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Abstract. Using Seiberg-Witten Floer spectrum and Pin(2)-equivariant KO-theory, we
prove new Furuta-type inequalities on the intersection forms of spin cobordisms between
homology 3-spheres. As an application, we give explicit constrains on the intersection
forms of spin 4-manifolds bounded by Brieskorn spheres ±Σ(2, 3, 6k±1). Along the way,
we also give an alternative proof of Furuta’s improvement of 10/8-theorem for closed
spin-4 manifolds.

1. Introduction

A natural question in 4-dimensional topology is: which nontrivial symmetric bilinear
form can be realized as the intersection form of a closed, smooth, spin 4-manifold X.
Such form should be even and unimodular. Therefore, it is indefinite by Donaldson’s
diagonalizability theorem [6, 7]. After changing the orientation of X if necessary, we
can assume that the signature σ(X) is non-positive. Then the intersection form can be
decomposed as p(−E8) ⊕ q ( 0 1

1 0 ) with p ≥ 0, q > 0. Matsumoto’s 11/8 conjecture [16]

states that b2(X) ≥ 11
8 |σ(X)|, which can be rephrased as q ≥ 3p

2 . An important result is
the following 10/8 theorem of Furuta.

Theorem 1.1 (Furuta [12]). Suppose X is an oriented closed spin four-manifold with
intersection form p(−E8)⊕ q ( 0 1

1 0 ) for p ≥ 0, q > 0. Then we have q ≥ p+ 1.

Furuta’s proof made use of the finite dimensional approximation of the Seiberg-Witten
equations on closed 4-manifolds and Pin(2)-equivariant K-theory. By doing destabilization
and appealing to a result by Stolz [32], Minami [21] and Schmidt [27] independently proved
the following improvement:

Theorem 1.2 (Minami [21], Schmidt [27]). Let X be a smooth, oriented, closed spin
four-manifold with intersection form p(−E8)⊕ q ( 0 1

1 0 ) for p ≥ 0, q > 0. Then we have:

q ≥

 p+ 1, p ≡ 0, 2 mod 8
p+ 2, p ≡ 4 mod 8
p+ 3, p ≡ 6 mod 8.

(1)

Remark 1.3. p is always an even integer by Rokhlin’s theorem [25].

An interesting observation is that Schmidt’s calculation in [27] about the Adams oper-
ations actually implies an alternative proof of the following further improvement, which
was first proved by Furuta-Kametani [13]. We will give the proof in Section 3.
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Theorem 1.4 (Furuta-Kametani [13]). Let X be a smooth, oriented, closed spin four-
manifold with intersection form p(−E8)⊕ q ( 0 1

1 0 ) for p, q > 0. Then q ≥ p+ 3 when p ≡ 0
mod 8.

Another direction is to consider the intersection form of a spin 4-manifold with given
boundary. Suppose X is not closed but has boundary components, which are homology
three-spheres. The intersection form of X is still even and unimodular but can be definite
now. For the definite case, various constrains are found in [8, 9, 10, 24, 15, 19].

For the indefinite case, Furuta-Li [14] and Manolescu [18] proved the following theorem
independently1.

Theorem 1.5 (Furuta-Li [14], Manolescu [18]). To each oriented homology 3-sphere Y ,
we can associate an invariant κ(Y ) ∈ Z with the following properties:

(i) Suppose W is a smooth, spin cobordism from Y0 to Y1, with intersection form
p(−E8)⊕ q ( 0 1

1 0 ). Then:
κ(Y1) + q ≥ κ(Y0) + p− 1.

(ii) Suppose W is a smooth, oriented spin manifold with a single boundary Y , with
intersection form p(−E8)⊕ q ( 0 1

1 0 ) and q > 0. Then:

κ(Y ) + q ≥ p+ 1.

Both Furuta-Li and Manolescu proved this theorem by considering the Pin(2)-equivariant
K-theory on the Seiberg-Witten Floer spectrum. Some new bounds can be obtained from
this theorem. For example, the Brieskorn sphere +Σ(2, 3, 12n+ 1) does not bound a spin
4-manifold with intersection form p(−E8)⊕ p ( 0 1

1 0 ) for p > 0.
The main purpose of this paper is to extend Theorem 1.2 to the case of spin cobordisms

and get more constrains on the intersection form of a spin 4-manifold with boundary. Here
is the first result:

Theorem 1.6. For any k ∈ Z/8, we can associate an invariant κok(Y ) to each oriented
homology sphere Y , with the following properties:

• (1) 2κok(Y ) is an integer whose mod 2 reduction is the Rokhlin invariant µ(Y ).
• (2) Suppose W is an oriented smooth spin cobordism from Y0 to Y1, with intersec-

tion form p(−E8)⊕q ( 0 1
1 0 ) for p, q ≥ 0. Let p = 4l+m for l ∈ Z and m = 0, 1, 2, 3.

Then for any k ∈ Z/8, we have the following inequalities:
(i) If (µ(Y0),m) = (0, 0), (0, 3), (1, 0), (1, 1), then:

κok(Y0) + 2l + h(µ(Y0),m) ≤ κok+q(Y1) + βqk+q. (2)

(ii) If (µ(Y0),m) = (0, 1), (0, 2), (1, 2), (1, 3), then:

κok+4(Y0) + 2l + h(µ(Y0),m) ≤ κok+q(Y1) + β4+q
k+q . (3)

Here βjk =
j−1∑
i=0

αk−i where αi = 1 for i ≡ 1, 2, 3, 5 mod 8 and αi = 0 for i ≡ 0, 4, 6, 7

mod 8 (β0
k is defined to be 0). The constants h(µ(Y0),m) are listed below:

1We give Manolescu’s statement here. Furuta-Li’s statement is slightly different.
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m = 0 m = 1 m = 2 m = 3
µ(Y0) = 0 0 5/2 3 3/2
µ(Y0) = 1 0 1/2 3 7/2

.

Remark 1.7. When m is even, µ(Y0) = µ(Y1) and h(µ(Y0),m) is an integer. When m
is odd, µ(Y0) 6= µ(Y1) and h(µ(Y0),m) is a half-integer.

Setting p = q = 0 in (2) of Theorem 1.6, we get:

Corollary 1.8. If two homology spheres Y0, Y1 are homology cobordant to each other, then
κok(Y0) = κok(Y1) for any k ∈ Z/8.

The definition of κok is similar to that of κ [14, 18]. Roughly, κok(Y ) is defined as follows.
Pick a metric g on Y . By doing finite dimensional approximation to the Seiberg-Witten
equations on (Y, g), we get a topological space Iν with an action by G = Pin(2). After
changing Iν by suitable suspension or desuspension, we consider the following construction:

The inclusion of the S1-fixed point set IS
1

ν induces a map between the equivariant KO-

groups i∗ : K̃OG(Iν) → K̃OG(IS
1

ν ). We choose a specific reduction ϕ : K̃OG(IS
1

ν ) → Z.
It can be proved that the image of ϕ ◦ i∗ is an ideal generated by 2a ∈ Z. We define a as
κok(Y ). Different k ∈ Z/8 correspond to different suspensions.

In Section 8, we calculate some examples using the results in [18] about the Seiberg-
Witten Floer spectrum of ±Σ(2, 3, r).

Theorem 1.9. (a) We have κoi(S
3) = 0 for any i ∈ Z/8.

(b) For a positive integer r with gcd(r, 6) = 1, let Σ(2, 3, r) be the Brieskorn spheres
oriented as boundaries of negative plumbings and let −Σ(2, 3, r) be the same Brieskorn
spheres with the orientations reversed. Then κoi(±Σ(2, 3, r)) are listed below:

κo0 κo1 κo2 κo3 κo4 κo5 κo6 κo7

Σ(2, 3, 12n− 1) 1 1 1 0 0 0 0 0
−Σ(2, 3, 12n− 1) 0 0 −1 −1 0 0 0 0
Σ(2, 3, 12n− 5) 1/2 1/2 1/2 −1/2 −1/2 −1/2 −1/2 −1/2
−Σ(2, 3, 12n− 5) 3/2 3/2 1/2 −1/2 −1/2 −1/2 −1/2 1/2
Σ(2, 3, 12n+ 1) 0 0 0 0 0 0 0 0
−Σ(2, 3, 12n+ 1) 0 0 0 0 0 0 0 0
Σ(2, 3, 12n+ 5) 3/2 3/2 1/2 −1/2 −1/2 −1/2 1/2 3/2
−Σ(2, 3, 12n+ 5) −1/2 −1/2 −1/2 −1/2 −1/2 −1/2 −1/2 −1/2

.

Remark 1.10. We see that κok(−Y ) 6= −κok(Y ) in general, while κok(Y#(−Y )) is
always 0 by Corollary 1.8. Therefore, κok is not additive under connected sum.

If we apply (2) of Theorem 1.6 to the case Y0 = Y1 = S3, the result is weaker than
Theorem 1.2. As the case in K-theory (See [18]), we can remedy this by considering the
special property of Y0

∼= S3, which is called the Floer KOG-split condition.

Theorem 1.11. Let W be an oriented, smooth spin cobordism from Y0 to Y1, with in-
tersection form p(−E8) ⊕ q ( 0 1

1 0 ) and p ≥ 0, q > 0. Suppose Y0 is Floer KOG-split. Let
p = 4l +m for l ∈ Z and m = 0, 1, 2, 3. Then we have the following inequalities:
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(1)If (µ(Y0),m) = (0, 0), (0, 3), (1, 0), (1, 1), then:

κo4(Y0) + 2l + h(µ(Y0),m) + 1 ≤ κo4+q(Y1) + βq4+q. (4)

(2)If (µ(Y0),m) = (0, 1), (0, 2), (1, 2), (1, 3), then:

κo4(Y0) + 2l + h(µ(Y0),m) + 1 ≤ κoq(Y1) + β4+q
q . (5)

Here β∗∗ and h(µ(Y0),m) are the constants defined in Theorem 1.6.

In particular, S3 is Floer KOG-split. Applying Y0 = S3 to the previous theorem, we
get the following useful corollary:

Corollary 1.12. Let W be an oriented smooth spin 4-manifold whose boundary is a ho-
mology sphere Y . Suppose the intersection form of W is p(−E8)⊕q ( 0 1

1 0 ) with p ≥ 0, q > 0.
Then we have the following inequalities:

• If p = 4l, then 2l < κo4+q(Y ) + βq4+q.

• If p = 4l + 1, then 2l + 5
2 < κoq(Y ) + β4+q

q .

• If p = 4l + 2, then 2l + 3 < κoq(Y ) + β4+q
q .

• If p = 4l + 3, then 2l + 3
2 < κo4+q(Y ) + βq4+q.

Remark 1.13. If we set Y = S3 in Corollary 1.12, we will recover Theorem 1.2. However,
Corollary 1.12 is not enough to prove Theorem 1.4. In order to get the relative version of
Theorem 1.4, we have to apply similar constructions on the fixed point set of the Adams
operation. This will not be done in the present paper.

Combining the results in Theorem 1.9 with Corollary 1.12, we get some new explicit
bounds on the intersection forms of spin four-manifolds bounded by ±Σ(2, 3, r). We give
two of them here and refer to Section 8.2 for a complete list.

Example 1.14. We have the following conclusions:

• −Σ(2, 3, 12n − 1) does not bound a spin four-manifold with intersection form
p(−E8)⊕ (p+ 1) ( 0 1

1 0 ) for p > 0.
• −Σ(2, 3, 12n − 5) does not bound a spin four-manifold with intersection form
p(−E8)⊕ p ( 0 1

1 0 ) for p > 1.

The paper is organized as follows: In Section 2, we discuss some background material
about Pin(2)-equivariant KO-theory. In Section 3, we prove Theorem 1.4 after recalling
some basic facts and properties of the Adams operations. In Section 4, we review the basic
properties of the Seiberg-Witten Floer spectrum. The numerical invariant κok is defined
in Section 5 and Theorem 1.6 is proved in Section 6. In Section 7, we introduce the Floer
KOG-split condition and prove Theorem 1.11. In Section 8, we prove Theorem 1.9 and
use Corollary 1.12 and Theorem 1.4 to obtain new constrains on the intersection form of
a spin four-manifold with given boundary.

Acknowledgement Many of the constructions are parallel to those in [14, 18] and are
credited throughout. I wish to thank Ciprian Manolescu for suggesting the problem that
leads to the results in this paper, and for his encouragement and enthusiasm. I am also
grateful to the referee for comments on a previous version of this paper.
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2. Equivariant KO-theory

2.1. General Theory. In this subsection, we review some general facts about equivariant
KO-theory, mostly from [28] and [5]. See [2], [3] for basic facts about ordinary K-theory
and KO-theory.

Let G be a compact topological group and X be a compact G-space. We denote the
Grothendieck group of real G-bundles over X by KOG(X).

Fact 2.1. KOG(pt) = RO(G). Here RO(G) denotes the real representation ring of G.
For a general X, KOG(X) is a RO(G)-algebra (with unit).

Remark 2.2. In this paper, we will not distinguish a representation of G with its repre-
sentation space.

Fact 2.3. A continuous G-map f : X → Y induces a map f∗ : KOG(Y )→ KOG(X).

Fact 2.4. For each subgroup H ⊆ G, by restricting the G action to H, which makes a
G-bundle into an H-bundle, we get a functorial restriction map r : KOG(X)→ KOH(X).

Fact 2.5. If G acts freely on X, then the pull back map KO(X/G)→ KOG(X) is a ring
isomorphism.

Fact 2.6. For a real irreducible representation space V of G, EndG(V ) is either R, C or H.
Let ZIrR, ZIrC and ZIrH denote the free abelian groups generated by irreducible represen-
tations of respective types and let KSp(X) be the the Grothendieck group of quaternionic
vector bundles over X. Then if G acts trivially on X, we have:

KOG(X) = (KO(X)⊗ZIrR)⊕ (K(X)⊗ZIrC)⊕ (KSp(X)⊗ZIrH). (6)

Now suppose X has a distinguished base point p which is fixed by G. Then we define

K̃OG(X) (the reduced KO-group) to be the kernel of the map KOG(X)→ KOG(p). For
based space X with trivial action, we also have:

K̃OG(X) = (K̃O(X)⊗ZIrR)⊕ (K̃(X)⊗ZIrC)⊕ (K̃Sp(X)⊗ZIrH). (7)

The following fact is proved as Corollary 3.1.6 in [2]. ([2] only proved the complex
K-theory case but the proof works without modification in the real case.)

Fact 2.7. Suppose X is a finite, based G-CW complex and the G-action is free away from

the base point. Then any element in K̃OG(X) ∼= K̃O(X/G) is nilpotent.

Recall that the augmentation ideal a ⊂ RO(G) is the kernel of the forgetful map

RO(G) ∼= KOG(pt) → KO(pt) ∼= Z. Any element in a defines an element in K̃OG(X).
By the above fact, we get:

Fact 2.8. Suppose X is a finite, based G-CW complex and the G-action is free away from

the base point. Then any element in the augmentation ideal acts on K̃O
∗
G(X) nilpotently.

Fact 2.9. For pointed spaces X,Y , there is a natural product map K̃OG(X)⊗K̃OG(Y )→
K̃OG(X ∧ Y ).

Fact 2.10. For pointed spaces X,Y , we have K̃OG(X ∨ Y ) ∼= K̃OG(X)⊕ K̃OG(Y )
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Let V be a real representation space of G. Denote the reduced suspension V + ∧X by
ΣVX. The following equivariant version of real Bott periodicity theorem was proved in
[5].

Fact 2.11. Suppose the dimension n of V is divisible by 8 and V is a spin representation
(which means the group action G → SO(n) ⊂ End(V ) factors through Spin(n)). Then

we have the Bott isomorphism ϕV : K̃OG(X) ∼= K̃OG(ΣVX), given by the multiplica-

tion of the Bott Class bV ∈ K̃OG(V +) under the natural map K̃OG(V +) ⊗ K̃OG(X) →
K̃OG(ΣVX). Bott isomorphism is funtorial under the pointed map X → X ′.

Fact 2.12. Bott classes behave well under the restriction map, which means that i∗bV =
bi∗(V ). Here i∗ is the restriction map (see Fact 2.4) and i∗(V ) is the the restriction of the
representation to the subgroup.

2.2. Pin(2)-equivariant KO-theory. In this section, we will review some important
facts about Pin(2)-equivariant KO-theory. The detailed discussions can be found in [27].
From now on, we assume G ∼= Pin(2) unless otherwise noted. Recall that the group Pin(2)
can be defined as S1 ⊕ jS1 ⊂ C⊕ jC = H. We have:

RO(Pin(2)) ∼= Z[D,K,H]/(D2 − 1, DK −K,DH −H,H2 − 4(1 +D +K)).

The representation space of D is R where the identity component S1 ⊂ Pin(2) acts
trivially and j ∈ Pin(2) act as multiplication by −1.

The representation space of K is C ∼= R⊕ iR where z ∈ S1 ⊂ Pin(2) acts as multipli-
cation by z2 (in C) and j acts as reflection along the diagonal.

The representation space of H is H where the action is given by the left multiplication
of Pin(2) ⊂ H.

We will also write R as the trivial one dimensional representation of G.

Following the notation of [27], we denote K̃OG((kD + lH)+) by KOG(kD + lH) (we
choose ∞ as the base point). Then for k, l,m, n ∈ Z≥0 we have the multiplication map:

KOG(kD + lH)⊗KOG(mD + nH)→ KOG((k +m)D + (l + n)H). (8)

In order to define this map, we need to fix the identification between (kD⊕lH)⊕(mD⊕
nH) and (k +m)D ⊕ (l + n)H by sending (x1 ⊕ y1)⊕ (x2 ⊕ y2) to (x1, x2)⊕ (y1, y2). By
considering the G-equivariant homotopy, it is not hard to see that the multiplication map
is commutative when k or l is even. (We will prove that the multiplication map is actually
commutative for any k, l, after we give the structure of KOG(kD+ lH) in Theorem 2.13.)

It is easy to prove (see [27]) that 8D, H+4D and 2H are spin representations. Therefore,
we can choose Bott classes b8D ∈ KOG(8D), b2H ∈ KOG(2H) and bH+4D ∈ KOG(H +
4D). Multiplication by these classes induces isomorphism KOG(kD + lH) ∼= KOG((k +
8)D + lH) ∼= KOG((k + 4)D + (l + 1)H) ∼= KOG(kD + (l + 2)H). Since the Bott classes
are in the center, it doesn’t matter whether we multiply on the left or on the right.
Moreover, we can choose the Bott classes to be compatible with each other, which means
that b8Db2H = b2H+4D. We will fix the choice of these Bott classes throughout this paper.

For k, l ∈ Z, the RO(G)-module KOG(kD + lH) is defined to be KOG((k + 8a)D +
(l + 2b)H) for any a, b ∈ Z which make k + 8a ≥ 0 and l + 2b ≥ 0. Since the Bott
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Classes are chosen to be compatible, the groups defined by different choices of a, b are
canonically identified to each other. Again because the Bott classes are in the center, the
multiplication map (8) can now be extended to all k, l,m, n ∈ Z.

Consider the inclusion i : 7D+ → 8D+. There is a unique element γ(D) ∈ KOG(−D)

which satisfies γ(D)b8D = i∗(b8D). The map KOG((k+ 1)D+ lH)
·γ(D)−→ KOG(kD+ lH) is

just the map induced by the inclusion kD⊕ lH → (k+1)D⊕ lH for k, l ≥ 0. Similarly, we
can define γ(H) ∈ KOG(−H) and γ(H+4D) = γ(H)γ(D)4. Since left multiplication and
right multiplication by γ(D) or γ(H) just correspond to different inclusions of subspaces,
which are homotopic to each other, we see that γ(D) and γ(H) are both in the center.

By Bott periodicity, we only have to compute KOG(lD) for l = −2,−1, 0, ..., 5. This
was done in [27] and we list the result here:

Theorem 2.13 (Schmidt [27]). As Z-modules we have the following isomorphisms:

• 1) KOG(pt) ∼= RO(Pin(2)) ∼= Z[D,A,B]/(D2 − 1, DA− A,DB − B,B2 − 4(A−
2B)), where A = K − (1 +D) and B = H − 2(1 +D). 2

• 2) KOG(−lD) ∼= Z⊕⊕n≥1Z/2 for l = 1, 2 generated by γ(D)|l| and γ(D)|l|An.
• 3) KOG(D) ∼= Z, generated by η(D).
• 4) KOG(lD) ∼= Z⊕⊕m≥0Z/2 for l = 2, 3. The generators are η(D)2 and γ(D)2Amc

for l = 2; γ(D)λ(D) and γ(D)Amc for l = 3.
• 5) KOG(4D) is freely generated by λ(D), Dλ(D), Anλ(D) and Amc for m ≥ 0 and
n ≥ 1.
• 6) KOG(5D) ∼= Z, generated by η(D)λ(D).

Corollary 2.14. The multiplication map (8) is commutative.

Proof. We just need to check γ(D), η(D), λ(D), c commute with each other. This is easy
since λ(D) and c are in KOG(kD) for even k, while γ(D) is in the center by our discussion
before. �

For our purpose, we don’t need to know the explicit constructions of η(D), λ(D) and c.
We just need to know the following properties of them.
η(D) is the Hurewicz image of an element η̃(D) ∈ π0

G(D) (G-equivariant stable coho-
motopy group of D+). If we forget about the G-action, η̃(D) is just the Hopf map in
πst

1 (pt).
For λ(D) and c ∈ KOG(4D), by Bott periodicity and formula (7), we have isomor-

phisms:
KOG(4D) ∼= KOG(8D + 4) ∼= KOG(4)

∼= (K̃O(S4)⊗ZIrR)⊕ (K̃(S4)⊗ZIrC)⊕ (K̃Sp(S4)⊗ZIrH).

(Here 4 ∈ RO(G) denotes the trivial 4-dimensional real representation. )
We can choose suitable Bott classes such that under these isomorphisms, λ(D) corre-

sponds to ([VH ] − 4R) ⊗ 1 ∈ K̃O(S4) ⊗ ZIrR and c corresponds to ([VH] − H) ⊗ H ∈
K̃Sp(S4) ⊗ ZIrH. Here VH is the quaternion Hopf bundle over S4 ∼= HP 2. H and R
denote the trivial bundles and 1, H are elements in RO(G).

2There is a typo in [27], where the relation between A and B is B2 − 2(A− 2B).
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Let λ(H) and c(H) be the image of λ(D) and c under the Bott isomorphismKOG(4D) ∼=
KOG(8D + H) ∼= KOG(H). Then KOG(H) is generated by λ(H) and c(H) as RO(G)-
algebra.

Remark 2.15. Notice that the element [VH ]⊗H ∈ KSpS4 ⊗ZIrH is represented by the
bundle VH ⊗H H. Hence it is a real bundle of dimension 4 (not 16).

For further discussions, we need to know the multiplicative structures of KOG(lD),
which are also given in [27]. We list some of them that are useful for us:

Theorem 2.16 (Schmidt [27]). The following relations hold:

• 1) Hλ(D) = 4c, Hc = (A+ 2 + 2D)λ(D), Dc = c.
• 2) (D + 1)γ(D) = 2Aγ(D) = Bγ(D) = 0.
• 3) (D + 1)η(D) = Aη(D) = Bη(D) = 0.
• 4) γ(D)η(D) = 1−D, γ(D)λ(D) = η(D)3.
• 5) γ(D)8b8D = 8(1−D), γ(H)2b2H = K − 2H +D + 5.
• 6) γ(H + 4D)bH+4D = 4(1−D).
• 7) η(D)λ(D) = γ(D)3b8D, η(D)c = 0.
• 8) γ(H)λ(H) = 4−H and γ(H)c(H) = H − 1−D −K.

3. The Adams operations

3.1. Basic properties. In this subsection, we give a quick review about the basic prop-
erties of the Adams operations. See [2] and [31] for more detailed discussions. Some of the
calculations can be found in [27] but we give them here for completeness. For simplicity
and concreteness, we only deal with ψk : KOG(X) → KOG(X) for an actual G-space X
and we don’t do localizations (like [27]).

Let KOG(X)[[t]] be the formal power series with coefficients in KOG(X). For a bundle
E overX, we define λt(E) ∈ KOG(X)[[t]] to be

∑
i=0

ti[λi(E)]. Here λi(E) is the i-th exterior

power of E. We let ψ0(E) = rank(E) and define ψt(E) =
∑
i=0

tiψi(E) ∈ KOG(X)[[t]] by

ψt(E) = ψ0(E)− t d
dt

(logλ−t(x)). (9)

It turns out that for any k ∈ Z≥0, ψk extends to a well defined operation on KOG(X),
which satisfies the following nice properties:

• (1) ψk is functorial with respect to continuous maps f : X → X ′.

• (2) ψk maps K̃OG(X) to K̃OG(X).
• (3) For all x, y ∈ KOG(X), ψk(x+ y) = ψk(x) +ψk(y) and ψk(xy) = ψk(x)ψk(y).
• (4) If x is a line bundle, then ψk(x) = xk.

The effect of the Adams operations on the Bott classes can be described by the Bott
cannibalistic class. Given a spin G-bundle E over X with rank n ≡ 0 mod 8, the Bott
cannibalistic class θor

k (E) ∈ RO(G) is defined by the equation:

ψk(bE) = θor
k (E) · bE for k > 1. (10)
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When k is odd, this can be explicitly written as (see [31]):3

θor
k (E) = kn/2

∏
u∈J

λ−u(E)(1− u)−n. (11)

Here J is a set of k-th unit roots u 6= 1 such that J contains exactly one element from each
pair {u, u−1}. Notice that we can define θor

k (E) for any real bundle E of even dimension
using formula (11). It can be shown that:

θor
k (E + F ) = θor

k (E)θor
k (F ).

Now let’s specialize to the case k = 3. By formula (9), it is easy to check that ψ3(x) =
x3−3λ2(x)x+3λ3(x). We want to calculate the action of ψ3 on RO(G). Since the G-action
on H preserves the orientation, we have λ3(H) = λ1(H) = H. Using complexification, it
is easy to show λ2(H) = K +D + 3. Also, we have λ2(K) = D. Therefore, we get4:

ψ3(D) = D, ψ3(H) = HK −H, ψ3(K) = K3 − 3K,

ψ3(A) = A3 + 6A2 + 9A, ψ3(B) = AB +B + 4A.

Also, applying formula (11), we get:

θor
3 (2) = 3, θor

3 (2D) = 1 + 2D, θor
3 (H) = A+B + 4D + 5.

3.2. Proof of Theorem 1.4. The central part of the proof is the following proposition:

Proposition 3.1. For any integers r, a, b ≥ 0 and l > 0, there does not exist G-equivariant
map

f : (rR+ aD + (4l + b)H)+ → (rR+ (a+ 8l + 2)D + bH)+

which induces homotopy equivalence on the G-fixed point set.

Proof. Suppose there exists such a map f . After suspension by copies of R, D and H,
we can assume a = 8l′ + 6, r = 8d and b = 2k. Let V1 = 8dR + 2kH + 8(l + l′ + 1)D
and V2 = 8dR + (4l + 2k)H + (8l′ + 8)D. Let bV1 and bV2 be the Bott classes of V1 and
V2, respectively. Consider the element x = f∗(bV1). By the Bott isomorphism and (2)
of Theorem 2.13, we can write x as bV2γ(D)2α for some α ∈ RO(G). Moreover, we can
assume α = p + Ah(A) for some integer p and some polynomial h(A) whose coefficients
are either 0 or 1.

Claim: p is even and h = 0.
This is essentially a special case of Proposition 5.21 in [27] for KO(4l, 8l + 2).5

By formula (10), we have: ψ3(bV1) = θor
3 (V1) · bV1 , which implies:

ψ3(x) = f∗(ψ3(bV1)) = θor
3 (V1) · x. (12)

Notice that x = i∗(bV2 ·α) where i : (8dR+(4l+2k)H+(8l′+6)D)+ → V +
2 is the standard

inclusion. By formula (10), we have:

ψ3(x) = i∗(ψ3(bV2 · α)) = θor
3 (V2)bV2ψ

3(α) · γ(D)2. (13)

3There is a typo in 3.10.4 [31].
4There is a typo in [27], where ψ3(H) = HK −K.
5 There is an error in [27] for KO(c, d) when 4c−d ≡ −3 mod 8, but we will not consider this case here.
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Comparing equation (12) and equation (13), we get:

(θor
3 (V2)ψ3(α)− θor

3 (V1)α)γ(D)2 = 0 (14)

We can calculate:

θor
3 (V1) = 34d(1 + 2D)4l+4l′+4(A+B + 4D + 5)2k,

θor
3 (V2) = 34d(1 + 2D)4l′+4(A+B + 4D + 5)2k+4l.

Notice that 2Aγ(D) = Bγ(D) = (1 +D)γ(D) = 0, we can simplify equation (14) as:

34d((A+ 1)2kα− (A+ 1)4l+2kψ3(α)) · γ(D)2 = 0. (15)

Since α = p+Ah(A), we have ψ3(α) = p+ (A3 + 6A2 + 9A)h(A3 + 6A2 + 9A). Using the
relation 2Aγ(D) = 0, we can further simplify equation (15) and get:

34d · g(A) · γ(D)2 = 0 (16)

Here g(A) = (A+ 1)2k(p+Ah(A))− (A+ 1)2k+4l(p+ (A3 +A)h(A3 +A)).
By (2) of Theorem 2.13, we see that if we expand g(A) as a polynomial in A, the degree-

0 coefficient should be 0 and all other coefficients should be even. By our assumption, the
coefficients of h are either 0 or 1. Checking the leading coefficient of g(A), it is easy to
see that h = 0 and g(A) = p((A+ 1)2k − (A+ 1)2k+4l). This implies that p is even. The
claim is proved.

Now consider the commutative diagram:

K̃OG(V +
1 )

·γ(H)2kγ(D)8l+8l′+8

��

f∗ // K̃OG((8dR+ (8l′ + 6)D + (4l + 2k)H)+)

·γ(H)4l+2kγ(D)8l
′+6

��

K̃OG((8dR)+)
∼= // K̃OG((8dR)+).

(17)

The vertical maps are given by the inclusions of subspaces. The bottom map is an i-
somorphism because f induces a homotopy equivalence on the G-fixed point set. Any

automorphism on K̃OG((8dR)+) is given by the multiplication of a unit ũ ∈ RO(G).
Therefore, we obtain :

ũ · bV1 · γ(H)2kγ(D)8l+8l′+8 = x · γ(H)4l+2kγ(D)8l′+6 = bV2 · γ(D)8l′+8γ(H)4l+2k · p (18)

Applying the relations in Theorem 2.16, we simplify this as :

(K − 2H +D + 5)2l+k(8(1−D))l
′+1 · p = (K − 2H +D + 5)k(8(1−D))l+l

′+1 · ũ. (19)

Now consider the ring homomorphism ϕ0 : RO(G)→ Z defined by ϕ0(D) = −1, ϕ0(A) =
ϕ0(B) = 0. Notice that ϕ0(ũ) = ±1 since ũ is a unit. We get p = ±1, which is a contra-
diction. This finishes the proof of Proposition 3.1. �

Now suppose X is a closed, oriented, smooth spin four-manifold with intersection form
p(−E8)⊕ q ( 0 1

1 0 ) for p = 8l > 0 and q < p+ 3. After doing surgery on loops and connect
sum copies of S2 × S2, we can assume b1(W ) = 0 and q = 8l + 2. As shown in [12], by
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doing finite dimensional approximation of the Seiberg-Witten equations on W , we get an
G-equivariant map:

f : (aD + (4l + b)H)+ → ((a+ 8l + 2)D + bH)+ for some a, b > 0.

Moreover, f induces a homotopy equivalence on the G-fixed point set. This is a contra-
diction to Proposition 3.1. Therefore, Theorem 1.4 is proved.

4. Pin(2)-equivariant Seiberg-Witten Floer theory

In [17], [18] and [19], Manolescu constructed a Pin(2)-equivariant spectrum class S(Y, s)
for each rational homology sphere Y with a spin structure s. We will not repeat the
constructions here but just collect some useful properties. See [17], [18] and [19] for the
explicit constructions.

Definition 4.1. Let s ∈ Z≥0. A space of type SWF (at level s) is a pointed, finite G-CW
complex X with the following properties:

• (a) The S1-fixed point set XS1
is G-homotopy equivalent to the sphere (sD)+. We

define lev(X) to be s.

• (b) The action of G is free on the complement X −XS1
.

Definition 4.2. Let X,X ′ be two spaces of type SWF at level k and k′ respectively. A
pointed G-map f : X → X ′ is called admissible if f preserves the base point and satisfies
one of the following two conditions:

• (1) k < k′ and the induced map on the G-fixed point set fG : XG → X ′G is a
homotopy equivalence.

• (2) k = k′ and the induced map on the S1-fixed point set fS
1

: XS1 → X ′S
1

is a
homotopy equivalence.

Now consider the set of triples (X, a, b) where X is a space of type SWF and a ∈ Z, b ∈
Q.

Definition 4.3. We say that (X, a, b) is stable equivalent to (X ′, a′, b′) if b − b′ ∈ Z and
for some M,N, r > 0, there exists a G-homotopy equivalence:

ΣrRΣ(M−a)DΣ(N−b)HX ∼= ΣrRΣ(M−a′)DΣ(N−b′)HX ′.

(Here R denotes the trivial representation of G.)

Remark 4.4. In [18], Manolescu worked with stable even equivalence, which requires X
to be a space of type SWF at even level.

This triple can be thought of the “formal de-suspension” of X with a copies of D and
b copies of H. We denote C to be the set of stable equivalence classes of triples (X, a, b).
Informally, we call an element in C a spectrum class.

Definition 4.5. For a spectrum class S = [(X, a, b)] ∈ C, we let

lev(S) = lev(X)− a.
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Remark 4.6. By considering the S1-fixed point set, we see that two spaces of type SWF
at different levels are not G-homotopic to each other. Using this fact, it is easy to prove
that lev(S) is a well defined quality.

For r ∈ Z and s ∈ Q, we can define the formal suspension ΣrD+sH : C→ C by sending
[(X, a, b)] to [(X, a − r, b − s)]. It’s easy to check that this is a well defined operation on
the set C.

Now suppose Y is an oriented rational homology three-sphere with a metric g and a
spin structure s. Let S be the associated spinor bundle. We consider the global Coulomb
splice:

V = ikerd∗ ⊕ Γ(S) ⊂ iΩ1(Y )⊕ Γ(S).

Using the quaternionic structure on S, we can define a natural action of G on V : eiθ ∈ G
takes (α, φ) to (eiθα, φ) and j ∈ G takes (α, φ) to (−α, jφ).

Now we consider the self-adjoint first order elliptic operator l : V → V defined by
l(α, φ) = (∗dα, /Dφ) where /D is the Dirac operator 6. For any τ < ν, let V τ

ν be the
subspace spanned by the eigenvectors of l with eigenvalues in the interval (τ, ν]. Then V τ

ν

is a finite dimensional G-representation space which is isomorphic to kD⊕ lH. We denote
k by dimRV (D)ντ and l by dimHV (H)ντ .

We pick −ν << 0 << ν. By considering the equivariant Conley index of the gradient
flow of CSD|V ν−ν (see [17] and [18]), we get a G-space Iν of type SWF at level dimRV (D)0

−ν .

Next, we need to recall the definition of n(Y, s, g). Choose a compact smooth spin
four-manifold N with ∂N = Y . Let indC /D(N) be the index of Dirac operator on N (with
Atiyah-Patodi-Singer boundary conditions). We can define:

n(Y, s, g) := indC /D(N) +
σ(N)

8
. (20)

Remark 4.7. It can be proved that this definition does not depend on the choice of N . For
a rational homology sphere Y , we have n(Y, s, g) ∈ 1

8Z. When Y is an integral homology
sphere, n(Y, s, g) is an integer and has the same parity as the Rokhlin invariant µ(Y ).

We can consider the following element in C:7

S(Y, s) := [(Iν ,dimRV (D)0
−ν , dimHV (H)0

−ν +
1

2
n(Y, s, g))]. (21)

Notice that the level of S(Y, s) is always 0.

Theorem 4.8 (Manolescu [17],[18]). The element S(Y, s) ∈ C is independent of the metric
g, the cut-off ν and the other choices in the construction. Thus S(Y, s) is an invariant of
the pair (Y, s).

Remark 4.9. In this paper, since we only use the numerical invariants, we don’t need
to make C a category and S(Y, s) a functor. Therefore, we don’t define S(Y, s) as natural
spectrum invariant. See Section 3.4 of [19] for a discussion about naturality.

6Since Y is a rational homology sphere, there is a unique flat spin-connection on S, we choose it as the
base connection and use it to define /D.

7Our convention is different from [17] and [18] , where the second component in the triple denotes the
complex dimension of the G-representation.
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Suppose W is a smooth spin cobordism between rational homology three spheres Y0

and Y1 with b1(W ) = 0. Further, we assume W is equipped with a matric g and a spin
structure t such that g|Yi = gi and t|Yi = si.

The following theorem is important for our constructions:

Theorem 4.10 (Manolescu [17],[18]). By doing finite dimensional approximation for the
Seiberg-Witten equations on W , we obtain an admissible map:

f : Σa0DΣb0H(I0)ν → Σa1DΣb1H(I1)ν . (22)

Here, (I0)ν and (I1)ν are the Conley indices for the approximated Seiberg-Witten flow.
Let Vi denotes the Coulomb slice on Yi, for i = 0, 1. The differences in the suspension
indices are:

a0 − a1 = dimRV1(D)0
−ν − dimRV0(D)0

−ν − b+2 (W ) (23)

and

b0 − b1 = dimHV1(H)0
−ν − dimHV0(H)0

−ν +
1

2
n(Y1, s1, g1)− 1

2
n(Y0, s0, g0)− σ(W )

16
. (24)

5. Numerical Invariants

Let Y be a rational homology sphere and s be a spin structure on Y . In the previous
section, we defined an invariant S(Y, s) ∈ C. In this section, we will extract a set of
numerical invariants κoi(Y, s) from S(Y, s), for i ∈ Z/8.

Definition 5.1. For l = −2,−1, 0, ..., 5, we define the group homomorphisms ϕl : KO(lD)→
Z as following (see Theorem 2.13):

• 1) For l = 0, ϕl(D) = −1 and ϕl(A) = ϕl(B) = 0, then extend ϕl by the multi-
plicative structure on RO(G).

• 2) For l = −1,−2, ϕl(γ(D)|l|) = 1 and ϕl(γ(D)|l|An) = 0 for n ≥ 1.
• 3) For l = 1, ϕl(η(D)) = 1.
• 4) For l = 2, ϕl(η(D)2) = 1 and ϕl(γ(D)2Amc) = 0.
• 5) For l = 3, ϕl(γ(D)λ(D)) = 1 and ϕl(γ(D)Amc) = 0.
• 6) For l = 4, ϕl(λ(D)) = 1, ϕl(Dλ(D)) = −1, and ϕl(A

nλ(D)) = ϕl(A
mc) = 0.

• 7) For l = 5, ϕl(η(D)λ(D)) = 1.

For the other l ∈ Z, we use the Bott isomorphism to identify KO(lD) with KO((l−8k)D)
for −2 ≤ l − 8k ≤ 5 and apply the above definition.

Lemma 5.2. For any a ∈ KOG(pt) and b ∈ KOG(kD), we have ϕ0(a)ϕk(b) = ϕk(a · b).

Proof. This is a straightforward calculation using Theorem 2.13 and Theorem 2.16. �

Remark 5.3. ϕ0 is just taking the trace of j ∈ Pin(2). While the other ϕl are defined
such that the torsion elements are killed and Lemma 5.2 holds.

We consider the map τ : D+ → D+ which maps x to −x. By suspension with copies of
D, we get an admissible involution τ : (kD)+ → (kD)+ for k > 0.

The following lemma is a straightforward corollary of the equivariant Hopf theorem (see
[30]).
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Lemma 5.4. When 0 ≤ k < l, any admissible map f : (kD)+ → (lD)+ is G-homotopic to
the standard inclusion. For 0 ≤ k = l, any admissible map f : (kD)+ → (kD)+ is either
homotopic to τ or to the identity map, depending on deg(f).

τ induces the involution τ∗ : KOG(kD) → KOG(kD). For k, l > 0 and any a ∈
KOG(kD), b ∈ KOG(lD), the following equality is easy to check by Lemma 5.4:

τ∗(a) · b = a · τ∗(b) = τ∗(a · b) and τ∗(a) · τ∗(b) = a · b. (25)

Using this fact, we can define τ∗ : KOG(kD)→ KOG(kD) for any k ∈ Z by identifying
KOG(kD) with KOG(k′D) for any 0 < k′ ≡ k mod 8 using Bott periodicity. Moreover,
formula (25) now holds for all k, l ∈ Z.

Now consider the element u ∈ RO(G) defined by τ∗(b8D) = u · b8D. Then for l ∈ Z and
any element α ∈ KOG(lD), we have τ∗(α) · b8D = α · τ∗(b8D) = (uα) · b8D, which implies
τ∗(α) = uα.

Lemma 5.5. We have the following properties about τ∗ and u:

• (1) τ∗ acts as identity on KOG(lD) for l 6= 0, 4 mod 8.
• (2) u is a unit with ϕ0(u) = 1.
• (3) ϕl ◦ τ∗ = ϕl for any l ∈ Z.

Proof. (1) We have γ(D)b8D = i∗(b8D) where i∗ is the inclusion (7D)+ → (8D)+. There-
fore, we get τ∗(γ(D)b8D) = (τ ◦ i)∗(b8D). By Lemma 5.4, τ ◦ i is G-homotopic to i, thus
τ∗(γ(D)b8D) = i∗(b8D) = γ(D)b8D, which implies that τ∗(γ(D)) = γ(D).

Since τ∗ induces an involution on KOG(D) ∼= Z, we have τ∗(η(D)) = ±η(D). But
since τ∗(η(D)) · γ(D) = η(D) · τ∗(γ(D)) = η(D)γ(D) = 1 − D 6= −η(D)γ(D), we get
τ∗(η(D)) = η(D).

By formula (25), τ∗(a) = a implies τ∗(ab) = ab for any a, b. Therefore we see that τ∗

acts as the identity map on KOG(kD) for k 6= 0, 4 mod 8.
(2) u2 = 1 because τ2 = id. Since u · (1 − D) = τ∗(1 − D) = τ∗(γ(D) · η(D)) =

γ(D) · η(D) = 1−D, we see that (u− 1)(1−D) = 0. We get ϕ0(u) = 1 by Lemma 5.2.
(3) is straightforward from (2) and Lemma 5.2. �

Now suppose X is a space of type SWF at level l. A choice of G-homotopy equivalence

XS1 ∼= (lD)+ gives us an inclusion map i : (lD)+ → X, which we call a trivialization.

A trivialization induces the map i∗ : K̃OG(X) → KOG(lD). Consider the map ϕl ◦ i∗ :

K̃OG(X)→ Z.

Proposition 5.6. The submodule Im(i∗) and the map ϕl ◦ i∗ are both independent of the
choice of the trivialization. Moreover, we have Im(ϕl ◦ i∗) = (2k) for some k ∈ Z≥0.

Proof. By Lemma 5.4, there are two possible trivializations i and i◦τ . We have Im(i◦τ)∗ =
τ∗(Imi∗) = u · Im(i∗). Since u is a unit, the multiplication by u does not change the
submodule Im(i∗). Moreover, we have ϕl ◦ (i ◦ τ)∗ = ϕl ◦ τ∗ ◦ i∗ = ϕl ◦ i∗ by (3) of Lemma
5.5.

For the second statement, we consider the exact sequence:

...→ K̃OG(X)
i∗−→ KOG(lD)

δ−→ K̃O
1

G(X/XS1
)→ ...
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Since the G action is free away from the basepoint and (1 − D) ∈ RO(G) is in the

augmentation ideal, (1 − D) acts on K̃O
1

G(X/XS1
) nilpotently by Fact 2.8. Therefore,

we can find m � 0 such that (1 − D)mKOG(lD) ⊂ ker(δ) = Im(i∗). It follows that
2m ∈ Im(ϕl ◦ i∗) and Im(ϕl ◦ i∗) = (2k) for some 0 ≤ k ≤ m. �

Proposition 5.6 justify the following definition:

Definition 5.7. For a G-space X of type SWF at level l, we define J (X) to be the image
of i∗ for any trivialization i and let κo(X) be the integer k such that ϕl(J (X)) = (2k).

Let’s study the property of J (X) and κo(X). First recall that we defined the constants

β0
k = 0 and βjk =

j−1∑
i=0

αk−i for j ≥ 1, where αi = 1 for i ≡ 1, 2, 3, 5 mod 8 and αi = 0 for

i ≡ 0, 4, 6, 7 mod 8. It’s easy to see that βkj = βkj′ for j ≡ j′(mod8). The integers βkj are
important because of the following proposition:

Proposition 5.8. For integers 0 ≤ j ≤ k and an admissible map i : ((k − j)D)+ →
(kD)+, we have the following commutative diagram, where the map mj

k : Z → Z is the

multiplication of 2β
j
k .

KOG(kD)

ϕk
��

i∗ // KOG((k − j)D)

ϕk−j
��

Z
mjk // Z

(26)

Proof. The case j = 0 follows from Lemma 5.5. When j > 0, by Lemma 5.4, the map
i is G-homotopic to the standard inclusion. Because of the associativity of i∗ and mk

l ,
we only need to prove the case j = 1. In this case, the map i∗ is just the multiplication
by γ(D) and m1

k is the multiplication by 2αk . Since both ϕk and i∗ are compatible with
Bott isomorphism, we only need to check the case k = 1, 2, ..., 8. This can be proved by
straightforward calculations using Definition 5.1, Theorem 2.16 and Theorem 2.13. �

The following proposition studies the behavior of J (X) and κo(X) under the Bott
isomorphism:

Proposition 5.9. Let X be a space of type SWF at level k. We have the following:

• (1) J (X) · b8D = J (Σ8DX) and κo(Σ8DX) = κo(X).
• (2) J (X) · (K − 2H +D + 5) = J (Σ2HX) and κo(Σ2HX) = κo(X) + 2.
• (3) κo(ΣH+4DX) = κo(X) + 3− β4

k+4.

Proof. (1) Since (Σ8DX)S
1

= Σ8D(XS1
), statement (1) follows from the functoriality of

the Bott isomorphism.
(2) We have the commutative diagram induced by the inclusions of subspaces:

K̃OG(Σ2HX)

��

// K̃OG(X)

��

K̃OG((Σ2HX)S
1
)
∼= // K̃OG(XS1

).

(27)
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Since (Σ2HX)S
1

= Σ2H(XS1
), the map in the bottom row is the identity. If we identify

K̃OG(Σ2HX) with K̃OG(X) using the Bott isomorphism, then the top horizontal map
is the multiplication by γ(H)2b2H = K − 2H + D + 5 (by Theorem 2.16). This implies
J (Σ2HX) = (K − 2H + D + 5)J (X). We also have κo(Σ2HX) = κo(X) + 2 since
ϕ0(K − 2H +D + 5) = 4.

(3) Again, by inclusions of subspaces, we have:

K̃OG(ΣH+4DX)

��

// K̃OG(X)

��

KOG((ΣH+4DX)S
1
)
·γ(D)4// KOG(XS1

).

Since (ΣH+4DX)S
1 ∼= Σ4D(XS1

), the bottom horizontal map is the multiplication by

γ(D)4. If we identify K̃OG(ΣH+4DX) with K̃OG(X) using the Bott isomorphism, the
top horizontal map is the multiplication by γ(H + 4D)bH+4D = 4(1 − D) (by Theorem

2.16). Therefore, under appropriate trivializations, we see that the maps i∗1 : K̃OG(X) ∼=
K̃OG(ΣH+4DX)→ KOG((k+4)D) and i∗2 : K̃OG(X)→ KOG(kD) are related by γ(D)4 ·
i∗1(x) = 4(1 −D) · i∗2(x). Since ϕ0(4(1 −D)) = 8, statement (3) follows from Proposition
5.8 (for j = 4) and Lemma 5.2. �

We have the following proposition, which is the analogue of Lemma 3.8 in [18].

Proposition 5.10. Let X1 and X2 be spaces of type SWF. Suppose there is a based G-
equivariant homotopy equivalence f from ΣrRX1 to ΣrRX2, for some r ≥ 0. Then we
have J (X1) = J (X2) and κo(X1) = κo(X2).

Proof. The proof in [18] works with some modifications. Suppose X1, X2 are both at level
k. By (1) of Proposition 5.9, we can replace Xi by Σ8DXi and assume k > 1. Also, we
can suspend some more copies of R and assume that 8|r. Choose trivilizations i1, i2 of X1

and X2, respectively. They give homotopy equivalences (rR + kD)+ ∼= (ΣrRX1)S
1

and

(rR+ kD)+ ∼= (ΣrRX2)S
1
. Composing them with fS

1
: (ΣrRX1)S

1 → (ΣrRX2)S
1
, we get

the equivariant homotopy equivalence h : (rR + kD)+ → (rR + kD)+. Since k > 1, by
equivariant Hopf theorem, h is based homotopic to τ1 ∧ τ2. The map τ1 : (rR)+ → (rR)+

is either identity or a map with degree −1. Therefore, τ∗1 (brR) = a · brR where brR is the
Bott class and a ∈ RO(G) is a unit. Also, τ2 : (kD)+ → (kD)+ is either identity or the
map τ we defined before. Therefore, τ∗2 (x) is either x or ux (see Lemma 5.5). We have

shown that the map h∗ : K̃OG((rR+ kD)+)→ K̃OG((rR+ kD)+) is just multiplication
by some unit in RO(G), which does not change any submodule.

Now consider the following commutative diagram:

K̃OG(X2)

i∗2
��

∼= // K̃OG(ΣrRX2)

(ΣrRi2)∗

��

f∗ // K̃OG(ΣrRX1)

(ΣrRi1)∗

��

∼= // K̃OG(X1)

i∗1
��

KOG(kD)
∼= // K̃OG((rR+ kD)+)

h∗ // K̃OG((rR+ kD)+)
∼= // KOG(kD).
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In each row, the first map is a Bott isomorphism and the third map is the inverse to a
Bott isomorphism. We see that brR · Im(i∗2) = h∗(brR · Im(i∗2)) = brR · Im(i∗1). Therefore,
we have Im(i∗1) = Im(i∗2), which implies κo(X1) = κo(X2). �

Definition 5.11. For a spectrum class S = [(X, a, b)] ∈ C, we let

κo(S) = κo(Σ(8M−a)DΣ(2N−b′)HX)− 2N − s (28)

for any M,N, b′ ∈ Z and s ∈ [0, 1) making 8M − a ≥ 0, 2N − b′ ≥ 0 and b = b′ + s.

Proposition 5.12. κo(S) is well defined.

Proof. By (1) and (2) of Proposition 5.9, it’s easy to prove that the righthand side of
formula (5.11) is independent of the choice of M,N . By choosing M,N � 0, we see that
changing the representative of S from (X, a, b) to (ΣDX, a+ 1, b) or (ΣHX, a, b+ 1) does
not change the value of κo(S). By Definition 4.3 and Proposition 5.10, we proved that
κo(S) does not change when we change the representative of the spectrum class. �

By definition of the suspension of a spectrum class and Proposition 5.9, it is easy to
prove:

Proposition 5.13. For any spectrum class S ∈ C at level k, we have:

• κo(Σ8DS) = κo(S).
• κo(Σ2HS) = κo(S) + 2.
• κo(ΣH+4DS) = κo(S) + 3− β4

k+4.

With these discussions, we can now define the invariants for three manifolds.

Definition 5.14. For an oriented rational homology sphere Y and a spin structure s on
Y , we define κoi(Y, s) = κo(ΣiDS(Y, s)) for any i ∈ Z≥0. Then κoi(Y, s) = κoi+8(Y, s),
which allow us to define κoi(Y, s) for i ∈ Z/8.

6. Proof of Theorem 1.6

In this section, we will prove Theorem 1.6.
Let X0, X1 be be two spaces of type SWF at level k0 and k1, respectively. Suppose

there is an admissible map f : X0 → X1 (which implies k0 ≤ k1). By Lemma 5.8, we can
choose suitable trivializations such that the following diagram commutes.

K̃OG(X1)

i∗1
��

f∗ // K̃OG(X0)

i∗0
��

KOG(k1D)
(fS

1
)∗//

ϕk1
��

KOG(k0D)

ϕk0
��

Z
m
k1−k0
k1 // Z

Therefore, we get mk1−k0
k1

(Im(ϕk1 ◦i∗1)) ⊂ Im(ϕk0 ◦i∗0). This implies that (2
κo(X1)+β

k1−k0
k1 ) ⊂

(2κo(X0)) ⊂ Z. Therefore, we get the following proposition:
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Proposition 6.1. Let X0, X1 be two spaces of type SWF at level k0 and k1, respectively.
Suppose there is an admissible map f : X0 → X1. Then we have:

κo(X0) ≤ κo(X1) + βk1−k0k1
. (29)

Next we generalize the above inequality to the spectrum classes:

Definition 6.2. Let S0, S1 ∈ C be two spectrum classes. We call S0 dominates S1 if we
can find representatives Si = [(Xi, a, b)] for i = 1, 2 and an admissible map f from X0 to
X1.

Proposition 6.3. Let S0, S1 ∈ C be two spectrum classes at level k0 and k1 respectively.
Suppose S0 dominates S1, then we have:

κo(S0) ≤ κo(S1) + βk1−k0k1
. (30)

Proof. Since an admissible map f : X0 → X1 gives an admissible map ΣaH+bDf :
ΣaH+bDX0 → ΣaH+bDX1 for any a, b ∈ Z≥0. This proposition is a straightforward corol-
lary of Proposition 6.1 and Definition 5.11. �

By considering the natural inclusion X → ΣDX, it is easy to see that S always dom-
inates ΣDS. Therefore ,we get the following corollary, which will be useful in Section
8.

Corollary 6.4. For any spectrum class S ∈ C at level k. We have:

κo(S) ≤ κo(ΣDS) + αk+1.

Now let Y0, Y1 be two rational homology three-spheres and si be spin structures on them
respectively. Suppose (W, s) is a smooth oriented spin cobordism from (Y0, s0) to (Y1, s1).
After doing surgery along loops in W , we can assume b1(W ) = 0 without loss of generality.

Then by Theorem 4.10, we see that Σ−
σ(W )
16

HS(Y0, s0) dominates Σb+2 (W )DS(Y1, s1). We

can do suspensions and prove Σ−
σ(W )
16

H(ΣkDS(Y0, s0)) dominates Σ(b+2 (W )+k)DS(Y1, s1) for
any k ∈ Z. Applying Proposition 6.3, we get:

Theorem 6.5. Suppose (W, s) is a smooth, oriented spin cobordism from (Y0, s0) to
(Y1, s1). Then for any k ∈ Z, we have the inequality:

κok+b+2 (W )(Y1, s1) + β
b+2 (W )

k+b+2 (W )
≥ κo(Σ−

σ(W )
16

H(ΣkDS(Y0, s0))). (31)

In general, κo(Σ−
σ(W )
16

H(ΣkDS(Y0, s0))) can be expressed by κok(Y0, s0) or κok+4(Y0, s0),
but the explicit formula is messy. For simplicity, we now focus on the integral homology
sphere case.

Remark 6.6. Suppose Y is an oriented integral homology three-sphere. There is a unique
spin structure s on Y and we simply write S(Y, s) and κoi(Y, s) as S(Y ) and κoi(Y ),
respectively.
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Suppose both Yi are integral homology spheres, then the intersection form of W is a
unimodular, even form. Let’s assume that the intersection from can be decomposed as:

p(−E8)⊕ q ( 0 1
1 0 ) for p, q ≥ 0.

In this case, we have σ(W )
16 = −p

2 and b+2 (W ) = q. Recall that the spectrum class

invariant S(Y0) is defined by [(Iν , dimRV (D)0
−ν ,dimHV (H)0

−ν + 1
2n(Y0, s, g))]. The third

component of this triple may be an integer or a half integer, depending on the Rokhlin
invariant µ(Y0).

Proposition 6.7. Let Y0 be an integral homology three sphere and p ∈ Z≥0. Then we
have the following relations.

(1) Suppose µ(Y0) = 0 ∈ Z2.

• For p = 4l, we have κo(Σ
p
2
H(ΣkDS(Y0))) = κok(Y0) + 2l.

• For p = 4l + 1, we have κo(Σ
p
2
H(ΣkDS(Y0))) = κok+4(Y0) + 5

2 + 2l − β4
k.

• For p = 4l + 2, we have κo(Σ
p
2
H(ΣkDS(Y0))) = κok+4(Y0) + 3 + 2l − β4

k.

• For p = 4l + 3, we have κo(Σ
p
2
H(ΣkDS(Y0))) = κok(Y0) + 2l + 3

2 .

(2) Suppose µ(Y0) = 1 ∈ Z2.

• For p = 4l, we have κo(Σ
p
2
H(ΣkDS(Y0))) = κok(Y0) + 2l.

• For p = 4l + 1, we have κo(Σ
p
2
H(ΣkDS(Y0))) = κok(Y0) + 2l + 1

2 .

• For p = 4l + 2, we have κo(Σ
p
2
H(ΣkDS(Y0))) = κok+4(Y0) + 3 + 2l − β4

k.

• For p = 4l + 3, we have κo(Σ
p
2
H(ΣkDS(Y0))) = κok+4(Y0) + 7

2 + 2l − β4
k.

Proof. Let’s denote (Iν , dimRV (D)0
−ν ,dimHV (H)0

−ν + 1
2n(Y0, s, g)) by (X, a, b).

For µ(Y0) = 0 and p = 4l, we have b ∈ Z. Take M,N � 0 and let N ′ = N + l. Then
by Definition 5.11, we have:

κo(Σ
p
2
H(ΣkDS(Y0)) = κo(Σ(8M+k−a)DΣ(2N+2l−b)HX)− 2N

= κo(Σ(8M+k−a)DΣ(2N ′−b)HX)− 2N ′ + 2l = κok(Y ) + 2l.
(32)

For p = 4l + 1, take M,N � 0 and let N ′ = N + l. Then we have:

κo(Σ
p
2
H(ΣkDS(Y0)) = κo(Σ(8M+k−a)DΣ(2N+2l+1−b)HX)− 2N − 1

2

= κo(ΣH(ΣkD(X, a, b))) + 2l − 1

2
= κok+4(Y0) +

5

2
+ 2l − β4

k.

(33)

The other cases can be proved similarly. �

Now combining the above proposition and Theorem 6.5, we proved Theorem 1.6.

7. KOG-Split condition

Now consider the space X = (8kD + (2l + 1)H)+ for k, l ∈ Z≥0. We have the map
induced by the inclusion:

i∗ : K̃OG(X)→ KOG(8kD).
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By Theorem 2.13, we see that KOG(8kD + (2l + 1)H) is generated by (b2H)l(b8D)kλ(H)
and (b2H)l(b8D)kc(H) as RO(G)-module and the map i∗ is multiplication by γ(H)2l+1.
Using Proposition 2.16, we get:

i∗((b2H)l(b8D)kλ(H)) = (2 +A− 2D − 2B)l(2− 2D −B) · (b8D)k,

i∗((b2H)l(b8D)kc(H)) = (A− 2B)l(B −A) · (b8D)k.
(34)

The above discussion motivates the following definition:

Definition 7.1. Let X be a space of type SWF at level 8k. X is called even KOG-split
if J (X) is the submodule generated by (2 + A − 2D − 2B)l(2 − 2D − B) · (b8D)k and
(A− 2B)l(B −A) · (b8D)k for some l ∈ Z≥0.

Next, we consider the space X = ((8k + 4)D + 2lH)+. The map:

i∗ : K̃OG(X)→ KOG((8k + 4)D)

is just multiplication of γ(H)2l. We know K̃OG(X) = KOG((8k + 4)D) · (b2H)l by the
Bott isomorphism. Since γ(H)2l(b2H)l = (K − 2H + D + 5)l = (A + 2D + 6 − 2H)l (see
Theorem 2.16), we have Im(i∗) = (A+2D+6−2H)l ·KOG((8k+4)D) ⊂ KOG((8k+4)D).
This motivates the following definition:

Definition 7.2. Let X be a space of type SWF at level 8k+ 4. X is called odd KOG-split
if J (X) = (A+ 2D + 6− 2H)l ·KOG((8k + 4)D) for some l ∈ Z≥0.

KOG-split spaces are special because of the following proposition (compare Proposition
6.1).

Proposition 7.3. Let X0, X1 be two spaces of type SWF at level k0, k1 respectively and f
be an admissible map from X0 to X1. Suppose k0 < k1 and X0 is odd or even KOG-split
(which implies that k0 ≡ 0 or 4 mod 8). Then we have:

κo(X0) < κo(X1) + βk1−k0k1
. (35)

Before proving this proposition, we need to make a digression into the general properties
of KOG(4D) and RO(G).

Lemma 7.4. The following properties holds:

• (1) Any element in RO(G) can be uniquely written as bD+f(A)+Bg(A) for some
polynomials f, g and integer b.
• (2) Any element in RO(G) can be uniquely written as bD+f(A)+Hg(A) for some

polynomials f, g and integer b.
• (3) Any element in KOG(4D) can be uniquely written as bDλ(D) + f(A)λ(D) +
g(A)c for some polynomials f, g and integer b.
• (4) The map RO(G)→ KOG(4D) defined by multiplication of λ(D) is injective.
• (5) An element ω = bDλ(D) + f(A)λ(D) + g(A)c belongs to RO(G)λ(D) if and

only if 4|g(A). Moreover, if (A+ 2D+ 6− 2H)lω ∈ RO(G) ·λ(D) for some l, then
ω ∈ RO(G) · λ(D).
• (6) Suppose (A − 2B)lh(A,B) = 0 ∈ RO(G) for some two-variable polynomial h

in A,B. Then we have h(A,B) = 0 in RO(G).
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• (7) Suppose f(D) = h(A,B) for some 2-variable polynomial h without degree-0
term and some polynomial f . Then h(A,B) = 0.

Proof. (1),(2),(3),(4) can be proved by straightforward calculation using Theorem 2.13.
The first statement of (5) is the corollary of (2),(3) and the relation Hλ(D) = 4c. Let’s
prove the second statement of (5). We have Hc = (1 +D+K)λ(D) and (2D+ 6)c = 8c =
2Hλ(D). Therefore, (A + 2D + 6 − 2H)lω ∈ RO(G)λ(D) implies Alω ∈ RO(G)λ(D). It
follows that 4|Alg(A), which implies 4|g(A) and ω ∈ RO(G)λ(D).

For (6), we can assume that h(A,B) = f(A) +Bg(A) for some polynomials f, g. Con-

sider the map ψ : RO(G) → Q[x] defined by ψ(D) = 1, ψ(B) = x and ψ(A) = x2

4 + 2x.

Then 0 = ψ((A − 2B)l(f(A) + Bg(A))) = (x
2

4 )l(f(x
2

4 + 2x) + xg(x
2

4 + 2x)), which im-

plies 0 = f(x
2

4 + 2x) + xg(x
2

4 + 2x). Considering the leading term in x, we see that
f(x) = g(x) = 0.

For (7), we can simplify h(A,B) as Ag1(A)+Bg2(A) for some polynomials g1, g2 by the
relation B2 − 4(A− 2B) = 0. Then the conclusion follows from (1). �

Lemma 7.5. Suppose a(1−D)λ(D) ∈ (A+ 2D+ 6− 2H)lKOG(4D) for some a ∈ Z and
l ∈ Z≥0. Then we have 22l+1|ϕ4(a(1−D)λ(D)).

Proof. Since ϕ4(a(1 −D)λ(D)) = 2a, the conclusion is trivial when l = 0. Now suppose
l > 0. Let a(1 − D)λ(D) = (A + 2D + 6 − 2H)l · ω for some ω ∈ KOG(4D). By (5)
of Lemma 7.4, we see that ω ∈ RO(G)λ(D). Write ω as (bD + f(A) + Bg(A))λ(D).
By (4) of Lemma 7.4, we get a(1 − D) = (A − 2B − 2D + 2)l(bD + f(A) + Bg(A)).
Using the relation (1 − D)A = (1 − D)B = 0, we can simplify this equality as a(1 −
D) − (f(0) + bD)(2 − 2D)l = (A − 2B)l(b + f(A) + Bg(A)). By (7) of Lemma 7.4,
we get that (A − 2B)l(b + f(A) + Bg(A)) = 0 ∈ RO(G). By (6) of Lemma 7.4, we have
b+f(A)+Bg(A) = 0. This implies that ω = b(D−1)λ(D) and ϕ4(a(1−D)λ(D)) = −22l+1b
for some b ∈ Z. �

Lemma 7.6. Suppose a(1−D) is in the ideal of RO(G) generated by (2+A−2D−2B)l(2−
2D −B) and (A− 2B)l(B −A) for some l ∈ Z≥0. Then we have 22l+3|ϕ0(a(1−D)).

Proof. We assume l > 0 first. By (1) of Lemma 7.4 and the relation A(1−D) = B(1−D) =
0, we have can express a(1−D) as:

(2− 2D −B)(2− 2D +A− 2B)l(b(1−D) + f1(A) +Bg1(A))

+ (A− 2B)l(B −A)(f2(A) +Bg2(A))
(36)

for some integer b and polynomials f1, f2, g1, g2.
As in the proof of Lemma 7.5, we can simplify this formula and use (7) of Lemma 7.4

to get:

−B(A−2B)l(f1(A) +Bg1(A)) + (A−2B)l(B−A)(f2(A) +Bg2(A)) = 0 ∈ RO(G). (37)

We have −B(f1(A) + Bg1(A)) + (B − A)(f2(A) + Bg2(A)) = 0 by (6) of Lemma 7.4.
Simplifying this, we obtain:

−4Ag1(A)−Af2(A)+4Ag2(A)+B(−f1(A)+f2(A)+8g1(A)−Ag2(A)−8g2(A)) = 0. (38)
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This implies −4Ag1(A)−Af2(A) +4Ag2(A) = 0 and −f1(A) +8g1(A) +f2(A)−Ag2(A)−
8g2(A) = 0. Considering the degree-1 term of the first identity, we get 4|f2(0). Also, we
have 8| − f1(0) + f2(0) by checking the degree-0 term of the second identity. Therefore,
we have 4|f1(0), which implies ϕ0(a(1−D)) = 22l+2(2b+ f1(0)) can be divided by 22l+3.

The case l = 0 is similar. We also get the identity (38). �

Proof of Proposition 7.3: Consider the commutative diagram:

K̃OG(X1)

i∗1
��

f∗ // K̃OG(X0)

i∗0
��

KOG(k1D)
(fS

1
)∗//

ϕk1
��

KOG(k0D)

ϕk0
��

Z
m
k1−k0
k1 // Z.

(1) SupposeX0 is oddKOG-split. Then k0 = 8k+4 for some integer k andKOG(k0D) =
KOG(4D)·(b8D)k by the Bott isomorphism. Im(i∗0) = (A+2D+6−2H)l ·KOG(4D)·(b8D)k

for some l ∈ Z≥0. A simple calculation shows that κo(X0) = 2l. Suppose κo(X1) =

r. Then we can find an element z ∈ K̃OG(X1) such that ϕk1i
∗
1(z) = 2r. Therefore,

ϕk0(ω) = 2
r+β

k1−k0
k1 where ω = (fS

1
)∗(i∗1(z)). Since k1 > k0, the map (fS

1
)∗ factors

through KOG((k0 + 1)D)→ KOG(k0D). Therefore, we see that ω = γ(D) · (aη(D)λ(D)) ·
(b8D)k = a(1−D)λ(D) · (b8D)k for some a ∈ Z. Because of the commutative diagram, we

have ω ∈ Im(i∗0). By Lemma 7.5, we get 22l+1|ϕk0(ω). This implies 2l + 1 ≤ r + βk1−k0k1
.

(2) Suppose X0 is even KOG-split with k0 = 8k. Notice that κo(X) = 2l + 2 if J (X)
is the submodule generated by (2 +A− 2D− 2B)l(2− 2D−B)(b8D)k and (A− 2B)l(B−
A)(b8D)k. Using Lemma 7.6, the proof is almost the same with the previous case. �

By Proposition 5.9, we see that Σ2HX and Σ8DX are even (odd) KOG-split if X is
even (odd) KOG-split. Therefore, Proposition 5.10 justifies the following definition:

Definition 7.7. A spectrum class S = [(X, a, b+ r)] with a, b ∈ Z, r ∈ [0, 1) is called even

(odd) KOG-split if for integers M,N � 0, Σ(8M−a)DΣ(2N−b)HX is even (odd) KOG-split.

Example 7.8. For any a, b ∈ Z and r ∈ [0, 1), [(S0, 8a, 2b + 1 + r)] is even KOG-split
and [(S0, 8a+ 4, 2b+ r)] is odd KOG-split.

The following proposition is easy to prove using Proposition 7.3

Proposition 7.9. Let S0, S1 ∈ C be two spectrum classes at level k0, k1 respectively, with
k0 < k1. Suppose S0 is even or odd KOG-split and S0 dominates S1, then we have:

κo(S0) < κo(S1) + βk1−k0k1
. (39)

Now let Y be a homology sphere. Recall that we have a spectrum class invariant S(Y )
at level 0.
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Definition 7.10. Y is called Floer KOG-split if ΣHS(Y ) is even KOG-split and Σ4DS(Y )
is odd KOG-split.

Remark 7.11. For simple examples like Y = ±Σ(2, 3, 12n+ 1) or ±Σ(2, 3, 12n+ 5), the
two conditions in the above definition are either both true or both false. We expect that
this fails in more complicated examples. If we only assume one of these two conditions,
only half of the cases in Theorem 1.11 are still true.

Remark 7.12. We will see in Section 8 that S3,±Σ(2, 3, 12n+ 1) and −Σ(2, 3, 12n+ 5)
are Floer KOG-split, while +Σ(2, 3, 12n+ 5) is not Floer KOG-split.

Proof of Theorem 1.11: (1) When µ(Y0) = 0, S(Y0) = [(X, a, b)] for some space X and
some integers a, b. For large integers M,N , we have the following:

(i) The space Σ(8M−a)DΣ(2N−b+1)HX is even KOG-split.

(ii) The space Σ(8M−a+4)DΣ(2N−b)HX is odd KOG-split.
Now consider p = 4l +m for m = 0, 1, 2, 3:

• For p = 4l, Σ
p
2
HΣ4DS(Y0) = [(Σ4DX, a, b− 2l)] is odd KOG-split by (ii).

• For p = 4l + 1, Σ
p
2
HS(Y0) = [(ΣHX, a, b− 2l + 1

2)] is even KOG-split by (i).

• For p = 4l + 2, Σ
p
2
HS(Y0) = [(ΣHX, a, b− 2l)] is even KOG-split by (i).

• For p = 4l + 3, Σ
p
2
HΣ4DS(Y0) = [(Σ4DX, a, b − 2l − 2 + 1

2)] is odd KOG-split by
(ii).

Similarly, we can prove that when µ(Y0) = 1, Σ
p
2
HS(Y0) is even KOG-split for p = 4l + 2

and 4l + 3 while Σ
p
2
HΣ4DS(Y0) is odd KOG-split for p = 4l and 4l + 1.

Now repeat the proof of Theorem 1.6 for k = 0 or 4, using Proposition 7.9 instead of
Proposition 6.3. Notice that the two sides of the same inequalities are either both integers
or both half-integers. The inequalities are proved. �

8. Examples and Explicit bounds

In this section, we will prove Theorem 1.9 about the values of κoi(S
3) and κoi(±Σ(2, 3, r))

with gcd(r, 6) = 1. We will also use Corollary 1.12 to give some new bounds about the
intersection forms of spin four manifolds with given boundaries.

8.1. Basic Examples. If Y is a rational homology sphere admitting metric g with a
positive scaler curvature, then by the arguments in [17], we obtain:

S(Y, s) = [(S0, 0, n(Y, s)/2)].

In particular, S3 is Floer KOG-split and κoi(S
3) = 0 for any i ∈ Z/8.

In [18], Manolescu gave two examples of spaces of type SWF that are related to the
spectrum class invariants of the Brieskorn spheres ±Σ(2, 3, r). We recall the construction
here.

Suppose that G acts freely on a finite G-CW complex Z, with the quotient space
Q = Z/G. Let

Z̃ = ([0, 1]× Z)/(0, z) ∼ (0, z′) and (1, z) ∼ (1, z′) for all z, z′ ∈ Z
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denote the unreduced suspension of Z, where G acts trivially on the [0, 1] factor. We can

take one of the two cone points (say (0, z) ∈ Z̃) as the base point and view Z̃ as a pointed

G-space. It’s easy to see that Z̃ is of type SWF at level 0.
We want to compute κo(ΣkDZ̃) for k = 0, 1, ..., 7. It turns out that the method in [18]

also works here. Namely, the inclusion i : (ΣkDZ̃)S
1

= ΣkDS0 → ΣkDZ̃ gives the long
exact sequence:

...→ K̃OG(ΣkDZ̃)
i∗−→ KOG(kD)

p∗−→ KO1
G(ΣkDZ̃, (kD)+)→ .... (40)

By exactness of the sequence, we have Im(i∗) = ker(p∗). By definition, we have:

KO1
G(ΣkDZ̃, (kD)+) ∼= K̃O

1

G(ΣkDΣZ+) ∼= K̃OG(ΣkDZ+).

By abuse of notation, we still use p∗ to represent the map between KOG(kD) and

K̃OG(ΣkDZ+). Checking the maps in the exact sequence, one can see that the p∗ is
induced by the natural projection p : ΣkDZ+ → (kD)+. Since G acts freely on ΣkDZ+

away from the base point, we see that K̃OG(ΣkDZ+) ∼= K̃O((ΣkDZ+)/G). Notice that
(Z × kD)/G is a vector bundle over Q and (ΣkDZ+)/G is the Thom space of this bundle.
We are interested in two cases:

• Z ∼= G, acting on itself via left multiplication.
• Z ∼= T ∼= S1 × jS1 ⊂ C× jC ⊂ H and G acts on T by left multiplication in H.

The first case is easy since the isomorphism K̃OG(ΣkDZ+) ∼= K̃O(Sk) is given by i∗1◦r0,

where i1 : Sk → ΣkRZ+ is the standard inclusion and r0 : K̃OG(ΣkDZ+)→ K̃O(ΣkRZ+)
is the restriction map (See Fact 2.4 in Section 2). It follows that Im(i∗) = ker(p∗) =

ker(i∗1 ◦ r0 ◦ p∗) = ker(r), where r : KOG(kD)→ K̃O(Sk) is the restriction map.

We know the structure of K̃O(Sk):

• K̃O(S0) ∼= KO(pt) ∼= Z.

• K̃O(S1) ∼= Z2, generated by the Hurewicz image of the Hopf map in π3(S2).

• K̃O(S2) ∼= Z2, generated by the Hurewicz image of the square of the Hopf map.

• K̃O(S4) ∼= Z, generated by VH − 4, where VH is the quaternion Hopf bundle.

• K̃O(Sk) ∼= 0 for k = 3, 5, 6, 7.

Therefore, by the explicit description of η(D), λ(D), c after Theorem 2.13. We get the

following results about the kernel of r : KOG(kD)→ K̃O(Sk).

• For k = 0, ker(r) is the submodule generated by 1−D,A,B.
• For k = 1, ker(r) is generated by 2η(D).
• For k = 2, ker(r) is generated by 2η(D)2 and γ(D)2c.
• For k = 4, ker(r) is generated by λ(D)− c, (1−D)λ(D), Aλ(D) and Ac.
• For k = 3, 5, 6, 7, ker(r) ∼= KOG(kD).

From this, we get:

Proposition 8.1. κo(ΣkDG̃) = 0 for k = 3, 4, 5, 6, 7 and κo(ΣkDG̃) = 1 for k = 0, 1, 2.

Now let’s consider the case Z ∼= T . We want to find ker(p∗) for p∗ : KOG(kD) →
KOG(ΣkDT+). Notice that S1 ⊂ G acts trivially on (kD)+ and freely on T with T/S1 =
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S1. We have K̃OG(ΣkDT+) = K̃O((ΣkDS1
+)/Z2). The space (ΣkDS1

+)/Z2 can be identi-
fied with:

[0, 1]× (kD)+/(0, x) ∼ (1,−x) and (t1,∞) ∼ (t2,∞) for any x ∈ (kD)+ and t1, t2 ∈ [0, 1].

Consider the inclusion i2 : {0}×(kD)+ → (ΣkDS1
+)/Z2. Notice that ((ΣkDS1

+)/Z2)/(kD)+

∼= Sk+1. We get the long exact sequence:

...→ K̃O(Sk+1)
δ−→ K̃O(Sk+1)→ K̃O((ΣkDS1

+)/Z2)
i∗2−→ K̃O(Sk)→ ... (41)

By checking the iterated mapping cone construction, which gives us this long exact
sequence, it is not hard to prove that δ is induced by the map f : Sk+1 → Sk+1 with
deg(f) = 0 for even k and deg(f) = 2 for odd k.

When k = 2, 4, 5, 6, we have K̃O(Sk+1) = 0. Therefore, i∗2 is injective, which implies

i∗1 ◦r0 : K̃OG(ΣkDT+)→ K̃O((kD)+) is injective (i∗1 and r0 are defined as in the case Z ∼=
G). We see that when k = 2, 4, 5, 6, just like the case Z ∼= G, the kernel of p∗ is the kernel

of the restriction map r : KOG(kD) → K̃O(Sk). Thus, we get κo(ΣkDT̃ ) = κo(ΣkDG̃)
for k = 2, 4, 5, 6.

For k = 0, consider [0, 1] as the subset {1 + jeiθ|θ ∈ [0, π]} ⊂ T . The left endpoint is
mapped to the right endpoint under the action of −j ∈ G. This embedding of [0, 1] gives

us the following explicit description of the map p∗ : RO(G) ∼= K̃OG(S0) → K̃OG(T+) ∼=
KOG(T ) ∼= KO(T/G) = KO(S1).

Starting from a representation space V of G, we get an trivial bundle V × [0, 1] over
[0, 1]. Identifying (x, 0) with ((−j) ◦ x, 1) for any x ∈ V , we get a bundle E over S1.
[E] ∈ KO(S1) is the image of [V ] ∈ RO(G) under p∗.

We know that KO(S1) is generated by the one dimensional trivial bundle [1] and the
one dimensional nontrivial bundle [m], subject to the relation 2([1]-[m])=0. Using the
explicit description of p∗, we see that p∗(1) = [1], p∗(D) = [m] and p∗(A) = p∗(B) = 0.

Therefore, we get κo(T̃ ) = 2.

Applying Corollary 6.4 for S = Σ2DT̃ , we get κo(Σ3DT̃ )+1 ≥ κo(Σ2DT̃ ) = 1. Applying

Corollary 6.4 for S = Σ3DT̃ , we get 0 = κo(Σ4DT̃ ) + 0 ≥ κo(Σ3DT̃ ). Therefore, we see

that κo(Σ3DT̃ ) = 0.

Applying Corollary 6.4 for S = Σ2DT̃ and S = ΣDT̃ , we get κo(ΣDT̃ ) = 1 or 2.

For k = 7, the map δ : K̃O(S8) → K̃O(S8) is multiplication by 2. Since K̃O(S7) = 0,

we get K̃O((ΣkDS1
+)/Z2) = Z2. This implies p∗(2b8D · γ(D)) = 2p∗(b8D · γ(D)) = 0.

Therefore, 2b8D · γ(D) ∈ ker(p∗) and κo(Σ7DT̃ ) = 0 or 1.

Lemma 8.2. κo(ΣDT̃ ) = 2 and κo(Σ7DT̃ ) = 1.

Proof. This can be proved directly using Gysin sequence. But here we use a different
approach. In [18] and [20], Manolescu proved that S(−Σ(2, 3, 11)) = [(T̃ , 0, 1)], where
−Σ(2, 3, 11) is a negative oriented Brieskorn sphere. Therefore, by Definition 5.11 and
Proposition 5.13, we get:

κoi(−Σ(2, 3, 11)) = κo(Σ(i+4)DT̃ ) + 1− β4
i .



PIN(2)-EQUIVARIANT KO-THEORY AND INTERSECTION FORMS OF SPIN FOUR-MANIFOLDS 26

In particular, κo3(−Σ(2, 3, 11)) = κo(Σ7DT̃ ) − 2 and κo5(−Σ(2, 3, 11)) = κo(ΣDT̃ ) − 2.
Since −Σ(2, 3, 11) bounds a smooth spin four manifold with intersection from ( 0 1

1 0 ) (see
[18]). We can apply Corollary 1.12 for p = 0, q = 1 and get κo5(−Σ(2, 3, 11)) ≥ 0, which

implies κo(ΣDT̃ ) ≥ 2. We get κo(ΣDT̃ ) = 2 by our discussion before the lemma.
We can also apply Theorem 1.6 for Y0 = S3, Y1 = −Σ(2, 3, 11), p = 0, q = 1 and k = 2.

We have κo3(−Σ(2, 3, 11)) ≥ −1 and κo(Σ7DT̃ ) ≥ 1. Therefore, κo(Σ7DT̃ ) = 1 by our
discussions before. �

We summarise our results in the following proposition.

Proposition 8.3. κo(ΣkDT̃ ) = 2 for k = 0, 1; κo(ΣkDT̃ ) = 1 for k = 2, 7 and κo(ΣkDT̃ ) =
0 for k = 3, 4, 5, 6.

Now we calculate κoi(±Σ(2, 3, r)) with gcd(6, r) = 1. Actually, the spectrum class
invariants S(±Σ(2, 3, r)) are given in [18].

Proposition 8.4 (Manolescu [18]). We have the following results about S(±Σ(2, 3, r)).

• S(Σ(2, 3, 12n− 1)) = [(G̃ ∨ ΣG+ ∨ ... ∨ ΣG+︸ ︷︷ ︸
n−1

, 0, 0)].

• S(−Σ(2, 3, 12n− 1)) = [(T̃ ∨ Σ2G+ ∨ ... ∨ Σ2G+︸ ︷︷ ︸
n−1

, 0, 1)].

• S(Σ(2, 3, 12n− 5)) = [(G̃ ∨ ΣG+ ∨ ... ∨ ΣG+︸ ︷︷ ︸
n−1

, 0, 1/2)].

• S(−Σ(2, 3, 12n− 5)) = [(T̃ ∨ Σ2G+ ∨ ... ∨ Σ2G+︸ ︷︷ ︸
n−1

, 0, 1/2)].

• S(Σ(2, 3, 12n+ 1)) = [(S0 ∨ Σ−1G+ ∨ ... ∨ Σ−1G+︸ ︷︷ ︸
n

, 0, 0)].8

• S(−Σ(2, 3, 12n+ 1)) = [(S0 ∨G+ ∨ ... ∨G+︸ ︷︷ ︸
n

, 0, 0)].

• S(Σ(2, 3, 12n+ 5)) = [(S0 ∨ Σ−1G+ ∨ ... ∨ Σ−1G+︸ ︷︷ ︸
n

, 0,−1/2)].

• S(−Σ(2, 3, 12n+ 5)) = [(S0 ∨G+ ∨ ... ∨G+︸ ︷︷ ︸
n

, 0, 1/2)].

As we mentioned in Remark 7.12, ±Σ(2, 3, 12n+1) and −Σ(2, 3, 12n+5) are KOG-split
because of Example 7.8. While using the relations in Theorem 2.13 and Theorem 2.16,
it is not hard to prove that the space (8MD ⊕ (2N + 2)H)+ is not even KOG-split for
integers M,N � 0. This implies that +Σ(2, 3, 12n+ 5) is not KOG-split.

Since it’s easy to see that wedging with a free G-space does not change the κo invariants,
we don’t need to consider those ΣlG+ factors. By Definition 5.11 and Proposition 5.13,
we can use Proposition 8.1 and Proposition 8.3 to prove the results in Theorem 1.9 easily.

8Strictly speaking, by this we mean the spectrum class of (H+ ∨ Σ3G+ ∨ ... ∨ Σ3G+︸ ︷︷ ︸
n

, 0, 1).
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8.2. Explicit Bounds. Now we use Corollary 1.12 and Proposition 3.1 to get explicit
bounds on the intersection forms of spin 4-manifolds with boundary ±Σ(2, 3, r).

Theorem 8.5. Let W be an oriented, smooth spin 4-manifold with ∂W = ±Σ(2, 3, r).
Assume that the intersection form of W is p(−E8)⊕q ( 0 1

1 0 ) for p > 1, q > 0.9 If the mod 8
reduction of p is m, then we have q− p ≥ cm, where cm are constants listed below. (Recall
that the mod 2 reduction of p is the Rohklin invariant of the boundary.)

m = 0 m = 2 m = 4 m = 6
Σ(2, 3, 12n− 1) 2 0 1 2
−Σ(2, 3, 12n− 1) 3 (2) (3) 3
Σ(2, 3, 12n+ 1) (3) 1 (2) (3)
−Σ(2, 3, 12n+ 1) 3 1 2 3

m = 1 m = 3 m = 5 m = 7
Σ(2, 3, 12n− 5) 1 2 3 3
−Σ(2, 3, 12n− 5) 2 (1) (2) 2
Σ(2, 3, 12n+ 5) (2) 0 (1) (2)
−Σ(2, 3, 12n+ 5) 2 3 4 4

Remark 8.6. Some of the bounds in Theorem 8.5 can also be obtained by other methods.
For example, the case m = 2 for Σ(2, 3, 12n + 1) can be obtained using κ-invariant (see
[18]). Also, some bounds can be obtained by filling method for small n. For example,
the case m = 2, 4 for −Σ(2, 3, 11) can be deduced from Theorem 1.2, using the fact that
Σ(2, 3, 11) bounds a spin 4-manifold with intersection form 2(−E8) ⊕ 2 ( 0 1

1 0 ). However,
the bounds that we put in the brackets in Theorem 8.5 appear to be new for general n.

Proof. Since we can do surgeries on loops without changing intersection forms, we will
always assume b1(W ) = 0.

(1) Suppose Σ(2, 3, 12n+ 1) bounds a spin 4-manifold with intersection form 8l(−E8)⊕
(8l + 2) ( 0 1

1 0 ) for l > 0. Then we get a spin cobordism from −Σ(2, 3, 12n + 1) to S3

with the same intersection form. By Theorem 4.10, Σ4lHS(−Σ(2, 3, 12n + 1)) dominates
Σ8l+2S(S3). Since S(−Σ(2, 3, 12n+1)) = [(S0∨G+∨...∨G+, 0, 0)] and S(S3) = [(S0, 0, 0)],
by Definition 4.3, we get a map:

f : ΣrR+(4l+M)H+ND(S0 ∨G+ ∨ ... ∨G+)→ ΣrR+MH+(8l+2+N)DS0

for some M,N ∈ Z. Restricting to the first factor of S0 ∨G+ ∨ ... ∨G+, we obtain:

g : ΣrR+(4l+M)H+NDS0 → ΣrR+MH+(8l+2+N)DS0,

which induces homotopy equivalence between the G-fixed point sets. This a contradiction
with Proposition 3.1. The case m = 0 for Σ(2, 3, 12n+ 1) is proved.

(2) Suppose Σ(2, 3, 12n+5) bounds a smooth spin manifold with intersection form (8l+
1)(−E8)⊕(8l+2) ( 0 1

1 0 ) for l > 0. Then we get a spin cobordism from−Σ(2, 3, 12n+5) to S3.

As the previous case, this implies Σ(4l+1/2)HS(−Σ(2, 3, 12n+5)) dominates Σ(8l+2)DS(S3).

9It is easy to see that the conclusions are not true for p = 0, 1. For example, ±Σ(2, 3, 12n− 1) bounds
a spin manifold with intersection form ( 0 1

1 0 ).
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Since Σ(4l+1/2)HS(−Σ(2, 3, 12n+5)) = [(Σ4lHS0, 0, 0)], we get the contradiction as before.
This proves the case m = 1 for Σ(2, 3, 12n+ 5).

(3) Suppose −Σ(2, 3, 12n − 1) bounds a spin 4-manifold with intersection form (8l +
2)(−E8)⊕(8l+3) ( 0 1

1 0 ) for l ≥ 0. By Corollary 1.12, we get 4l+3 < κo3+8l(−Σ(2, 3, 12n−
1)) + β8l+7

8l+3 = −1 + 4 + 4l, which is a contradiction. This proves the case m = 2 for
−Σ(2, 3, 12n− 1).

Using similar method as (3), we can prove all the other cases except:

• m = 0 for ±Σ(2, 3, 12n− 1) and −Σ(2, 3, 12n+ 1),
• m = 7 for Σ(2, 3, 12n− 5) and −Σ(2, 3, 12n+ 5),
• m = 1 for −Σ(2, 3, 12n− 5).

(4) We need to introduce another approach in order to prove the rest of the cases. Con-
sider the orbifold D2-bundle over S2(2, 3, r). This gives us an orbifold X ′ with boundary
+Σ(2, 3, r). We have b+2 (X ′) = 0, b−2 (X) = 1 and X ′ has a unique spin structure t. Now
suppose −Σ(2, 3, r) bounds a spin manifold X with intersection form p(−E8) ⊕ q ( 0 1

1 0 ).
Then we can glue X and X ′ together to get an oriented closed spin 4-orbifold. We have:

indC /D(X ∪X ′) = p+ ω(Σ(2, 3, r), X ′, t).

Here ω(Σ(2, 3, r), X ′, t) is the Fukumoto-Furuta invariant defined in [11]. Saveliev [26]
proved that ω(Σ(2, 3, r), X ′, t) = −µ(Σ(2, 3, r)) = µ(−Σ(2, 3, r)), where µ is the Neumann-
Siebenmann invariant [22, 23]. In [11], Fukumoto and Furuta considered the finite di-
mensional approximation of the Seiberg-Witten equations on the orbifold X ∪ X ′ and

constructed a stable Pin(2)-equivariant map: ( indC /D(X∪X′)
2 H)+ → (b+2 (X ∪X ′)D)+ which

induces homotopy equivalence on the Pin(2)-fixed point set. (Recall that H and D are
Pin(2)-representations defined in Section 2). Since b+2 (X ∪X ′) = q and indC /D(X ∪X ′) =
p+ µ(−Σ(2, 3, r)), we can apply Proposition 3.1 to get:

q − p ≥ 3 + µ(−Σ(2, 3, r)) if 0 < p+ µ(−Σ(2, 3, r)) can be divided by 8.

Similarly, suppose Σ(2, 3, r) bounds a spin 4-manifoldX ′ with intersection form p(−E8)⊕
q ( 0 1

1 0 ). We can consider X ′ ∪ (−X) and repeat the argument above. We get:

q − p ≥ 2 + µ(Σ(2, 3, r)) if 0 < p+ µ(Σ(2, 3, r)) can be divided by 8.

The invariants µ(±Σ(2, 3, r)) were computed in [22, 23]:

µ(±Σ(2, 3, 12n− 1)) = µ(±Σ(2, 3, 12n+ 1)) = 0,

µ(Σ(2, 3, 12n− 5)) = µ(−Σ(2, 3, 12n+ 5) = 1,

µ(−Σ(2, 3, 12n− 5)) = µ(Σ(2, 3, 12n+ 5) = −1.

Therefore, simple calculations prove the rest of the cases. �
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