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Abstract. A surgery on a knot in S3 is called SU(2)-cyclic if it gives a manifold whose
fundamental group has no noncyclic SU(2) representations. Using holonomy perturba-
tions on the Chern-Simons functional, we prove that two SU(2)-cyclic surgery coefficients
p1
q1

and p2
q2

should satisfy |p1q2 − p2q1| ≤ |p1|+ |p2|. This is an analog of Culler-Gordon-

Luecke-Shalen’s cyclic surgery theorem.

1. Introduction

Definition 1.1. A closed orientable 3-manifold M is called SU(2)-cyclic (or SO(3)-cyclic)
if there exists no homomorphism ρ : π1(M) → SU(2) (or SO(3)) with noncyclic image.

Suppose K ⊂ S3 is a knot. For r ∈ Q, we denote the manifold obtained by doing
r-surgery on K by K(r).

Definition 1.2. A surgery on K with coefficient r is called SU(2)-cyclic (or SO(3)-cyclic)
if K(r) is SU(2)-cyclic (or SO(3)-cyclic).

Remark 1.3. Notice that H1(K(r);Z) is a cyclic group. We see that an SU(2) represen-
tation of π1(K(r)) has noncyclic image if and only if it is irreducible.

We have the following exact sequence:

0 → Z2 → SU(2) → SO(3) → 0

It’s easy to see that an SO(3)-cyclic surgery is always an SU(2)-cyclic surgery. Using
some basic obstruction theory, we get:

Lemma 1.4. If r = p
q is an SU(2)-cyclic surgery with p odd, then r is an SO(3)-cyclic

surgery.

In [4], Kronheimer and Mrowka proved the following theorem:

Theorem 1.5 (Kronheimer, Mrowka 2003 [4]). Any r-surgery on a nontrivial knot with
surgery coefficient |r| ≤ 2 is not SU(2)-cyclic.

In particular, this theorem gave a proof for the Property-P Conjecture:

Corollary 1.6 (Kronheimer, Mrowka 2003 [4]). A nontrivial surgery on a nontrivial knot
does not give simply connected 3-manifold.

Obviously, lens spaces are all SU(2)-cyclic and SO(3)-cyclic. Thus all cyclic surgeries
(the surgeries which give lens spaces) are SO(3)-cyclic. Therefore, we have:

1



SU(2)-CYCLIC SURGERIES ON KNOTS 2

Example 1.7. The pq− 1
r (r ∈ Z) surgeries on the (p, q)-torus knot are cyclic and hence

SO(3)-cyclic.

Dunfield [3] gives the following example:

Example 1.8. The 18, 372 , 19 surgeries on the (−2, 3, 7)-pretzel knot are SO(3)-cyclic.

The 18, 19 surgeries give lens spaces, while K(372 ) is a graph manifold obtained by gluing
the left-handed trefoil knot complement and the right-handed trefoil complement.

Another related theorem is Culler-Gordon-Luecke-Shalen’s cyclic surgery theorem (we
only state the case for knot surgery):

Theorem 1.9 (Culler-Gordon-Luecke-Shalen [7]). Suppose that K is not a torus knot and
r, s are both cyclic surgeries, then △(r, s) ≤ 1.

Here for two rational numbers r = p1
q1

and s = p2
q2
, the distance △(r, s) is defined to be

|p1q2 − p2q1|.
Since 1

0 -surgery is always cyclic, this theorem implies that when K is not a torus knot,
r-surgery can be cyclic only if r ∈ Z. Moreover, there are at most two such integers, and
if there are two then they must be successive.

Although Example 1.8 shows that Theorem 1.9 is not true for SU(2)-cyclic or SO(3)-
cyclic surgeries, we have the following analogous result, which is the main theorem of this
paper.

Theorem 1.10. Consider a nontrivial knot K ⊂ S3 and two surgeries with coefficients
r1 = p1/q2 and r2 = p2/q2. We have the following:

• If r1, r2 are both SU(2)-cyclic, then △(r1, r2) ≤ |p1|+ |p2|.
• If r1, r2 are both SO(3)-cyclic, then 2△(r1, r2) ≤ |p1|+ |p2|.

Combining this theorem with Lemma 1.4, we get the following corollaries.

Corollary 1.11. Suppose r1, r2 are both SU(2)-cyclic. If p1 is odd, then 2△(r1, r2) ≤
2|p1|+ |p2|. If p1, p2 are both odd, then 2△(r1, r2) ≤ |p1|+ |p2|.

Corollary 1.12. If r1, r2 on K are both SO(3)-cyclic surgeries, then r1r2 > 0. If r1, r2 on
K are both SU(2)-cyclic surgeries, then r1r2 > 0 unless r1 and r2 are both even integers.

Corollary 1.13. For a nontrivial surgery on a nontrivial amphichiral knot K with coef-
ficient r, we have the following:

• It can never be SO(3)-cyclic.
• If it is SU(2)-cyclic, then r is an even integer and some r

2 -th root of unity is a
root of ∆K (the Alexander polynomial of K).

Remark 1.14. Actually, we haven’t found any examples of SU(2)-cyclic surgeries on an
amphichiral knot. It would be interesting to know whether there exists such a surgery.

We know that ∆K(1) = ±1 for any knot K while Φp(1) = p for any prime number p
(Φp is the p-th cyclotomic polynomial). Therefor the Alexander polynomial ∆K never has
the p-th root of unity as its root. We get:
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Example 1.15. If p is prime, then the 2p-surgery on an non-trivial amphichiral knot is
not SU(2)-cyclic.

Remark 1.16. In [4], Kronheimer and Mrowka asked whether there exists SU(2)-cyclic
surgery with coefficient 3 or 4. We see that there exist no such surgeries for nontrivial
amphichiral knots.

Using the criterion in Corollary 1.13, we checked the amphichiral knots with crossing
number ≤ 10 and get:

Example 1.17. All the nontrivial amphichiral knots with crossing number ≤ 10 except
perhaps 818 and 1099 in Rolfsen’s knot table admit no SU(2)-cyclic surgeries. For 818 and
1099, we have no examples of SU(2)-cyclic surgeries.

Corollary 1.18. Given a nontrivial knot K and an integer q, there exist at most finitely
many p ∈ Z such that (p, q) = 1 and the p

q -surgery on K is SO(3)-cyclic. For the SU(2)

case, the only possible exception is when q = 1 and infinitely many even p.
In particular, any nontrivial knot admits only finitely many integer SO(3)-cyclic surg-

eries and only finite many odd SU(2)-cyclic surgeries.

The paper is organized as follows: in section 2, we prove a result about the boundary
holonomy of the representations after reviewing some preliminaries and basic constructions
related to holonomy perturbations. In section 3, we prove the main theorem and the
corollaries.

Acknowledgement The author wishes to thank Nathan Dunfield, Cameron Gordon, Yi
Ni and Yi Liu for valuable discussions and comments. The author is especially grateful
to Ciprian Manolescu for inspiring conversations and helpful suggestions in writing this
paper.

2. A result on the boundary holonomy of knot complement

Let ρ be an SU(2) representation of π1(S
3 −N(K)) (N(K) denotes the open tubular

neighborhood of K). We denote by m, l ∈ π1(S
3 −N(K)) the meridian and the longitude

of K respectively. Since m, l commute with each other, after a conjugation in SU(2), we
can assume that:

ρ(m) =

(
eiθ 0
0 e−iθ

)
, ρ(l) =

(
eiη 0
0 e−iη

)
.

We say that the points ±(θ, η) are the boundary holonomies of ρ. We denote the torus
(R/2πZ)⊕ (R/2πZ) by T. The main result of this section is the following proposition:

Proposition 2.1. Let K be a nontrivial knot. Suppose γ is a closed curve on T parame-
terized as:

(x− g1 ◦ g2(x), g2(x) + π), x ∈ [−π, π]

where g1, g2 are any smooth periodic odd functions of period 2π. Then the image of γ
contains the boundary holonomy of some SU(2) representation of π1(S

3 −N(K)).
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The proof of Theorem 1.10 begins with assuming p
q and r

s are two SU(2)-cyclic surgery

slopes. This implies that there is a certain pair of curves on the torus T with slopes p
q

and r
s whose union S cannot contain the boundary holonomy of any irreducible SU(2)

representation. After small modifications near the lines {η = 2πZ}, we may further assume
S does not contain the boundary holonomy of any SU(2) representation. Since the set
of all such boundary holonomies is a compact set, there is a small neighborhood of S
which avoid all such boundary holonomies. The geometric and combinatorial arguments
in section 3 then shows that if p, q, r, s do not satisfy the condition in the theorem, then
arbitrary small neighborhood of S contains a curve which can be parameterized as in the
above proposition, giving a contradiction.

Before giving the proof of Proposition 2.1, we review some background materials that
will be useful in our discussion. Although most of them can be found in [4], [8] and [12],
we still include some details here for completeness.

Consider the closed manifold K(0). We have b1(K(0)) = 1. Let E be the rank 2 unitary
bundle over K(0) with c1(E) the Poincaré dual of the meridian m and let gE be the bundle
whose sections are traceless, skew-hermitian endomorphisms of E. We denote by A the
affine space of SO(3) connections of gE . After fixing a reference connection A0 ∈ A, we
can define a functional CS : A → R, which is call the Chern-Simon functional. Although
the explicit formula of this functional will not be used in our discussion, we still give it
here for completeness:

CS(A) =
1

4

∫
K(0)

Tr(2ω ∧ FA0 + ω ∧ dω +
2

3
ω ∧ ω ∧ ω).

Here ω ∈ iΩ1(gE) equals A−A0 and FA0 is the curvature of A0.
The critical points of the Chern-Simons functional are the flat connections. Floer in-

troduced the holonomy perturbations as follows. Take a function ϕ : SU(2) → R which
is invariant under conjugation. Then it is uniquely determined by the even, 2π−periodic
function:

f(x) := ϕ

(
eix 0
0 e−ix

)
(1)

Let Σ be a compact 2-manifold with boundary. Consider an embedding Σ × S1 in K(0)
such that gE is trivial over it. Fix a trivialization of gE over Σ× S1 and take a 2-form µ
which is supported in the interior of Σ with integral 1. Using the trivialization, we can

lift A to a connection Ā on the trivialized SU(2) bundle P̃ over Σ× S1. We consider the
functional:

Φ : A → R

Φ(A) :=

∫
p∈Σ

ϕ(Hol{p}×S1(Ā))µ(p) (2)

Here Hol{p}×S1 is the holonomy along {p} × S1.

We decompose K(0) into three parts: (S3−N(K)) ∪
{0}×l×m

([0, 1]× l×m) ∪
{1}×l×m

(D2×

m). We have meridians and longitudes on both side of the thicken torus. Denote them
by m0, l0, m1, l1 respectively. Note that we should be careful that m0 is the meridian
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of the knot complement but m1 the longitude of the attached solid torus. Also, l0 is the
longitude of the knot complement but l1 is the meridian of the attached solid torus.

For our purpose, we will consider two types of perturbations:

• Set Σ ∼= D2 and i1(D
2×S1) = (D2×m) ⊂ K(0). That means we use the holonomy

along m to do the perturbation. We denote this perturbation by Φ1

• Set Σ ∼= m × [0, 1] (Σ is an annulus ) and i2(Σ × S1) = (m × [0, 1]) × l ⊂ K(0).
That means we embed a thickened torus and use the holonomy along l to do the
perturbation. We denote this perturbation by Φ2.

We choose a trivialization of gE over (D2 × m) ∪ (m × [0, 1] × l) and use it to lift

the connection A to a SU(2)-connection A on P̃ . Now use formula (2) and consider the

perturbed Chern-Simons functional ĈS = CS +Φ1 +Φ2 : A → R.
The following theorem, which plays a central role in our discussion, is proved in [6]:

Theorem 2.2 (Kronheimer, Mrowka [6]). If K is a nontrivial knot, then for any holonomy

perturbation, the perturbed Chern-Simons functional ĈS over K(0) always has at least one
critical point.

Remark 2.3. We mention that the proof of this theorem is highly nontrivial. It combines
Gabai’s result about taut foliation in [2], Eliashberg-Thurston’s theorem about symplectic
filling in [14] and [15], Taubes’s result about the Seiberg-Witten invariants of the symplec-
tic four-manifold in [10], Feehan and Leness’s work about Witten’s conjecture in [9] and
Kronheimer-Mrowka’s work about the refinement of Eliashberg-Thurston’s theorem in [6].
However, in our discussion, we will use this theorem directly without going into any part
of its proof.

The critical points of ĈS is completely determined in the following lemma:

Lemma 2.4. If A ∈ A is a critical point of ĈS, then:

• A is flat on S3 −N(K) ⊂ K(0).
• We can choose a suitable trivialization of the gE |(D2×m)∪(m×[0,1]×l) such that the

lifted connection Ā satisfies:

Holm0(A) =
(

eiθ0 0
0 e−iθ0

)
,Holm1(A) =

(
eiθ1 0
0 e−iθ1

)
,Holl0(A) =

(
eiη0 0
0 e−iη0

)
and Holl1(A) =

(
eiη1 0
0 e−iη1

)
with η0 = η1 = −f ′

2(θ1) and θ0 − θ1 = −f ′
1(η0).

Remark 2.5. Recall that we chose ϕi : SU(2) → R to define the perturbation Φi (i = 1, 2),
which gives us fi : R → R by formula (1).

Proof of Lemma 2.4. By Lemma 4 in [8] and Lemma 2.2 in [12], A is flat on S3−N(K) ⊂
K(0) and near (m × l × {0}) ∪ (m × l × {1}). Moreover, we can choose a suitable trivi-

alization of P̃ such that Holm0(A) =
(

eiθ0 0
0 e−iθ0

)
,Holm1(A) =

(
eiθ1 0
0 e−iθ1

)
,Holl0(A) =(

eiη0 0
0 e−iη0

)
,Holl1(A) =

(
eiη1 0
0 e−iη1

)
and θ0 − θ1 = −f ′

1(η0) + 2Zπ. Also, we can choose

another trivialization of P̃ such that Holm1(A) =
(

eiθ
′
1 0

0 e−iθ′1

)
,Holl1(A) =

(
eiη

′
1 0

0 e−iη′1

)
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and η′1 = −f ′
2(θ

′
1) + 2Zπ. Since different trivialzations give the same holonomy mod-

ulo conjugation. We have (θ′1, η
′
1) = ±(θ1, η1). Since f ′

2 is an odd function, we have
η1 = −f ′

2(θ1) + 2Zπ. �

Now suppose A is a critical point. Because gE is trivial over π1(S
3 −N(K)), we fix a

trivialization of gE |S3−N(K). Using this trivialization, we lift the connection A to a SU(2)-

connection Ã over S3 − N(K). By taking the holonomy of Ã, we get a representation
ρ : π1(S

3 −N(K)) → SU(2).

Definition 2.6. We define the subset RK of T as:

{(θ, η)|(θ, η) is the boundary holonomy of some representation ρ}

By the well-know relation between flat connections and representations of the fundamental
group, this set can also be defined as:

{(θ, η)|∃ flat connection Ã over S3−N(K) s.t. Holm(Ã) =
(

eiθ 0
0 e−iθ

)
,Holl(Ã) =

(
eiη 0
0 e−iη

)
}

We summarize the properties of RK in the following lemma. Some of them are proved
in [4]. But since we change the statement a little, we give the proof here for completeness.

Lemma 2.7. RK has the following properties:

• 1) Any point in RK off the line {η = 2πZ} gives some irreducible representation.
• 2) RK is a closed subset of T.
• 3) RK is invariant under the translation (θ, η) → (θ + π, η).
• 4) RK ∩ {θ = kπ} = (kπ, 2k′π), (k, k′ ∈ Z).
• 5) ∃ϵ > 0 such that ∀k ∈ Z, RK ∩ {θ ∈ [kπ − ϵ, kπ + ϵ]} ∩ {η ̸= 2Zπ} = ∅.

Proof. 1) Any point in RK gives a representation ρ : π1(S
3 − N(K)) → SU(2). If ρ is

reducible, then ρ factors through H1(S
3−N(K);Z), which implies that ρ(l) = 1 ∈ SU(2)

and η ∈ 2πZ.
2) RK is closed because π1(S

3 −K) is finitely generated and SU(2) is compact.
3) We have a map ρ0 : π1(S

3 − K) → H1(S
3 − K;Z) → Z2 ⊂ SU(2) with ρ0(m) =

−1 ∈ SU(2) and ρ0(l) = 1 ∈ SU(2). For any homomorphism ρ : π1(S
3−N(K)) → SU(2),

we can multiply it by ρ0 to get another representation ρ′ such that ρ′(l) = ρ(l) and
ρ′(m) = −ρ(m). By the definition of RK , this implies 3).

4) Suppose ρ is given by a point with θ = 0. Then ρ(m) = 1 ∈ SU(2) and ρ factors
through π1(S

3), which is a trivial. We get ρ(l) = 1 and η = 2k′π. For the case θ = π, we
use 3).

5) Look at a small neighborhood U of (0, 0) ∈ RK in T. The point (0, 0) is given
by the restriction of the trivial representation ρ1. The deformations of ρ1 are governed
by H1(π1(S

3 − K);R3) ∼= R3. But every vector in this R3 can be realized by the some
reducible representation. We see that in a small neighborhood of ρ1, all the representations
are reducible. Thus U ∩ RK ∩ {η ̸= 2Zπ} = ∅ if U is small enough. Use 4) and the
compactness of RK , we prove 5) for the case k is even. Then we use 3) to prove the case
of odd k. �
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Lemma 2.8. If A is a critical point of the perturbed Chern-Simons functional, then
(θ0, η0 + π) ∈ RK , where θ0 and η0 are defined in Lemma 2.4.

Proof. By Lemma 2.4, A is flat on S3−N(K). After choosing a trivialization of gE |S3−N(K),

we can lift A to a flat SU(2) connection Ã, whose holonomy gives a point of RK . Recall
that to define θ0, η0 in Lemma 2.4, we also choose a trivialization of gE |(D2×m)∪(m×[0,1]×l)

and lift A to a connection Ā. Because the bundle gE is nontrivial, these two trivializations
do not agree with each other on the common boundary {0} × l×m. Actually, they differ
each other by a map h : {0} × l × m → SO(3) with h∗(l0) = 1 ∈ Z2

∼= π1(SO(3)) and

h∗(m0) = 0 ∈ π1(SO(3)). Therefore, we see that (Holm0(Ã),Holl0(Ã)) ∈ SU(2)×SU(2) is
conjugate with (Holm0(A),−Holl0(A)). After a change of the trivialization of gE |S3−N(K),

we can assume that (Holm0(A),−Holl0(A)) = (Holm0(Ã),Holl0(Ã)). By the second de-
scription of RK , we have (θ0, η0 + π) ∈ RK . �

Now we start the proof of Proposition 2.1:

Proof. We can find even, 2π-periodic functions fi (i = 1, 2) such that f ′
1(x) = g1(x) and

f ′
2(x) = −g2(x) and use them to define the holonomy perturbations Φ1,Φ2. By Theorem

2.2, the perturbed Chern-Simons functional ĈS has at least one critical point. Let θi, ηi
(i = 0, 1) be the numbers in Lemma 2.4 corresponding to this critical point. Then we have
η0 = g2(θ1) and θ0 = θ1−g1 ◦g2(θ1). Therefore, the image of the loop γ contains the point
(θ0, η0+π), which is the boundary holonomy of some representation ρ by Lemma 2.8. �

3. Proof of the Main Theorem and its Corollaries

3.1. Proof of the main theorem. Now suppose K ⊂ S3 is a nontrivial knot. Denote
the set RK ∩ {η ̸= 2Zπ} by R∗

K . For r = p
q , we define the following sets:

S(r) := {(θ, η)|(pθ + qη) ∈ 2Zπ or (pθ + pπ + qη) ∈ 2Zπ}

Ŝ(r) := {(θ, η)|(pθ + qη) ∈ Zπ}
Notice that when p is odd, we have Ŝ(r) = S(r).

Lemma 3.1. If r is an SU(2)-cyclic surgery, then R∗
K ∩S(r) = ∅. If r is an SO(3)-cyclic

surgery, then R∗
K ∩ Ŝ(r) = ∅.

Proof. If (θ, η) ∈ R∗
K satisfies pθ + qη ∈ 2Zπ, then it gives a representation ρ : π1(S

3 −
N(K)) → SU(2) with ρ(pm + ql) = 1 ∈ SU(2). Thus ρ factors through π1(K(r)). By
(1) of Lemma 2.7, ρ is noncyclic. This is a contradiction with our assumption that r is a
SU(2)-cyclic surgery. We see that R∗

K∩{(θ, η)|(pθ+qη) ∈ 2Zπ} = ∅. By (3) of Lemma2.7,
we also have R∗

K ∩ {(θ, η)|(pθ + pπ + qη) ∈ 2Zπ} = ∅. We have proved the first assertion.
The second assertion can be proved similarly. �

Since we are considering the subsets of T, it will be convenient to fix a region W =
{(θ, η)|θ ∈ (−∞,∞), η ∈ [0, 2π]} ⊂ R2 and define W ∗ to be {(θ, η)|θ ∈ (−∞,∞), η ∈
(0, 2π)}. We can work in W and W ∗ and then project to T.
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For two different numbers r1 =
p1
q1
, r2 =

p2
q2
. We define another two numbers:

d1(r1, r2) =

{
2π|p1|

∆(r1,r2)
if p2 is even

π|p1|
∆(r1,r2)

if p2 is odd
; d2(r1, r2) =

{
2π|p2|

∆(r1,r2)
if p1 is even

π|p2|
∆(r1,r2)

if p1 is odd

The intersections S(ri)∩W ∗ are just line segments with slope −ri and S(r1)∩S(r2)∩W ∗

consists of isolated points. We say two intersection points in S(r1)∩S(r2)∩W ∗ are adjacent
in S(ri) (i = 1, 2) if they lie in the same component of S(ri) ∩W ∗ and there is no other

intersection point between them. We define two intersection points in Ŝ(r1)∩ Ŝ(r2)∩W ∗

to be adjacent in Ŝ(ri) in a similar way.
The following lemma is easy to prove:

Lemma 3.2. (1) If two intersection points (θ, η), (θ′, η′) ∈ S(r1)∩S(r2)∩W ∗ are adjacent
in S(ri), then |η − η′| = di(r1, r2) (i = 1, 2).

(2) If two intersection points (θ, η), (θ′, η′) ∈ Ŝ(r1) ∩ Ŝ(r2) ∩W ∗ are adjacent in Ŝ(ri),

then |η − η′| = π|pi|
∆(r1,r2)

(i = 1, 2).

(3) For (θ, η) ∈ S(r1) ∩ S(r2) ∩ W ∗, if η > di(r1, r2), then we can find (θ′, η′) ∈
S(r1)∩S(r2)∩W ∗ such that they are adjacent in S(ri) and η′ < η. If η < 2π− di(r1, r2),
then we can find (θ′, η′) ∈ S(r1) ∩ S(r2) ∩ W ∗ such that they are adjacent in S(ri) and
η′ > η.

(4) For (θ, η) ∈ Ŝ(r1) ∩ Ŝ(r2) ∩W ∗, if η > π|pi|
∆(r1,r2)

, then we can find (θ′, η′) ∈ Ŝ(r1) ∩
Ŝ(r2) ∩W ∗ such that they are adjacent in Ŝ(ri) and η′ < η. If η < 2π − π|pi|

∆(r1,r2)
, then we

can find (θ′, η′) ∈ Ŝ(r1) ∩ Ŝ(r2) ∩W ∗ such that they are adjacent in Ŝ(ri) and η′ > η.

Now we can start the proof of our main theorem:

Proof of Theorem 1.10. Let r1, r2 be two SU(2)-cyclic surgeries. Since the theorem is
trivial when r1 = r2, we always assume that r1 ̸= r2. By Theorem 1.5, we have |ri| > 2.
Moreover, when r1 or r2 equals

1
0 , the identities in the theorem and corollaries can be easily

deduced from Theorem 1.5. Thus we can assume pi ̸= 0 and qi ̸= 0. Suppose d1(r1, r2) +
d2(r1, r2) < 2π. By Lemma 3.1 and (4) of Lemma 2.7, we have R∗

K ∩ (S(r1)
∪

S(r2)
∪
{θ =

kπ}) = ∅. We will construct a piecewise linear path L : [−1, 1] → W such that Im(L) ⊂
S(r1)

∪
S(r2)

∪
{θ = kπ}. There are two cases:

(1) Suppose r1 < −2 < 2 < r2. Let L(0) = (0, π). Then as t increases, L first goes up
along the line θ = 0 to (0, 2π). Since (0, 2π) ∈ S(r2), L can go down along S(r2) to the
lowest intersection point (θ1, η1) ∈ S(r1)∩S(r2)∩W ∗ in this component. By (3) of Lemma
3.2, we have η1 ≤ d2(r1, r2), which also implies η1 < 2π − d1(r2, r2) By our assumption.

Again by Lemma 3.2, (θ1, η1) is not the highest intersection point in the component of
S(r1) ∩ W ∗ containing it. Thus L can go along S(r1) to the highest intersection point.
Notice that this point is still in W ∗. After that, L again goes along S(r2) to the lowest
intersection point. Repeat this procedure until L hits the line θ = π. Then L goes along
θ = π to the point (π, π). We have defined L(t) for t ∈ [0, 1]. Reflecting along (0, π), we
can define L(t) for t ∈ [−1, 0].
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Figure 1. The path L (left) and the path L̂ (right) when r1 = −3, r2 = 4

(2) Suppose r1, r2 are of the same sign. We consider the case 2 < r1 < r2 and the
other case is similar. Set L(0) = (0, π) and let L goes along θ = 0 to (0, 2π). Then L
moves down alone S(r1) to the lowest intersection point in W ∗. After that L moves along
S(r2) to the highest intersection point. The difference from case (1) is that we repeat this
procedure until L intersects the line l ⊂ S(r1) which passes through (π, 0). It is easy to
see that this happens before L hits θ = π. Then L goes along l to (π, 0) and then goes
along the line θ = π to (π, π). By reflecting along the point (0, π), we define L(t) for any
t ∈ [−1, 1].

0

2

0

2

Figure 2. The path L (left) and the path L̂ (right) for r1 =
7
3 , r2 = 5
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In both cases, the image of L, which we denote by Im(L), is contained in S(r1) ∪
S(r2)∪ {θ = kπ}. Thus R∗

K ∩ Im(L) = ∅. Notice that Im(L) intersects the line η = 0 and
η = 2π at (0, 0), (0, 2π) in case (1) and at (0, 0), (0, 2π), (π, 0), (−π, 2π) in case (2). We
need to do small modification around these points. Take the point (0, 2π) for example.
We choose a small neighborhood U of (0, 2π) and remove Im(L) ∩ U . Then we replace
it with a short horizontal line segment η = 2π − ε. After doing this modification, we

get a map L̂ : [−1, 1] → W ∗, which still satisfies Im(L̂) ∩ RK = ∅ by 5) of Lemma

2.7. Moreover, we can require that Im(L̂) is symmetric under the reflection about (0, π).

Suppose L̂(t) = (θ(t), η(t)). By the compactness of RK , there exists a small neighborhood

N of Im(L̂) such that N ∩RK = ∅.
In case (1), the path L̂ “goes forward”, which means that θ(t) ≥ θ(t′) if t ≥ t′. Since

(0, π), (±π, π) ∈ Im(L̂) and Im(L̂) is symmetric under the reflection of (0, π), there exists
a smooth odd function g2 with period 2π such that the loop γ ⊂ T defined as {(θ, η)|η =
g2(θ) + π} is contained in N . Therefore, this loop does not intersect RK . In other words,
the image of γ does not contain the boundary holonomy of any SU(2) representation of
π1(S

3 −N(K)). Setting the function g2 as above and g1 ≡ 0, we get a contradiction from
Proposition 2.1.

0

�

2�

-� 0 �

0

�

2�

-� 0 �

Figure 3. The path {(θ, η − π)|(θ, η) ∈ Im(L̂)} (left) and the path {(θ +
g1(η − π), η − π)|(θ, η) ∈ Im(L̂)} (right) for r1 =

7
3 , r2 = 5

In case (2), the path L̂ does not always go forward and our argument needs to be
modified. Take the case 2 < r1 < r2 for example (see Figure 3). By the construction of

L̂, there exists a small ϵ > 0 such that Im(L̂) is contained in the region ϵ < η < 2π − ϵ.
Choose a number r0 ∈ (r1, r2). There exists an odd, 2π-periodic function g1 such that
g1(η) =

η
r0
, ∀η ∈ [ϵ, 2π − ϵ].

Notice that the image of L̂ only consists of the following 4 types of segments:
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• i) horizontal line that goes forward,
• ii) going down line with slope −r1,
• iii) going up line with slope −r2,
• iv) going up line with slope +∞.

We see that the path {(θ + g1(η − π), η − π)|(θ, η) ∈ Im(L̂)} goes forward. Therefore,
its neighborhood {(θ + g1(η − π), η − π)|(θ, η) ∈ N} contains the the graph of some odd,
2π-periodic function g2. In other words, the image of the loop γ defined as:

{(θ, η)|g2(θ + g1(η − π)) = η − π}
is contained in N . Setting x = θ + g1(η − π), we obtain a parametrization of γ as:

(x− g1 ◦ g2(x), g2(x) + π).

Notice that RK does not intersect the image of γ since it is contained in N . This is a
contradiction with Proposition 2.1 again.

We finish the proof of the SU(2)-cyclic case. The SO(3)-cyclic case can be proved

similarly by considering Ŝ(ri) instead of S(ri). �
Actually, we have proved that if r1, r2 are both SU(2)-cyclic, then d1(r1, r2)+d2(r1, r2) ≥

2π. When pi is odd, this gives the conclusions of Corollary 1.11. Corollary 1.12 and
Corollary 1.18 are easy to prove using the main theorem.

3.2. Relation with the Alexander polynomial. In this subsection, we will give some
relations between the SU(2)-cyclic surgeries and the Alexander polynomial and prove
Corollary 1.13.

Suppose d1(r1, r2) + d2(r1, r2) = 2π (for example r1 = −r2 = 2k) and r1, r2 are both
SU(2)-cyclic. Let’s try to repeat the argument as before. We focus on the case r2 < 0 < r1
and the other cases are similar. Consider S(ri) ⊂ T (i = 1, 2), then R∗

K ∩ S(ri) = ∅. We
now construct L : [−1, 1] → W . Set L(0) = (0, π) and L goes upwards along θ = 0
to (0, 2π). Then L goes down along S(r2) the the lowest intersection point (θ1, η1) ∈
S(r1) ∩ S(r2) ∩ W . After that, L goes up along S(r1) to the highest intersection point
(θ2, η2) ∈ S(r1)∩ S(r2)∩W . Notice unlike the previous case, here we consider W instead
of W ∗. The reason is that it is now possible that the lowest intersection point in (θ2, η2) ∈
S(r1)∩S(r2)∩W ∗ is also the highest one (see Figure 4). We repeat this procedure and get

L : [−1, 1] → W . As before, we need to modify L to L̂ whose image is contained in W ∗.
The trouble appears: L may contain some points like (θ0, 0) or (θ0, 2π) with θ0 ̸= 0 or±π.
In general, we don’t have the result like 5) of Lemma 2.8 which allows us to modify L near
these points without intersecting RK .

Consider the case of (θ0, 0) (the other case is similar). Suppose that we can choose a
small neighborhood U of (θ0, 0) such that R∗

K∩U = ∅. We just replace Im(L)∩U by some
short, horizontal line l ⊂ U ∩W ∗. If we can do this for every point in Im(L) ∩ (W\W ∗),

we can construct L̂ and get the contradiction as before. If we can’t do this for some
point (θ0, 0) ∈ S(r1), then there exist a sequence (θn, ηn) ∈ R∗

K converging to (θ0, 0) as
n → ∞. Each (θn, ηn) gives an irreducible representation ρn : π1(S

3 − N(K)) → SU(2).
It is easy to see that these representations are also irreducible as SL(2,C) representations.
By the compactness of SU(2) representation variety, after passing to subsequence, ρn
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Figure 4. When r1 = 4, r2 = −4, we can modify L near (θ0, 0) in the left
picture but we can’t modify L in the right picture.

converge to some ρ∞ with boundary holonomy (θ0, 0) ∈ S(r1). Recall that we have a
representation π1(S

3−K) → ±1 → SU(2) such thatm is mapped to −1. After multiplying
ρ∞ by this representation if necessary, we get a representation of ρ′∞ of π1(S

3 − N(K))
such that ρ′∞(p1m + q1l) = 1. Since r1 is an SU(2)-cyclic surgery, this representation
must be cyclic. In particular, this implies that ρ∞ is cyclic. Thus we get a sequence of
irreducible SL(2,C) representations converging to a reducible SL(2,C) representation ρ∞

with ρ∞(m) =
(

eiθ0 0
0 e−iθ0

)
. Now we apply the following proposition in [11]:

Proposition 3.3 ([11]). Let M be the complement of a knot K in a homology 3-sphere.
Suppose that ρ is a reducible representation of π1(M) such that the character of ρ lies on
a component of χ(M) (the character variety of M) which also contains the character of
an irreducible representation. Then ρ(m) has an eigenvalue whose square is a root of ∆K

(the Alexander polynomial of K).

Using this result, we see that e2iθ0 is a root of ∆K . Since (θ0, 0) ∈ S(r1), we see that
∆K has a root which is a p1-th root of unity for odd p1 and p1

2 -th root of unity for even
p1.

By considering the intersection point (θ0, 2π) ∈ Im(L)∩{η = 2π}, we can get the same
conclusion for p2. In particular, we get the following:

Proposition 3.4. Suppose that r1 = p1
q1
, r2 = p2

q2
are two SU(2)-cyclic surgeries with

d1(r1, r2)+d2(r1, r2) = 2π and p1, p2 even, then the Alexander polynomial of K has a root
which is either a p1

2 -th or a p2
2 -th root of unity.

Notice that if K is amphichiral, then the r-surgery is SU(2)-cyclic implies that the
−r-surgery is also SU(2)-cyclic. By Corollary 1.12, we see that r is an even integer and
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d1(r,−r) + d2(r,−r) = 2π. Therefore, Corollary 1.13 is a straightforward consequence of
the proposition above.
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