SU(2)-CYCLIC SURGERIES ON KNOTS

JIANFENG LIN

Abstract

A surgery on a knot in S^{3} is called $S U(2)$-cyclic if it gives a manifold whose fundamental group has no noncyclic $S U(2)$ representations. Using holonomy perturbations on the Chern-Simons functional, we prove that two $S U(2)$-cyclic surgery coefficients $\frac{p_{1}}{q_{1}}$ and $\frac{p_{2}}{q_{2}}$ should satisfy $\left|p_{1} q_{2}-p_{2} q_{1}\right| \leq\left|p_{1}\right|+\left|p_{2}\right|$. This is an analog of Culler-Gordon-Luecke-Shalen's cyclic surgery theorem.

1. Introduction

Definition 1.1. A closed orientable 3-manifold M is called $S U(2)$-cyclic (or $S O(3)$-cyclic) if there exists no homomorphism $\rho: \pi_{1}(M) \rightarrow S U(2)$ (or $S O(3)$) with noncyclic image.

Suppose $K \subset S^{3}$ is a knot. For $r \in \mathbb{Q}$, we denote the manifold obtained by doing r-surgery on K by $K(r)$.

Definition 1.2. A surgery on K with coefficient r is called $S U(2)$-cyclic (or $S O(3)$-cyclic) if $K(r)$ is $S U(2)$-cyclic (or $S O(3)$-cyclic).

Remark 1.3. Notice that $H_{1}(K(r) ; \mathbb{Z})$ is a cyclic group. We see that an $S U(2)$ representation of $\pi_{1}(K(r))$ has noncyclic image if and only if it is irreducible.

We have the following exact sequence:

$$
0 \rightarrow \mathbb{Z}_{2} \rightarrow S U(2) \rightarrow S O(3) \rightarrow 0
$$

It's easy to see that an $S O(3)$-cyclic surgery is always an $S U(2)$-cyclic surgery. Using some basic obstruction theory, we get:

Lemma 1.4. If $r=\frac{p}{q}$ is an $S U(2)$-cyclic surgery with p odd, then r is an $S O(3)$-cyclic surgery.

In [4], Kronheimer and Mrowka proved the following theorem:
Theorem 1.5 (Kronheimer, Mrowka 2003 [4]). Any r-surgery on a nontrivial knot with surgery coefficient $|r| \leq 2$ is not $S U(2)$-cyclic.

In particular, this theorem gave a proof for the Property-P Conjecture:
Corollary 1.6 (Kronheimer, Mrowka 2003 [4]). A nontrivial surgery on a nontrivial knot does not give simply connected 3 -manifold.

Obviously, lens spaces are all $S U(2)$-cyclic and $S O(3)$-cyclic. Thus all cyclic surgeries (the surgeries which give lens spaces) are $S O(3)$-cyclic. Therefore, we have:

Example 1.7. The $p q-\frac{1}{r}(r \in \mathbb{Z})$ surgeries on the (p, q)-torus knot are cyclic and hence SO(3)-cyclic.

Dunfield [3] gives the following example:
Example 1.8. The $18, \frac{37}{2}, 19$ surgeries on the $(-2,3,7)$-pretzel knot are $S O(3)$-cyclic. The 18,19 surgeries give lens spaces, while $K\left(\frac{37}{2}\right)$ is a graph manifold obtained by gluing the left-handed trefoil knot complement and the right-handed trefoil complement.

Another related theorem is Culler-Gordon-Luecke-Shalen's cyclic surgery theorem (we only state the case for knot surgery):

Theorem 1.9 (Culler-Gordon-Luecke-Shalen [7]). Suppose that K is not a torus knot and r, s are both cyclic surgeries, then $\triangle(r, s) \leq 1$.

Here for two rational numbers $r=\frac{p_{1}}{q_{1}}$ and $s=\frac{p_{2}}{q_{2}}$, the distance $\triangle(r, s)$ is defined to be $\left|p_{1} q_{2}-p_{2} q_{1}\right|$.

Since $\frac{1}{0}$-surgery is always cyclic, this theorem implies that when K is not a torus knot, r-surgery can be cyclic only if $r \in \mathbb{Z}$. Moreover, there are at most two such integers, and if there are two then they must be successive.

Although Example 1.8 shows that Theorem 1.9 is not true for $S U(2)$-cyclic or $S O(3)$ cyclic surgeries, we have the following analogous result, which is the main theorem of this paper.

Theorem 1.10. Consider a nontrivial knot $K \subset S^{3}$ and two surgeries with coefficients $r_{1}=p_{1} / q_{2}$ and $r_{2}=p_{2} / q_{2}$. We have the following:

- If r_{1}, r_{2} are both $S U(2)$-cyclic, then $\triangle\left(r_{1}, r_{2}\right) \leq\left|p_{1}\right|+\left|p_{2}\right|$.
- If r_{1}, r_{2} are both $S O(3)$-cyclic, then $2 \triangle\left(r_{1}, r_{2}\right) \leq\left|p_{1}\right|+\left|p_{2}\right|$.

Combining this theorem with Lemma 1.4, we get the following corollaries.
Corollary 1.11. Suppose r_{1}, r_{2} are both $S U(2)$-cyclic. If p_{1} is odd, then $2 \triangle\left(r_{1}, r_{2}\right) \leq$ $2\left|p_{1}\right|+\left|p_{2}\right|$. If p_{1}, p_{2} are both odd, then $2 \triangle\left(r_{1}, r_{2}\right) \leq\left|p_{1}\right|+\left|p_{2}\right|$.

Corollary 1.12. If r_{1}, r_{2} on K are both $S O(3)$-cyclic surgeries, then $r_{1} r_{2}>0$. If r_{1}, r_{2} on K are both $S U(2)$-cyclic surgeries, then $r_{1} r_{2}>0$ unless r_{1} and r_{2} are both even integers.

Corollary 1.13. For a nontrivial surgery on a nontrivial amphichiral knot K with coefficient r, we have the following:

- It can never be $S O(3)$-cyclic.
- If it is $S U(2)$-cyclic, then r is an even integer and some $\frac{r}{2}$-th root of unity is a root of Δ_{K} (the Alexander polynomial of K).

Remark 1.14. Actually, we haven't found any examples of $S U(2)$-cyclic surgeries on an amphichiral knot. It would be interesting to know whether there exists such a surgery.

We know that $\Delta_{K}(1)= \pm 1$ for any knot K while $\Phi_{p}(1)=p$ for any prime number p (Φ_{p} is the p-th cyclotomic polynomial). Therefor the Alexander polynomial Δ_{K} never has the p-th root of unity as its root. We get:

Example 1.15. If p is prime, then the $2 p$-surgery on an non-trivial amphichiral knot is not $S U(2)$-cyclic.

Remark 1.16. In [4], Kronheimer and Mrowka asked whether there exists $S U(2)$-cyclic surgery with coefficient 3 or 4 . We see that there exist no such surgeries for nontrivial amphichiral knots.

Using the criterion in Corollary 1.13, we checked the amphichiral knots with crossing number ≤ 10 and get:

Example 1.17. All the nontrivial amphichiral knots with crossing number ≤ 10 except perhaps 8_{18} and 10_{99} in Rolfsen's knot table admit no $S U(2)$-cyclic surgeries. For 8_{18} and 10_{99}, we have no examples of $S U(2)$-cyclic surgeries.

Corollary 1.18. Given a nontrivial knot K and an integer q, there exist at most finitely many $p \in \mathbb{Z}$ such that $(p, q)=1$ and the $\frac{p}{q}$-surgery on K is $S O(3)$-cyclic. For the $S U(2)$ case, the only possible exception is when $q=1$ and infinitely many even p.

In particular, any nontrivial knot admits only finitely many integer $S O(3)$-cyclic surgeries and only finite many odd $S U(2)$-cyclic surgeries.

The paper is organized as follows: in section 2 , we prove a result about the boundary holonomy of the representations after reviewing some preliminaries and basic constructions related to holonomy perturbations. In section 3, we prove the main theorem and the corollaries.

Acknowledgement The author wishes to thank Nathan Dunfield, Cameron Gordon, Yi Ni and Yi Liu for valuable discussions and comments. The author is especially grateful to Ciprian Manolescu for inspiring conversations and helpful suggestions in writing this paper.

2. A Result on the boundary holonomy of knot complement

Let ρ be an $S U(2)$ representation of $\pi_{1}\left(S^{3}-N(K)\right)(N(K)$ denotes the open tubular neighborhood of $K)$. We denote by $m, l \in \pi_{1}\left(S^{3}-N(K)\right)$ the meridian and the longitude of K respectively. Since m, l commute with each other, after a conjugation in $S U(2)$, we can assume that:

$$
\rho(m)=\left(\begin{array}{lr}
e^{i \theta} & 0 \\
0 & e^{-i \theta}
\end{array}\right), \rho(l)=\left(\begin{array}{lr}
e^{i \eta} & 0 \\
0 & e^{-i \eta}
\end{array}\right)
$$

We say that the points $\pm(\theta, \eta)$ are the boundary holonomies of ρ. We denote the torus $(\mathbb{R} / 2 \pi \mathbb{Z}) \oplus(\mathbb{R} / 2 \pi \mathbb{Z})$ by \mathbb{T}. The main result of this section is the following proposition:

Proposition 2.1. Let K be a nontrivial knot. Suppose γ is a closed curve on \mathbb{T} parameterized as:

$$
\left(x-g_{1} \circ g_{2}(x), g_{2}(x)+\pi\right), x \in[-\pi, \pi]
$$

where g_{1}, g_{2} are any smooth periodic odd functions of period 2π. Then the image of γ contains the boundary holonomy of some $S U(2)$ representation of $\pi_{1}\left(S^{3}-N(K)\right)$.

The proof of Theorem 1.10 begins with assuming $\frac{p}{q}$ and $\frac{r}{s}$ are two $S U(2)$-cyclic surgery slopes. This implies that there is a certain pair of curves on the torus T with slopes $\frac{p}{q}$ and $\frac{r}{s}$ whose union S cannot contain the boundary holonomy of any irreducible $S U(2)$ representation. After small modifications near the lines $\{\eta=2 \pi \mathbb{Z}\}$, we may further assume S does not contain the boundary holonomy of any $S U(2)$ representation. Since the set of all such boundary holonomies is a compact set, there is a small neighborhood of S which avoid all such boundary holonomies. The geometric and combinatorial arguments in section 3 then shows that if p, q, r, s do not satisfy the condition in the theorem, then arbitrary small neighborhood of S contains a curve which can be parameterized as in the above proposition, giving a contradiction.

Before giving the proof of Proposition 2.1, we review some background materials that will be useful in our discussion. Although most of them can be found in [4], [8] and [12], we still include some details here for completeness.

Consider the closed manifold $K(0)$. We have $b_{1}(K(0))=1$. Let E be the rank 2 unitary bundle over $K(0)$ with $c_{1}(E)$ the Poincaré dual of the meridian m and let \mathfrak{g}_{E} be the bundle whose sections are traceless, skew-hermitian endomorphisms of E. We denote by \mathcal{A} the affine space of $S O(3)$ connections of \mathfrak{g}_{E}. After fixing a reference connection $A_{0} \in \mathcal{A}$, we can define a functional $C S: \mathcal{A} \rightarrow \mathbb{R}$, which is call the Chern-Simon functional. Although the explicit formula of this functional will not be used in our discussion, we still give it here for completeness:

$$
C S(A)=\frac{1}{4} \int_{K(0)} \operatorname{Tr}\left(2 \omega \wedge F_{A_{0}}+\omega \wedge d \omega+\frac{2}{3} \omega \wedge \omega \wedge \omega\right)
$$

Here $\omega \in i \Omega^{1}\left(\mathfrak{g}_{E}\right)$ equals $A-A_{0}$ and $F_{A_{0}}$ is the curvature of A_{0}.
The critical points of the Chern-Simons functional are the flat connections. Floer introduced the holonomy perturbations as follows. Take a function $\phi: S U(2) \rightarrow \mathbb{R}$ which is invariant under conjugation. Then it is uniquely determined by the even, 2π-periodic function:

$$
f(x):=\phi\left(\begin{array}{lr}
e^{i x} & 0 \tag{1}\\
0 & e^{-i x}
\end{array}\right)
$$

Let Σ be a compact 2 -manifold with boundary. Consider an embedding $\Sigma \times S^{1}$ in $K(0)$ such that \mathfrak{g}_{E} is trivial over it. Fix a trivialization of \mathfrak{g}_{E} over $\Sigma \times S^{1}$ and take a 2 -form μ which is supported in the interior of Σ with integral 1. Using the trivialization, we can lift A to a connection \bar{A} on the trivialized $S U(2)$ bundle \widetilde{P} over $\Sigma \times S^{1}$. We consider the functional:

$$
\left.\Phi(A):=\int_{p \in \Sigma} \phi: \mathcal{A} \rightarrow \mathbb{R}, \operatorname{Hol}_{\{p\} \times S^{1}}(\bar{A})\right) \mu(p)
$$

Here $\operatorname{Hol}_{\{p\} \times S^{1}}$ is the holonomy along $\{p\} \times S^{1}$.
We decompose $K(0)$ into three parts: $\left(S^{3}-N(K)\right) \underset{\{0\} \times l \times m}{\cup}([0,1] \times l \times m) \underset{\{1\} \times l \times m}{\cup}\left(D^{2} \times\right.$ $m)$. We have meridians and longitudes on both side of the thicken torus. Denote them by $m_{0}, l_{0}, m_{1}, l_{1}$ respectively. Note that we should be careful that m_{0} is the meridian
of the knot complement but m_{1} the longitude of the attached solid torus. Also, l_{0} is the longitude of the knot complement but l_{1} is the meridian of the attached solid torus.

For our purpose, we will consider two types of perturbations:

- Set $\Sigma \cong D^{2}$ and $i_{1}\left(D^{2} \times S^{1}\right)=\left(D^{2} \times m\right) \subset K(0)$. That means we use the holonomy along m to do the perturbation. We denote this perturbation by Φ_{1}
- Set $\Sigma \cong m \times[0,1](\Sigma$ is an annulus $)$ and $i_{2}\left(\Sigma \times S^{1}\right)=(m \times[0,1]) \times l \subset K(0)$. That means we embed a thickened torus and use the holonomy along l to do the perturbation. We denote this perturbation by Φ_{2}.
We choose a trivialization of \mathfrak{g}_{E} over $\left(D^{2} \times m\right) \cup(m \times[0,1] \times l)$ and use it to lift the connection A to a $S U(2)$-connection \bar{A} on \widetilde{P}. Now use formula (2) and consider the perturbed Chern-Simons functional $\widehat{C S}=C S+\Phi_{1}+\Phi_{2}: \mathcal{A} \rightarrow \mathbb{R}$.

The following theorem, which plays a central role in our discussion, is proved in [6]:
Theorem 2.2 (Kronheimer, Mrowka [6]). If K is a nontrivial knot, then for any holonomy perturbation, the perturbed Chern-Simons functional $\widehat{C S}$ over $K(0)$ always has at least one critical point.

Remark 2.3. We mention that the proof of this theorem is highly nontrivial. It combines Gabai's result about taut foliation in [2], Eliashberg-Thurston's theorem about symplectic filling in [14] and [15], Taubes's result about the Seiberg-Witten invariants of the symplectic four-manifold in [10], Feehan and Leness's work about Witten's conjecture in [9] and Kronheimer-Mrowka's work about the refinement of Eliashberg-Thurston's theorem in [6]. However, in our discussion, we will use this theorem directly without going into any part of its proof.

The critical points of $\widehat{C S}$ is completely determined in the following lemma:
Lemma 2.4. If $A \in \mathcal{A}$ is a critical point of $\widehat{C S}$, then:

- A is flat on $S^{3}-N(K) \subset K(0)$.
- We can choose a suitable trivialization of the $\left.\mathfrak{g}_{E}\right|_{\left(D^{2} \times m\right) \cup(m \times[0,1] \times l)}$ such that the lifted connection \bar{A} satisfies:
$\operatorname{Hol}_{m_{0}}(\bar{A})=\left(\begin{array}{cc}e^{i \theta_{0}} & 0 \\ 0 & e^{-i \theta_{0}}\end{array}\right), \operatorname{Hol}_{m_{1}}(\bar{A})=\left(\begin{array}{cc}e^{i \theta_{1}} & 0 \\ 0 & e^{-i \theta_{1}}\end{array}\right), \operatorname{Hol}_{l_{0}}(\bar{A})=\left(\begin{array}{cc}e^{i \eta_{0}} & 0 \\ 0 & e^{-i \eta_{0}}\end{array}\right)$
and $\operatorname{Hol}_{l_{1}}(\bar{A})=\left(\begin{array}{cc}e^{i \eta_{1}} & 0 \\ 0 & e^{-i \eta_{1}}\end{array}\right)$ with $\eta_{0}=\eta_{1}=-f_{2}^{\prime}\left(\theta_{1}\right)$ and $\theta_{0}-\theta_{1}=-f_{1}^{\prime}\left(\eta_{0}\right)$.
Remark 2.5. Recall that we chose $\phi_{i}: S U(2) \rightarrow \mathbb{R}$ to define the perturbation $\Phi_{i}(i=1,2)$, which gives us $f_{i}: \mathbb{R} \rightarrow \mathbb{R}$ by formula (1).

Proof of Lemma 2.4. By Lemma 4 in [8] and Lemma 2.2 in [12], A is flat on $S^{3}-N(K) \subset$ $K(0)$ and near $(m \times l \times\{0\}) \cup(m \times l \times\{1\})$. Moreover, we can choose a suitable trivialization of \widetilde{P} such that $\operatorname{Hol}_{m_{0}}(\bar{A})=\left(\begin{array}{cc}e^{i \theta_{0}} & 0 \\ 0 & e^{-i \theta_{0}}\end{array}\right), \operatorname{Hol}_{m_{1}}(\bar{A})=\left(\begin{array}{cc}e^{i \theta_{1}} & 0 \\ 0 & e^{-i \theta_{1}}\end{array}\right), \operatorname{Hol}_{l_{0}}(\bar{A})=$ $\left(\begin{array}{cc}e^{i \eta_{0}} & 0 \\ 0 & e^{-i \eta_{0}}\end{array}\right), \operatorname{Hol}_{l_{1}}(\bar{A})=\left(\begin{array}{cc}e^{i \eta_{1}} & 0 \eta_{1} \\ 0 & e^{-i \eta_{1}}\end{array}\right)$ and $\theta_{0}-\theta_{1}=-f_{1}^{\prime}\left(\eta_{0}\right)+2 \mathbb{Z} \pi$. Also, we can choose another trivialization of \widetilde{P} such that $\operatorname{Hol}_{m_{1}}(\bar{A})=\left(\begin{array}{cc}e^{i \theta_{1}^{\prime}} & 0 \\ 0 & e^{-i \theta_{1}^{\prime}}\end{array}\right), \operatorname{Hol}_{l_{1}}(\bar{A})=\left(\begin{array}{cc}e^{i \eta_{1}^{\prime}} & 0 \\ 0 & e^{-i \eta_{1}^{\prime}}\end{array}\right)$
and $\eta_{1}^{\prime}=-f_{2}^{\prime}\left(\theta_{1}^{\prime}\right)+2 \mathbb{Z} \pi$. Since different trivialzations give the same holonomy modulo conjugation. We have $\left(\theta_{1}^{\prime}, \eta_{1}^{\prime}\right)= \pm\left(\theta_{1}, \eta_{1}\right)$. Since f_{2}^{\prime} is an odd function, we have $\eta_{1}=-f_{2}^{\prime}\left(\theta_{1}\right)+2 \mathbb{Z} \pi$.

Now suppose A is a critical point. Because \mathfrak{g}_{E} is trivial over $\pi_{1}\left(S^{3}-N(K)\right)$, we fix a trivialization of $\left.\mathfrak{g}_{E}\right|_{S^{3}-N(K)}$. Using this trivialization, we lift the connection A to a $S U(2)$ connection \widetilde{A} over $S^{3}-N(K)$. By taking the holonomy of \widetilde{A}, we get a representation $\rho: \pi_{1}\left(S^{3}-N(K)\right) \rightarrow S U(2)$.

Definition 2.6. We define the subset R_{K} of T as:

$$
\{(\theta, \eta) \mid(\theta, \eta) \text { is the boundary holonomy of some representation } \rho\}
$$

By the well-know relation between flat connections and representations of the fundamental group, this set can also be defined as:
$\left\{(\theta, \eta) \mid \exists\right.$ flat connection \widetilde{A} over $S^{3}-N(K)$ s.t. $\left.\operatorname{Hol}_{m}(\widetilde{A})=\left(\begin{array}{cc}e^{i \theta} & 0 \\ 0 & e^{-i \theta}\end{array}\right), \operatorname{Hol}_{l}(\widetilde{A})=\left(\begin{array}{cc}e^{i \eta} & 0 \\ 0 & e^{-i \eta}\end{array}\right)\right\}$
We summarize the properties of R_{K} in the following lemma. Some of them are proved in [4]. But since we change the statement a little, we give the proof here for completeness.

Lemma 2.7. R_{K} has the following properties:

- 1) Any point in R_{K} off the line $\{\eta=2 \pi \mathbb{Z}\}$ gives some irreducible representation.
- 2) R_{K} is a closed subset of T .
- 3) R_{K} is invariant under the translation $(\theta, \eta) \rightarrow(\theta+\pi, \eta)$.
- 4) $R_{K} \cap\{\theta=k \pi\}=\left(k \pi, 2 k^{\prime} \pi\right),\left(k, k^{\prime} \in \mathbb{Z}\right)$.
- 5) $\exists \epsilon>0$ such that $\forall k \in \mathbb{Z}, R_{K} \cap\{\theta \in[k \pi-\epsilon, k \pi+\epsilon]\} \cap\{\eta \neq 2 \mathbb{Z} \pi\}=\emptyset$.

Proof. 1) Any point in R_{K} gives a representation $\rho: \pi_{1}\left(S^{3}-N(K)\right) \rightarrow S U(2)$. If ρ is reducible, then ρ factors through $H_{1}\left(S^{3}-N(K) ; \mathbb{Z}\right)$, which implies that $\rho(l)=1 \in S U(2)$ and $\eta \in 2 \pi \mathbb{Z}$.
2) R_{K} is closed because $\pi_{1}\left(S^{3}-K\right)$ is finitely generated and $S U(2)$ is compact.
3) We have a map $\rho_{0}: \pi_{1}\left(S^{3}-K\right) \rightarrow H_{1}\left(S^{3}-K ; \mathbb{Z}\right) \rightarrow \mathbb{Z}_{2} \subset S U(2)$ with $\rho_{0}(m)=$ $-1 \in S U(2)$ and $\rho_{0}(l)=1 \in S U(2)$. For any homomorphism $\rho: \pi_{1}\left(S^{3}-N(K)\right) \rightarrow S U(2)$, we can multiply it by ρ_{0} to get another representation ρ^{\prime} such that $\rho^{\prime}(l)=\rho(l)$ and $\rho^{\prime}(m)=-\rho(m)$. By the definition of R_{K}, this implies 3).
4) Suppose ρ is given by a point with $\theta=0$. Then $\rho(m)=1 \in S U(2)$ and ρ factors through $\pi_{1}\left(S^{3}\right)$, which is a trivial. We get $\rho(l)=1$ and $\eta=2 k^{\prime} \pi$. For the case $\theta=\pi$, we use 3).
5) Look at a small neighborhood U of $(0,0) \in R_{K}$ in \mathbb{T}. The point $(0,0)$ is given by the restriction of the trivial representation ρ_{1}. The deformations of ρ_{1} are governed by $H^{1}\left(\pi_{1}\left(S^{3}-K\right) ; \mathbb{R}^{3}\right) \cong \mathbb{R}^{3}$. But every vector in this \mathbb{R}^{3} can be realized by the some reducible representation. We see that in a small neighborhood of ρ_{1}, all the representations are reducible. Thus $U \cap R_{K} \cap\{\eta \neq 2 \mathbb{Z} \pi\}=\emptyset$ if U is small enough. Use 4) and the compactness of R_{K}, we prove 5) for the case k is even. Then we use 3) to prove the case of odd k.

Lemma 2.8. If A is a critical point of the perturbed Chern-Simons functional, then $\left(\theta_{0}, \eta_{0}+\pi\right) \in R_{K}$, where θ_{0} and η_{0} are defined in Lemma 2.4.

Proof. By Lemma 2.4, A is flat on $S^{3}-N(K)$. After choosing a trivialization of $\left.\mathfrak{g}_{E}\right|_{S^{3}-N(K)}$, we can lift A to a flat $S U(2)$ connection \tilde{A}, whose holonomy gives a point of R_{K}. Recall that to define θ_{0}, η_{0} in Lemma 2.4, we also choose a trivialization of $\left.\mathfrak{g}_{E}\right|_{\left(D^{2} \times m\right) \cup(m \times[0,1] \times l)}$ and lift A to a connection \bar{A}. Because the bundle \mathfrak{g}_{E} is nontrivial, these two trivializations do not agree with each other on the common boundary $\{0\} \times l \times m$. Actually, they differ each other by a map $h:\{0\} \times l \times m \rightarrow S O(3)$ with $h_{*}\left(l_{0}\right)=1 \in \mathbb{Z}_{2} \cong \pi_{1}(S O(3))$ and $h_{*}\left(m_{0}\right)=0 \in \pi_{1}(S O(3))$. Therefore, we see that $\left(\operatorname{Hol}_{m_{0}}(\widetilde{A}), \operatorname{Hol}_{l_{0}}(\widetilde{A})\right) \in S U(2) \times S U(2)$ is conjugate with $\left(\operatorname{Hol}_{m_{0}}(\bar{A}),-\operatorname{Hol}_{l_{0}}(\bar{A})\right)$. After a change of the trivialization of $\left.\mathfrak{g}_{E}\right|_{S^{3}-N(K)}$, we can assume that $\left(\operatorname{Hol}_{m_{0}}(\bar{A}),-\operatorname{Hol}_{l_{0}}(\bar{A})\right)=\left(\operatorname{Hol}_{m_{0}}(\widetilde{A}), \operatorname{Hol}_{l_{0}}(\widetilde{A})\right)$. By the second description of R_{K}, we have $\left(\theta_{0}, \eta_{0}+\pi\right) \in R_{K}$.

Now we start the proof of Proposition 2.1:
Proof. We can find even, 2π-periodic functions $f_{i}(i=1,2)$ such that $f_{1}^{\prime}(x)=g_{1}(x)$ and $f_{2}^{\prime}(x)=-g_{2}(x)$ and use them to define the holonomy perturbations Φ_{1}, Φ_{2}. By Theorem 2.2 , the perturbed Chern-Simons functional $\widehat{C S}$ has at least one critical point. Let θ_{i}, η_{i} ($i=0,1$) be the numbers in Lemma 2.4 corresponding to this critical point. Then we have $\eta_{0}=g_{2}\left(\theta_{1}\right)$ and $\theta_{0}=\theta_{1}-g_{1} \circ g_{2}\left(\theta_{1}\right)$. Therefore, the image of the loop γ contains the point $\left(\theta_{0}, \eta_{0}+\pi\right)$, which is the boundary holonomy of some representation ρ by Lemma 2.8.

3. Proof of the Main Theorem and its Corollaries

3.1. Proof of the main theorem. Now suppose $K \subset S^{3}$ is a nontrivial knot. Denote the set $R_{K} \cap\{\eta \neq 2 \mathbb{Z} \pi\}$ by R_{K}^{*}. For $r=\frac{p}{q}$, we define the following sets:

$$
\begin{gathered}
S(r):=\{(\theta, \eta) \mid(p \theta+q \eta) \in 2 \mathbb{Z} \pi \text { or }(p \theta+p \pi+q \eta) \in 2 \mathbb{Z} \pi\} \\
\widehat{S}(r):=\{(\theta, \eta) \mid(p \theta+q \eta) \in \mathbb{Z} \pi\}
\end{gathered}
$$

Notice that when p is odd, we have $\widehat{S}(r)=S(r)$.
Lemma 3.1. If r is an $S U(2)$-cyclic surgery, then $R_{K}^{*} \cap S(r)=\emptyset$. If r is an $S O(3)$-cyclic surgery, then $R_{K}^{*} \cap \widehat{S}(r)=\emptyset$.

Proof. If $(\theta, \eta) \in R_{K}^{*}$ satisfies $p \theta+q \eta \in 2 \mathbb{Z} \pi$, then it gives a representation $\rho: \pi_{1}\left(S^{3}-\right.$ $N(K)) \rightarrow S U(2)$ with $\rho(p m+q l)=1 \in S U(2)$. Thus ρ factors through $\pi_{1}(K(r))$. By (1) of Lemma 2.7, ρ is noncyclic. This is a contradiction with our assumption that r is a $S U(2)$-cyclic surgery. We see that $R_{K}^{*} \cap\{(\theta, \eta) \mid(p \theta+q \eta) \in 2 \mathbb{Z} \pi\}=\emptyset$. By (3) of Lemma2.7, we also have $R_{K}^{*} \cap\{(\theta, \eta) \mid(p \theta+p \pi+q \eta) \in 2 \mathbb{Z} \pi\}=\emptyset$. We have proved the first assertion. The second assertion can be proved similarly.

Since we are considering the subsets of \mathbb{T}, it will be convenient to fix a region $W=$ $\{(\theta, \eta) \mid \theta \in(-\infty, \infty), \eta \in[0,2 \pi]\} \subset \mathbb{R}^{2}$ and define W^{*} to be $\{(\theta, \eta) \mid \theta \in(-\infty, \infty), \eta \in$ $(0,2 \pi)\}$. We can work in W and W^{*} and then project to \mathbb{T}.

For two different numbers $r_{1}=\frac{p_{1}}{q_{1}}, r_{2}=\frac{p_{2}}{q_{2}}$. We define another two numbers:

$$
d_{1}\left(r_{1}, r_{2}\right)=\left\{\begin{array}{ll}
\frac{2 \pi\left|p_{1}\right|}{\Delta\left(r_{1}, r_{2}\right)} & \text { if } p_{2} \text { is even } \\
\frac{\pi\left|p_{1}\right|}{\Delta\left(r_{1}, r_{2}\right)} & \text { if } p_{2} \text { is odd }
\end{array} ; d_{2}\left(r_{1}, r_{2}\right)= \begin{cases}\frac{2 \pi\left|p_{2}\right|}{\Delta\left(r_{1}, r_{2}\right)} & \text { if } p_{1} \text { is even } \\
\frac{\pi\left|p_{2}\right|}{\Delta\left(r_{1}, r_{2}\right)} & \text { if } p_{1} \text { is odd }\end{cases}\right.
$$

The intersections $S\left(r_{i}\right) \cap W^{*}$ are just line segments with slope $-r_{i}$ and $S\left(r_{1}\right) \cap S\left(r_{2}\right) \cap W^{*}$ consists of isolated points. We say two intersection points in $S\left(r_{1}\right) \cap S\left(r_{2}\right) \cap W^{*}$ are adjacent in $S\left(r_{i}\right)(i=1,2)$ if they lie in the same component of $S\left(r_{i}\right) \cap W^{*}$ and there is no other intersection point between them. We define two intersection points in $\widehat{S}\left(r_{1}\right) \cap \widehat{S}\left(r_{2}\right) \cap W^{*}$ to be adjacent in $\widehat{S}\left(r_{i}\right)$ in a similar way.

The following lemma is easy to prove:
Lemma 3.2. (1) If two intersection points $(\theta, \eta),\left(\theta^{\prime}, \eta^{\prime}\right) \in S\left(r_{1}\right) \cap S\left(r_{2}\right) \cap W^{*}$ are adjacent in $S\left(r_{i}\right)$, then $\left|\eta-\eta^{\prime}\right|=d_{i}\left(r_{1}, r_{2}\right)(i=1,2)$.
(2) If two intersection points $(\theta, \eta),\left(\theta^{\prime}, \eta^{\prime}\right) \in \widehat{S}\left(r_{1}\right) \cap \widehat{S}\left(r_{2}\right) \cap W^{*}$ are adjacent in $\widehat{S}\left(r_{i}\right)$, then $\left|\eta-\eta^{\prime}\right|=\frac{\pi\left|p_{i}\right|}{\Delta\left(r_{1}, r_{2}\right)}(i=1,2)$.
(3) For $(\theta, \eta) \in S\left(r_{1}\right) \cap S\left(r_{2}\right) \cap W^{*}$, if $\eta>d_{i}\left(r_{1}, r_{2}\right)$, then we can find $\left(\theta^{\prime}, \eta^{\prime}\right) \in$ $S\left(r_{1}\right) \cap S\left(r_{2}\right) \cap W^{*}$ such that they are adjacent in $S\left(r_{i}\right)$ and $\eta^{\prime}<\eta$. If $\eta<2 \pi-d_{i}\left(r_{1}, r_{2}\right)$, then we can find $\left(\theta^{\prime}, \eta^{\prime}\right) \in S\left(r_{1}\right) \cap S\left(r_{2}\right) \cap W^{*}$ such that they are adjacent in $S\left(r_{i}\right)$ and $\eta^{\prime}>\eta$.
(4) For $(\theta, \eta) \in \widehat{S}\left(r_{1}\right) \cap \widehat{S}\left(r_{2}\right) \cap W^{*}$, if $\eta>\frac{\pi\left|p_{i}\right|}{\Delta\left(r_{1}, r_{2}\right)}$, then we can find $\left(\theta^{\prime}, \eta^{\prime}\right) \in \widehat{S}\left(r_{1}\right) \cap$ $\widehat{S}\left(r_{2}\right) \cap W^{*}$ such that they are adjacent in $\widehat{S}\left(r_{i}\right)$ and $\eta^{\prime}<\eta$. If $\eta<2 \pi-\frac{\pi\left|p_{i}\right|}{\Delta\left(r_{1}, r_{2}\right)}$, then we can find $\left(\theta^{\prime}, \eta^{\prime}\right) \in \widehat{S}\left(r_{1}\right) \cap \widehat{S}\left(r_{2}\right) \cap W^{*}$ such that they are adjacent in $\widehat{S}\left(r_{i}\right)$ and $\eta^{\prime}>\eta$.

Now we can start the proof of our main theorem:
Proof of Theorem 1.10. Let r_{1}, r_{2} be two $S U(2)$-cyclic surgeries. Since the theorem is trivial when $r_{1}=r_{2}$, we always assume that $r_{1} \neq r_{2}$. By Theorem 1.5, we have $\left|r_{i}\right|>2$. Moreover, when r_{1} or r_{2} equals $\frac{1}{0}$, the identities in the theorem and corollaries can be easily deduced from Theorem 1.5. Thus we can assume $p_{i} \neq 0$ and $q_{i} \neq 0$. Suppose $d_{1}\left(r_{1}, r_{2}\right)+$ $d_{2}\left(r_{1}, r_{2}\right)<2 \pi$. By Lemma 3.1 and (4) of Lemma 2.7, we have $R_{K}^{*} \cap\left(S\left(r_{1}\right) \bigcup S\left(r_{2}\right) \bigcup\{\theta=\right.$ $k \pi\})=\emptyset$. We will construct a piecewise linear path $L:[-1,1] \rightarrow W$ such that $\operatorname{Im}(L) \subset$ $S\left(r_{1}\right) \bigcup S\left(r_{2}\right) \bigcup\{\theta=k \pi\}$. There are two cases:
(1) Suppose $r_{1}<-2<2<r_{2}$. Let $L(0)=(0, \pi)$. Then as t increases, L first goes up along the line $\theta=0$ to $(0,2 \pi)$. Since $(0,2 \pi) \in S\left(r_{2}\right), L$ can go down along $S\left(r_{2}\right)$ to the lowest intersection point $\left(\theta_{1}, \eta_{1}\right) \in S\left(r_{1}\right) \cap S\left(r_{2}\right) \cap W^{*}$ in this component. By (3) of Lemma 3.2 , we have $\eta_{1} \leq d_{2}\left(r_{1}, r_{2}\right)$, which also implies $\eta_{1}<2 \pi-d_{1}\left(r_{2}, r_{2}\right)$ By our assumption.

Again by Lemma 3.2, $\left(\theta_{1}, \eta_{1}\right)$ is not the highest intersection point in the component of $S\left(r_{1}\right) \cap W^{*}$ containing it. Thus L can go along $S\left(r_{1}\right)$ to the highest intersection point. Notice that this point is still in W^{*}. After that, L again goes along $S\left(r_{2}\right)$ to the lowest intersection point. Repeat this procedure until L hits the line $\theta=\pi$. Then L goes along $\theta=\pi$ to the point (π, π). We have defined $L(t)$ for $t \in[0,1]$. Reflecting along $(0, \pi)$, we can define $L(t)$ for $t \in[-1,0]$.

Figure 1. The path L (left) and the path \widehat{L} (right) when $r_{1}=-3, r_{2}=4$
(2) Suppose r_{1}, r_{2} are of the same sign. We consider the case $2<r_{1}<r_{2}$ and the other case is similar. Set $L(0)=(0, \pi)$ and let L goes along $\theta=0$ to $(0,2 \pi)$. Then L moves down alone $S\left(r_{1}\right)$ to the lowest intersection point in W^{*}. After that L moves along $S\left(r_{2}\right)$ to the highest intersection point. The difference from case (1) is that we repeat this procedure until L intersects the line $l \subset S\left(r_{1}\right)$ which passes through $(\pi, 0)$. It is easy to see that this happens before L hits $\theta=\pi$. Then L goes along l to $(\pi, 0)$ and then goes along the line $\theta=\pi$ to (π, π). By reflecting along the point $(0, \pi)$, we define $L(t)$ for any $t \in[-1,1]$.

Figure 2. The path L (left) and the path \widehat{L} (right) for $r_{1}=\frac{7}{3}, r_{2}=5$

In both cases, the image of L, which we denote by $\operatorname{Im}(L)$, is contained in $S\left(r_{1}\right) \cup$ $S\left(r_{2}\right) \cup\{\theta=k \pi\}$. Thus $R_{K}^{*} \cap \operatorname{Im}(L)=\emptyset$. Notice that $\operatorname{Im}(L)$ intersects the line $\eta=0$ and $\eta=2 \pi$ at $(0,0),(0,2 \pi)$ in case (1) and at $(0,0),(0,2 \pi),(\pi, 0),(-\pi, 2 \pi)$ in case (2). We need to do small modification around these points. Take the point $(0,2 \pi)$ for example. We choose a small neighborhood U of $(0,2 \pi)$ and remove $\operatorname{Im}(L) \cap U$. Then we replace it with a short horizontal line segment $\eta=2 \pi-\varepsilon$. After doing this modification, we get a map $\widehat{L}:[-1,1] \rightarrow W^{*}$, which still satisfies $\operatorname{Im}(\widehat{L}) \cap R_{K}=\emptyset$ by 5) of Lemma 2.7. Moreover, we can require that $\operatorname{Im}(\widehat{L})$ is symmetric under the reflection about $(0, \pi)$. Suppose $\widehat{L}(t)=(\theta(t), \eta(t))$. By the compactness of R_{K}, there exists a small neighborhood N of $\operatorname{Im}(\widehat{L})$ such that $N \cap R_{K}=\emptyset$.

In case (1), the path \widehat{L} "goes forward", which means that $\theta(t) \geq \theta\left(t^{\prime}\right)$ if $t \geq t^{\prime}$. Since $(0, \pi),(\pm \pi, \pi) \in \operatorname{Im}(\widehat{L})$ and $\operatorname{Im}(\widehat{L})$ is symmetric under the reflection of $(0, \pi)$, there exists a smooth odd function g_{2} with period 2π such that the loop $\gamma \subset \mathbb{T}$ defined as $\{(\theta, \eta) \mid \eta=$ $\left.g_{2}(\theta)+\pi\right\}$ is contained in N. Therefore, this loop does not intersect R_{K}. In other words, the image of γ does not contain the boundary holonomy of any $S U(2)$ representation of $\pi_{1}\left(S^{3}-N(K)\right)$. Setting the function g_{2} as above and $g_{1} \equiv 0$, we get a contradiction from Proposition 2.1.

Figure 3. The path $\{(\theta, \eta-\pi) \mid(\theta, \eta) \in \operatorname{Im}(\hat{L})\}$ (left) and the path $\{(\theta+$ $\left.\left.g_{1}(\eta-\pi), \eta-\pi\right) \mid(\theta, \eta) \in \operatorname{Im}(\hat{L})\right\}$ (right) for $r_{1}=\frac{7}{3}, r_{2}=5$
In case (2), the path \widehat{L} does not always go forward and our argument needs to be modified. Take the case $2<r_{1}<r_{2}$ for example (see Figure 3). By the construction of \widehat{L}, there exists a small $\epsilon>0$ such that $\operatorname{Im}(\widehat{L})$ is contained in the region $\epsilon<\eta<2 \pi-\epsilon$. Choose a number $r_{0} \in\left(r_{1}, r_{2}\right)$. There exists an odd, 2π-periodic function g_{1} such that $g_{1}(\eta)=\frac{\eta}{r_{0}}, \forall \eta \in[\epsilon, 2 \pi-\epsilon]$.

Notice that the image of \widehat{L} only consists of the following 4 types of segments:

- i) horizontal line that goes forward,
- ii) going down line with slope $-r_{1}$,
- iii) going up line with slope $-r_{2}$,
- iv) going up line with slope $+\infty$.

We see that the path $\left\{\left(\theta+g_{1}(\eta-\pi), \eta-\pi\right) \mid(\theta, \eta) \in \operatorname{Im}(\hat{L})\right\}$ goes forward. Therefore, its neighborhood $\left\{\left(\theta+g_{1}(\eta-\pi), \eta-\pi\right) \mid(\theta, \eta) \in N\right\}$ contains the the graph of some odd, 2π-periodic function g_{2}. In other words, the image of the loop γ defined as:

$$
\left\{(\theta, \eta) \mid g_{2}\left(\theta+g_{1}(\eta-\pi)\right)=\eta-\pi\right\}
$$

is contained in N. Setting $x=\theta+g_{1}(\eta-\pi)$, we obtain a parametrization of γ as:

$$
\left(x-g_{1} \circ g_{2}(x), g_{2}(x)+\pi\right)
$$

Notice that R_{K} does not intersect the image of γ since it is contained in N. This is a contradiction with Proposition 2.1 again.

We finish the proof of the $S U(2)$-cyclic case. The $S O(3)$-cyclic case can be proved similarly by considering $\widehat{S}\left(r_{i}\right)$ instead of $S\left(r_{i}\right)$.

Actually, we have proved that if r_{1}, r_{2} are both $S U(2)$-cyclic, then $d_{1}\left(r_{1}, r_{2}\right)+d_{2}\left(r_{1}, r_{2}\right) \geq$ 2π. When p_{i} is odd, this gives the conclusions of Corollary 1.11. Corollary 1.12 and Corollary 1.18 are easy to prove using the main theorem.
3.2. Relation with the Alexander polynomial. In this subsection, we will give some relations between the $S U(2)$-cyclic surgeries and the Alexander polynomial and prove Corollary 1.13.

Suppose $d_{1}\left(r_{1}, r_{2}\right)+d_{2}\left(r_{1}, r_{2}\right)=2 \pi$ (for example $r_{1}=-r_{2}=2 k$) and r_{1}, r_{2} are both $S U(2)$-cyclic. Let's try to repeat the argument as before. We focus on the case $r_{2}<0<r_{1}$ and the other cases are similar. Consider $S\left(r_{i}\right) \subset \mathrm{T}(i=1,2)$, then $R_{K}^{*} \cap S\left(r_{i}\right)=\emptyset$. We now construct $L:[-1,1] \rightarrow W$. Set $L(0)=(0, \pi)$ and L goes upwards along $\theta=0$ to $(0,2 \pi)$. Then L goes down along $S\left(r_{2}\right)$ the the lowest intersection point $\left(\theta_{1}, \eta_{1}\right) \in$ $S\left(r_{1}\right) \cap S\left(r_{2}\right) \cap W$. After that, L goes up along $S\left(r_{1}\right)$ to the highest intersection point $\left(\theta_{2}, \eta_{2}\right) \in S\left(r_{1}\right) \cap S\left(r_{2}\right) \cap W$. Notice unlike the previous case, here we consider W instead of W^{*}. The reason is that it is now possible that the lowest intersection point in $\left(\theta_{2}, \eta_{2}\right) \in$ $S\left(r_{1}\right) \cap S\left(r_{2}\right) \cap W^{*}$ is also the highest one (see Figure 4). We repeat this procedure and get $L:[-1,1] \rightarrow W$. As before, we need to modify L to \widehat{L} whose image is contained in W^{*}. The trouble appears: L may contain some points like $\left(\theta_{0}, 0\right)$ or $\left(\theta_{0}, 2 \pi\right)$ with $\theta_{0} \neq 0$ or $\pm \pi$. In general, we don't have the result like 5) of Lemma 2.8 which allows us to modify L near these points without intersecting R_{K}.

Consider the case of $\left(\theta_{0}, 0\right)$ (the other case is similar). Suppose that we can choose a small neighborhood U of $\left(\theta_{0}, 0\right)$ such that $R_{K}^{*} \cap U=\emptyset$. We just replace $\operatorname{Im}(L) \cap U$ by some short, horizontal line $l \subset U \cap W^{*}$. If we can do this for every point in $\operatorname{Im}(L) \cap\left(W \backslash W^{*}\right)$, we can construct \widehat{L} and get the contradiction as before. If we can't do this for some point $\left(\theta_{0}, 0\right) \in S\left(r_{1}\right)$, then there exist a sequence $\left(\theta_{n}, \eta_{n}\right) \in R_{K}^{*}$ converging to $\left(\theta_{0}, 0\right)$ as $n \rightarrow \infty$. Each $\left(\theta_{n}, \eta_{n}\right)$ gives an irreducible representation $\rho_{n}: \pi_{1}\left(S^{3}-N(K)\right) \rightarrow S U(2)$. It is easy to see that these representations are also irreducible as $S L(2, \mathbb{C})$ representations. By the compactness of $S U(2)$ representation variety, after passing to subsequence, ρ_{n}

Figure 4. When $r_{1}=4, r_{2}=-4$, we can modify L near $\left(\theta_{0}, 0\right)$ in the left picture but we can't modify L in the right picture.
converge to some ρ_{∞} with boundary holonomy $\left(\theta_{0}, 0\right) \in S\left(r_{1}\right)$. Recall that we have a representation $\pi_{1}\left(S^{3}-K\right) \rightarrow \pm 1 \rightarrow S U(2)$ such that m is mapped to -1 . After multiplying ρ_{∞} by this representation if necessary, we get a representation of ρ_{∞}^{\prime} of $\pi_{1}\left(S^{3}-N(K)\right)$ such that $\rho_{\infty}^{\prime}\left(p_{1} m+q_{1} l\right)=1$. Since r_{1} is an $S U(2)$-cyclic surgery, this representation must be cyclic. In particular, this implies that ρ_{∞} is cyclic. Thus we get a sequence of irreducible $S L(2, \mathbb{C})$ representations converging to a reducible $S L(2, \mathbb{C})$ representation ρ_{∞} with $\rho_{\infty}(m)=\left(\begin{array}{cc}e^{i \theta_{0}} & 0 \\ 0 & e^{-i \theta_{0}}\end{array}\right)$. Now we apply the following proposition in [11]:

Proposition 3.3 ([11]). Let M be the complement of a knot K in a homology 3-sphere. Suppose that ρ is a reducible representation of $\pi_{1}(M)$ such that the character of ρ lies on a component of $\chi(M)$ (the character variety of M) which also contains the character of an irreducible representation. Then $\rho(m)$ has an eigenvalue whose square is a root of Δ_{K} (the Alexander polynomial of K).

Using this result, we see that $e^{2 i \theta_{0}}$ is a root of Δ_{K}. Since $\left(\theta_{0}, 0\right) \in S\left(r_{1}\right)$, we see that Δ_{K} has a root which is a p_{1}-th root of unity for odd p_{1} and $\frac{p_{1}}{2}$-th root of unity for even p_{1}.

By considering the intersection point $\left(\theta_{0}, 2 \pi\right) \in \operatorname{Im}(L) \cap\{\eta=2 \pi\}$, we can get the same conclusion for p_{2}. In particular, we get the following:

Proposition 3.4. Suppose that $r_{1}=\frac{p_{1}}{q_{1}}, r_{2}=\frac{p_{2}}{q_{2}}$ are two $S U(2)$-cyclic surgeries with $d_{1}\left(r_{1}, r_{2}\right)+d_{2}\left(r_{1}, r_{2}\right)=2 \pi$ and p_{1}, p_{2} even, then the Alexander polynomial of K has a root which is either a $\frac{p_{1}}{2}$-th or a $\frac{p_{2}}{2}$-th root of unity.

Notice that if K is amphichiral, then the r-surgery is $S U(2)$-cyclic implies that the $-r$-surgery is also $S U(2)$-cyclic. By Corollary 1.12, we see that r is an even integer and
$d_{1}(r,-r)+d_{2}(r,-r)=2 \pi$. Therefore, Corollary 1.13 is a straightforward consequence of the proposition above.

References

[1] A.Floer, Instanton homology and Dehn surgery, The Floer memorial volume, Progr. Math., vol.133, Birkhäuser, Basel, (1995), pp.195-256.
[2] D.Gabai, Foliation and the topology of 3-manifolds, J. Differential Geom. 26 (1987), no.3, 479-536.
[3] N.M.Dunfield, Private communication.
[4] P.B.Kronheimer, T.S.Mrowka, Dehn surgery, the fundamental group and SU(2), Math. Res. Lett. 11 (2004), no. 5-6, 741C754.
[5] P.B.Kronheimer, T.S.Mrowka, Embedded surfaces and the structure of Donaldson's polynomial invariants, J. Differential Geom. 41 (1995), no.3, 573-734.
[6] P.B.Kronheimer, T.S.Mrowka, Witten's conjeture and Property P, Geom. Topol. 8 (2004) 295-310.
[7] M.Culler, C.Gordon, J.Luecke, P.Shalen, Dehn surgery on knots, Ann. of Math. 125 (1987) 237C300
[8] P.J.Braam and S.K.Donaldson, Floer's work on instanton homology, knots and surgery, The Floer memorial volume, Progr. Math., vol.133, Birkhauser, Basel, 1995, pp.195-256
[9] P.M.N.Feehan and T.G.Leness, A general SO(3)-monopole corbordism formula relating Donaldson and Seiberg-Witten invariants. Preprint, arXiv:math.DG/0203047,2003
[10] C.H.Taubes, The Seiberg-Witten invariants and symplectic forms, Math. Res. Lett. 1 (1994), no.6, 809-822.
[11] D.Cooper, M.Culler, H.Gillet, D.Long and P.Shalen, Plane curves associated to character varieties of 3-manifolds, Invent. Math. 118 (1994), 47-84.
[12] J. Lin, The A-polynomial and holonomy perturbations. Preprint, arXiv:1304.7232.
[13] C.Gordon, J.Luecke, Knots are determined by their complements, J.Amer. Math. Soc. 2 (1989), 371C415.
[14] Y. Eliashberg, Few remarks about symplectic filling, Geom. Topol. 8 (2004), 277C293.
[15] Y.Eliashberg and W.Thurston, Confoliations, University Lecture Series, no. 13, American Mathematical Society, (1998).

Jianfeng Lin
Department of Mathematics, University of California Los Angeles, Los Angeles, US
juliuslin@math.ucla.edu

