v, € C7 5(X 1) be the solutions in
Theorem . For any ¢' € (0,064), we can find gauge transformations uy, € Gy11,5 such that
the restrictions uy - Yu|x' = (A3, s, &y,) is a bounded sequence in Cj, | 5(X'). In other
words, we have
sup ||(A], — Ao, &L)| 12 < o and sup s, < .
n k+1,8" n

Proof. The idea is to obtain wu, by gluing uon|w,; and Umn|w,,oma (M = 1,3,5...)
together using cutoff functions. Recall that W is a manifold with boundary (-Y) u Y.
We choose a cutoff function 7 : W — [0, 1] that equals 0 near the left boundary and
equals 1 near the right boundary. We also use 7 for the induced cutoff function on Wy,.
For m,n > 1, we consider the function &, », : Wy,44 — [0, 1] with the property that

gm,n(0m+4) = 07 eifm,n : (um,n|Wm+4) = Um+2,n|Wm+4-
We also define €2 : Wy 3 — [0, 1] by the condition

o.n(03) = 0, €O (ugplwy) = utnlws-

Then we have dfo,, = Aon|lw; —A1n|ws and d&mn = Ams2.0|Wis —Amn|W,,a form > 1.
By Lemma (iv) and (v), there exists a uniform constant C' such that

[€m.nll 2

—dsm
k+2(Wm+2) g C@ ) Vm 2 0, n Z ]_’

which implies similar bounds for 7&,, , and (1 — 7)&, ,. We consider the gauge transfor-
mations

i ($) _ { 1' T € WQQ
g efm(@éonlz) e Ws
and
ei(T(x)*l)ém—l,n(x) T € Wm+2
Umn(z) =< 1 reWnizs (m=>=1)
eiT(I)gm,n(x) T € Wm+4

By the Sobolev multiplication theorem, there exists a uniform constant C’ such that

cha}bdﬁomHLiH(Ww) <

11— tonlrz  (wos) < C

~—1 g~ 1, —dsm .
|t AT, |Lﬁ+1(Wm+2,m+4) < C'e for any m > 1;

< C'e=%™ for any m > 1.

Hl - um7n |Li+1(Wm+2,m+4)
Since it is easy to check that
Ug,p - Uo,n = ULy - Ury, o0 Wi;
Umn " Umn = Um42,n * Um+2, O Wiy pg for m =1,3,5...,
we can glue

{(uﬂ,n ’ ﬂO,n)|Wo,3} Y {(umm ’ amyn)|Wm+2,m+4| m=1,3, 5}
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together to get a guage transformation u, : X, — S'. Denote u,(An, ¢n) by (An, dn)-
Then we have

("21 Qg ) = ﬁovn(AO,n7¢07n) on W073
ny ¥n ﬁm,n(Am,m (bm,n) on Wm+27m+4 for m = 17 3, 57

By Lemma (iv) and (v) and the above estimates on @, ,, we can prove that there
exists a uniform constant C” such that

(A, Ao,cﬁn)lng+1 (Wo,\([0,2]xv)) < C”

and
H(A A07 ¢n)“Li+l Wm+27m+4) g Cll@i&lm for m = 17 3) 57

Since &' < 04, we get
(A~ A0 3z ) <"

for some constant C". The relation between (A, s, ¢.) and (A, s, ¢!,) is given by

¢n|X’+

Al = Alx, sl =sp- HCBnHH(X') and ¢, = —F—.
" * |Pnl 27 )
As in the proof of Theorem 24.5.2 in the book, the condition Aq(vn|(ejxy) < Co ensures

that the norm |, | 12, (which is always less than 1) is bounded away from 0. Therefore,

we have proved the estlmate in the lemma.

We are left to check that u, € Gry1,5(X ). We write u,, as ¢n. Then d¢, = A, — A, €
L%(;(XJF;Z'IR). By Lemma we can find &, € iR such that fn & € Li+175(X+,zR).
Then we have

Uy = e - =) ¢ Gr+1,6(X4).

O

Proof of Proposition[{.7. By Lemma we can find u,, € Gpy1,6(X4) such that uy, (yy,) |X3r
is a bounded sequence in C7,, 5(X'). Since ¢’ > §, the natural inclusion C7, 5(X') —

%o 7 s(X) maps a bounded closed set to a compact set. Therefore, we can find a subsequence
that converges in Cf ;(X'). O

4.4. Compactness: broken trajectories. With T heorem (compare Theorem 24.5.2
in the book) proved, the proof of Theorem is essentially the same with the proof of
Theorem 24.6.4 in the book. For completeness, we sketch it as follows:

Proof of Theorem[{.3. (Sketch) We first consider a sequence [y,] € M([bo], Z4) (n = 1)
represented by unbroken Z,-trajectories 7,. Using integration by part, it is easy to see
that 5§°p(7n|x+) = Lq(7nlfoyxy) for any n, which implies S;OP(%|X+) < L4([bo]) (because
7|z is a flow line with limit [bg]). By similar decomposition as in the proof of Lemma[4.8]
we can prove that

La(mligxy) = &P (mlxr) > C, Le(wlzgxy) = &% (mlx) > C.
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for some uniform constant C'. This implies both

E3°P (Ml (o0, qxv) < Lq([bo]) = C (42)
and

&P (nl(—0.2qxv) < Lq([bo]) = C. (43)
By the same argument as proof of Lemma 16.3.1 in the book, condition actually
implies

Aq(’Yn|{t}><Y) < (' Vte (—00, €]
for some constant C’'. Now we apply Theorem to show that after applying suit-
able gauge transformations u, : X, — S! and passing to a subsequence, the restriction
un(q/n|X+)|X/+ has a limit C7 5(X'). Since Aq(+) is gauge invariant, we get

Aq(7n|{2e}><Y) = Aq(un(')/n)|{25}><Y) >C"
for some uniform constant C”. Another application of Lemma 16.3.1 in the book provides
a uniform lower bound
Aq(7n|{t}><Y) > C/”a vVt € (-0, 2€].

Now the proof proceed exactly as in the book: We can show that after passing to a further
subsequence, 7n|(_oo72€] converges to a (possibly broken) half trajectory. Putting the two
pieces Ynl(—aw,2¢xy and vy X/, together, we see that after passing to a subsequence and
composing with suitable gauge transformations, 7, converges to a (possibly broken) Z -
trajectory vo. By our regularity assumption, v, can have a most one breaking point,
whose absolute grading must be 2w(X, gx,0). In other words, the limit 74, represents a
point of M*([bg], Z).

We have shown that any sequence [y,] € M([bo], Z4) contains convergent subsequence
in M*([bo], Z4). By a similar argument, we see that M([b], Z,) contains at most finitely
many elements for any [b] with gr®([b]) = —2w(X, gx,0). Since there are only finitely
many critical points [b] with gr@([b]) = —2w(X, gx,0) and M([bo], [6]) is a finite set for
each of them, we see that

M ([bo], Zy)\M([bo], Z+) = (

)

M([bo], [b]) >x M([b], Z1))

U
gr([b])=—2w(X,9x,0)
is a finite set. This finishes the proof of the theorem:. O

5. PROOF OF THE THEOREM [[.2]

Suppose gx has positive scalar curvature everywhere. We first prove that —2h(Y,s) <
2Asw(X). Suppose this is not the case. Recall that Agy (X) = —w(X, gx,0) by Lemma
By Assumption [3.4] the perturbation q is chosen so that the condition of Lemma[2.9
is satisfied. As a result, we can find nonzero integers n,myq, ..., m; and irreducible critical
points [b1], ..., [b;] € €° with gr®([b;]) = —2w(X, gx,0) + 1 such that

6g(m1[b1] + ...+ mj[bl]) =0 and ag(ml[bl] + ...+ mj[bl]) = n[ao]. (44)
Now consider the manifold
M=( v m-M([b], Z) v (v my- ME([b], Z4)

C M{lmy>0} {Ijmy <0}
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where m; - * means the disjoint union m; copies and M*([b;], Z)) denotes the orientation

reversal of M™([b;], Z;). By Theorem Theorem Theorem and condition
, M is an oriented, compact 1-dimensional manifold with

#OM =n - #M([ao], Z+),

where as before, #= denotes the number of points, counted with sign, in an oriented
0-dimensional manifold. By Assumption and Proposition we get

#OM =n-+1=4n#0,

which is impossible because we know that the number, counted with sign, of boundary
points in any compact 1-manifold should be 0. This contradiction finishes the proof of the
inequality h(Y,s) < 2Agw (X).

By applying the same argument to the manifold —X, we also get —2h(—Y,s) <
2Xsw (—X), which implies —2h(Y, 5) > 2Asw(X) by Lemma [2.4] and Lemma There-
fore, we have —2h(Y,s) = 2 Asw(X) and the theorem is proved.

APPENDIX A. LAPLACE EQUATION ON END-PERIODIC MANIFOLDS

This appendix is devoted to proving Proposition [2.15| using Fourier-Laplace transform
defined in [18]. Our argument closely follows with [I0] (where the corresponding problem
for the Dirac operator was studied).

To begin with, let us review the definition of Fourier-Laplace tranform. Let T : X — X
be the covering transformation sending W,, to W,,11. For x € X and n € Z, we denote
T"(x) by x + n. Given a function u € C°(X;C) and a complex number p € C, the
Fourier-Laplace transform of u is defined as

iy, (z) = ef@ 5 el u(z + n). (45)

n=—u
(Recall that f is the harmonic function on X satisfying f(z + 1) = f(z) + 1.) It is easy
to check that iy (z) = 4y (z + 1) for any z € X. Therefore, iy, descends to a function on

o
X, which we denote by ,. A simple observation is that

yroni(z) = 2@ g, (2). (46)

(Note that e?7/(#) is a well defined function on X.)
In order to recover u, it suffices to know {4y | € I(v)} for any complex number v, where
I(v) = [v — mi,v + 7i] < C. The formula is

1

u(x) = — f e*“f(x)a;i(x)d,u, for any z € X. (47)
I(v)

" 2nmi
For 5~E R,j € Z, we denote by LJZ; s 5(5( ; C) the Hilbert space obtained from completing
C§P(X; €) with respect to the norm

~
Julgz = el 2

Note that this is different with the space Li_ 55 (X; C) we considered before. We have the

following lemma, which was essentially proved in [10, Lemma 4.3].
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Lemma A.1. Let u € L?;dv(;()z;@) be a smooth function. Then we have the following

results:
e Suppose u is supported in Y Wy, for some integer m. Then we can extend the
n=m
definition of the Fourier-Laplace transform and define

iy € L3(X;C), Y with Rep < 6.

The family @, is harmonic with respect to p in the half plane Re pu < 6.

e Suppose u is supported in Y Wy, for some integer m. Then we can extend the
nsm

definition of the Fourier-Laplace transform and define
iy € L3(X;C), Yy with Rep > 6.
The family 4, is harmonic with respect to p in the half plane Re p > 9.
(Here harmonic means that locally we can write G, as a power series in p, with coefficients

in L?(X; C), that converges in L?)

Now we discuss the Fourier-Laplace transform of the Laplace operator. Consider the
following operator

C®(X;C) - C°(X;C) : u > e“fA(e_“fu) (48)
which is invariant under the covering transformation 7. We denote by A, the induced
operator on X. It is not hard to prove that

Apyoriu = e%ifAu(e*Qm'f “u) (49)
We call A, the Fourier-Laplace transform of A because
(A/E)“ = A,(a,) for any u e C(X;C).
Since f is harmonic, we have a simple formula for A ,:
Ay = Au = 2pddu, f*(d6)) + 1?|f*(d6)|? - u, (50)

where we use the metric gx to define the inner product (-,-) and the norm |-| on 7*X.
We can extend A, to a Fredholm operator

2 2
Ayt Lio(X;C) — Lj(X;C),
for any non-negative integer j, which we fix from now on. Just like 7, the operator A,
is holomorpic in p.

Lemma A.2. A, is invertible for p € iR\2mwiZ.

Proof. Suppose Aju = 0 for some p € iR\27iZ and v € L?H(X; C). Then w = e * @ is
a harmonic function on X, where @ is a lift of u to X. Notice that w(z + 1) = efw(z)
for any x, which implies |w(z + 1) = |w(x)| because Re u = 0. By maximal principle, w
equals a constant C satisfying C' = e#C. Since e* # 1, we see that w (and hence u) must
be 0. We have proved that A, has trivial kernel for any p € iR\27iZ, which implies the
lemma because the index of A, is always 0. O

By [18] Lemma 4.5], we have the following corollary.
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Corollary A.3. A, is invertible for all p € C\S where S is a discrete set invariant under
the translation p — p+2mi. S does not intersect iR\2miZ and has no accumulation point
(in C). In particular, there exists a constant 4 > 0 such that A, is invertible for any p
satisfying —04 < Re pu < 0y, p ¢ 2miZ.

Denote by R, the inverse of the holomorphic family A,. Then R, is holomorphic in p
for p in the region C\S. By , we have

Ryqori(e¥™u) = ¥ . R, (u). (51)
Lemma A.4. 0 is a pole of R, with order 2.

Proof. We can write down the explicit formula of R,, for small x. To do this, we consider
the Hilbert space

Vi = {ue L}X;0)| Judvol =0}

for [ = j,j + 2 and fix the identification
Su dvol Su dvol)
vol(X) ™ vol(X) "

By elementary calculation involving , we see that under this identification, the operator
A, Vio®C — V; ®C can be represented by the matrix

Aly,,, Ds N —2uDy1 + p?Dy 0 (10
0 C u2Dy 0 0 pu?
where C = %)}\del € R and D; (i = 1,2,3,4) are certain bounded operators

L}X;C) 2 VidC:uw (u

(independent of u) whose specific forms are not important for us. Since C' > 0 and
Alv,,, : Vjr2 — Vj is an isomorphism, we see that when || is small, the operator

Aly,,, Ds N —2uDy + p?Dy 0
0 C 2Dy 0

is invertible and R, equals

() (3 2 ) (o )

0 u 0 C 2Dy 0

This finishes the proof. O
Now we come to the key lemma in our argument.

Lemma A.5. There exists a (small) constant 65 > 0 with the following significance: any

function v e L2 (X:;C) satisfying

loc

Je_‘ss|f|u|2dvol < 400, Au=0 (52)

should equal a + bf for some a,be C.
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Proof. Let 05 be any positive constant smaller than the constant J, in Corollary
Suppose we have a harmonic function u satisfying . By standard elliptic bootstrapping

argument, u is smooth and belongs to L?+2'55 6 (X;C). We choose a smooth cut-off
function ¢ : X — [0, 1] with the property that

(=1on UIWn, (=0on nngn.

n<—
Consider the functions
v=(1-CQue L?;7557755()~(; C), w=C(-ue L?;55755()~(; C).
Then we have
Av=r=—-Aw

where £ is a smooth function supported on Wy. Applying the Fourier-Laplace transform,
by Lemma, we get

A0, = &y, for Rep < —d5 and Ayw, = —~, for Re > ds.
By Lemma this implies
Uy = Ryky, for pe I(—=64) and w, = —Ryk,, for pe I(d4).
(Recall that I(v) = [v —mi, v+ 7i].) Now we use the Fourier inversion formula to get

u(z) = o(e) + wla) = 5 P U O | oy © T B @)
(53)

where (R,%,)* denotes the lift of R, /4, to X. Notice that the function e*”f(Ru/%H)* can
actually be defined for any € C\\S and is invariant under the translation u — p + 27i by
(46) and . As a result, we have

1 ~ ~

u(w) = 5 | e O R @) = Resole MO (B @), (50

T Jor

where 0I" denotes the boundary of the domain
I':= {$ + yZ|($,y) € [_54754] X [—71',71']}

and Reso(e*“f(x)(Ru/%H)*(x)) denotes the residue at u = 0 of e*“f(x)(RM/%u)*(w) as a
harmonic function on p (with x fixed). Here we use the fact that 0 is the only pole in T’

(see Corollary [A.3]).

To compute the residue, we consider the Laurent series of R, &, near = 0. Since  is
compactly supported and smooth, £, is holomorphic over the whole complex plane. By
Lemma [A4] we can write the Laurent series as

A ®© l
Ruky= ¥ h-p
1=—2
with h; € LJ2+2(X; C). By 1} we have

K = ARk = Ah_g - =2 + (Ah_y — 2(dh_, F*(d0))) - =t + ;zoo o il
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Since &, is holomorphic at 0. We get
Ah_9 = Ah_1 —2{dh_o, f*(df)) = 0.
This implies that A_1, h_o are both constant functions. Since
Reso(e 1) (i) (@) = W4 () — h*5(2)f ()
where h* |, h*, are lifts of h_; and h_. The lemma is proved. O

Proof of Proposition [2.15. Let dp a positive number less than min(dy, d5, dg), where d4, 95
are constants in Lemma and Lemma respectively and &g equals the smallest
positive eigenvalue of A(Y) (the Laplace operator over Y). For any § € (0,dp), let us
check the Fredholm properties of the operators one by one.

First consider A(X; —0,6), since A, is invertible for any p with Repu = +6, by [I8]
Lemma 4.3], the operator A(X; —0,0) is Fredholm. By the maximum principle, the op-

erator A(X;—0,0) has trivial kernel. The cokernel of A(X;—4,d) is isomorphic to the
kernel of its adjoint operator, which is the Laplace operator from L? 2 5_s(X,R) to

LQ_].; 5’_5(5(, R). By elliptic bootstrapping and Proposition we get
dim(coker A(X;—0d,8)) = 2.

Now consider the operator A(M;d). By [18, Lemma 4.3] again, this operator is Fred-
holm. To compute its index, we consider its adjoint operator A(M,; —3§). We have

2ind A(My;6) = ind A(My;6) —ind A(M4;—6) = ind A(X;—6,6) = 2.

The second equality above uses the excision principle of index (see [10, Proposition 6.1]).
By the maximum principle, the kernel of A(M,;¢) is trivial. Therefore, the operator
A(M_;0) has 1-dimensional cokernel.

Now we consider the operator A(X;d). By classical results on the Laplace equation
with Neumann boundary condition, both the operator

A(M) : L (M;R) — LE(M; R) @ L7, 5(Y, R)
u — (Au, {du, v))

and the operator
A(M vy M) : L?JFQ(M vy M;R) — L?(M vy M;R)
u— Au
are Fredholm with index 0. By the excision principle relating A(Xy;d) @ A(M vy M)
with A(M) ® A(M; ), we see that A(X,;6) is Fredholm and
ind A(X;;R) = ind A(M vy M) +ind A(M4;6) —ind A(M uy M) = —1.

Suppose u € ker A(Xy;R). Then d * du = 0 and i*(xdu) = 0, where i : ¥ — X is
inclusion of the boundary. We have

{du, duydvol = —J du A xdu = —f
X4

u A (d*du)—l—f w - iy (xdu) = 0,
Xt
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In other words, u is a constant function. Because u € L? +2. 5(X4;R), we have u = 0. Thus

A(X4;R) has trivial kernel and 1-dimensional cokernel.

We are left with the manifold Z,. The argument is similar: Notice that we set dy to be
less than the first positive eigenvalue of A(Y'), which also equals the first positive eigenvalue
of A(S! x Y). By [I8, Lemma 4.3] again, the Laplace operator A(Z,; —6,6) is Fredholm.
To conclude that its index equals —2, we apply the excision principle relating the manifold
Z. U (M Uy M) with the manifold M, U M_ (recall that M_ = ((—00,0] x Y) uy M).
Then we use the maximum principle (or integration by part) to prove that the kernel is
trivial. Il
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