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THE A-POLYNOMIAL AND HOLONOMY PERTURBATIONS

Jianfeng Lin

Abstract. Dunfield-Garoufalidis and Boyer-Zhang proved that the A-polynomial of a

non-trivial knot in S3 is non-trivial. In this paper, we use holonomy perturbations to
prove the non-triviality of the A-polynomial for a non-trivial, null-homotopic knot in an
irreducible 3-manifold. Also, we give a strong constraint on the A-polynomial of a knot
in the 3-sphere.

1. Introduction

In [4], an algebraic curve DN was associated to a compact 3-manifold N with a sin-
gle torus boundary. We briefly review the construction: consider the variety χ(π1(N))
of characters of SL(2,C) representations of π1(N). We can restrict a representation
to the boundary group π1(∂N), which gives us a map r: χ(π1(N)) → χ(π1(T

2)).
Choose a basis B = {M,L} for the boundary group. Given two nonzero complex
numbers m, l, we can define a SL(2,C) representation γ(m,l) of π1(T

2):

(1) γ(m,l)(M) =

(
m 0
0 m−1

)
, γ(m,l)(L) =

(
l 0
0 l−1

)
So we have a natural map h : C∗×C∗ → χ(π1(T

2)) defined by h(m, l) := [γ(m,l)] ∈
χ(π1(T

2)).

Now we consider h−1(Im(r)). The following lemma is proved in [5].

Lemma 1.1. This algebraic set h−1(Im(r)) ⊂ C∗ × C∗ has no 2-dimensional irre-
ducible components.

The algebraic curve DN is defined to be the union of the 1-dimensional compo-
nents of h−1(Im(r)). Each irreducible component of DN is defined by a two variable
irreducible polynomial. We multiply all these polynomials to get the A-polynomial of
N , which we denote by AN,B . (It depends on the choice of the basis B.)

If K is a null-homologous knot in a three manifold Y , we can take N to be the

knot complement. There is a natural basis B̃ for the boundary group: the meridian
and the longitude (see Fact 2.8). The A-polynomial AK of the knot K is defined to
be AN,B̃ .

In [5] and [2], Dunfield-Garoufalidis and Boyer-Zhang independently proved that:

Theorem 1.2 (Dunfield-Garoufalidis, Boyer-Zhang [5],[2]). For a non-trivial knot K
in S3, we have AK ̸= l − 1.

Remark 1.3. The reducible representations of the knot group always give a factor l−1
of the A-polynomial. The A-polynomial of a trivial knot is exactly l − 1. Therefore,
we say a knot K has non-trivial A-polynomial if AK ̸= l − 1.
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Both Dunfield-Garoufalidis’s and Boyer-Zhang’s proofs make use of the following
theorem.

Theorem 1.4 (Kronheimer-Mrowka [11]). For a non-trivial knot K in S3, let Yr

(r ∈ Q) be the manifold obtained by doing r-surgery along K. If |r| ≤ 2, then π1(Yr)
admits some SU(2) representation with non-cyclic image.

This theorem is proved using techniques from SU(2) gauge theory, namely holo-
nomy perturbations. Holonomy perturbations were used by Floer in [8] to prove the
surgery exact triangle. In fact, using holonomy perturbations, we can prove Theorem
1.2 directly. Moreover, we can prove something stronger.

The following are the main theorems of this paper.

Theorem 1.5. Suppose K is a null-homologous, non-trivial knot in an orientable,
closed, irreducible 3-manifold Y . If AK = l − 1, then there exists a homomorphism
ρ : π1(Y ) → SU(2) such that ρ([K]) = −1 ∈ SU(2).

Theorem 1.6. For a null-homotopic, non-trivial knot K in any orientable, closed,
irreducible 3-manifold Y , we have AK ̸= l − 1 .

In light of these two theorems, we raise the following question.

Question 1.7. Does any null-homologous knot in an irreducible 3-manifold have
non-trivial A-polynomial?

If we restrict to knots in S3, Kronheimer and Mrowka’s argument in [11] implies
that the zero set of A-polynomial intersects the unit torus in some arcs. We give the
precise statement:

Theorem 1.8. Let K be a non-trivial knot in S3. Then given any complex number l
with |l| = 1, we can find another unit length complex number m such that AK(l,m) =
0.

Remark 1.9. Theorem 1.8 gives strong constraints on the A-polynomial: for a gener-
ic polynomial, its zero set intersects the unit torus at isolated points. This is ruled
out by Theorem 1.8.

In section 2, we review some preliminaries and basic constructions related to ho-
lonomy perturbations and the non-vanishing theorem of critical points. In section 3,
we prove the main theorems and give some examples.

2. Preliminaries

In this section, we review some of the constructions related to holonomy perturba-
tions. Most of the details can be found in [11] and [3].

2.1. Holonomy perturbation. Let M be a closed, oriented 3-manifold with b1(M)
> 0. Consider a rank 2 unitary bundle E over M with non-torsion c1(E). Let gE
be the bundle whose sections are traceless, skew-hermitian endomorphisms of E. Let
A be the affine space of SO(3) connections of gE . Let G be the group of gauge
transformations on E with determinant 1.
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Fix a reference connection A0 on gE . For any connection A on gE , denoting A−A0

by ω, we have the Chern-Simons functional:

CS : A → R

CS(A) =
1

4

∫
X0

Tr(2ω ∧ FA0 + ω ∧ dω +
2

3
ω ∧ ω ∧ ω)

The critical points of the Chern-Simons functional are the flat connections.
Floer defined a class of perturbations of the Chern-Simons functional as follows.

We take a function ϕ : SU(2) → R which is invariant under conjugation. It is

uniquely determined by the even, 2π-periodic function f(x) := ϕ
(

eix 0
0 e−ix

)
. Let D

be a compact 2-manifold with boundary. Consider an embedding of D×S1 in M such
that gE is trivial over it. Fix a trivialization of gE over D × S1 and take a 2-form µ
which is supported in the interior of D and has integral 1. Using the trivialization, we

can lift A to a connection Ā on the trivialized SU(2) bundle P̃ over D×S1. Consider:

Φ : A → R

(2) Φ(A) =

∫
p∈D

ϕ(Hol{p}×S1(Ā))µ(p)

In this paper, we specialize D to be a disk D2 or an annulus H. In the case
of the disk, let z0 ∈ ∂D2 be a base point. We define the curves α and β to be
∂D2 × {0} and {z0} × S1 respectively. In the case of the annulus, we denote the two
components of ∂H by c1, c2 and choose base points zi ∈ ci. Then for i = 1, 2, we
define αi, βi ⊂ ∂(H × S1) to be ci × {0} and {zi} × S1 respectively.

Now we consider the perturbed Chern-Simons functional: CS +Φ : A → R.
The critical points can be completely described by the following lemmas. The first

was proved by Floer. The second follows from similar arguments. For completeness,
we sketch the proof for the second lemma. See [3] for details.

Lemma 2.1 (Floer [3]). If D ∼= D2 and A ∈ A is a critical point of CS +Φ, then:
1) A is flat on M − (D2 × S1)

2) After choosing a new trivialization of P̃ , Holα(Ā) =
(

eiτ 0
0 e−iτ

)
, Holβ(Ā) =(

eiν 0
0 e−iν

)
and τ = f ′(ν) + 2πZ

Lemma 2.2. If D ∼= H and A ∈ A is a critical point of CS +Φ, then:
1) A is flat on M − (H × S1)

2) The SU(2) connection Ā is reducible and we can choose a new trivialization of P̃
such that:

Holα1(Ā) =

(
eiτ1 0
0 e−iτ1

)
,Holα2(Ā) =

(
eiτ2 0
0 e−iτ2

)
Holβ1(Ā) = Holβ2(Ā) =

(
eiν 0
0 e−iν

)
Moreover, we have:

(3) τ1 − τ2 = f ′(ν) + 2πZ
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Proof. Let P be the trivialized SU(2) bundle over H×S1 and gE be the vector bundle
associated to the adjoint representation. For p ∈ H, denote {p} × S1 by βp. For a
point a = (p, q) ∈ H × S1, we consider the holonomy of Ā along βp. Let us denote
it by TĀ(a). This is an automorphism of the fiber of P over a. Thus TĀ defines a
section of Aut(P ). Since ϕ is conjugation invariant, it defines a function on Aut(P ).
Let ϕ′(TĀ) denotes the gradient of this function, evaluated at the section TĀ. One
can check that ϕ′(TĀ) defines a section of gE . Now A is a critical point of CS + Φ.
It is proved in [3] that:

(4) FĀ = ϕ′(TĀ)µ.

Using this, we can deduce that the holonomy along βp does not depend on p and
the covariant derivative ∇Ā(TĀ) = 0 (see [3]). If TĀ(a) = ±1 for any a ∈ H × S1,
then ϕ′(TĀ) ≡ 0. By equation (4), Ā is flat. Since π1(H × S1) is abelian, we see that
Ā is reducible. Suppose TĀ(a) ̸= ±1 for some a ∈ H × S1. Since ∇Ā(TĀ) = 0, we
have TĀ(a) ̸= ±1 for any a ∈ H × S1. Thus the existence of this section tells us that
Ā is also reducible in this case.

Because Ā is reducible, we can choose a suitable trivialization of P̃ such that
Ā = σ ·

(
i 0
0 −i

)
for some one form σ ∈ Ω1(H ×S1). Since the holonomy along βp does

not depend on p, we can assume that Holβp(Ā) =
(

eiν 0
0 e−iν

)
for any p. In particular,

we have Holβi(Ā) =
(

eiν 0
0 e−iν

)
for i = 1, 2. Then formula (4) becomes:

(5) dσ = f ′(ν)µ.

By Stokes’ theorem, we have
∫
α1

σ−
∫
α2

σ =
∫
H×{0} dσ = f ′(ν). It is easy to see that

τi =
∫
αi

σ. Therefore, we proved the lemma. �

The following theorem was first proved in [11] and [12].

Theorem 2.3 (Kronheimer-Mrowka [11],[12]). Let M,E, gE be defined as before. If
M admits an oriented, smooth taut foliation and is not S2×S1, then for any holonomy
perturbation Φ, the perturbed Chern-Simons functional CS + Φ over E has at least
one critical point.

This highly non-trivial theorem is a corollary of several theorems. We only sketch
the proof here. For details, see [11] and [12]. If M admits a smooth, orientable
taut foliation, then by the work by Eliashberg and Thurston in [6] and [7], M can be
embedded in an admissible symplectic 4-manifoldX. [11] proved thatX can be chosen
to satisfy several good conditions which imply, by Feehan and Leness’s work (see [12]
and [8]), that it satisfies Witten’s conjecture relating Seiberg-Witten invariants and
Donaldson invariants. Because X is symplectic, its Seiberg-Witten invariants are
non-trivial by Taubes’s non-vanishing Theorem in [13]. From Witten’s conjecture, it
follows that the Donaldson invariants Dv

X are non-trivial for any line bundle v on X.
Then by a standard stretching argument, the perturbed Chern-Simons functional has
at least one critical point.

The following two theorems are proved by Gabai.

Theorem 2.4 (Gabai [9]). Let M be a closed, orientable, irreducible 3-manifold. If
b1(M) > 0, then M admits an orientable continuous taut foliation. Moreover, the
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taut foliation can be chosen to be smooth if H2(M,Z) is not generated by embedded
tori or spheres.

Theorem 2.5 (Gabai [9]). Suppose K ⊂ S3 is a non-trivial knot and Y0 is obtained
by doing 0-surgery along K. Then Y0 admits an orientable taut foliation and is not
S2 × S1.

Remark 2.6. When the genus of K ⊂ S3 is 1, Gabai’s taut foliation on Y0 may not
be smooth. But we can still embed M in an admissible symplectic 4-manifold. See the
proof of Theorem 6.1 in [10].

Combining these theorems, we get:

Corollary 2.7. Suppose M satisfies any one of the following two conditions:

• M is irreducible with b1(M) > 0 and H2(M,Z) is not generated by embedded
tori or spheres;

• M is the 0-surgery manifold for a non-trivial knot in S3.

Then for any holonomy perturbation on M , the perturbed Chern-Simons functional
has at least one critical point.

2.2. The SU(2)-Pillowcase. Now suppose K ⊂ Y is a null-homologous knot in an
orientable closed 3-manifold Y . Let N(K) denote an open tubular neighborhood of
K. Unless otherwise stated, all homology groups are considered with Z coefficients.
Using the Mayer-Vietoris sequence, it is easy to prove:

Fact 2.8. The meridian m ⊂ ∂(Y − N(K)) is a primitive, nontorsion element in
H1(Y − N(K)). Also, we can find a unique longitude l such that [l] = 0 ∈ H1(Y −
N(K)) and ([m], [l]) forms a basis for H1(∂(Y −N(K))).

Let Yr(r ∈ Q) be the manifold obtained by doing r-surgery along K. It is easy to
see that H1(Y0) = H1(Y −N(K)).

Suppose that the attached solid torus is N0 ⊂ Y0 with core c. Then Y0 − N0
∼=

Y − N(K). Now we consider a trivialized rank 2 unitary bundle E over Y − N(K)
(using basic obstruction theory, we can prove that any SU(2)-bundle over Y −N(K)
is trivial since π1(SU(2)) = π2(SU(2)) = 0). Let gE be defined as before. Let G
be the group of gauge transformations with determinant 1 on E. Consider a flat
connection A on gE . Using the trivialization, we can lift A to a connection on the
trivialized SU(2) bundle P̃ over Y −N(K). Denote this connection by Ã.

We have the following standard lemma:

Lemma 2.9. By taking the holonomy of Ã, we get a 1-1 correspondence between
the flat connections on gE modulo the action of G and the homomorphisms ρA :
π1(Y −N(K)) → SU(2) modulo conjugation.

Because m and l are commutative as elements in π1(Y − N(K)), we can gauge

transform Ã so that Holm(Ã) and Holl(Ã) are both diagonal.
Thus we can assume that

(6) Holm(Ã) =

(
eiθA 0
0 e−iθA

)
, Holl(Ã) =

(
eiηA 0
0 e−iηA

)
.
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Definition 2.10. We define the subset of (R/2πZ)2 as:

RK := {±(θA, ηA)|A is a flat connection on gE |Y0−N0}.

Remark 2.11. Points in the torus (R/2πZ)2 determine diagonal representations
of π1(T

2) to SU(2), although there is still a remaining conjugation action (a, b) 7→
(−a,−b). Therefore, (R/2πZ)2 is actually the double branch cover of the SU(2)-
pillowcase, which refers to the space Hom(π1(T

2), SU(2))/conjugation. In this paper,
we work with Z/2Z equivariant arguments in the torus.

After checking the construction carefully and using Lemma 2.9, it’s easy to see
that RK can be also defined as:
(7)

{(θ, η)|∃ρ : π1(Y −K) → SU(2) s.t. ρ(m) =

(
eiθ 0
0 e−iθ

)
; ρ(l) =

(
eiη 0
0 e−iη

)
}

Remark 2.12. Because π1(Y −K) is finitely generated and SU(2) is compact, the
SU(2) representation space of π1(Y −K) is compact. Thus RK is a closed subset of
(R/2πZ)2.

Remark 2.13. If ρ is a reducible SU(2) representation of π1(Y −K), then ρ(l) = 1.
Thus the points in RK off the line η = 2kπ give irreducible representations.

The case Y ∼= S3 of the following lemma is proved as Lemma 13 in [11]. Although
the general proof is essentially the same, we give it here for completeness.

Lemma 2.14. RK is invariant under the translation by (π, 0).

Proof. By Fact 2.8, there exists H1(Y −N(K)) → Z2 mapping m to −1 and mapping
l to 1. Considering the composition of π1(Y − N(K)) → H1(Y − N(K)) → Z2 →
SU(2), we get ρ0 : π1(Y − N(K)) → SU(2) with the image in the center. For
ρ : π1(Y − N(K)) → SU(2), we multiply it with ρ0 to get another representation
ρ′. We have ρ(m) = −ρ′(m) and ρ(l) = ρ′(l). Then we use formula (7) to prove the
lemma. �

3. Proof of main theorem

3.1. The general case. Assume K ⊂ Y is a null-homologous, non-trivial knot in
an irreducible 3-manifold. If K is contained in a 3-ball in Y , then K has non-trivial
A-polynomial by Theorem 1.2. Therefore, we just consider the case when K is not
contained in a 3-ball. This implies that Y −N(K) is irreducible and its boundary is
incompressible. We take two copies of Y − N(K) and denote them by Yj − N(Kj)
(j = 1, 2). We glue them onto a thickened torus T× [−1, 1] using the same gluing map
to get a irreducible closed manifold M . M is just the double of the knot complement.
It’s easy to see that b1(M) > 0 and the meridian m ⊂ T×{0} is a non-torsion element
in H1(M).

Remark 3.1. We identified the torus T with ∂(Y −N(K)). Thus it makes sense to
talk about the meridian m ⊂ T and the longitude l ⊂ T by the Fact 2.8.

Lemma 3.2. The Poincaré dual of [m] ∈ H1(M) (denoted by P.D.[m]) can not be
represented by union of embedded tori or spheres. Therefore, the manifold M satisfies
the conditions of Corollary 2.7.
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Proof. Since M is irreducible, embedded spheres are all null-homologous. Thus we
just consider the case P.D.[m] =

∑
[Ti] where Ti are embedded tori. We can assume

each Ti intersect both m and T × {0} transversely. Since the intersection number of
P.D.[m] with m equals 1, some Ti must intersect m for odd times. Without loss of

generality, we can assume this torus to be T1. Now suppose T1 ∩ (T × {0}) =
n
∪

j=1
γj

where γj are disjoint simple closed curves. We can assume none of these curves bound
disks in T1. Otherwise, by choosing the innermost curve which bounds a disk, we are
able to find some γi bounding a disk D ⊂ T1 and the interior D̊ does not intersect
T × {0}. Since T × {0} is incompressible, γi also bounds a disk D′ ⊂ T × {0}.
Notice that D∪D′ is null-homologous since M is irreducible. We can replace T1 with
(T1 \D) ∪D′ to eliminate the intersection γi.

Moreover, suppose some γi bounds a disk D′′ ∈ T ×{0}. As before, we can assume

that D̊′′ does not intersect T1 by choosing the innermost curve. Consider the surface
T ′
1 = ((M \ (T × [−1, 1])) ∩ T1) ∪ (D′′ × {±1}). Notice that γi is a non-separating

curve in T1 since it does not bound a disk. We see that T ′
1 is an embedded sphere

representing the same (non-zero) homology class as T1, which is a contradiction with
the fact that M is irreducible.

Now each γi is not null-homologous in either T1 or T × {0}. Since these curves
don’t intersect each other, they are parallel in both T1 and T × {0}. Notice that the

components of T1 \ (
n
∪

j=1
γj) are contained in the two components of M \ (T × {0})

alternatively, which implies that n is even. Since each γi intersects m for the same
times, the intersection number of T1 with m is even. This is a contradiction. �

Now we consider the rank 2 unitary E with c1(E) the Poincaré dual of [m] ∈
H1(M). We can get gE by the following procedures:

• Construct trivialized SO(3) bundles over Yj−N(Kj) (j = 1, 2) and T×[−1, 1].
Denote them by g1, g2 and g0 respectively.

• Choose a map f : T 2 → SO(3) such that f∗ : π1(∂N0) → π1(SO(3)) ∼= Z2

satisfies:

(8) f∗([m]) = [0], f∗([l]) = [1].

• Glue g1, g0 along T × {−1} using the identity map and glue g0,g2 along
T × {+1} using f .

In order to do holonomy perturbations, we embed Hj × S1(j = 1, 2) into M by
i1, i2 as follows:

i1(H1×S1) = T × [−1, 0] and i1(∗×S1) is parallel to l ⊂ T 2× [−1, 0], which means
that we use the holonomy along the longitude to do perturbation Φ1.

i2(H2 × S1) = T × [0, 1] and i2(∗ × S1) is parallel to m ⊂ T 2 × [0, 1], which means
that we use the holonomy along the meridian to do perturbation Φ2.

Now we consider the perturbed Chern-Simons functional, CS +Φ1 +Φ2 : A → R.
Notice that we already have trivializations of gE when restricted to Yj − N(Kj)

and T 2 × [−1, 1]. Thus for a connection A ∈ A, we can restrict A to these pieces
and use the trivializations to lift it to trivialized SU(2) bundles. We have six loops:
m×{j} ⊂ T 2× [−1, 1] and l×{j} ⊂ T 2× [−1, 1], j = −1, 0, 1. Denote them by mj , lj .

If A is a critical point of CS +Φ1 +Φ2, denote by Ã the SU(2) lift of A|g0 .
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Since we only do perturbations in the interior of T × [0,−1] and T × [0, 1], we have

Ã|T×{j} flat for j = −1, 0, 1. Taking the holonomy of Ã|T×{j}, we get a representation

ρj : π1(T
2) → SU(2).

Notation 3.3. For (θ, η) ∈ (R/2πZ)2, we denote by ρ(θ,η) the representation π1(T
2)

→ SU(2) which maps m to
(

eiθ 0
0 e−iθ

)
and l to

(
eiη 0
0 e−iη

)
. We write ρ ∼ ρ′ if two

representations ρ and ρ′ differ by a conjugation. It is easy to see that ρ(θ,η) ∼ ρ(θ′,η′)

if and only if (θ, η) = ±(θ′, η′).

Applying Lemma 2.2 to Φ1 with α1 = m−1, α2 = m0, β1 = l−1, β2 = l0, we see
that ρ−1 ∼ ρ(θ−1,η−1) and ρ0 ∼ ρ(θ0,η0) with:

(9) η−1 = η0 and θ−1 − θ0 = f ′
1(η0).

Applying Lemma 2.2 to Φ2 with α1 = l0, α2 = l1, β1 = m0, β2 = m1, we see that
ρ0 ∼ ρ(θ̂0,η̂0)

and ρ1 ∼ ρ(θ1,η1) with:

(10) θ̂0 = θ1 and η̂0 − η1 = f ′
2(θ1).

Remark 3.4. Recall that we choose ϕ1, ϕ2 : SU(2) → R to define Φ1 and Φ2. They
give us f1, f2.

We can also use the trivialization of gj(j = 1, 2) to lift A to flat SU(2) connections

over Yj −N(Kj). Denote them by Ã1 and Ã2. Because we glue g1, g0 using identity
map, we have:

Holm−1(Ã) = Holm−1(Ã1),Holl−1(Ã) = Holl−1(Ã1)

Since we glue g0 and g2 using f , their trivializations do not agree on their common
boundary. Different trivializations of the SO(3) bundle give different SU(2) lifts of
A|T×{2}. By formula (8), it is easy to check:

Holm1(Ã) = Holm1(Ã2),Holl1(Ã) = −Holl1(Ã2)

Notation 3.5. Let S ⊂ (R/2Zπ)2 be a subset. If h is a function with period 2π, we
denote the set {(θ, η+h(θ))|(θ, η) ∈ S} by S+(∗, h) and the set {(θ+h(η), η)|(θ, η) ∈
S} by S + (h, ∗). We also denote the set {(θ + a, η + b)|(θ, η) ∈ S} by S + (a, b) for
constant a, b.

By Definition 2.10 and the discussion above, we see that

(11) (θ−1, η−1) ∈ RK , (θ1, η1) ∈ RK + (0, π).

By formula (9), we have (θ0, η0) ∈ RK + (−f ′
1, ∗). Since ρ(θ0,η0) ∼ ρ0 ∼ ρ(θ̂0,η̂0)

,

we have (θ̂0, η̂0) = ±(θ0, η0). Notice that RK + (−f ′
1, ∗) is symmetric under the

reflection at (0, 0). We have (θ̂0, η̂0) ∈ RK + (−f ′
1, ∗). By formula (10), we see

that (θ1, η1) ∈ (RK + (−f ′
1, ∗)) + (∗,−f ′

2). Thus (θ1, η1) is an intersection point of
(RK+(−f ′

1, ∗))+(∗,−f ′
2) and RK+(0, π). We get the following important proposition.

Proposition 3.6. Suppose that (RK + (−f ′
1, ∗)) + (∗,−f ′

2) does not intersect RK +
(0, π). Then the perturbed Chern-Simons functional CS + Φ1 + Φ2 has no critical
point.
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Figure 1

Now we are ready to prove Theorem 1.5.

Proof. Suppose K has trivial A-polynomial. Then RK \ {η = 2kπ} has only finite-
ly many points, by Lemma 1.1. If there exists no representation π1(Y ) → SU(2)
mapping K to −1, then (0, π) /∈ RK . By Lemma 2.14 (kπ,±π) /∈ RK . So, we can
choose an odd, 2π-periodic function g1 such that the curve {g1(η) = θ, 0 < η < 2π}
does not intersect RK . Then RK + (g1, ∗) does not intersect {θ = kπ, 0 < η < 2π}.
This can be done because there are only finitely many points to move away from the
lines {θ = kπ, 0 < η < 2π} and none of the them have η component equal to π. We
find another odd, 2π-periodic function g2 such that (RK + (g1, ∗)) + (∗, g2) does not
intersect the translation RK +(0, π). This can be done because RK +(g1, ∗) has only
finitely many points outside the circle θ = 2kπ and none of them have θ component
equal to kπ. RK + (0, π) has only finitely many points off the circle θ = π. We
can move these discrete points away from the one dimensional components. As long
as |g2| < π

2 , the one dimensional component of (RK + (g1, ∗)) + (∗, g2) and that of
RK + (0, π) do not intersect.

Then we find even, 2π-periodic functions f1, f2 such that f ′
j = −gj and use them to

define perturbations Φj . By Proposition 3.6, the perturbed Chern-Simons functional
CS +Φ1 +Φ2 has no critical point. However, since K is not contained in a 3-ball by
Theorem 1.2, CS+Φ1+Φ2 has at least one critical point by Lemma 3.2 and Corollary
2.7. This is a contradiction. �

Theorem 1.6 is a trivial corollary of Theorem 1.5. Here are some other corollaries.

Remark 3.7. If K is null-homotopic, then it is easy to see that RK has no points
on the line θ = 0, 0 < η < 2π. Therefore, Theorem 1.6 can be proved using the
perturbation Φ2 without the use of Φ1.

Corollary 3.8. If K is a non-trivial, null-homologous knot in an irreducible, ori-
entable 3-manifold M and π1(M)/(K) has no SO(3) representation with non-cyclic
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image, then AK ̸= l − 1. Here (K) denotes the normal subgroup group generated by
[K] ∈ π1(M). In particular, if π1(M) has no non-cyclic SO(3) representation, then
any null-homologous, non-trivial knot has non-trivial A-polynomial.

Proof. Suppose K has trivial A-polynomial. Then there exists ρ : π1(M) → SU(2)
such that ρ(K) = −1. The representation ρ induces a SO(3)-representation of π1(M)
which factors through π1(M)/(K). By our assumption, this representation has cyclic
image and so does ρ. Thus ρ factors through H1(M), which is impossible because K
is null homologous and ρ(K) ̸= 1. �
Example 3.9. If K ⊂ M is a non-trivial knot in the Poincaré homology sphere and
2[K] ̸= e ∈ π1(M), then AK ̸= l − 1.

Example 3.10. Let K ⊂ Y1 be a non-trivial knot in Y1, where Y1 is the manifold
obtained by doing 1-surgery along some knot K ′ in S3. If K is homotopic in Y1 to
the meridian of S3 −K ′ then AK ̸= l − 1.

The following example is given by Dunfield:

Example 3.11. Let Y be the 37
2 -surgery manifold on (-2,3,7)-pretzel knot. Then

π1(Y ) admits no non-cyclic SO(3) representation. Therefore any non-trivial null-
homologous knot K ⊂ Y has non-trivial A-polynomial.

3.2. The S3 case. Now let’s go back to S3 and use the technique in [11] to prove
Theorem 1.8. Let K be a non-trivial knot in S3. By Remark 1.3, we can assume
that AK(m, l) = (l − 1)f(m, l). By Theorem 1.2, we have f(m, l) ̸= 1. Denote the
algebraic curve defined by f(m, l) in C⊕ C by C.

Consider its intersection with the unit torus T 2 = {(m, l) | |m| = |l| = 1}. It is a
closed subset of the torus. The following fact is straightforward by Lemma 1.1 and
formula (7).

Lemma 3.12. If (θ, η) ∈ RK and η ̸= 2kπ, then either (eiθ, eiη) is a 0-dimensional

component of h−1(Im(r)) or (eiθ, eiη) ∈ C ∩ T 2.

Now we can prove Theorem 1.8:

Proof. Suppose for some unit length l0 = eiη0 (η0 ∈ [0, 2π)), we can’t find m0 = eiθ0

such that f(m0, l0) = 0. Since C ∩ T 2 is a compact set, there exists ϵ > 0 such
that this holds for any η′0 ∈ [η0 − ϵ, η0 + ϵ]. Thus we can assume that η0 ̸= 0 and
the line {l = eiη0} ⊂ C ⊕ C does not pass through the 0-dimensional components of

h−1(Im(r)). By Lemma 3.12, we see that RK does not intersect the circle η = η0.
Thus the translation RK + (0,−π) (denote it by SK) does not intersect the circle
η = η0 − π. By Definition 2.10, SK is symmetric under the reflection at the origin.
Thus SK does not intersect the circle η = π − η0. We assume that η0 ≥ π for
convenience and the other cases can be proved similarly. Now consider the following
line segments:

• c1 = {(θ, η0 − π)|θ ∈ [0, π]};
• c2 = {(θ, π − η0)|θ ∈ [−π, 0]};
• c3 = {(0, η)|η ∈ [π − η, η0 − π];
• c4 = {(π, η)|η ∈ [0, η0 − π]
• c5 = {(−π, η)|η ∈ [π − η0, 0]}
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Figure 2

By the discussion before, SK does not intersect c1 and c2. Since S3 is simply
connected, SK does not intersect c3, c4, c5. We can join all these segments to get a
piecewise linear path from (−π, 0) to (π, 0) and passing through (0, 0). By Remark
2.12, we can find a small neighborhood N of this path such that SK ∩ N = ∅. It is
easy to see that we can find an odd, 2π-periodic function g : [−π, π] → (−π, π) such
that the graph of g lies in N . Thus SK does not intersect the graph of g. We can
find an even function f : [−π, π] → R with period 2π satisfying f ′ = g.

We consider the rank 2 unitary bundle E over Y0 (recall that Y0 is the 0-surgery
manifold along K) with c1(E) the Poincaré dual of the meridian. We do a holonomy
perturbation along the surgery solid torus in Y0 using the even function f . By Lemma
2.1, the critical points of the perturbed Chern-Simons functional correspond to the
intersection of SK with the graph of g, which is empty. (We have SK instead of RK

here, because E has non-trivial first Chern class.) So the perturbed Chern-Simons
functional has no critical points. This contradicts Corollary 2.7. �

This theorem has the following corollary, which was also proved by Boden in [1]:

Corollary 3.13. For any non-trivial knot K ⊂ S3, degMA(M,L) ̸= 0.
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