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Abstract
We study several families of vertex operator superalgebras from a jet (super)scheme
point of view. We provide new examples of vertex algebras which are “chiral-
quantizations" of their C2-algebras RV . Our examples come from affine C (1)

� -series
vertex algebras, � � 1, certain N = 1 superconformal vertex algebras, Feigin–
Stoyanovsky principal subspaces, Feigin–Stoyanovsky type subspaces, graph vertex
algebras W� , and extended Virasoro vertex algebras. We also give a counterexample
to the chiral-quantization property for the N = 2 superconformal vertex algebra with
central charge 1.

Keywords Vertex superalgebras · Jet superalgebras · Hilbert series · Characters ·
Principal subspaces

Mathematics Subject Classification 17B69 · 17B65 · 17B68

1 Introduction

Beilinson, Feigin andMazur in [18] introduced the notions of singular support and lisse
representation in order to study Virasoro (vertex) algebras. Arakawa later extended
these notions to any finitely strongly generated, non-negatively graded vertex algebra
V .More precisely, via a canonical decreasingfiltration {Fp(V )} introduced in [38], one
can associate to V a positively graded vertex Possion algebra grF (V ). The spectrum
of grF (V ) is called the singular support of V , and is denoted by SS(V ). With respect
to this filtration, V /F1(V ) is the Zhu C2-algebra RV . The reduced spectrum XV =
Specm(RV ) is a Poisson variety which is called the associated variety of V . A large
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body of work has been devoted to descriptions of associated varieties for various
vertex operator algebras [5,10,12,13]. Certainly the most prominent examples from
this point of view are well-known lisse, or C2-cofinite, vertex algebras characterized
by dim(XV ) = 0. Arakawa and Kawasetsu relaxed this condition to quasi-lisse in [7]
which requires that XV has finitely many symplectic leaves. Associated varieties are
important in the geometry of Higgs branches in 4d/2d dualities in physics [17].

According to [5, Proposition 2.5.1], the embedding

RV ↪→ grF (V )

can be extended to a surjective homomorphism of vertex Poisson algebras

ψ : J∞(RV ) � grF (V ),

where J∞(RV ) is the (infinite) jet algebra of RV . The map ψ induces an injection
from the singular support into the (infinite) jet scheme of the associated scheme of V ,
˜XV = Spec(RV ), i.e.,

φ : SS(V ) ↪→ J∞(˜XV ).

In [11], authors showed that φ is an isomorphism of varieties if V is quasi-lisse. It was
shown in [52] that if the map ψ is an isomorphism, then one can compute Hochschild
homology of the Zhu algebra via the chiral homology of elliptic curves. Proving that
ψ is an isomorphsim or finding the kernel of ψ turns out to be subtle. In [9,14,52],
authors provided examples for which ψ is not an isomorphism, including the Z2-
orbifold of the rank one Heisenberg algebra, affine vertex algebra L

̂sl4(−1, 0), most
Virasoro algebras, etc. However, a full description of the kernel, if non-trivial, of the
map ψ is an interesting and difficult problem. Very recently, Andrews, van Ekeren
and Heluani [4] found a remarkable q-series identity that allowed them to describe
the kernel of ψ for the c = 1/2 Ising Virasoro vertex algebra.

For a vertex algebra V , where ψ is an isomorphism, one obtains a very interesting
(and important) consequence

ch[V ](q) = HSq(J∞(RV )),

where the left-hand side is the character ofV and the right-hand side is theHilbert series
of the jet algebra of RV . The left-hand side often has combinatorial interpretations
which in turn can provide a non-trivial information about the jet scheme.

In Sects. 2–3, we recall some basics of vertex (super)algebras and generalize the
notion of jet algebras to the super case. Then in Sect. 4 we investigate the map ψ

in the cases of affine vertex algebras, rank one lattice vertex superalgebras including
the simple N = 2 superconformal vertex algebra at level one. For the later case the
map ψ is not an isomorphism, and we make a conjecture about its kernel. In Sect.
5 we analyze in great depth principal subspaces of lattice vertex algebras and affine
vertex algebras, and show that the map ψ is an isomorphism for many examples. In
particular, the principal subspaces are closely related to the jet algebras coming from
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graphs. Interestingly, in some examples their Hilbert series are (mixed) mock modular
forms. InSect. 6we show that themapψ is an isomorphism for the simple N = 1vertex
superalgebra associated with the N = 1 superconformal (p, p′)-minimal model if and
only if (p, p′) = (2, 4k), k ∈ Z+. We also study extended Virasoro vertex algebras
in Sect. 7.

2 Definitions and preliminary results

Definition 2.1 Let V be a superspace, i.e., a Z2-graded vector space, V = V0⊕V1,
where {0, 1} = Z2. If a ∈ Vp(a), we say that the element a has parity p(a) ∈ Z2.

A field is a formal series of the form a(z) =∑n∈Z a(n) z−n−1 where a(n) ∈ End(V )

and for each v ∈ V one has

a(n)v = 0 for n � 0.

We say that a field a(z) has parity p(a) ∈ Z2 if

a(n)Vα ∈ Vα+p(a) for all α ∈ Z2, n ∈ Z.

A vertex superalgebra contains the following data: a vector space of states V , the
vacuum vector 1 ∈ V0, derivation T , and state-field correspondence map

a �→ Y (a, z) =
∑

n∈Z
a(n) z

−n−1,

satisfying the following axioms:

• (translation coinvariance): [T ,Y (a, z)] = ∂Y (a, z),
• (vacuum): Y (1, z) = IdV , Y (a, z)1|z=0 = a,
• (locality): (z − w)NY (a, z)Y (b, w) = (−1)p(a)p(b)(z − w)NY (b, w)Y (a, z) for

N � 0.

In particular, a vertex superalgebra V is called supercommutative if a(n) = 0 for n ∈ N.
It is well known that the category of commutative vertex superalgebras is equivalent
with the category of unital commutative associative superalgebras equipped with an
even derivation.

We say that a vertex superalgebra V is generated by a subsetU ⊂ V if any element
of V can be written as a finite linear combination of terms of the form

b1(i1)b
2
(i2) · · · bn(in)1

for bk ∈ U, ik ∈ Z, and n ∈ N. If every element of V can be written with ik ∈ Z−, we
write V = 〈U〉S , and say that V is strongly generated by U.

Example 2.2 ([53]) Let g be a finite-dimensional Lie superalgebra with a non-degene-
rate even supersymmetric invariant bilinear form ( · , ·). We can associate the affine
Lie superalgebra ĝ to the pair (g, ( · , ·)).
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1692 H. Li

Its universal vacuum representation of level k, Vĝ(k, 0), is a vertex superalgebra. In
particular, when g is a simple Lie superalgebra, Vĝ(k, 0) has a unique maximal ideal
Iĝ(k, 0), and L ĝ(k, 0) = Vĝ(k, 0)/Iĝ(k, 0) is also a vertex superalgebra.

Example 2.3 ([36]) To any n-dimensional superspace A with a non-degenerate anti-
supersymmetric bilinear form 〈 · , · 〉, we can associate a Lie superalgebra CA. If we
fix a basis of A,

{φ1, . . . , φn},

the free fermionic vertex algebra F associated to A is a vertex superalgebra strongly
generated by φi

(−1/2)1, i = 1, . . . , n, where Y (φi
(−1/2)1, z) =∑n∈1/2+Z

φi
(n)z

−n−1/2.

Definition 2.4 A vertex superalgebra V is called a vertex operator superalgebra if it
is 1

2Z-graded,

V =
∐

n∈ 1
2Z

V(m),

with a conformal vector ω such that the set of operators {L(n), idV }n∈Z with L(n) =
ω(n+1) defines a representation of the Virasoro algebra on V ; that is

[L(n), L(m)] = (m − n)L(m+n) + m3 − m

12
δm+n,0 cV , m, n ∈ Z.

We call cV the central charge of V . We require that L(0) is diagonalizible and it defines
the 1

2Z grading— its eigenvalues are called (conformal) weights. In several examples
we will encounter 1

2Z-graded vertex superalgebras without a conformal vector. For
this reason, we define the character or graded dimension as

ch[V ](q) =
∑

m∈ 1
2Z

dim(V(m))q
m .

As we do not care about modularity here, we suppress the q−cV /24 factor and also
view q as a formal variable.

Example 2.5 ([37]) Let Vir denote the Virasoro Lie algebra. Then the universal Vir-
module VVir(c, 0) has a natural vertex operator algebra with central charge c.

Example 2.6 ([36]) The universal vertex superalgebra associated with the N = 1
Neveu–Schwarz Lie superalgebra will be denoted by V N=1

c , where c is the cen-
tral charge. It is a vertex operator superalgebra strongly generated by an odd vector
G(−3/2)1 and the conformal vector L(−2)1.

Example 2.7 ([36]) The universal vertex superalgebra associated with the N = 2
superconformal Lie algebra will be denoted by V N=2

c . It is a vertex operator superal-
gebra strongly generated by two odd vectorsG+

(−3/2)1,G
−
(−3/2)1, and two even vectors

L(−2)1, J(−1)1.
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Definition 2.8 A commutative vertex superalgebra V is called a vertex Poisson super-
algebra if it is equipped with a linear operation,

V → Hom(V , z−1V [z−1]), a �→ Y−(a, z) =
∑

n∈N
a(n) z

−n+1,

such that

• (Ta)n = − na(n−1),

• a(n)b =∑ j∈N(−1)n+ j+1 (−1)p(a)p(b)

j ! T j (b(n+ j)a),

• [a(m), b(n)] =∑ j∈N
(m
j

)

(a( j)b)(m+n− j),

• a(n)(b ·c) = (a(n)b) ·c + (−1)p(a)p(b)b ·(a(n)c),

for a, b, c ∈ V and n,m ∈ N.

A vertex Lie superalgebra structure on V is given by (V ,Y−, T ). So one can also
say that a vertex Poisson superalgebra is a commutative vertex superalgebra equipped
with a vertex Lie superalgebra structure. In fact, one can obtain a vertex Poisson
superalgebra from any vertex superalgebra through standard increasing filtration or
Li’s filtration. Following [38], one can define a decreasing sequence of subspaces
{Fn(V )} of the superalgebra V , where for n ∈ Z, Fn(V ) is linearly spanned by the
vectors

u(1)
(−1−k1)

· · · u(r)
(−1−kr )

1

for r ∈ Z+, u(1), . . . , u(r) ∈ V , k1, . . . , kr ∈ N with k1 + · · · + kr � n. Then Li’s
filtration of V is given by

V = F0(V ) ⊃ F1(V ) ⊃ · · ·

satisfying

u(n)v ∈ Fr+s−n−1(V ) for u ∈ Fr (V ), v ∈ Fs(V ), r , s ∈ N, n ∈ Z,

u(n)v ∈ Fr+s−n(V ) for u ∈ Fr (V ), v ∈ Fr (V ), r , s, n ∈ N.

The corresponding associated graded algebra grF (V ) = ∐

n∈N Fn(V )/Fn+1(V ) is a
vertex Poisson superalgebra. Its vertex Lie superalgebra structure is given by

T (u + Fr+1(V )) = Tu + Fr+2(V ),

Y−(u + Fr+1(V ), z)(v + Fs+1(V )) =
∑

n∈N
(u(n)v + Fr+s−n+1(V )) z−n−1,

for u ∈ Fr (z), v ∈ Fs(z)with r , s ∈ N. For the standard increasing filtration {Gn(V )},
we also have the associated graded vertex superalgebra grG(V ). In [5, Proposition
2.6.1], it was shown that

grF (V ) ∼= grG(V )
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1694 H. Li

as vertex Poisson superalgebras. Thus we sometimes drop the upper index F or G for
brevity.

According to [38], we know that

Fn(V ) = {u(−1−i)v | u ∈ V , i � 1, v ∈ Fn−i (V )
}

.

In particular, F0(V )/F1(V ) = V /C2(V ) = RV is a Poisson superalgebra by [54]. Its
Poisson structure is given by

u ·v = u(−1)v, {u, v} = u(0)v,

for u, v ∈ V where u = u + C2(V ). It was shown in [38, Corallary 4.3] that grF (V )

is generated by RV as a differential algebra.
Next, let us compute the C2-algebras for some simple examples.

Example 2.9 Following notations in Example 2.3, let F be a free fermionic vertex
superalgebra associated with an n-dimensional superspace A. Clearly, the C2-algebra
of F is

RF = C
[

φ1
(−1/2)1, . . . , φ

n
(−1/2)1

]

,

where φi
(−1/2)1 is even (resp. odd) if φi is even (resp. odd) in A.

Example 2.10 According to [52, 16.16], for simple affine vertex algebras L ĝ(k, 0),
k ∈ N, where g is a simple Lie algebra, we have

RL ĝ(k,0) = C
[

u1(−1)1, u
2
(−1)1, · · · , un(−1)1

]

/
〈

U (g)◦((eθ )(−1))
k+11

〉

,

where {u1, u2, . . . , un} is a basis of g, θ is the highest root of g, and ◦ represents the
adjoint action. In particular, when g = sl2, we have

RL
̂sl2

(k,0) ∼= C[e, f , h]/〈 f i ◦ ek+1 | i = 0, . . . , 2k + 2〉,

where e, f , h correspond to e(−1)1, f(−1)1, h(−1)1.

Example 2.11 For any simple Virasoro algebras LVir(c(p,p′), 0), where c(p,p′) = 1 −
6(p − p′)2/(pp′) with p > p′ � 2 and p, p′ coprime, according to [18,52] its C2-
algebra is isomorphic to C[x]/〈x (p−1)(p′−1)/2〉, where x corresponds to ω = L(−2)1.

Example 2.12 TheC2-algebra of V N=1
c is RV N=1

c
= C[x, θ ], where x and θ correspond

to the even vector L(−2)1 and odd vector G(−3/2)1, respectively.

Example 2.13 TheC2-algebra of V N=2
c isC[x, y, θ1, θ2]where x, y, θ1, θ2 correspond

to L(−2)1, J(−1)1, G
+
(−3/2)1 and G

−
(−3/2)1, respectively. Here θ1, θ2 are odd variables.
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3 Affine jet superalgebras

Inspired by the definition of a jet algebra, we may give an analogous definition of a
jet superalgebra in the affine case. Here, we closely follow [5].

Let C[x1, . . . , xn, θ1, . . . , θm] be a polynomial superalgebra, where

x1, . . . , xn

are ordinary variables and

θ1, . . . , θm

are odd variables, i.e., (θ i )2 = 0 for 1 � i � m. Let f1, f2, . . . , fn be Z2-homo-
geneous elements in the polynomial superalgebra. We will define the jet superalgebra
of the quotient superalgebra as

R = C[x1, . . . , xn, θ1, . . . , θm]
〈 f1, . . . , fr 〉 .

Firstly, let us introduce new even variables x j
(−�j−i) and odd variables θ

j ′
(−�j ′−i) for

0 � i � m, where�j and�j ′ are degrees of x j and θ j ′. In most cases, we will assume
that the degree of each variable is 1, although in some cases the odd degree can be
shifted by 1/2. We define an even derivation T on

C
[

x j
(−�j−i), θ

j ′
(−�j ′−i) | 0 � i � m, 1 � j � n, 1 � j ′ � m

]

as

T
(

x j
(−�j−i)

) =
{

(−�j − i) x j
(−�j−i−1) for 0 � i � m − 1,

0 for i = m,

and

T
(

θ
j ′
(−�j ′−i)

) =
{

(−�j ′ − i)θ j ′
(−�j ′−i−1) for 0 � i � m − 1,

0 for i = m.

Here we identify x j and θ j ′ with x j
(−�j )

and θ
j ′
(−�j ′ ), respectively. Set

Jm(R) =
C
[

x j
(−�j−i), θ

j
(−�j ′−i) | 0 � i � m, 1 � j � n, 1 � j ′ � m

]

〈T j fi | 1 � i � n, j ∈ N〉 .
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1696 H. Li

Then them-jet superscheme of V = Spec(R) is defined as Spec(Jm(R)). The infinite
jet superalgebra of RV is defined as

J∞(R) = lim←−
m

Jm(R)

=
C
[

x j
(−�j−i), θ

j ′
(−�j ′−i) | i ∈ N, 1 � j � n, 1 � j ′ � m

]

〈T j fi | 1 � i � n, j ∈ N〉 .

We often omit “infinite” and call it jet superalgebra for brevity. The jet superalgebra
is a differential commutative superalgebra. We denote the ideal

〈T j fi | 1 � i � n, j ∈ N〉

by 〈 f1, . . . , fn〉∂ . Later, we sometimeswrite x( j) as x( j). The infinite jet superscheme,
or arc space, of V is defined as

J∞(V ) = Spec(J∞(R)).

We define the degree of each variable u(−�− j) to be � + j , where u = x or θ . Then
J∞(R) = ∐

m∈ 1
2Z

(J∞(R))(m), where (J∞(R))(m) is the set of all elements in the jet
superalgebra with degree m. We define the Hilbert series of J∞(R) as

HSq(J∞(R)) =
∑

m∈ 1
2Z

dim((J∞(R))(m))q
m .

Following [5], J∞(R) has a unique vertex Poisson superalgebra structure such that

u(n)v =
{

{u, v} if n = 0,

0 if n ∈ Z+

for u, v ∈ R ∈ J∞(R).
Furthermore, one can extend the embedding RV ↪→ grF (V ) to a surjective differ-

ential superalgebra homomorphism J∞(RV ) � grF (V ). It is obvious that the map is
a differential superalgebra homomorphism. It is surjective, since grF (V ) is generated
by RV as a differential algebra. Moreover, it was shown in [5] that this map is actually
a vertex Poisson superalgebra epimorphism. From now on, we call this map ψ . The
map ψ is not necessarily injective, and it is an open problem to characterize rational
vertex algebras for which ψ is injective.
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3.1 Complete lexicographic ordering

Following [30], we define the complete lexicographic ordering on a basis or spanning
set of the jet superalgebra. Given a jet superalgebra

J∞(C[y1, y2, . . . , yn]/I ) = C
[

y1(−�1−i), . . . , y
n
(−�n−i) | i ∈ N

]

/〈I 〉∂ ,

where �i is the degree of yi, we can first define an ordering of all variables in the
following way:

y1(−�1)
< y2(−�1)

< · · · < yn(−�n)
< y1(−�1−1) < y2(−�2−1) < · · · .

Definition 3.1 A monomial u of J∞(C[y1, y2, . . . , yn]/I ) is called an ordered mono-
mial if it is of the form

(

yn(−�n−m)

)anm+1 · · · (y1(−�1−m)

)a1m+1 · · · (yn(−�n)

)an1 · · · (y2(−�1)

)a21
(

y1(−�1)

)a11 ,

where m ∈ Z+ and aij ∈ N.

It should be clear that all orderedmonomials forma spanning set of the jet superalgebra.
Then let us define the multiplicity of an ordered monomial as

μ(u) =
m+1
∑

i=1

(a1i + a2i + · · · + ani ).

Given two arbitrary ordered monomials

u = (yn(−�n−m)

)anm+1 · · · (y1(−�1−m)

)a1m+1 · · · (yn(−�n)

)an1 · · · (y2(−�1)

)a21 (y1(−�1)
)a

1
1 ,

v = (yn(−�n−m)

)bnm+1 · · · (y1(−�1−m)

)b1m+1 · · · (yn(−�n)

)bn1 · · · (y2(−�1)

)b21
(

y1(−�1)

)b11 ,

we define a complete lexicographic ordering as follows. If μ(u) < μ(v), we say that
u < v. If μ(u) = μ(v), we compare exponents of

y1(−�1)
, y2(−�1)

, . . . , yn(−�n)
, . . . , y1(−�1−m), yn(−�n−m)

in this order. Namely, we say v < u if a11 < b11; if they are equal, we then compare a21
and b21, and so on. Given a polynomial f , we call the greatest monomial among all its
terms with respect to the complete lexicographic ordering the leading term of f .

4 Affine and lattice vertex algebras

In this section we analyze theC2-algebra RV and the injectivity of the mapψ for some
familiar examples of affine and lattice vertex algebras.
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1698 H. Li

Example 4.1 It was shown in ([5, Proposition 2.7.1]) that for any simple Lie algebra
g, we have J∞(RVĝ(k,0) )

∼= grF (Vĝ(k,0)).

Proposition 4.2 ([6, Example 4.10]) For the free fermionic vertex superalgebra, we
have J∞(RF) ∼= grF (F) as vertex Poisson superalgebras.

Proof We use Arakawa’s argument in [5, Proposition 2.7.1]. We include the proof
for completeness. Here we still follow the notations from Example 2.3. According to
[36, Section 3.6], we can choose a conformal vector such that F is 1

2N-graded. We
consider the standard filtration G on F . Firstly, we have F ∼= U (A[t−1] t−1) as vector
superspaces. Moreover,

Gm(F) = {u1(−k1) · · · ur(−kr )1 | ki ∈ 1
2 + N, r ∈ N, r � 2m

}

,

where m ∈ 1
2N and ui ∈ {φ1, . . . , φn}. So grG(F) ∼= S(A[t−1] t−1) ∼= J∞(RF) as

vertex Poissson superalgebras. Therefore, grG(F) ∼= grF (F) ∼= J∞(RF). ��
Similarly, we can show thatψ is an isomorphism for the vertex superalgebra Vĝ(k, 0),
where g is a Lie superalgebra satisfying conditions in Example 2.2, and for supercon-
formal vertex algebras V N=1

c and V N=2
c .

Let

V√
pZ = M(1)⊗C

[√
pZ
]

be a rank one lattice vertex algebra (resp. superalgebra) constructed from an integral
lattice L = Zα ∼= √

pZ, where 〈α, α〉 = p is even (resp. odd). It has a conformal
vector ω = 1

2pα2
(−1)1. As usual, we denote the extremal lattice vectors by enα , n ∈ Z.

Proposition 4.3 For the lattice vertex algebra V√
pZ we have

RV√pZ
∼= C[x, y, z]/〈x2, y2, xy = z p, xz, yz〉.

When p is odd, x and y are odd vectors.

Proof According to the following calculations:

(eα)(−2)(e
−α) − (α(−1))

p+11
(p + 1)! ∈ C2

(

V√
pZ
)

,

(eα)(−2)(1) − α(−1)e
α ∈ C2

(

V√
pZ
)

,

(eα)(−p−1)(e
α) − e2α ∈ C2

(

V√
pZ
)

,

(e−α)(−2)(1) − α(−1)e
−α ∈ C2

(

V√
pZ
)

,

(e−α)(−p−1)(e
−α) − 2e−2α ∈ C2

(

V√
pZ
)

,

we know that all vectors except for α(−1)1, . . . , α
p
(−1)1, e

α, e−α and 1 are zero in
RV√pZ .
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Wewill show that all these vectors are indeed non-zero in RV√pZ . Suppose there exist
u, v ∈ V√

pZ such that u(−2)v = eα . Then wt(a(−2)b) = wt(a) + wt(b) + 1 = p/2,
which implies that u, v ∈ π0, where π0 is the Heisenberg subalgebra C[α(n)]n∈Z− ·1.
This is a contradiction. So the equivalent class eα is non-zero in RV√pZ . Using a similar
weight argument, we can show that equivalence classes

e−α, 1, α(−1)1, . . . , α
p
(−1)1

are all non-zero in RV√pZ . Moreover, we have

(eα)(−1)(e
−α) − α

p
(−1)1

p! ∈ C2
(

V√
pZ
)

.

Then the map φ : RV√pZ → C[x, y, z]/〈x2, y2, xy = z p, xz, yz〉, sending eα to x , e−α

to y, 1 to 1, and p
√

1
p! α(−1)1 to z, is an isomorphism. ��

Remark 4.4 By the Frenkel–Kac construction, we know that V√
2Z

∼= L
̂sl2(1, 0). Fol-

lowing Proposition 4.3, we have RL
̂sl2

(1,0) ∼= C[e, f , h]/〈e2, f 2, e f = h2, eh, f h〉.
According to [52, 16.16], one can also compute RL

̂sl2
(1,0) directly.

Given a vertex superalgebra V = ∐

n∈ 1
2Z

V(n) where V0 = ∐

n∈Z V(n) and V1 =
∐

n∈ 1
2+Z

V(n), there are two binary operations defined as follows: for homegeneous
a, b ∈ V ,

a ∗b =
{

∑

i∈N
(wt(a)

i

)

a(i−1)b if a, b ∈ V0,

0 if a or b ∈ V1,

and

a ◦b =
{

∑

i∈N
(wt(a)

i

)

a(i−2)b if a ∈ V0,
∑

i∈N
(wt(a)−1/2

i

)

a(i−1)b if a ∈ V1.

Let O(V ) be the linear span of elements of the form a ◦b in V . Then Zhu’s alge-
bra A(V ) is defined as the quotient space V /O(V ) with the mutiplication from ∗ .
According to [54, Theorem 2.1.1], there is a filtration {Fk(A(V ))} on A(V ), where
Fk(A(V )) ..= (⊕i∈ 1

2Z,i�k V(i)+O(V )
)

/O(V ).Moreover, [54, Lemma2.1.3] implies
its associated graded algebra,

grF (A(V )) =
∞
⊕

i=0

Fk(A(V ))/Fk−1(A(V )),

is a commutative algebra with respect to the multiplication u ∗v and the commutation
u ∗v − v∗u. Note, by definition of Zhu’s algebra we have A(V ) ∼= V0/(V0 ∩ O(V )).
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1700 H. Li

Following a similar argument to [25, Proposition 2.17 (c)] or [8, Propostion 3.3], we
can define a surjective homomorphism of graded commutative Poisson algebras:

f : (RV )0 � grF (AV ) (1)

given by f (a ·b) = [a ∗b] + Fk+l−1(A(V )) for a ∈ V(k) and b ∈ V(l). Now we can
prove:

Corollary 4.5 Let p be a positive odd integer, then the even part of RV√pZ , i.e., (RV√pZ)0,

is isomorphic to the associated graded algebra grF (AV√pZ).

Proof According to [45, Theorem 3.3], we know that AV√pZ
∼= C[x]/(Fp(x)), where

Fp(x) = x(x +1)(x −1) · · · (x + (p − 1)/2)(x − (p − 1)/2) in which x corresponds
to [α(−1)1] in AV√pZ . Then according to Proposition 4.3, we have

(

RV√pZ

)

0
∼= grF

(

AV√pZ

) ∼= C[x]/〈x p〉

via f . ��
Remark 4.6 If L = √

2kZ, k ∈ Z+, is an even lattice, the above result is true only for
k = 1. Indeed, according to [26], z p−1 is a non-trivial element in the kernel of f in
(1).

In [52], authors proved that the map ψ is an isomorphism for L
̂sl2(k, 0) using a PBW-

type basis of L
̂sl2(k, 0) from [42] and Gröbner bases. In [32], the author essentially

proved the same result using a technique called the “degeneration procedure". In the
following, we briefly explain how his results imply the isomorphism.

Proposition 4.7 The map ψ : J∞(RL
̂sl2

(k,0)) ∼= grF (L
̂sl2(k, 0)) is an isomorphism of

vertex Poisson algebras.

Proof According to Example 2.10, the C2-algebra RL
̂sl2

(k,0) is isomorphic to

C[e, f , h]/〈 f i◦ ek+1 | 0 � i � 2k + 2〉
= C[e, f , h]/〈ek+1, ekh, ek−1h2 − 2ek f , . . . , f k+1〉.

It is clear that ψ(u(−i)) = u(−i)1 for u ∈ {e, f , h} and i ∈ Z+. Let u(z) =
∑

n∈Z− u(n) z−n−1 where u ∈ {e, f , h}. Now we consider e(z)k+1. The coefficient

of zn equals T n(ek+1
(−1)) up to a scalar multiple for n ∈ N. We have similar results for

ekh, ek−1h2 − 2ek f , . . . , f k+1. Thus

J∞
(

RL
̂sl2

(k,0)
) ∼= C[e(−1−i), f(−1−i), h(−1−i) | i ∈ N]

〈e(z)k+1, e(z)kh(z), e(z)k−1h(z)2 − 2e(z)k f (z), . . . , f (z)k+1〉 ,

where

〈

e(z)k+1, e(z)kh(z), e(z)k−1h(z)2 − 2e(z)k f (z), . . . , f (z)k+1〉
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Some remarks on associated varieties of vertex operator… 1701

stands for the ideal generated by the Fourier coefficients of

e(z)k+1, e(z)kh(z), e(z)k−1h(z)2 − 2e(z)k f (z), . . . , f (z)k+1.

It is sufficient to show that

HSq
(

J∞
(

RL
̂sl2

(k,0)
)) = ch

[

L
̂sl2(k, 0)

]

(q). (2)

To this end, we use results from [32]. Feigin constructed the following three quotient
polynomial algebras, Bk,Ck and Dk :

• The quotient of the algebra Bk in variables e−1−i , h−1−i , f−1−i , i ∈ N, is gener-
ated by Fourier coefficients of the series:

e(z)i h(z)k+1−i , i = 1, . . . , k + 1,

and

h(z)i f (z)k+1−i , i = 0, . . . , k + 1.

• Let u[l](z) = ∑

i∈Z− z−1−lu[l]
i , where u = e, h, f and u[l]

i = 0 for i > −l.

Then the quotient of the polynomial algebra Ck in variables u[l]
i , l = 1, . . . , k, is

generated by Fourier coefficients of the series:

u[l](z)(α)u[m](z)(β) for u = e, f , h, and α + β < min(l,m),

e[l](z)(α)h[m](z)(β) for α + β < max(0, l + m − k),

h[l](z)(α) f [m](z)(β) for α + β < max(0, l + m − k).

• Define a lattice Q generated by vectors pi , qi , ri ∈ R
N, i = 1, . . . , k, with scalar

products:

〈pi , pj 〉 = 〈qi , qj 〉 = 〈ri , rj 〉 = 2δi, j , 〈pi , qj 〉 = 〈qi , rj 〉 = δi,k+1− j ,

〈pi , rj 〉 = 0.

The algebra Dk is generated from the highest weight vector with the Fourier
coefficients of

k
∑

i=1

Y (epi, z),
k
∑

i=1

Y (eqi, z),
k
∑

i=1

Y (eri, z).

By using certain filtrations [32, Lemmas 3.2, 3.4], one gets

HSq
(

J∞
(

RL
̂sl2

(k,0)
))

� HSq(Bk) � HSq(Ck). (3)
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1702 H. Li

The “degenerate procedures” [32, Lemma 3.5, Proposition 3.1] give us

HSq(Dk) � HSq(Ck) and ch
[

L
̂sl2(k, 0)

]

(q) � HSq(Dk). (4)

Combining (3), (4) and the fact that ψ is surjective, we get (2). ��

Before we prove the next result, let us fix some notations. Let g be a finite-dimensional
simple Lie algebra of type Cn, n � 2. Here we assume that g has a basis {xi | 1 �
i � (2n + 1)n}. Let θ be the maximal root of g, and xθ the corresponding maximal
root vector. Let ĝ be the affine Lie algebra associated with g and its universal vacuum
representation be Vĝ(1, 0) for k ∈ Z+. Set

R = U (g)◦(xθ )
2
(−1)1, R = SpanC{r(n) | r ∈ R, n ∈ Z},

where U (g) is the universal enveloping algebra of g, and ◦ is the adjoint action. Then
the ĝ-module Vĝ(1, 0) has a maximal submodule Iĝ(1, 0) generated by R ·1. Let
L ĝ(1, 0) denote the simple quotient Vĝ(1, 0)/Iĝ(1, 0). Now we are ready to prove:

Theorem 4.8 The map ψ is an isomorphism for the affine vertex algebra L ĝ(1, 0).

Proof It is clear that theC2-algebra of L ĝ(1, 0) is RL ĝ(1,0) = S(g)/〈U (g)◦e2θ 〉, where
S(g) is the symmetric algebra of g. We denote the algebra

C[xi(− j) | j ∈ Z+]/〈U (g)◦e2θ (z)〉

by Q, where eθ (z) =∑n∈Z−(eθ )(n) z−n−1. Following a similar argument to Proposi-
tion 4.7, we see that J∞(RL ĝ(1,0)) ∼= Q. In order to show that ψ is an isomorphism,

it is enough to prove that grF (L ĝ(1, 0)) and Q have the same basis. Notice that

I = R ∩ C
[

xi(− j) | j ∈ Z+
] = 〈U (g)◦e2θ (z)〉.

We can define an order on all monomials of C[xi(− j) | j ∈ Z+] in the sense of [49,
Section 8]. From the same paper, we know that every non-zero homogeneous poly-
nomial C[xi(− j) | j ∈ Z+] has a unique largest monomial. For an arbitrary non-zero
polynomial u, we define the leading term lt(u) as the largest monomial of the non-
zero homogeneous component of the smallest degree, which is unique. We denote all
monomials in C[xi(− j) | j ∈ Z+] by P. We clearly have P as a spanning set of Q.
Since u = 0 in Q if u ∈ I , the leading term lt(u) equals the linear combination of
other terms. Therefore, P\〈lt(U )〉 is a smaller spanning set of Q. We denote it by
RR. Meanwhile according to [49, Theorem 11.3], we know that ψ(RR) is a basis of
gr(L ĝ(1, 0)). Together with the surjectivity of ψ , we have that RR is a basis of Q. So
ψ is an isomorphism. ��

123



Some remarks on associated varieties of vertex operator… 1703

4.1 N = 2 vertex superalgebra at c = 1

In this section we study the simple N = 2 superconformal vertex algebra with central
charge c = 1, denoted by LN=2

1 . The odd lattice vertex algebra V√
3Z is known to be

isomorphic to LN=2
1 . Here we identify 1

3α(−1)1 with J(−1)1, 1√
3
e±α with G(±3/2)1,

and 1
6 (α(−1)α(−1)1)(−1)1 with L(−2)1.

According to [2,3], the maximal submodule of V N=2
1 is generated by

G+
(−5/2)G

+
(−3/2)1 and G−

(−5/2)G
−
(−3/2)1.

Identifying G+ with G+
(−3/2)1, G

− with G−
(−3/2)1, and h with J(−1)1, we have

RLN=2
1

∼= C[G+,G−, h]/〈(G+)2, (G−)2,G+G− = h3,G+h,G−h
〉

.

For J∞(RLN=2
1

) we identify G+,G−, h with G+(−3/2),G−(−3/2), h(−1). We have

J∞
(

RLN=2
1

)

∼= C[G+(−3/2 − i),G−(−3/2 − i), h(−1 − i) | i ∈ N]
〈(G+(z))2, (G−(z))2,G+(z)G−(z)= h(z)3,G+(z)h(z),G−(z)h(z)〉 ,

where G±(z) =∑n∈− 1
2+Z− G±(n)z−n−3/2, h(z) = ∑n∈Z− h(n)z−n−1. The map ψ

is not an isomorphism in this case because the images of non-zero elements

G+
(

−5

2

)

G+
(

−3

2

)

and G−
(

−5

2

)

G−
(

−3

2

)

in the jet superalgebra under ψ , i.e., G+
(−5/2)G

+
(−3/2)1 and G−

(−5/2)G
−
(−3/2)1, are null

vectors. Thus

〈a, b〉∂ =
〈

T i
(

G+
(

−5

2

)

G+
(

−3

2

))

, T i
(

G−
(

−5

2

)

G−
(

−3

2
)

)

∣

∣

∣ i ∈ N

〉

⊂ ker(ψ),

where a = G+(−5/2)G+(−3/2) and b = G−(−5/2)G−(−3/2). Let us consider

J∞
(

RLN=2
1

)

/〈a, b〉∂ .

Wewillwrite downa spanning set of J∞(RLN=2
1

)/〈a, b〉∂ .We let the orderedmonomial
be a monomial of the form

G−
(

−n − 1

2

)an
h(−n)bn G+

(

−n − 1

2

)cn
· · · G−

(

−5

2

)a2
h(−2)b2G+

(

−5

2

)c2

· G−
(

−3

2

)a1
h(−1)b1G+

(

−3

2

)c1
.
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1704 H. Li

Then we have a complete lexicographic ordering on the set of ordered monomials in
the sense of Sect. 3.1. Now let us find the leading terms of the Fourier coefficients of

G+(z)G−(z) = h3(z), G+(z)h(z), G−(z)h(z), T i (a), T i (b).

(a) The leading term of G+(z)h(z):

• n is even, the leading term of the coefficient of zn is

h

(−2 − n

2

)

G+
(

−3 + n

2

)

.

• n is odd, the leading term of the coefficient of zn is

G+
(−4 − n

2

)

h

(−1 − n

2

)

.

(b) The leading term of G−(z)h(z):

• n is even, the leading term of the coefficient of zn is

G−
(

−3 + n

2

)

h

(−2 − n

2

)

.

• n is odd, the leading term of the coefficient of zn is

h

(−3 − n

2

)

G−
(−2 − n

2

)

.

(c) The leading term of G+(z)G−(z) = h3(z):

• The leading term of the constant term is

h(−1)h(−1)h(−1).

• n is even and not equal to 0, the leading term of the coefficient of zn is

G−
(

−3 + n

2

)

G+
(

−3 + n

2

)

.

• n is odd, the leading term of the coefficient of zn is

G+
(−n − 4

2

)

G−
(−n − 2

2

)

.

(d) The leading term of T n(a) or T n(b):
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• n is even, the leading term is

G±
(−n − 5

2

)

G±
(−n − 3

2

)

.

• n is odd, the leading term is

G±
(−n − 6

2

)

G±
(−n − 2

2

)

.

Clearly all ordered monomials constitute a spanning set of J∞(RLN=2
1

)/〈a, b〉∂ . Since
all polynomials we considered above equal zero in J∞(RLN=2

1
)/〈a, b〉∂ , the leading

term of each can be written as a linear combination of all other terms. Thus if we want
to get a “smaller" spanning set, all above leading terms cannot appear as segments
of an ordered monomial. Therefore, we can impose some difference conditions on
ordered monomials using these leading terms to get a new spanning set.

Definition 4.9 We call an ordered monomial a Gh-monomial, if it satisfies the follow-
ing conditions:

(i) Either bi or ci is 0 and either bi or ci+1 is 0,
(ii) either ai or bi is 0 and either ai or bi+1 is 0,
(iii) b1 � 2, a1 + c2 � 1, and ai + ci + ci+1 � 1 for i � 2,
(iv) ci + ci+1 + ci+2 � 1 and ai + ai+1 + ai+2 � 1.

Here constraints (i)–(iv) come from the leading terms in (a)–(d), respectively. Then
we have the following:

Proposition 4.10 Gh-monomials form a spanning set of

A = J∞
(

RLN=2
1

)

/〈a, b〉∂ .

Let us write down the first few terms of the Hilbert series of A.
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Example 4.11 For i � 5, Gh-monomials give us a basis of Ai :

A1 : h(−1),

A3/2 : G+
(

−3

2

)

,G−
(

−3

2

)

,

A2 : h(−1)2, h(−2),

A5/2 : G+
(

−5

2

)

,G−
(

−5

2

)

,

A3 : G−
(

−3

2

)

G+
(

−3

2

)

, h(−1)h(−2), h(−3),

A7/2 : G−
(

−5

2

)

h(−1),G+
(

−7

2

)

,G−
(

−7

2

)

,G+
(

−3

2

)

h(−2),

A4 : G+
(

−3

2

)

G−
(

−5

2

)

, h(−2)2, h(−1)2h(−2), h(−3)h(−1), h(−4),

A9/2 : G−
(

−5

2

)

h(−1)2,G+
(

−9

2

)

,G−
(

−9

2

)

,

G−
(

−7

2

)

h(−1),G+
(

−7

2

)

h(−1), h(−3)G−
(

−3

2

)

, h(−3)G+
(

−3

2

)

,

A5 : G−
(

−3

2

)

G+
(

−7

2

)

,G+
(

−3

2

)

G−
(

−7

2

)

, h(−1)h(−4),

h(−1)h(−2)2, h(−1)2h(−3), h(−2)h(−3), h(−5).

We have HSq(A) = 1 + q + 2q3/2 + 2q2 + 2q5/2 + 3q3 + 4q7/2 + 5q4 + 7q9/2 +
7q5 + O(q11/2). Meanwhile

ch
[

LN=2
1

]

(q) = ch
[

V√
3Z

]

(q) =
∑

n∈Z q3n
2/2

∏

n∈Z+(1 − qn)

= 1 + q + 2q3/2 + 2q2 + 2q5/2 + 3q3

+ 4q7/2 + 5q4 + 6q9/2 + 7q5 + O(q11/2).

Since in degree 9/2 the dimension of A is bigger than the dimension of V√
3Z by 1,

the induced map

ψ : J∞
(

RLN=2
1

)

/〈a, b〉∂ → gr
(

LN=2
1

)

is not injective. It is not hard to see that the 1-dimensional kernel of ψ in degree 9/2
is spanned by

c = G−
(

−9

2

)

− 1

3
h(−3)G−

(

−3

2

)

− G−
(

−7

2

)

h(−1) + 1

3
G−
(

−5

2

)

h(−1)2.
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We make the following conjecture:

Conjecture 4.12 The induced map ̂ψ : J∞(RLN=2
1

)/〈a, b, c〉∂ → gr(LN=2
1 ) is an iso-

morphism.

5 Principal subspaces

Principal subspaces of affine vertex algebras (at least in a special case) were introduced
by Feigin and Stoyanovsky [31] and further studied by several people; see [21–24,27]
and references therein. In [47,48], Primc studied Feigin–Stoyanovsky type subspaces
which are analogs of principal subspaces but easier to analyze. They were further
investigated formany integral levels and types [16,35,50,51]. Herewe follow notations
from [44], where principal subspaces are defined for general integral lattices (not
necessarily positive definite). As in [44], we let VL = M(1)⊗C[L] denote a lattice
vertex algebra. We fix a Z-basis B = {α1, . . . , αn} of L . Let eαi be an element in the
group algebra C[L]. Then the principal subspace associated to B and L is defined as

WL(B) ..= 〈eα1, . . . , eαn 〉,

that is the smallest vertex algebra that contains extremal vectors eαi. Once B is fixed,
we shall drop B in the parentheses and write WL for convenience.

Let g be a simple finite-dimensional complex Lie algebra of type A, D or E , and
h be a Cartan subalgebra of g. We choose simple roots {α1, . . . , αn} of (g, h), and let
�+ denote the set of positive roots. Let ( · , ·) be a rescaled Killing form on g such
that (αi , αi ) = 2 for i = 1, . . . , n (as usual we identify h and h∗ via the Killing
form). Fundamental weights of g, {ω1, . . . , ωn} ⊂ h∗, are defined by (ωi , αj ) = δi, j ,
1 � i, j � n.

Let n+ be
∐

α∈�+ Cxα , where xα is a corresponding root vector, and n̂+ =
n+⊗C[t, t−1] is its affinization. For an affine vertex algebra L ĝ(k, 0), k �= −h∨,
which is isomorphic to L(k�0) as ĝ-modules, we define the (FS)-principal subspace
of the simple ĝ-module L ĝ(k, 0) as

W�k,0
..= U (̂n+) ·1,

where 1 is the vacuum vector. It is easy to see that this is a vertex algebra (without
conformal vector). For k = 1, we have WL ∼= W�1,0 , where L is the root lattice
spanned by simple roots.

We fix a fundamental weight ω = ωm and set

� = {α ∈ � | (ω, α) = 1},

where � is the root system of g, and g1 ..= ∐

α∈� gα , where gα is the α-root space.
This Lie algebra is commutative. We let g1⊗C[t, t−1] be ĝ1. Then we can define the
so-called Feigin–Stoyanovsky type subspace of L ĝ(k, 0) as

W ′
�k,0

..= U (̂g1) ·vk�0 .
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Unlike the FS subspace, this vertex subalgebra is commutative. We denote

˜�− = {xγ (−r) | γ ∈ �, r ∈ Z+}, ˜� = {xγ (−r) | γ ∈ �, r ∈ Z}.

Notice thatU (̂g1) ∼= C[˜�]. Therefore, we can identify the elements in W ′
�k,0

with the

elements in C[˜�−]. For any element in W ′
�k,0

,

v = xβ1(m1) · · · xβl (ml), βi ∈ �,

we define the colored weight as

cwt(v) =
l
∑

i=1

βi

for the later use.

5.1 Root lattices of type A

Following the notations in [23], we can prove the following result.

Proposition 5.1 For g = sl2, we have W�k,0
∼= gr(W�k,0)

∼= J∞(C[x]/〈xk+1〉) for
k ∈ Z+.

Proof It is clear that RW�k,0
= C[x]/〈xk+1〉. The result follows from [23, Theorem

3.1]. ��
Remark 5.2 When k = 1, W�1,0 of type A is isomorphic to J∞(C[x]/〈x2〉). Using
different methods to calculate the Hilbert–Poincaré series, see [20] and [15], one can
derive the famous Rogers–Ramanujan identities.

For the rest of this subsection,we let L be the An−1 root latticewith the rescaledKilling
form ( · , ·) such that (α, α) = 2 for any root and the standard Z-basis α1, . . . , αn−1
of simple roots. We are going to prove that ψ is an isomorphism for the principal
subspace WL corresponding to this basis. In the following, we will identify WL and
W�1,0 .

Proposition 5.3 Given elements α, β, γ and τ in the lattice L, we have

(eα)(−1)e
β = 0 if (α, β) ∈ Z+, (5)

(eα)(−1)e
β = ε(α, β)

ε(γ, τ )
(eγ )(−1)e

τ if (α, β) = (γ, τ ) and α + β = γ + τ. (6)

Proof From the definition of vertex operators in [36], we have

Y (eα, z)eβ = ε(α, β) z(α,β)Exp

(

∑

n∈Z−

− α(n)

n
z−n
)

eα+β,
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where ε(α, β) is a 2-cocycle constant. We have

(eα)(−1)e
β = Coeffz0(Y (eα, z)eβ) = 0,

since the minimal power of z above is greater than 0. The coefficients of z0 of
Y (eα, z)eβ and Y (eγ, z)eτ are ε(α, β)eα+β and ε(γ, τ )eγ+τ . The identity (6) fol-
lows from this fact and the given condition. ��

It is clear that all quotient relations in RL
̂sln (1,0) come from (5) and (6). Thus

RL
̂sln

(1, 0) ∩ C[Ei, j | 1 � i < j � n] = RWL .
We let Ei, j be the (i, j)-th elementary matrix. Therefore, {Ei, j }1�i< j�n is the

set of all positive root vectors. It is not hard to see that the C2-algebra RWL equals
C[Ei, j | 1 � i < j � n]/I , where we denote the equivalence class of (Ei, j )(−1)1 by
Ei, j . In [28, Corollary 2.7] (see also [31] for g = sl3), authors wrote down the graded
decomposition of RL

̂sln (1,0). By restricting it to its principal subspace, we have:

Proposition 5.4 The C2-algebra of WL equals

C[Ei, j | 1 � i < j � n]/
〈

∑

σ∈S2
Ei1, jσ1

Ei2, jσ2

∣

∣ j1 > i2

〉

where 1 � i1 � i2 � n and 1 � j1 � j2 � n.

Moreover, we have the following combinatorial q-identity which will be proven in a
joint work with Milas [39], where we also establish more general identities.

Theorem 5.5 (Li–Milas)Let A be theCartanmatrix ((αi , αj ))1�i, j�n−1 of type An−1,
n � 2, and

n = (n1,2, . . . , nn−1,n) = (ni, j )1�i< j�n .

Then we have

∑

n∈Nn(n−1)/2

qB(n)

∏

1�i< j�n(q)ni, j
=

∑

k=(k1,...,kn−1)∈Nn−1

qkAk
�

(q)k1(q)k2 · · · (q)kn−1

, (7)

where

B(n) =
∑

1�i1< j1�n
1�i2< j2�n
1�i1�i2�n
1� j1� j2�n

j1>i2

ni1, j1ni2, j2 .

123



1710 H. Li

Example 5.6 For sl4, we have the following q-series identity:

∑

n∈N6

qn
2
1+n22+n23+n24+n25+n26+n1n4+n1n6+n2n4+n2n5+n3n5+n3n6+n4n6+n5n6+a4a5

(q)n1(q)n2(q)n3(q)n4(q)n5(q)n6

=
∑

k∈N3

qk
2
1−k1k2+k22−k2k3+k23

(q)k1(q)k2(q)k3
,

where we use multiindices n = (n1, n2, . . . , n6) and k = (k1, k2, k3). Upon the
following replacement:

n1,2 ↔ n1, n2,3 ↔ n2, n3,4 ↔ n3,

n1,3 ↔ n4, n2,4 ↔ n5, n1,4 ↔ n6,

we recover the formula in Theorem 5.5.

Now we are ready to prove:

Theorem 5.7 The map ψ is an isomorphism between J∞(RWL ) and gr(WL).

Proof From Proposition 5.4, we know that J∞(RWL ) is isomorphic to

C
[

Ei, j (n) | n � −1, 1 � i < j � n
]/

〈

∑

σ∈S2
Ei1, jσ1

(z)Ei2, jσ2
(z)
∣

∣ j1 > i2

〉

,

where Ei, j (z) = ∑

n�−1 Ei, j (n) z−n−1 and 1 � i1 � i2 � n, 1 � j1 � j2 � n. In
order to simplify notation, we first order {Ei, j }1�i< j�n as

E1,2, E1,3, . . . , E1,n, E2,3, . . . , E2,n, . . . , En−1,n,

and denote this sequence by {Em}1�m�n(n−1)/2 (i.e., E1 = E1,2, E2 = E1,3 etc.). We
then have a spanning set of jet algebras with each element of the form

E1
(−n11

) · · · E1
(−nk11

)

E2
(−n12

) · · · E2
(−nk22

) · · · ,

where 1 � nkmm � · · · � n1m for 1 � m � n(n − 1)/2. Here ks = 0 when we do
not have terms involving Es . Now we can reduce this spanning set by using quotient
relations as follows:

• (difference two condition at distance 1) If we have Em(z)2 = 0 in the quotient of
the jet algebra, then we can impose the condition n p

m � n p+1
m +2, 1 � p � km −1,

on the above spanning set.
• (boundary condition) If we have Es(z)Et (z) + · · · = 0, s < t , we can impose the
condition nkss � kt + 1.
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Some remarks on associated varieties of vertex operator… 1711

Therefore, we have a reduced spanning set which implies

HSq(J∞(RWL )) �
∑

n∈Nn(n−1)/2

qB(n)

∏

1�i< j�n(q)ni, j
.

It is well known that

ch[gr(WL)](q) =
∑

k=(k1,...,kn)∈Nn

qkAk
�

(q)k1(q)k2 · · · (q)kn
.

Surjectivity of ψ and identity (7) together imply that ψ is an isomorphism and the
image of above spanning set under ψ is a basis of WL . ��

Remark 5.8 By a result in [44], we can write down a basis ofWL using (eαi )( j), where
αi is a simple root of sln and j can be greater than or equal to 0. If wewant the subscript
j to be always less than 0, we have to include (eβ)( j), where β is a positive root. It is
clear that Em = Eim , jm is a root vector of a positive root

βm
..= αim + αim+1 + · · · + αjm−1.

The above proposition gives us a new basis of WL :

(

eβ1
)

(−n11)
· · · (eβ1

)

(−n
k1
1 )

(

eβ2
)

(−n12)
· · · (eβ2

)

(−n
k2
2 )

· · · (eβM
)

(−n
kM
M )

1,

whereM = n(n − 1)/2, nkMM ∈ Z+, n p
m � n p+1

m +2, 1 � p � km−1, and nkss � kt+1
if 1 � s < t � M , it < js � jt .

5.2 Feigin–Stoyanovsky type subspaces

In this section, we consider Feigin–Stoyanovsky type subspaces of affine vertex alge-
bras of type An at level 1. We first consider the special case when ω = ω1. For any
element of the An root lattice, α = m1α1 +m2α2 +· · ·+mnαn , we define a subspace
of W ′

�1,0
as (W ′

�1,0
)α ..= {v ∈ W ′

�1,0
| cwt(v) = α}. It is not hard to see that (W ′

�1,0
)α

is non-trivial if and only if m1 � m2 � · · · � mn � 0. According to [51, (3.8)], we
have

ch
[

(W ′
�1,0

)α
]

(q) = q
∑n

i=1 m
2
i −
∑n−1

i=1 mimi+1

(q)mn (q)mn−1−mn · · · (q)m1−m2

.
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Then

ch
[

W ′
�1,0

]

(q) =
∑

0�mn�···�m1

q
∑n

i=1 m
2
i −
∑n−1

i=1 mimi+1

(q)mn (q)mn−1−mn · · · (q)m1−m2

=
∑

(l1,...,ln)∈Nn

q
∑n

i l
2
i +∑1�i< j�n li lj

(q)l1(q)l2 · · · (q)ln
.

Moreover, in this case,

� = {β1
..= α1, β2

..= α1 + α2, . . . , βn
..= α1 + · · · + αn

}

.

Note that

L = Zβ1⊕ · · · ⊕Zβn

is a lattice with basis {β1, . . . , βn}. Then we have

WL ∼= W ′
�1,0

.

It is not hard to see that

〈βi , βi 〉 = 2 if i = 1, . . . , n,

〈βi , βj 〉 = 1 if 1 � i �= j � n.

According to Proposition 5.3, we have that the C2-algebra of WL is

C[x1, . . . , xn]/〈xi xj | 1 � i � j � n〉.

By a similar argument as in the previous section, we get

HSq
(

J∞
(

C[x1, . . . , xn]/〈xi xj | 1 � i � j � n〉)) = ch[WL ](q),

which implies isomorphism between J∞(RW ′
�1,0

) and gr(W ′
�1,0

). Similarly we can

prove isomorphism in cases where ω = ωi , 2 � i � n, using [51, (3.21)].

5.3 Principal subspaces and jet algebras from graphs

In this part we study principal subspaces and jet algebras coming from graphs. We
begin from any graph G with k vertices and possibly with loops (and for simplicity we
assume no double edges). We denote the vertices of G by {v1, v2, . . . , vk}. We denote
by � ..= �(G) the (symmetric) incidence matrix of G and by (L(�), 〈 · , · 〉) the rank k
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Some remarks on associated varieties of vertex operator… 1713

lattice with basis α1, . . . , αk such that 〈αi , αj 〉 = (�)i, j . The incidence matrix of the
graph induces a quadratic form

� → 1

2
Q(x1, . . . , xk), Q(x1, . . . , xk) =

k
∑

i, j=1
vivj∈E(G)

xi xj ,

where we sum over all edges E(G). Out of monomials appearing in the sum we form
the jet algebra J∞(R�), where

R� = C[x1, . . . , xk]
/

〈

⋃

vivj∈E(G)

xi xj

〉

.

We let WL(�) ⊂ VL(�) be the principal subspace corresponding to {eαi }ki=1 inside the
lattice vertex algebra VL(�). For simplicity we write W� for WL(�).

Example 5.9 Consider the graph ◦−◦−◦. Then� =
[

0 1 0
1 0 1
0 1 0

]

, andW� = 〈eα1, eα2, eα3〉
where L = Zα1⊕Zα2⊕Zα3 with 〈α1, α2〉 = 〈α2, α3〉 = 1 (zero otherwise), R� =
C[x1, x2, x3]/(x1x2, x2x3), and Q(x1, x2, x3) = x1x2 + x2x3.

Theorem 5.10 If the bilinear form associated with � is non-degenerate, that is � is
invertible, then there exists a unique conformal vector in the lattice vertex algebra
such that eigenvalue of L(0) defines a grading such that

wt(eαi ) = 3

2
if 〈αi , αi 〉 = 1,

wt(eαi ) = 1 if 〈αi , αi 〉 = 0.

Moreover, the character is given by

ch[W�](q) =
∑

n1,...,nk∈N

qn1+n2+···+nk+1
2 Q(n1,...,nk )

(q)n1 · · · (q)nk
.

Proof Clearly, we have the standard conformal vector in the lattice vertex algebra
given by ωst = 1

2

∑n
i=1 u

(i)
(−1)u

(i)
(−1)1, where {u(1), . . . , u(n)} is an orthonormal basis

with respect to the bilinear form associated with �. We know that

Lst(0)(e
αi ) = 〈αi , αi 〉

2
.

It is clear that by adding a linear combination of {(αi )(−2)1}ni=1, we will still get a
conformal vector. Now assume thatωst+∑n

i=1 ai (αi )(−2)1, where ai ∈ C, would give
us expected weights. Then we have a system of linear equations. The non-degeneracy

123
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of the bilinear form implies that there is a unique solutions set. Thus we always have
a conformal vector with the grading:

wt(eαi ) = 3

2
if 〈αi , αi 〉 = 1,

wt(eαi ) = 1 if 〈αi , αi 〉 = 0.

Applying [44, Corollary 4.14], we can write a combinatorial basis of W� . Now let us
use this basis to write down the character. Firstly, the generating function of a colored
partition into (n1, n2, . . . , nk) parts is 1

(q)n1 ···(q)nk
. It is clear that

ch[W�](q) =
∑

k1,...,kk∈N

qwt( f(n1,...,nk ))

(q)n1 · · · (q)nk
,

where f(n1,...,nk ) is the vector in W� of charge (n1, . . . , nk) with the minimal weight.
For the ni -th part, there is a unique element uni of the minimal weight which is

eαi

(−1−∑i−1
j=1〈αi ,αj 〉nj−(ni−1)〈αi ,αi 〉) · · · eαi

(−1−∑i−1
j=1〈αi ,αj 〉nj )1.

The weight of uni is

ni
2

(

2

( i−1
∑

j=1

〈αi , αj 〉nj + wt
(

(eαi )(−1)1
)

)

+ (ni − 1)〈αi , αi 〉
)

=
i−1
∑

j=1

〈αi , αj 〉ninj + n2i
2

〈αi , αi 〉 +
(

−〈αi , αi 〉
2

+ wt
(

(eαi )(−1)1
)

)

ni .

Therefore,

wt( f(n1,...,nk )) =
k
∑

i=1

wt(uni )

=
k
∑

i=1

i−1
∑

j=1

〈αi , αj 〉ninj + n2i
2

〈αi , αi 〉 +
(

−〈αi , αi 〉
2

+ wt
(

(eαi )(−1)1
)

)

ni

= n1 + n2 + · · · + nk + 1

2
Q(n1, . . . , nk).

Thus we proved the claimed identity. ��
Remark 5.11 If the lattice L is degenerate, then VL has no conformal vector which can
give us expected weights. But we can still view WL as a graded vertex algebra, if we
define the degree of eαi as above. Then the character formula is still valid for singular
�.
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Before we prove the next result, let us generalize [46, Theorem 4.3.1].

Proposition 5.12 We have an isomorphism

gr(W�) ∼= C[xi (p) | i = 1, . . . , k, p ∈ Z−]
〈∑−l−1

m=0
(m+〈αi ,αj 〉−1)!

m! 〈αi , αj 〉 xi (−〈αi , αj 〉 − m) xj (l + m) | 1 � i, j � k, l � −1
〉
.

Proof First, we define a map π from

C[xi (p) | i = 1, . . . , k, p ∈ Z−]

to gr(W�) by sending xi (p) to e
αi
(p)1. We denote the ideal

〈−l−1
∑

m=0

(m + 〈αi , αj 〉 − 1)!
m! 〈αi , αj 〉 xi (−〈αi , αj 〉 − m) xj (l + m) | 1 � i, j � k, l ∈ Z−

〉

by I� . We can use the same argument as in [46] to show that I� ⊂ ker(π).
We prove that ker(π) ⊂ I� by contradiction. Suppose there exists an element

a ∈ C[xi (p) | i = 1, . . . , k, p ∈ Z−] such that a ∈ ker(π) and a /∈ I� . Suppose
a is homogeneous with respect to weight and charge. Choose r such that a contains
some element xr (p) as a factor. We assume that a has the minimum weight among
all elements that satisfy the above conditions. Again by the same argument as in [46],
this a can be written as bxr (−1), where b ∈ C[xi (p) | i = 1, . . . , k, p ∈ Z−]. We
shall prove the case when 〈αr , αr 〉 = 0. For other cases, it is proved in [46]. Firstly
we define a map eαr : W� → W� as

eαr
(

(eαj )(m)1
) = (eαj )(m)(e

αr )(−1)1.

Then we lift this map to

xr : C[xi (p) | i = 1, . . . , k, p ∈ Z−] → C[xi (p) | i = 1, . . . , k, p ∈ Z−],

which is defined as

xr(xi ( j)) = xi ( j) xr (−1).

Since a ∈ ker(π), π(a) = π(bxr (−1)) = 0. Then

e−αr (π(bxr (−1))) = π(b) = 0,

which implies that b ∈ ker(π). If b ∈ I� , then a = xr(b) ∈ xr I� ∈ I� which
contradicts our assumption. If b /∈ I� , then b is an element such that b ∈ ker(π) and
b /∈ I� but with the weight strictly less than the weight of a. This also contradicts our
assumption. Thus we proved the claim. ��
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Theorem 5.13 We have

gr(W�) ∼= J∞
(

C[y1, y2, . . . , yk]/〈〈αi , αj 〉yi yj | 1 � i, j � k〉).

Proof From the definition of a jet superalgebra, we know that

T (−l−1)(〈αi , αj 〉yi yj ) =
−l−1
∑

m=0

clm〈αi , αj 〉yi (−〈αi , αj 〉 − m)yj (l + m),

where clm is a constant coefficient. Therefore,

J∞
(

C[y1, y2, . . . , yk]/〈〈αi , αj 〉yi yj | 1 � i, j � k〉)

has quotient relation

〈−l−1
∑

m=0

clm〈αi , αj 〉yi (−〈αi , αj 〉 − m)yj (l + m)
∣

∣ 1 � i, j � k, l ∈ Z−
〉

.

Togetherwith Proposition 5.12,weget an isomorphismof differential algebras induced
from the map ψ : xi (−1) → yi (−1). ��
When 〈αi , αi 〉 = 1, we increase the degree of yi (−1) by 1/2. Then clearly we have

HSq(J∞(R�)) = ch[W�](q).

5.4 Positive lattices

Given a lattice L of rank n with a Z-basis {αi }ni=1, we say that the basis is positive if
we have 〈αi , αj 〉 ∈ N for 1 � i � j � n. In this part, we study principal subspaces
associated with positive bases. The examples we studied in the previous two sections
are such principal subspaces. Now let us prove a more general result about the map ψ

and these principal subspaces.

Theorem 5.14 For a lattice L of rank n with a positive basis, the map ψ is an iso-
morphism for WL if and only if its positive basis satisfies 〈αi , αi 〉 = 0 or 1 or 2, and
〈αi , αj 〉 = 0 or 1.

Proof First let us assume that the positive basis of the lattice L satisfies given con-
ditions. According to Theorem 5.13, we know that when 〈αi , αi 〉 = 0 or 1, and
〈αi , αj 〉 = 0 or 1, the map ψ is an isomorphism for the principal subspace. Now the
only case we need to consider is the positive basis for which 〈αi , αj 〉 = 2δi, j . It is not
hard to see that J∞(C[x]/〈x2〉) has a basis

{

x(m1)x(m2) · · · x(mk ) | mj−1 � mj − 2, k ∈ N
}

.
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Thus J∞(C[x1, x2, . . . , xn]/〈x21 , x22 , . . . , x2n 〉) has a basis
⎧

⎨

⎩

(xi1)(m1
1)

(xi1)(m1
2)

· · · (xi1)(m1
k1

)

· · · (xin )(mn
1)

(xin )(mn
2)

· · · (xin )(mn
kn

)

∣

∣

∣

∣

mi
j−1 � mi

j − 2

1 � j � ki − 1

⎫

⎬

⎭

.

Note that the C2-algebra of WL is

C[x1, . . . , xn]/〈x21 , . . . , x2n 〉.

Now, the map ψ sends (xi )(−1) to (eαi )(−1)1. According to [44, Corollary 4.14], the
imageof the basis of J∞(RWL ) is a basis of gr(WL). Thus themapψ is an isomorphism.

Next, let us prove that if a basis does not satisfy the given conditions, the map ψ is
not an isomorphism. We will consider two cases:

• Suppose that for one simple root αi , we have 〈αi , αi 〉 � 3.Without loss generality,
we prove that ψ is not an isomorphism when lattice L = Zαi . In this case, from
[44, Corollary 4.14], the basis of grF (WL) is

{

(eαi )(m1)(e
αi )(m2) · · · (eαi )(mk )1 | mj−1 � mj − 〈αi , αi 〉, mk ∈ Z−, k ∈ N

}

.

(8)

It is clear that neither J∞(C[x]/(x2)) nor J∞(
∧[x]) has the same correspond-

ing basis (here
∧

denotes the exterior algebra). Indeed, for the jet algebra
J∞(C[x]/(x2)) we have two monomials of degree 4 with two variables, i.e.,
x(−1)x(−3) and x(−2)x(−2). But we only have one quotient relation of degree 4
involving these two monomials, i.e., x(−2)x(−2) + x(−1)x(−3) = 0. Therefore,
either x(−1)x(−4) or x(−2)x(−2) should be a basis element. But we do not have such
corresponding element in (8). A similar argument works for J∞(

∧[x]).
• Suppose that there exist two distinct roots αi , αj , i < j , such that 〈αi , αj 〉 � 2.
Without loss of generality, we assume L = Zαi ⊕Zαj , then the basis of J∞(WL)

is
⎧

⎪

⎨

⎪

⎩

(xi )(−1−m1)(xi )(−1−m2) · · · (xi )(−1−mk )(xj )(−1−n1)

(xj )(−1−n2) · · · (xj )(−1−nl )

∣

∣

∣

∣

m1 − m2 � 〈αi , αi 〉,
n1 − n2 � 〈αj , αj 〉
mk � l, nl ∈ N

⎫

⎪

⎬

⎪

⎭

.

Meanwhile, according to [44, Corollary 4.14], the image of this basis under ψ

strictly contains the basis of WL . We do not have an isomorphism.

Thus we proved the statement. ��

5.5 New character formulas for ch[W0]

If the graph � is a Dynkin diagram of type Ak or Ck (cycle of length k) we expect
that the generating series HSq(J∞(R�)) has much better combinatorial behavior and
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perhaps even mock modular properties. We now present “sum of tails" formulas for
HSq(J∞(RAk )) for several low “rank" cases. To simplify notation we let

Ak(q) ..= HSq(J∞(RAk )).

From Theorem 5.10 we have a fermionic formula

Ak(q) =
∑

n1,n2,...,nk∈N

qn1+n2+···+nk+n1n2+n2n3+···+nk−1nk

(q)n1(q)n2 · · · (q)nk
.

The next formulas have been established recently by Jennings-Shaffer andMilas [34].

Theorem 5.15 We have

• A2(q) = 1
(1−q)(q)∞ ,

• A3(q) = q−1
(

1
(q)2∞

− 1
(q)∞

)

,

• A4(q) = q−1

(q)2∞
∑

n�1
qn

1−qn ,

• A5(q) = 1
(q)2∞

∑

n∈N
qn

(q)n(1−qn+1)2
,

• A6(q) = 1
(q)2∞

∑

n,m∈N
qn+m+nm

(q)n+1(q)m+1
.

Moreover, for cyclicCk-graphswehave fermionic formulas forCk(q) ..= HSq(J∞(RCk ))

valid for k � 3,

Ck(q) =
∑

n1,n2,...,nk∈N

qn1+n2+···+nk+n1n2+n2n3+···+nk−1nk+nkn1

(q)n1(q)n2 · · · (q)nk
.

Again we have partial results for “bosonic" representations for 3- and 5-cycle graphs
[34].

Proposition 5.16 ([34, Proposition 6.1 and Section 7]) We have

C3(q) = 1

(q)∞

∑

n∈N

qn

(qn+1)n+1
, C5(q) = q−1

(q)2∞

∑

n∈Z+

nqn

1 − qn
.

5.6 Combinatorial interpretation

Nextwe present combinatorial interpretations of formulas in Theorem 5.15 and Propo-
sition 5.16. For simplicity, in several formulaswe factored out a (power of) Euler factor
which can be easily interpreted as the number of (colored) partitions.

Theorem 5.17 We have:

• A2(q) counts the number of partitions of 2n with all parts either even or equal
to 1.
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• q A3(q) counts the number of partitions of n + 1 into two kinds of parts with the
first kind of parts used in each partition.

• q(q)∞A4(q) counts the total number of parts in all partitions of n, which is also
the sum of largest parts of all partitions of n.

• (q)2∞A5(q) is the sum of the numbers of times that the largest part appears in each
partition of n.

• q(q)2∞A6(q) counts twice the total number of parts in all partitions of n minus
the number of partitions of n.

• (q)∞C3(q) counts the number of partitions of n such that twice the least part is
bigger than the greatest part.

• q(q)∞C5(q) counts the sum of all parts of all partitions of n, also known as np(n).

Proof For A2(q), observe that Coeffqn A2(q) = p(1)+ p(2)+· · ·+ p(n), where p(i)
is the number of partitions of i . The number of 1’s must be even, say 2k, so we have
to compute the number of partitions of 2n − 2k where all parts are even. This is given
by p(n − k). Then summing over k gives the claim.

The interpretation for the A3(q) series is clear because we can also write

q A3(q) = 1

(q)∞

(

1

(q)∞
− 1

)

.

Extracting the coefficient on the right-hand side gives p2(n) − p(n), where p2(i)
denotes the number of two colored partitions.

For A4(q), this can be seen from the identity

∑

n∈Z+
qn

1−qn

(q)∞
=
∑

n∈Z+

nqn

(q)n
,

which follows by taking the
(

x d
d

)

derivative of 1
(xq;q)∞ = ∑

n∈N
xnqn

(q)n
. This clearly

counts the total number of parts in all partitions of n.
The (q)2∞A5(q) case has already been discussed in [34].
For (q)2∞A6(q), this follows from another identity given in [34]:

1

(q)2∞

∑

n,m∈N

qn+m+nm

(q)n+1(q)m+1
= q−1

(q)2∞

(

2
∑

n∈Z+

qn

(1 − qn)(q)∞
+ 1 − 1

(q)∞

)

,

together with a previous observation that
∑

n∈Z+
qn

1−qn

(q)∞ counts the total number of parts
in all partitions of n.

For (q)∞C3(q) we use a well-known interpretation for the fifth order mock theta
function, and finally for (q)∞C5(q) we observe the formula
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(

q
d

dq

)

1

(q)∞
= 1

(q)∞

∑

n∈Z+

nqn

1 − qn
=
∑

n∈Z+
np(n)qn

as claimed. ��
Remark 5.18 It is interesting to observe that the numerators of C3(q) and C5(q) are
mock modular forms, and thus C3(q) and C5(q) are mixed mock. Completion of the
Ramanujan fifth order mock theta function

∑

n∈N
qn

(qn+1)n+1
is well-documented [19].

For
∑

n∈Z+
nqn

1−qn we only have to observe that adding −1/24 to the numerator gives
E2(τ ), the weight 2 quasimodular Eisenstein series, which is known to be mock.

6 N = 1 superconformal vertex algebras

In this section we consider rational N = 1 vertex superalgebras LN=1
c2,4k , k ∈ Z+,

associated to N = 1 superconformal (2, 4k)-minimal models [1]. Here the central

charge is c2,4k = 3
2

(

1 − 2(4k−1)2

8k

)

.
According to [41,43], the normalized character of LN=1

c2,4k (without the q−c/24 factor)
is

ch
[

LN=1
c2,4k

]

(q) =
∞
∏

n=1
n �≡2(mod 2)

n �≡0, ±1(mod 4k)

1

(1 − qn/2)

=
∑

m1,...,mk−1∈N

(−q1/2)N1q
N2
1 /2+N2

2+···+N2
k+1+N(s+1)/2+N(s+3)/2+···+Nk−1

(q)m1(q)m2 · · · (q)mk−1

.

The fermionic character formula is the generating function (cf. [41])

ch
[

LN=1
c2,4k

]

(q) =
∞
∑

n=0

Dk,1(n)qn/2

of the number of partitions of Dk,1(n) of n/2 in the form n/2 = b1 + · · · + bm ,
bj ∈ 1

2Z+, where b1, . . . , bm satisfy the following conditions:

• no half-odd integer is repeated,
• bj � bj+1, bm ∈ 3

2Z+,
• bj − bj+k−1 � 1 if bj ∈ 1

2 + Z,
• bj − bj+k−1 > 1 if bj ∈ Z.

Since the N = 1 vertex superalgebra LN=1
c2,4 is isomorphic to C, we only need to

consider LN=1
c2,4k , where k > 1. First let us find the C2-algebra of LN=1

c2,4k . According
to [43, Section 4], the null vector in the universal algebra which survives inside the
C2-algebra is L

k−1
(−2)G(−3/2)1. Moreover, if we let G(−1/2) act on the null vector, we

get another null vector which survives in the C2-algebra, i.e., Lk
(−2)1. These two null
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vectors in the vacuumalgebra generate thewhole quotient ideal of RLN=1
c2,4k

. Thus RLN=1
c2,4k

is isomorphic to the superalgebra C[l, g]/〈lk, lk−1g〉, where g is an odd element.
We are going to prove that ψ is an isomorphism. We identify l, g with l(−2),

g(−3/2), respectively, inside the jet superalgebra.
It is clear that J∞(C[l, g]/〈lk, lk−1g〉) is isomorphic to

C

[

l(−2 − i), g

(

−3

2
− j

)

∣

∣ i, j ∈ N

]

/〈l(z)k, l(z)k−1g(z)〉,

l(z) = ∑

n∈N l(−2 − n)zn, g(z) = ∑

n∈N g(−3/2 − n)zn and 〈l(z)k, l(z)k−1g(z)〉
is the ideal generated by the Fourier coefficients of l(z)k, l(z)k−1g(z). We define an
ordered monomial in J∞(C[l, g]/〈lk, lk−1g〉) to be a monomial of the form

l(−2 − n)a1g

(

−3

2
− n

)b1
l(−1 − n)a2g

(

−3

2
− n + 1

)b2

· · · l(−2)an+1g

(

−3

2

)bn+1

,

where n ∈ N. Then we have a complete lexicographic ordering on all ordered mono-
mials according to Sect. 3.1.

We know that all ordered monomials constitute a spanning set of the jet superal-
gebra. Following an argument similar to the one in Sect. 4.1, we can make use of
the quotient relation to impose some conditions on the spanning set to get a smaller
spanning set. Firstly, since all variables g(k)’s are odd, no two g(k) can appear in the
ordered monomial. The leading term of any coefficient of znk in l(z)k is l(−2 − n)k.
Thus l(−2 − n)k should not appear as a segment of any element in the spanning set.
Similarly we can list further leading terms in the quotient:

• The leading term of the coefficient of znk in l(z)k−1g(z) is

l(−2 − n)k−1g

(

−3

2
− n

)

.

• The leading term of the coefficient of zn(k−1−i)+(n−1)i+n in l(z)k−1g(z) is

l(−2 − n)k−1−i g

(

−3

2
− n

)

l(−2 − n + 1)i , i = 1, . . . , k − 1.

Nowwe obtain a smaller spanning set, where the above three type leading terms cannot
appear inside any ordered monomial. More precisely, any element in this spanning set
is of the form

w(b1)w(b2) · · · w(bm),

where bi � bi+1, w(a) = l(a) if a ∈ Z and w(a) = g(a) if a ∈ 1
2Z. The fact that

g(a) is odd implies that no half-odd-integer is repeated in {b1, b2, . . . , bm}. Moreover,
we have a condition
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bj − bj−k+1 > 1 if bj ∈ Z,

because

l(−2 − n)k, l(−2 − n)k−1g

(

−3

2
− n

)

,

l(−2 − n)k−1−i g

(

−3

2
− n

)

l(−2 − n + 1)i , i = 1, . . . , k − 1,

are leading terms of some elements in the quotient ideal. We also have a condition

bj − bj−k+2 � 1 if bj ∈ 1
2Z,

because

g

(

−3

2
− n

)

l(−2 − n + 1)k−1

is the leading term of some element in the quotient ideal. So we have

HSq
(

J∞(C[l, g]/〈lk, lk−1g〉)) �
∞
∑

n=0

Dk,1(n)qn/2 = ch
[

gr
(

LN=1
c2,4k

)]

(q).

Meanwhile, the surjectivity of ψ implies that

HSq
(

J∞(C[l, g]/〈lk, lk−1g〉)) � ch
[

gr
(

LN=1
c2,4k

)]

(q).

Thus HSq(J∞(C[l, g]/〈lk, lk−1g〉)) = ch[gr(LN=1
c2,4k )](q), and ψ is an isomorphism.

It implies that the above spanning set is a basis of the jet superalgebra. The image of
the basis of jet superalgebra under the map ψ is a basis of gr(LN=1

c2,4k ) [41].
We have following result which is a super-analog of [52, Theorem 16.13]:

Theorem 6.1 Let p′ > p � 2 satisfy that (p′ − p)/2 and p are coprime positive
integers. Let LN=1

cp,p′ be the simple N = 1 vertex superalgebra associatedwith the N = 1

superconformal (p, p′)-minimal model of central charge cp,p′ = 3
2

(

1 − 2(p′−p)2

pp′
)

.

Then the map ψ is an isomorphism if and only if (p, p′) = (2, 4k), k ∈ Z+.

Proof We first consider the C2-algebra of LN=1
cp,p′ . We let

|cp,p′ | = (p − 1)(p′ − 1)

4
+ 1 + (−1)pp

′

8
∈ N.

When p and p′ are both even, according to [43, Section 4], there are two null vectors
which survive in RV N=1

cp,p′
, i.e., L

|cp,p′ |
(−2) 1 and L

|cp,p′ |−1
(−2) G−3/21. Theygenerate the quotient
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ideal of RV N=1
cp,p′

in the vacuumalgebra. In this case, theC2-algebra RLN=1
cp,p′

is isomorphic

to

C[l, g]/〈l |cp,p′ |, l |cp,p′ |−1g〉.

When p and p′ are both odd, again from [43, Section 4], the null vector L
|cp,p′ |
(−2) 1

generates the quotient ideal of RLN=1
cp,p′

. The C2-algebra is isomorphic to

C[l, g]/〈l |cp,p′ |〉.

Suppose p and p′ are both odd. Then

HSq
(

J∞(C[l, g]/〈l |cp,p′ |〉)) = HSq(J∞(C[g]))HSq(J∞(C[l]/〈l |cp,p′ |〉)).

It is clear that HSq(J∞(C[g])) =∏i∈Z+(1 + qi+1/2). According to [29], we get

HSq
(

J∞(C[l]/〈l |cp,p′ |〉)) ∼= ch
[

LVir
(

c2,(p−1)(p′−1)/2+1, 0
)]

(q),

where LVir(c2,(p−1)(p′−1)/2+1, 0) is the simple Virasoro vertex algebra coming from
the (2, (p − 1)(p′ − 1)/2 + 1)-minimal model. Using the character formula of
LVir(cq,q ′ , 0) from [29], the Hilbert series of J∞(C[l, g]/〈l |cp,p′ |〉) is

∏

i∈Z+(1 + qi+1/2)
∏

i∈Z+(1 − qi )

·
∑

j∈Z

(

q j( j(p−1)(p′−1)+2 j+ (p−1)(p′−1)
2 −1) − q(2 j+1)(( (p−1)(p′−1)

2 +1) j+1)
)

.

(9)

Meanwhile, by [41] the character of LN=1
cp,p′ is

ch
[

LN=1
cp,p′

]

(q) =
∏

i∈Z+(1 + qi−1/2)
∏

i∈Z+(1 − qi )

∑

j∈Z

(

q
j( j pp′+p′−p)

2 − q
( j p+1)( j p′+1)

2

)

. (10)

Comparing (9) and (10) we get that ψ is not an isomorphism in this case.
Let p and p′ be both even. Suppose (p, p′) /∈ {(2, 4k) | k ∈ Z+} and ψ is an

isomorphism for LN=1
cp,p′ . Then

HSq
(

J∞
(

C[l, g]/〈l |cp,p′ |, l |cp,p′ |−1g〉)) = ch
[

LN=1
cp,p′

]

(q).

On the other hand, we have shown that

HSq(J∞
(

C[l, g]/〈lk, lk−1g〉)) = ch
[

LN=1
c2,4k

]

(q), k ∈ Z+.
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Therefore, the character of LN=1
cp,p′ must coincide with the character of LN=1

c2,4k for some

k. Note, (10) is also true when p and p′ are both even, and it is easy to verify from the
numerator that no two N = 1 minimal vertex algebras have the same character. This
is a contradiction. Thus the statement is proved. ��

7 Extended Virasoro vertex algebras

For a simple Virasoro vertex algebra LVir(c2,2k+1, 0) coming from the (2, 2k + 1)-
minimal model, according to [29], we know that RLVir(c2,2k+1,0)

∼= C[x]/(xk), andψ is
an isomorphism. Let p and p′ be two positive coprime integers satisfying p > p′ � 2.
It is easy to see that ψ is an isomorphism if and only if (p, p′) = (2, 2k + 1) (see
[52, Theorem 16.13]). Recently, the authors displayed the kernel of ψ [4, Theorem 1]
for the c = 1/2 Ising model vertex algebra LVir(c3,4, 0), based on a new fermionic
character formula for LVir(c3,4, 0).

If we consider extended Virasoro vertex algebras associated with minimal model
which is not necessarily a (2, 2k + 1)-minimal model, we might still have that ψ is an
isomorphism. Our discussion is heavily motivated by [33], where the combinatorics
of (super)extensions of (3, p)-minimal vertex algebras was discussed.

Example 7.1 For the free fermion model F = LVir(c(3,4), 0)⊕ LVir(c(3,4), 1/2), ψ is
clearly an isomorphism as discussed in Proposition 4.2.

Example 7.2 The LN=1
c2,8 minimal vertex superalgebra has the following realization:

LN=1
c(2,8)

∼= LVir(c(3,8), 0)⊕ LVir
(

c(3,8),
3
2

)

.

This realization is called the extended algebra, and it was studied in [33]. The map
ψ is not an isomorphism in the case of LVir(c(3,8), 0). But we have shown that for
the extended algebra of LVir(c(3,8), 0), the map ψ is an isomorphism. This model was
analyzed from a different perspective in [40].

Example 7.3 Next, let us consider V = LVir(c(3,10), 0)⊕ LVir(c(3,10), 2). It is well
known that

LVir(c(2,5), 0)⊗ LVir(c(2,5), 0) ∼= LVir(c(3,10), 0)⊕ LVir(c(3,10), 2).

We let ω1 and ω2 be conformal vectors of the first factor and the second factor of
LVir(c(2,5), 0)⊗ LVir(c(2,5), 0). Then the isomorphism map f sends ω1 + ω2 to the
conformal vector ω of LVir(c(3,10), 0), and ω1 − ω2 to the lowest weight vector φ of
LVir(c(3,10), 2). Since we know that

J∞(RLVir(c(2,5),0))
∼= J∞(C[x]/〈x2〉) ∼= gr(LVir(c2,5, 0)),

the map ψ is an isomorphism for V , i.e.,

J∞(RV ) = J∞
(

RLVir(c(2,5),0) ⊗ RLVir(c(2,5),0)
) ∼= J∞(C[x, y]/〈x2, y2〉) ∼= gr(V ).
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For LVir(c(3,10), 0)⊕ LVir(c(3,10), 2), its C2-algebra is isomorphic to

C[u, v]/〈uv, u2 + v2, u3, v3〉

after we identify x + y, x − y in C[x, y]/〈x2, y2〉 with u and v, respectively.

Remark 7.4 We also know from [33] that the normalized parafermionic character of
V = LVir(c(3,10), 0)⊕ LVir(c(3,10), 2) is given by

ch[V ](q) =
∑

n1,n2,m1∈N

q(n1+n2+m1)(n1+n2)+n2(n2+m1)+m2
1+m1+n1+2n2

(q)n1(q)n2(q)m1

.

Next, let us consider the jet algebra

J∞(C[u, v]/〈u2, v3, uv〉),

where degrees of u and v are both 2. Clearly, it has the following spanning set:

u(−n1) · · · u(−nN )v(−m1) · · · v(−mM )

subject to constraints:

(a) (difference two condition at distance 1) ni � ni+1 + 2,
(b) (difference two condition at distance 2) mi � mi+2 + 2,
(c) (boundary condition) nN � 2 + M ,

where conditions (a), (b), (c) come from (u2)∂ , (v3)∂ , (uv)∂ in the quotient ideal of
the jet algebra. Meanwhile, according to Proposition 5.1 and Theorem 5.13, we know
that

J∞(C[u]/〈u2〉) ∼= gr(W�1,0),

J∞(C[v]/〈v3〉) ∼= gr(W�2,0),

J∞(C[u, v]/〈uv〉) ∼= gr(W�),

where � is the graph ◦ − ◦. Using three realizations of jet algebras and the Gordon–
Andrews character formulas from [23,31], it is not hard to see that the above
spanning set, subject to constraints (a)–(c), would produce a basis of the jet alge-
bra J∞(C[u, v]/〈u2, v3, uv〉) whose Hilbert series is given by

∑

n1,n2,m1∈N

q(n1+n2+m1)(n1+n2)+n2(n2+m1)+m2
1+m1+n1+2n2

(q)n1(q)n2(q)m1

.

The normalized character formula for V = LVir(c(2,5), 0)⊗ LVir(c(2,5), 0) is

ch[V ](q) =
∑

n1,n2∈N

qn
2
1+n22+n1+n2

(q)n1(q)n2
.
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Thus we have the following Hilbert series identities:

HSq(J∞
(

C[x, y]/(x2, y2))) = HSq
(

J∞(C[u, v]/〈uv, u2 + v2, u3, v3〉))

= HSq
(

J∞(C[u, v]/〈u2, v3, uv〉))

and

∑

n1,n2,m1∈N

q(n1+n2+m1)(n1+n2)+n2(n2+m1)+m2
1+m1+n1+2n2

(q)n1(q)n2(q)m1

=
∑

n1,n2∈N

qn
2
1+n22+n1+n2

(q)n1(q)n2
.

Acknowledgements The authorwould like to thank his supervisor,AntunMilas, for reading themanuscript,
lots of advice and discussions. He is also grateful to anonymous referees for lots of suggestions on polishing
this paper.

References
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