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MDS Codes With Galois Hulls of
Arbitrary Dimensions and the Related
Entanglement-Assisted Quantum
Error Correction

Meng Cao

Abstract—Let ¢ = p® be a prime power and £ be an integer
with 0 < £ < e — 1. The £-Galois hull of classical linear codes
is a generalization of the Euclidean hull and Hermitian hull.
We provide a necessary and sufficient condition under which
a codeword of a GRS code or an extended GRS code belongs
to its £-Galois dual code, generalizing both the Euclidean case
and Hermitian case in the literature. By using four different
tools: 1) the norm mapping from Fj to F;e; 2) the direct
product of two cyclic subgroups; 3) the coset decomposition of
a cyclic group; 4) an additive subgroup of F; and its cosets,
we construct eleven families of g-ary MDS codes with ¢-Galois
hulls of arbitrary dimensions, and give the related eleven families
of [[n, k, d; c]]q entanglement-assisted quantum error-correcting
codes (EAQECCs) with relatively large minimum distance in the
sense that 2d = n — k + 2 4+ c. We show that developing
the theory on ¢-Galois hulls of g-ary MDS codes in this paper
enables us to obtain new g-ary EAQECCs with different kinds
of length sets via different ¢, where 2¢ | e.

Index Terms—/¢-Galois hull, MDS code, generalized
Reed-Solomon (GRS) code, entanglement-assisted quantum
error-correcting code (EAQECC).

I. INTRODUCTION

UANTUM error-correcting codes are essential to quan-

tum computation and quantum communication due to
their crucial role in dealing with the problem of quantum
decoherence. In 1995, Shor [50] discovered the world’s first
quantum error-correcting code with parameters [[9, 1, 3]] by
using the quantum analog of the repetition code. Since then,
the theory of quantum codes has achieved rapid development
(e.g., see [1], [4], [5], [71, [8], [12], [21], [23], [25], [27],
[28], [33], [35], [43], [44], [47], [48], [51]). As we know,
the construction of quantum codes with good parameters is
important in quantum information processing. However, it is
very difficult to give a general method for acquiring more
good quantum codes. In 1996, the famous CSS construction
proposed by Calderbank and Shor [6] and Steane [52] offers
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us an effective way to construct quantum stabilizer codes from
classical linear codes with certain self-orthogonality. By this
method, a g-ary quantum stabilizer code can be derived from a
g-ary self-orthogonal or dual-containing classical linear code.

Nevertheless, the CSS construction is inapplicable to gen-
eral classical linear codes. In other words, a classical linear
code which is neither self-orthogonal nor dual-containing can
not generate a quantum stabilizer code by CSS construction.
To avoid this problem, Brun et al. [2] proposed an interesting
concept called entanglement-assisted quantum error-correcting
codes (EAQECCs), which can be regarded as a generalization
of the quantum stabilizer codes. According to their discovery,
the EAQECCs can be generated by the classical linear codes
without the restriction of self-orthogonality by utilizing the
pre-shared entanglement between the sender and receiver.
Usually, we denote by [[n, k, d;c]]; a g-ary EAQECC which
encodes k logical qubits into n physical qubits by means of
¢ copies of maximally entangled states (i.e., ¢ ebits). To be
specific, let £ be the space of linear operators defined in
the qubit Hilbert space H. Let us consider the isometric
operator U : H®" — H®" and its completely positive,
trace preserving (CPTP) map U : £®™ — £®"2 defined by
U(x) = UxU*. As shown in [3], the quantum communication
scenario involves two spatially separated parties, Alice and
Bob, owning the following resources at their disposal:

o A noisy quantum channel defined by a CPTP map N :
LE™ — L7 taking density operators on Alice’s system
to those on Bob’s system;

o The c ebit state |T)®¢ shared between Alice and Bob.
Through these resources, Alice wants to send k qubits to Bob
perfectly. Then, an [[n, k, d; ¢]]; EAQECC is made up of

« An encoding operation £ : L% @ L&¢ — L£®7;

o A decoding operation D : L& ® LZ¢ — LOF
with DoN oEoV = id®*, where V appends the state |T)®¢,
namely, V|Z) = |Z)|T)®¢, and id is the identity map on a
single qubit from £ to £. The “entanglement-assisted” setting
described above simplifies the theory of quantum channels and
makes quantum error correction easier in a way, which helps
us to create many different kinds of quantum codes in quan-
tum communication. For example, Hsieh et al. [30] utilized
classical quasi-cyclic low-density parity-check (LDPC) codes
to obtain some entanglement-assisted quantum LDPC codes
with good performance. In [54], Wilde and Brun developed a
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useful theory of entanglement-assisted quantum convolutional
coding by exploiting pre-shared entanglement and a convo-
lutional coding structure. They showed that a Calderbank-
Shor-Steane (CSS) entanglement-assisted quantum convolu-
tional code can be constructed by two arbitrary classical
binary convolutional codes. In [56], Wilde et al. revealed that
entanglement assistance can simplify the theory of quantum
turbo codes in several important manners and they also exam-
ined the effect on the performance of these codes with the
help of entanglement assistance. For more information about
EAQECCs, we refer the reader to [17]-[20], [22], [24], [31],
[32], [37]-[39], [55], [57].

In [3], Brun et al. showed that EAQECCs can be linked
with the related idea of catalytic quantum error correction in
quantum communication. More concretely, one can imagine
that Alice and Bob are allowed to send c qubits error-free
through a noiseless quantum channel that serves as a catalyst
and is returned at the end of the protocol, apart from a
noisy quantum channel N. Then, the encoding operation
& and decoding operation D mentioned above will define

n [[n,k — ¢,d; c]]¢ catalytic quantum error-correcting code
(CQECC), where D o (N ®1id®°) o & =1d®* ¢ @ 1d®°.

In [53], Wilde and Brun proposed a useful method for
constructing EAQECCs from binary classical linear codes.
In 2019, Galindo, Hernando, Matsumoto and Ruano [19]
extended the binary case to the general one and obtained
many important results on EAQECCs over arbitrary finite
fields. By these results, an [n, k, d], linear code with parity
check matrix H produces an [[n, 2k —n + ¢, d; ]|, EAQECC
with ¢ = rank(HHT). Denote by Hullg(C) = C(\C**?
(resp. Hully(C) = C(Ct#) the Euclidean hull (resp.
Hermitian hull) of a classical linear code C, where C+~
(resp. C+#) is the Euclidean dual (resp. Hermitian dual)
code of C. Guenda et al. [29] proved that the parameter
¢ of an [[n,2k — n + ¢,d;c]], EAQECC is related to the
dimension of the Euclidean hull (or Hermitian hull) of an
[n, k,d], linear code. Based on these facts, Luo et al. [46]
constructed several families of MDS codes with Euclidean
hulls of arbitrary dimensions and obtained the corresponding
EAQECCs with flexible parameters. Soon after, Fang et al.
[16] presented several families of MDS codes with Euclidean
hulls and Hermitian hulls of arbitrary dimensions, and then
they also supplied the corresponding EAQECCs with flexible
parameters. Note that the /-Galois dual code C¢ introduced
by Fan and Zhang [14] generalizes both the Euclidean dual
code C+# and the Hermitian dual code C+#. Consequently,
the (-Galois hull of C, denoted by Hull,(C) = C(C, is
a generalization of the Euclidean hull and Hermitian hull of
C. Naturally, we may wonder how to construct MDS codes
with ¢-Galois hulls of arbitrary dimensions. Once such MDS
codes are constructed, some new families of EAQECCs may
be obtained subsequently.

In this paper, our goal is to construct g-ary MDS codes
with ¢-Galois hulls of arbitrary dimensions and obtain new
[[n, k,d; c]], EAQECCs with relatively large minimum dis-
tance in the sense that 2d = n— k+ 2+ ¢. Compared with [16]
and [46], the research scope is extended from the Euclidean
hulls and Hermitian hulls to the /-Galois hulls. To achieve
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this goal, we first provide a necessary and sufficient condition
under which a codeword of a GRS code or an extended GRS
code belongs to its ¢-Galois dual code (see Propositions II.1
and I1.2), which generalizes both the Euclidean case in [9] and
the Hermitian case in [15]. By utilizing this condition, we then
construct eleven families of MDS codes with /-Galois hulls of
arbitrary dimensions by means of: (i) the norm mapping from
]F; to ]F;,, (see Theorems III.1-I11.3); (ii) the direct product of
two cyclic subgroups (see Theorems II1.4-111.6); (iii) the coset
decomposition of a cyclic group (see Theorems II1.7-111.9);
and (iv) an additive subgroup of [F, and its cosets
(see Theorems III.10 and III.11). Using these MDS codes,
we give eleven families of EAQECCs with relatively large
minimum distance as follows.

Let ¢ = p© with p being an odd prime number and let ¢ be
an integer with 0 < ¢ <e — 1. Let 27 and z2 be two positive
integers. Then, there exists an [[n,k—h,n—k+1;n—k—hl,
EAQECC with relatively large minimum distance if one of the
following eleven conditions holds:

@n="201<r<p —L1<k< (B2 20 e
and 0 < h <k — 1 (see Theorem IV.1 (1));

Myn=""0411<t<p ~11<k<[BE2] 20 e
and 0 < h < k (see Theorem IV.1 (2));

@n=""0421<t<p' ~1,1<k<[BE2] 20 e
and 0 < h < k(— T)(see Theorem IV.1 (3));

q

dn= o p, 1 | x1, (¢ — 1) | lem(zq,x2), 1 <
q—1 +7
(see Theorem V2 (1)),
©n = qilds +1, 4= le1 (a=1) |lem(a, z2).
1 +n
1<TSW 1<k<|_pe+1J 2€|eand0§h§k
(see Theorem IV.2 (2));
®n= % + 2, ;1 |ex1, (¢ — 1) | lem(zq, z2),
—+n
1<7"<W71<k<LZZ+1J,2€|€andOShS
— 1 (see Theorem IV.2 (3));
(g)nzrmm|(q;1),1§r_ = edtma)
y = 1= < |BEA7) 20 eand 0 < h <k —1 (see
Theorem IV3 (1)) ,
—1 m
(h) n =rm+1,m | (q_]‘)’ I<r< pml s = Sedtmyy)

¥4
y:;zl,lgkgL’;J?J,2£|eand0§h§k(see

Theorem 1V.3 2)); ’
. — J— p _1
(1) n= rm+2 m|(g—1),1<r<E= ged(my)

L%J,%Mandoghgk_l(see

, M1 =

y =
Theorem IV3 (3))

(J)n—tp‘“” 1<t<p’1<w< e-1,1<k<
|2 til 1J al|l,20|eand 0 < h <k (see Theorem IV.4 (1));

Kn=1t"+11<t<p"1 <w 2 -1,
1<k< L”ij_:j;lj,aw, 20 | eand 0 < h < k—1 (see
Theorem IV.4 (2)).

For each theorem of Theorems IV.1-IV.4, we show that
the variables ¢ with 2¢ | e correspond to different kinds
of EAQECCs in the sense that they have different kinds of
length sets, by providing some examples and several tables

for ¢ = 2,3 (see Tables V and VIII) and ¢ = 1,2
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(see Tables VI and VII). This is an important advantage of
developing the theory on /-Galois hulls of MDS codes in this
paper. We also show that some lengths coming from the set
of length n in Theorem IV.1 cannot be obtained by the set of
length n in Theorem IV.2, and vice versa, by providing a table
(see Table IX) for p =3, e=8 and ¢ = 2.

The remainder of this paper is organized as follows.
In Sect. II, we recall and give some results about ¢-Galois
dual codes, GRS codes and extended GRS codes. In Sect. III,
we construct eleven families of g-ary MDS codes with /-Galois
hulls of arbitrary dimensions. In Sect. IV, by applying these
MDS codes constructed in Sect. III we obtain eleven families
of [[n,k,d;c]]; EAQECCs with relatively large minimum
distance in the sense that 2d = n — k + 2 + ¢. Sect. V
makes a detailed discussion on the lengths of our EAQECCs
for different variables ¢. Finally, Sect. VI gives a summary of
this paper and offers two open problems.

II. PRELIMINARIES

Throughout this paper, we always assume that ¢ = p°© is a
prime power, where p is a prime number and e is a positive
integer. Denote F; = F,\{0}, where I, is the finite field
with ¢ elements. For any finite set S, we denote by |S] its
cardinality, namely, the number of all the elements in S.

As usual, we denote by [n,k,d], a classical linear code
over I, with length n, dimension £ and minimum distance d.
The minimum distance d of a linear code must satisfy the
well-known Singleton bound d < n + 1 — k. If the minimum
distance achieves the bound, i.e., d = n + 1 — k, then such
a linear code is called a maximum distance separable (MDS)
code.

We need to recall the following important concepts intro-
duced by Fan and Zhang [14].

Definition I1.1 ([14]): (1) Let x = (21, %2,...,%,), ¥y =
(Y1,2,---,yn) € Fy. For each integer £ with 0 </ < e —1,
the inner product

n

¢

(X, y)f = Z xlyf
i=1

is called the ¢-Galois inner product (i.e., p’-inner product) of
x and y.

(2) Let C be a linear code with length n over FF,. For each
integer ¢ with 0 < ¢ < e — 1, the code

ctr={xe F (v, x)¢ = 0 for each y € C}

is called the ¢-Galois dual code (i.e., p*-dual code) of C.
In particular, in the above definition,

o If £ =0, then (x,y)o is just the Euclidean inner product
of x and y. Besides, C1o is the Euclidean dual code of
C.

o Ifeisevenand ¢ = 5, then (x,y) is just the Hermitian
inner product of x and y. Besides, C 5 is the Hermitian
dual code of C.

As usual, we use the notations C+# and C1# to denote C+°

and C Ls (if e is even), respectively. Further, for each integer
¢ with 0 < ¢ < e—1, we call Hully(C) := C(C** the
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{-Galois hull of C. Naturally, the concept of the ¢-Galois hull
is a generalization of the Euclidean hull and Hermitian hull.

For a vector v = (v1,02,...,v,) € Fy, we define v =
(v§,vg,...,v%) for any integer a. Let M be a subset of F7,
then M is defined as the set {v®|v € M}.

The following useful lemma given by Liu et al. characterizes
the ¢-Galois dual code of a linear code.

Lemma II.1 ([41]): For an [n, k, d], linear code C, we have
cte = (CPE_Z)J‘E for0</<e-—1.

Now let us recall and study the generalized Reed-Solomon
(GRS) codes and the extended GRS codes. Take a =
(a1,az,...,a,) with ay, as, ..., a, being distinct elements in
Fg, and put v = (v1,v2,...,v,) with vy, va,... v, € F}.
Suppose k < n < g, then the k-dimensional GRS code with
respect to a and v is defined as

GRSi(a,v) = {(v1f(a1),vaf(az),...,vnf(an))]
f(x) € Fylz], deg(f(z)) <k —1}.

Itis an [n, k,n—k+ 1], MDS code whose generator matrix
is

’Ul fU2 ... ’Un
v1a1 V202 s UnQnp
Grlav)=| T
k—1 k—1 k—1
v1ay Vo ly Cee UpQ,

Moreover, the k-dimensional extended GRS code with
respect to a and v is defined as

GRSk(a,v,00) = {(v1f(a1), ..., vnf(an), fr-1)|
f(x) € Fylz], deg(f(x)) <k —1},
where f;,_1 denotes the coefficient of z*~1 in f(z). It is not
difficult to verify that GRSy (a, v, c0) is an [n+1, k, n—k+2],
MDS code whose generator matrix is

U1 Vg e Up, 0
v1ay Voas vpan, 0
Gk (37 v, OO) = : :
vm’ff2 v2a§72 vpak=2 0
vla’f_l vgalg_l vnaf;_l 1
(2)
From now on, for each i = 1,2,...,n, we shall denote by
u; = H (a; —aj;)~ "t 3)
1<) <n.jti
Let 1 = (1,1,...,1) be the all one vector. By the

above basics, the Euclidean dual codes GRSy (a,1)+# and
GRS (a,1,00)F can be expressed as follows.

Lemma I1.2 ([34]): Let u = (u1,uz,...,uy), where each
u; is defined by Eq. (3). Then,

GRSi(a,1)*# = GRS, _1(a,u).
Lemma 11.3 ([15]):
GRSk(aa 17 OO)LE = {(ulg(al)v s 7ung(an)a _gnfk)|
g(z) € Fylz],deg(g(z)) < n — k},

where g,,_;. denotes the coefficient of 2"~ * in g(z).
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Based on Lemma II.2, the following proposition provides a
necessary and sufficient condition under which a codeword ¢
of GRS(a,v) belongs to GRSk(a, v)Le.

Proposition II.1: For ¢ = (vif(a1),v2f(az),...,vn
fla,)) € GRSL(a,v), we have ¢ € GRSi(a,v)*¢ if
and only if there exists a polynomial g(z) € TF,[x] with
deg(g(x)) <m —k — 1 such that

(7 (@), o8 T @),
= (u1g(a1),u2g(az), ...,
Proof: By Eq. (1), we know that
Gr(a,v) = Gr(a,1)D,

W (a,))
Ung(an))' (4)

where D = diag(vy,v2,...,v,). Then, by Lemmas ILI

and II.2, we have that
c € GRSy(a,v)*

e—2¢

& c € (GRSy(a,v)te)P
& ¢ € GRSy(a,v)*®
& Gi(a,v)(c?)T =0
& Gr(a, 1)D(c”)" =0
s De GRSi(a,1)*7
& ¢ D € GRS, _(a,u).

Thus, the proof is completed. [ ]

Remark I1.1: Proposition II.1 generalizes both the Euclid-
ean case (i.e., £ = 0) in [9, Lemma 2] and the Hermitian case
(ie., £ = % for even €) in [15, Lemma 6].

For the extended GRS code GRSy(a,v,00), we give the
following proposition by using Lemma II.3.

Proposition I1.2: For ¢ = (vif(a1),v2f(a2),...,vnf(an),
fr—1) € GRSk(a,v,00), we have ¢ € GRSk(a,v, o)t

if and only if there exists a polynomial g(x) € Fy[x] with
deg(g(z)) < n — k such that

2 £ (4
(o P @)l (), D)
= (U’lg(al)a e 7ung(an)7 _gn—k’)- (5)
Proof: According to Eq. (2), we have that
Gk(aa Va OO) = Gk(aa 17 00)57

where D = diag(vy, ...,
that

Up, 1). Then, by Lemma II. 1, we have

c € GRSy(a,v,00) " & c € (GRS, (a,v,00)17 )" "
s e GRSk(a,v,00)t”
< Gr(a,v, oo)(cpk)T =0
& Gr(a, 1,00)D(c? )T =0
& e’ D € GRSy(a, 1,00)*"
Applying Lemma I1.3, we finish the proof. [ ]
Remark I1.2: Proposition I1.2 generalizes both the Euclid-
ean case (i.e., £ = 0) in [9, Lemma 3] and the Hermitian case
(i.e., £ = 5 for even e) in [15, Lemma 7].

Propositions II.1 and II.2 provide us with an effective
method for deriving the expression of the polynomial f(x).
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By virtue of them, in the next section, we can determine
the dimensions of the /-Galois hulls of some GRS codes and
extended GRS codes in a convenient way.

III. CONSTRUCTIONS OF MDS CODES WITH /-GALOIS
HULLS OF ARBITRARY DIMENSIONS

In this section, we will construct several families of MDS
codes with ¢-Galois hulls of arbitrary dimensions. The phrase
‘arbitrary dimensions’ appeared previously in [16] and [46]
when describing the MDS codes with Euclidean hulls and
Hermitian hulls therein. Here, it represents that the ¢-Galois
hulls of our MDS codes can take all or almost all possible
dimensions. More precisely, the dimensions of the ¢-Galois
hulls in this section run through the integers from 0 to k,
or k—1 (in fact, 0 < dim(Hull,(C)) < k), where k is the
dimension of the MDS code C.

As can be seen in Propositions II.1 and II.2, an impor-
tant point of our constructions is to take n suitable dis-
tinct elements aq,as,...,a, as the coordinates of the vec-
tor a in GRSk(a,v) or GRSk(a,v,00). Further, for the
convenience of calculating the values of wuj,us,...,u,
(see Eq. (3)), we find several kinds of suitable elements
ai,asz,...,a, related to (i) the norm mapping from IFZ to IF;Z
(see Theorems III.1-II1.3); (ii) the direct product of two cyclic
subgroups (see Theorems II1.4-111.6); (iii) the coset decompo-
sition of a cyclic group (see Theorems III.7-111.9); and (iv) an
additive subgroup of [F, and its cosets (see Theorems III.10
and III.11). By utilizing these tools, we present eleven families
of MDS codes with ¢-Galois hulls of arbitrary dimensions in
the following four subsections.

A. MDS Codes Related to the Norm Mapping From I} to F;z

Let ¢ = p° with p being a prime number, 0 < ¢ <
e — 1. Assume that ¢ | e. Consider the following surjective
homomorphism called the norm mapping:

Norm : IFZ — F;/,

e_q
£ —
T H xp’[ = J,‘:efll
i=0
Denote by IF;Z = {b1,b2,...,bpe_1}. For each b; € IF*[,
i=1,2,...,p" — 1, define

N; = {x € F}| Norm(z) = b;}.

Then N; = ;Ker(Norm), where Norm(8;) = b; holds for
some 3; € Iy since Norm is surjective, and Ker(Norm) =
{z € Fy Norm( ) = 1} is the kernel of Norm. This
yields that |N;| = |Ker(Norm)|. On the one hand, by the
fundamental homomorphism theorem, we have that

I, /Ker(Norm) = Im(Norm) < F,,

where Im(Norm) is the image of Norm. Then, we have
|F;/Ker(Norm)| < p’ — 1. On the other hand, since
|Ker Norm)‘ < q—11, we know that |IF;/Ker(Norm)| >
./ Ker( Norm ‘ =pt (Norm)| =

NIl = =

—1,1.e.,

Authorized licensed use limited to: Tsinghua University. Downloaded on May 17,2022 at 11:10:11 UTC from IEEE Xplore. Restrictions apply.



7968

Now, denote by

t
N:UNi:{alaaQa"'a

i=1

an}, (6)

where 1 <t < p’ — 1. Then, n = tl();%j) for1 <t<pl—1,
and N; N N; = () hold for all i # j. Therefore, we have the
following lemma.

Lemma Ill.1: Let a; and u; be defined as in Egs. (6) and (3),
respectively. Assume that ¢ | e. Then, a;lui S IF;,, holds for
eachi=1,2,...,n.

Proof: For any a; e N, i=1,2,...,

a; € N for some 1 < s < ¢. Then Norm(a;) = bs = azi”Ll.
By Eq. (3), we see that
-1
- II 11

¢;ENs,cj#a; 1<s'<t,s'#s d; €Ny

n, we may assume
q—1

u; = (ai —cj)

(N
Let u(x)

=]l en, (x —¢;), then u(z) = Norm(z) —

g—_ .
x?»"=1 — bg. Since a; € Nj, then

II

cjENs,cj#a;

(ai —¢;) =

H (a;

¢;€ENs,c;#a;
Hence,
-1
a; H (a; —
¢;ENs,cj#a;
By de/eNS/ (x = djr)

I Il (e

1<s'<t,s'#s d]/ €N/

— H (Norm(a;) — by)f1

1<s'<t,s'#s

= I

1<s'<t,s'#s

) l=a, " EFL. (8

= Norm(z) — by, we have that

(bs —by) "t €l €

It follows from Egs. (7)-(9) that a;lui S IF;Z. Therefore,
the proof is completed. [ ]

As shown in Lemma III.1, a; 1u¢ S IF;( holds under some
suitable conditions. Now, for any u € IF;@, observing Eq. (4)
in Proposition II.1 and Eq. (5) in Proposition II.2, we wonder
if there exists v € F} such that vP'+1 = y. If such a relation
exists, then it will help us to explore the structure of the
polynomial f(z) in Propositions II.1 and II.2, which makes
it easy to determine the dimensions of the ¢-Galois hulls of
some GRS codes and extended GRS codes.

In the following lemma, we give a necessary and sufficient
condition under which the relation v?'*! = u holds.

Lemma II1.2: Let ¢ = p® with p being an odd prime number
and let 0 < ¢ < e — 1. Then, for any u € IF;Z, there exists

v € F: such that v 1 = u if and only if 2/ e.
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Proof: First of all, as F )¢ is required to be a subfield of Fy,
we immediately obtain ¢ | e. Let e = £¢' for some integer ¢'.
bAssume [y = (e), then ord(e? +1) = Wl,lp“—l)' Denote
y

H:= {z" |z € F3},

. . . - 1
then H is a subgroup of F; with ord(H) = m.
Besides, IF[*),, is a subgroup of Iy with ord(IFI*)/,) =pt -1

Therefore, we have that
q—1
ng(q - 1ap€ + 1)
& (p' = 1) ged(g—1,p" +1) | (g —1).

Fro CH & (p' 1)

Note that
ged(q — 1,p +1) = ged((p* + 1) = 1) —1,p" +1)
= ged((-1)" —1,p" +1)

2, if /' is odd;
P+

if ¢/ is even.
Case (i): If /' is odd, then (p’ — 1) - gcd(q —1,p" + 1)
2(p® — 1). Besides, we know that q —1=p" —1=(p* -
1) Zz ' p"". Observing that Z'L:O p“" is odd, we obtain that

(P —1)-ged(g—1,p" + 1) (g —1).

Case (ii): If ¢ is even, assume ¢/ = 2/ for some integer £".
Then ¢ — 1 = p** — 1 = p?**" — 1. Combining this with the
fact (p* — 1) - ged(q — 1,p° + 1) = p* — 1, we obtain that

(p" —1)-ged(qg—1,p" +1) | (g —1).

Thus, we conclude that IF;( C H < 2/ | e, which completes
the proof. |

By using the previous lemmas, we give the following [n, k|,
MDS codes with ¢-Galois hulls of arbitrary dimensions.

Theorem III.1: Let ¢ = p° with p being an odd prime
number. Assume 2/ | e. Let n = t]()q D for each 1 < t <

p’ — 1. Then, for any 1 < k < Lizirfj and 0 < h < k-1,
there exists an [n, k], MDS code with h-dimensional ¢/-Galois
hull.

Proof: Let a1, as,...,a, be defined by Eq. (6). For each
1 <4 < n, by Lemma III.1, we have a;lui c IF;Z. Further,
in terms of Lemma III.2, there exists v; € IF; such that

vf’ul = a;'u;. Set z := k —1— h and take 3 € Fy
such that y := B*'*1 % 1. Put a = (ay,as,...,a,) and
v =(0v1,...,00:,V241,...,0,). Consider the ¢-Galois hull
of the [n, k], MDS code C := GRSy(a,v). Then for any
¢ = (B'Ulf(al)v s ﬁUZf(az)vvz-Hf(aZ-‘rl)v s 7Unf(an)) €
Hully(C) with deg(f(x)) < k—1, in terms of Proposition II.1,
there exists a polynomial g(x) € Fy[z] with deg(g(z)) <
n — k — 1 such that

¢ ¢ ¢ ¢ ¢ ¢
(B T (), B P (00), 0f B (aas),

PP (a,)) = (ung(ar), usg(as), - - - tng(an)).
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That is,
£ 2 £
(’yaflulfp (al)v cee 77a;1u2fp (az)v a;jluerlfp (aerl);
¢
oty U fP (an)) = (urg(ar), uzg(az), .. ., ung(an)).
(10)

Comp%ring the last n — 2 coorglinates of Eq. (10), we have
a; tui P (a;) = wig(ay), ie., fP (a;) = a;g(a;) fori = z +

1,...,n. Hence the number of the distinct roots of fpz (x) —
A
xzg(x) is at least n — z > n — k + 1. Since k < L’;,,im, we

have deg(f? (z)) < p*(k — 1) < n — k, which, together with

deg(zg(z)) < n—k, derives that deg(fpz (x)—zg(z)) < n—k.

This implies that f?* (x) = xzg(z) and hence z | f(x).
Observing the first z coordinates of Eq. (10), we know that

lfp (ai)

,z. Hence f*' (a;) = 0, ie., f(a;) = 0 for
z. Then we can express f(x) as

ya; uzfp (ai) = uzg(az) = u;a

for i = 1,...
i=1,...,
#(w) = wea) [[ (@ — a)

i=1
for some c(z) € Fylx] with deg(c(x)) < k — z — 2. Thus,
dim(Hull(C)) <k —z—1.

ze(z) [T, (z — a;), where

Conversely, let f(z) =
c(x) € TFylx] with deg(c(x)) < k — z — 2. Taking
g(z) = =1 f" (), then deg(g(z)) < p’(k—1)—1 < n—k—1
and Eq. (10) holds. By Proposition II.I, we have
(ﬂvlf(al)a ce 6vzf(az)vvz+1f(az+1)v R Unf(an)) €
Hully(C), which means that dim(Hull,(C)) > k — z — 1.

Therefore, we obtain dim(Hull,(C)) = k—z—1 = h,
which completes the proof. [ |

Next, based on Theorem III.1, we proceed to construct a
family of MDS codes of length n + 1 from GRS codes with
¢-Galois hulls of arbitrary dimensions as follows.

Theorem II1.2: Let ¢ = p° with p being an odd prime
number. Assume 2¢ | e. Let n = t;q_? foreach 1 <t <

p’ — 1. Then, for any 1 < k < Lpi’” and 0 < h < k, there
exists an [n + 1, k], MDS code with h-dimensional (-Galois
hull.

Proof: Let ay,as,...,a, be defined as in Eq. (6) and let

an+1 = 0. For each 1 <4 < n, in view of Lemma IIL.1, we

have that
H (ai — aj)_l = a;l H (ai — aj)_l S F;z.
1<j<n+1,j#i 1<j<n,j#i

For i = n + 1, we know that

ﬁ(an+1—a3 [H( 11 aﬂ)}

J=1 i=1 ajEN;

(1)

Let us compute a;. Denote b
P HajeNi J y
N; = {%1;%2, cees q_4}7
"ol

then for each a; € N, ie., for each a;, € N;, where r =

q—1
1,2,... we have Norm(a; ) = b; = af’i’l , and thus

q—1
) pffl’

—1
2?1 —b; = (x—ai1)(x—a;2): - (m —a; a1 ),
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q 1 pl_q
which implies that [[?_7" ;. = (—1)#'~1 b;. Substituting this
into Eq. (11), we obtain that

n t g —1
[ —a) ™" = (-1 [H(—wlbz}
j=1 i=1
s, )
= n+ " p Hb 1 eF*
Denote w; = [[;<jcpiq i@ — aj) li=1,...,n+1.

Then, from Lemma III.2, there exists v; € IF* such that

v”“:wzforz:l n+1 Set z := k —h
and take B € F; such that 'y = Bl £ 1. Put a =
(a1,aq,... anH) and v = (Bu1,..., 00,0501, Unt1)-
Consider the (-Galois hull of the [n + 1,k
MDS code C := GRSk(a,v). Then for any ¢ =
(Burf(ar), ..., Bvzfaz), vogrf(az41), - vngr fantr)) €

Hully(C) with deg(f(x)) < k — 1, by Proposition II.1, there
exists a polynomial g(z) € Fy[z] with deg(g(z)) < n —k

such that
pt+1, pi+1pt p’+1, pt+1pp’ p*
(ﬁ U1 (Lh),...,ﬁ Uz f ( )v z+1f (a2+1)
¢ ¢
W8 5P (ang1)) = (wig(ar) wag(as), . . wni19(ani1))-
That is,
2 2 4
(walfp (al)a o a’szfp (az); werlfp (aerl)a
¥4
o Wnt 1 [P (ant1))
- (wlg(al); TUQQ(GQ), LR wnJrlg(anJrl))' (12)

From the last n — z + 1 coordinates of Eq. (12), we have
wif? (a;) = wig(ai). ie. ¥ (a;) = gla;) for i = z +
1,...,n+1. Hence the number of the distinct roots of fpz (x)—
g(x)is atleast n —z+1>n—k+ 1. Since k < Li;f”, we
have deg(f7' (z)) < p’(k — 1) < n — k, which, together with
deg(g(z)) < n — k, derives that deg(fpz () —g(x)) <n—k.
Hence f7' (x) = g(x).

Observing the first z coordinates of Eq. (12), we have that

yw, f7 (a;) = wig(a;) = w; f7 (ai)

z. Hence fpg(ai) =0, ie., f(a;)
,z. Then we can write f(x) as

for: = 1,..., = 0 for
i=1,...
f(@) = c@) [[ (= — a0)
i=1

for some c(x) € Fylx] with deg(c(z)) < k — z — 1. Thus
dim(Hully(C)) < k — z.

Conversely, similar to the proof of Theorem III.1, we have
dim(Hully(C)) > k — z.

Therefore, dim(Hully(C)) = k — z = h, which completes
the proof. |

Now, if we consider the extended GRS code
GRSy(a,v,00) of length n + 2 with a and v being
defined as in the proof of Theorem IIL.2, then a new family
of MDS codes with ¢-Galois hulls of arbitrary dimensions
can be yielded as follows.

Theorem II1.3: Let ¢ = p° with p being an odd prime
number. Assume 2/ | e. Let n = t(‘ij) foreach 1 <t <
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p’ — 1. Then, for any 1 < k < LI’;;i?J and 0 < h < k-1,

there exists an [n + 2, k], MDS code with h-dimensional ¢-
Galois hull.

Proof: Set z := k — 1 — h and take 3 € [ such
that v := pr+t # 1. Let a = (a1,a2,...,0n41),
v = (Bui,...,B05,0:01,...,05+1) and w; be defined

as in the proof of Theorem III.2. We can consider

the ¢-Galois hull of the [n + 2,k], MDS code C :=

GRSk(a,v,00). Then for any ¢ = (Bvif(a1),...,0 v,

f(az);szrlf(aerl) UnJrlf(anJrl) fk 1) € Hu”f(c)

with deg(f(z)) < k — 1, by Proposition IL.2, there exists a
(

polynomial g(z) € Fy[x] with deg(g(x)) < n — k + 1 such
that
(B T (@), ﬁpf“ o (a2),
1 (4
EJI fp ( )7-~~7 n+1 f (an+1))f]€_1)
= (wlg(al)a oy W 19(ny1), —Gn—kt1)-
That is,
(4 (4 (4
(ywrf? (a1), ..., ywz P (az), weqr f¥ (az41),
2 4
. awn+1fp (Cln+1), f}€)71)
= (wig(ar), ..., wns19(an+1), —gn—k+1).  (13)
Fori = z+1,...,n+1, by comparing the 7- th coordinate of

Eq. (13), we have wi /7' (a;) = wig(ai). ie. 7' (a;) = g(ai).
Hence the number of the distinct roots of f?* () — g(x) is

atleast n — z+ 1 > n—k+2 Since k < |Z22] we

have deg(fpz (z)) < p(k — 1) < n — k, which, together with
deg(g(z)) < n — k + 1 derives that deg(f? (z) — g(z)) <
n —k + 1. Hence fp/'( )= g( ).

Moreover, we have fk 1 = —9n—k+1 from Eq. (13).
Assume that f,_1 # 0. By deg(fp/' (x)) = deg(g(x)), we have
p‘(k — 1) = n — k + 1, which yields a contradiction since
p‘(k — 1) < n — k. Hence, fr_1 = 0, implying that
deg(f(x)) < kb —2.

According to the first z coordinates of Eq. (13), we have
that

yw, f7 (a;) = wig(a;) = w; f7 (ai)

,z. Hence f”l(ai) =0, ie., f(a;) = 0 for
z. Then f(z) can be written as

for i = 1,...
i=1,...,
z
f(z) = (@) [ [ (e - i)
i=1

for some c(x) € Fy[z] with deg(c(z)) < k — 2 — z. Thus
dim(Hull,(C)) <k —1-—z.

Conversely, similar to the proofs of Theorems III.1 and I11.2,
we get dim(Hully(C)) > k—1— z.

Therefore, dim(Hull,(C)) = k—1—z = h, which completes
the proof. [ ]

Remark 1II.1: Note that the lengths n of the

MDS codes in Theorems III.1, III.2 and III.3 are
g-1 2(¢—1) (' =2)(g-1) — 1, which are related
pl—17 pl—1 7 "> pf—1 »q >

to ¢ except the last one. Substltutlng these lengths n = (qfl)
pl—1

of the dimension k gives

pitn
[Jrl

into the upper bound
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£ t(g—1) .
A 20 _plyt(g—1
rise to ’Z’),iyf = p/jrll = %f%q). Thf':n, for
a fixed t (there always exist some fixed t for different
{1 and (o, for example, take ¢t = 1,2), the derivative

2[
(p —]zj)zj_tﬁq 1)) [p*—2t(¢— ;)]lili;rz(p —2p**)lnp < 0. This
together with the condition 2/ | e (means 1 < ¢ < 5) reveals
that the range of the dimension k for any 1 < ¢ < § with
2¢ | e is wider than the range of the dimension & for the
Hermitian case ¢ = §. Therefore, the [n, k|,, [0+ 1,k|, and

[n+2, k], MDS codes in Theorems IIL1, 1.2 and 1113 with
dimension k satisfying L%J +1<k< Lf}ii’fj for any
1 < ¢ < § with 2/ | e cannot be obtained by the Hermitian
case { = 5. For example, take p = 5, ¢ = 4, £/ = 1 and
t = 1 in Theorems III.1, III. 2 and II1.3, then n = 156, and
hence Lif‘i?ﬁj = 26 and L5 =58 | = 6. Therefore, we can
obtain [156, k|54, [157,k]sa and [158, k|52« MDS codes for
each 1 < k < 26, while for the same length, MDS codes
with dimension £ satisfying 7 < k£ < 26 cannot be produced

from those by considering the Hermitian case ¢ = 2.

B. MDS Codes Related to the Direct Product of Two Cyclic
Subgroups

In this subsection, we will present another three families of
MDS codes with ¢-Galois hulls of arbitrary dimensions. The
coordinates of the vector a in GRSy (a, v) or GRSk (a, v, 00)
are obtained via the direct product of two cyclic subgroups.

First, let us give the following lemma, which is useful for
constructing the coordinates of the vector a in GRSk (a, v).

Lemma II1.3: Let 1 and x2 be two positive integers. Denote
by & = o™ and & = a2, where « is a primitive element of
F,. Then,

ged(ord(&y),0rd(&2)) =1 < (¢ —1) | lem(zy, 22),

where ord(z) denotes the order of the element x in IF}.
Proof: Since ord(&;) = WE_D and ord(&) =
q—1 '

Zod(rag—T)- then ged(ord(&y), ord(€2)) = 1 if and only if

g—1 qg—1 )
cd , =1. (14
& <ng(xla q— 1) ng(an q— 1)
Let S be the set consisting of all the prime divisors of g—1,
z1 and 2. Assume ¢ — 1 =[] _op", 21 = Hpiespf"' and
T = Hp,,espi%’ where oy, 3;,7v; € N, then we have that

H m1n (evi,Bi )

pi€S

ged(xy,qg— 1)

which implies that

_gq-1
ged(zy,q—1)

_ H pzo“ —min(a;,B3;) .

pi€S

Hence, Eq. (14) holds if and only if for each i,

0 = min(a; — min(ay, 3;), a; — min(ay, v;))

= o; — max(min(a;, 5;), min(a;, v;)).
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That is,

a; = max(min(a;, 4;), min(a;, ;)

< «; = min(ay, §;) or oy = min(a;, ;)
Sa; < fiora; <

& a; < max(B;, i)

< (¢g—1) | lem(z, z2).

This completes the proof. [ ]

Remark II1.2: By Lemma III.3, we know that for two
positive integers 21 and x2, the group (£1) ® (&) for & = o™
and {2 = a2 is a subgroup of F; with order ord(&1)-ord(&2) if
(¢ —1) | lem(xq,x2). This implies that the elements ghelr +

2 %2 for any (il,jl) 75 (ig,jg), where 1 S il,ig S 0rd(§1)
and 1 < j1,j2 < ord(&2). Therefore, these elements can be
taken as the coordinates of the vector a in GRSk(a,v) or
GRSy(a,v,00).

Let o be a primitive element of IF,. Consider &; = o** and
& = o™ for two positive integers x1 and zo. Let n = riro,
where 1 < ry < ord(§), r2 = ord(&2). Denote by

1
R = URiz{al,ag,...,

i=1

where R; = {€i€]]j =1,2,...,m} fori=1,2,...,7.. Then
by Lemma III.3 and Remark III.2, we derive the following
lemma.

Lemma 111.4: Let a; and u; be defined as in Egs. (15)
and (3), respectively. Assume that (¢ — 1) | lem(z1,22) and
ged(z2,q — 1) | z1(p* — 1) for two positive integers x; and
5. Then, a;lui S IF;( holds for each i =1,2,...,n

Proof: For (¢ — 1) | lem(zy,x2), it follows from
Lemma III.3 and Remark III.2 that a; # a; for any 1 <7 #
7 <n.Forany:=1,2,...,n, we may assume a; € R for

an}7 (15)

some 1 < s < ry. Then there exists ¢ € {1,2,...,7r2} such
that a; = £&L.
By Eq. (3), we see that
u; = H (ai—a;)~"- H H
a;ERs,a;#aj 1<s’'<ri,s'#sa; ERy
(16)

Note that [[; </, (2 — ey = Z:zol x?, then

I[I @-a)= J] €&-&¢)
a;ERs,a;F#a; 1<t/ <rg,t'#t
=@t I a-€)
1<t/<rgy—1

= a7ty (17)

Besides, in light of [T, -, ., (z—b&} ) = 2™ —b"2, we have
that -

IT (ai—ay) =

ar cER,/

[ e-¢'el)=¢m—¢m. as)

1<t/ <ry
Substituting Eqgs. (17) and (18) into Eq. (16), we obtain that

[T @ -am

1<s'<ry,s'#s

u; = a;é; "yt (19)
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Further, since ged(z2,q — 1) | o1(p® — 1), it is easy to
check that &2 € IF[*)/,. From this and Eq. (19), the desired
result follows. [ ]

We notice that for ¢ | e, the condition (¢ — 1) | lem(z1, x2)
and ged(z2,q — 1) | 21(p® — 1) in Lemma I11.4 is equivalent
to a simpler form as follows.

Lemma II1.5: Let ¢ = p® with p being a prime number and
let ¢ | e. Then, for any two positive integers z; and x2, the
following statements are equivalent:

(1) (g = 1) [lem(z1,22), ged(wz, g — 1) [ 21(p* = 1);

(2) (q — 1) | lcm(atl,arg) pi | Zq.

Proof: (2)=-(1): When q@ — | 1, we have that (¢ — 1) |
z1(p® — 1), which 1mmed1ately yields that ged(xa,q — 1) |
zy(pf —1).

(1)=-(2): Note that for any a, b, c € N, we have the fact

a | lem(b, ¢) < a | lem(b, ged(a, ¢)).
Now, for (¢ — 1) | lem(x1,x2), we have that
(g —1) | lem(z1, ged (a2, g — 1)).

Besides, it follows from the condition ged(z2,q¢ — 1) |
x1(p® — 1) that

(20)

lem(x1, ged(ze, g — 1)) | lem(ay, 21 (pf — 1)).

That is,

lem(z1, ged(za, g — 1)) | 21 (p* — 1). Q1)

Combining Eq. (20) with Eq. (21), we obtain (¢ — 1) |
z1(p — 1), ie., 1;1[_11 | 1. This completes the proof. [ ]

By using the previous lemmas, we give the following [n, k|,
MDS codes with ¢-Galois hulls of arbitrary dimensions.

Theorem II1.4: Let ¢ = p° with p being an odd prime
number. Assume 2/ | e, (¢ — 1) | lem(z1,22) and ]% | 21
r(g=1)

for two positive integers x; and zo. Let n = for

ged(za,q— 1)
each1 <r < % Then, for any 1 < k < Lp +"J
ged(z1,9—1)°
and 0 < h < k — 1, there exists an [n, k], MDS code w1th
h-dimensional ¢-Galois hull.
Proof: Letay,as,...,a, bedefined by Eq. (15). For each
1 <4 < n, by Lemmas II1.4 and III.5, we have a;lui S IE‘;,Z.

Further, in terms of Lemma III.2, there exists v; € IE‘;; such
that vful = a; 'u;. Set z := k — 1 — h and take 3 € F;
such that v := BP'*! £ 1. Put a = (a1,az,...,a,) and
v =(0v1,...,00:,0.41,...,0,). Consider the ¢-Galois hull
of the [n, k], MDS code C := GRSj(a,v). Then, working
in a similar manner as in Theorem III.1, the desired result
follows. [ |

Next, based on Theorem III.4, we proceed to construct a
family of MDS codes of length n + 1 from GRS codes with
¢-Galois hulls of arbitrary dimensions as follows.

Theorem IIL.5: Let ¢ = p° with p being an odd prime
number. Assume 2¢ | e, (¢ — 1) | lem(x1,x2) and z% | 21

for two positive integers 21 and zo. Let n = % for
each1l <r < W Then, for any 1 < k < Liu’f

and 0 < h < k, there exists an [n + 1, k], MDS code with
h-dimensional ¢-Galois hull.
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Proof: Let ay1,as,...,a, be defined as in Eq. (15) and
let ap41 = 0. For each 1 < ¢ < n, in view of Lemma III.4,

we have that
a) t=at ] (ai-

S
1<j<n,j#i

1<j<n+1,j#i

aj)_l S ]F;;/

For ¢ = n + 1, a direct calculation derives that

[t e = 0 TT ([T6)]
j=1 i=1
1 (r1 417

j=1
_ro(ratl)ry
2

=(-1"§

€ IF;(.
Denote w; = [[;<jcp 1 jzi(@i — aj) Li=1,...,n+1.
Then, from Lemma III.2, there exists v; € IFZ such that

vf’ul =w; fori =1,...,n+ 1. Set z := k — h and take
8 € Iy such that y := B+l £ 1. Puta = (a1,a2, ..., Qn1)s
v =(fv1,...,00;,0:41,...,0,+1) and consider the /-Galois
hull of the [n + 1, k], MDS code C := GRSk(a, v). Similar
to the proof of Theorem II1.2, the desired result follows. H

Now, if we consider the extended GRS code
GRSy(a,v,00) of length n + 2 with a and v being
defined as in the proof of Theorem IIL.5, then a new family
of MDS codes with ¢-Galois hulls of arbitrary dimensions
can be yielded as follows.

Theorem II1.6: Let ¢ = p° with p being an odd prime
number. Assume 2¢ | e, (¢ — 1) | lem(z1,z2) an

T(q 1)
gcd(zzjq 1) for

for two positive integers x1 and x9. Let n =
each 1 <7 < W Then, for any 1 < k < | %% | and
0 < h < k — 1, there exists an [n + 2, k], MDS code with
h-dimensional ¢-Galois hull.

Proof: Set z := k — 1 — h and take 3 € [ such
that v := 5’)(“ # 1. Let a = (a1,a2,...,an41), V =
(Bv1y...y fU2,V41, ..., Unt1) and w; be defined as in the
proof of Theorem III.5. We can consider the ¢-Galois hull
of the [n + 2,k], MDS code C := GRSk(a,v,c0). Then,
working in a similar manner as in Theorem II1.3, the desired
result follows. [ |

Remark I11.3: For the MDS codes in Theorems III.4, II1.5
and III.6, we can verify that the value of the length n is
related to ¢ (namely, depends on /), for example we may take
xy = pt—1, then (¢—1) | lem(z1, p*—1) and q In this

case, one easily finds that there always ex1sts xl

.. . q—1 V]
some positive integer s such that (g—1) | 1cm(pe_1s p—1),
then the length n can be written as n = %, where
V4
< < q 1 _ p —1

1 <r< gcd( . 1) eed(s.p =D Hence, the upper
+ 0 7‘(;—1) Jr ( 1)

p'4n 1 _ p*tp'r(e—

bound pra) of the dimension k& is pfil = P

Then, for a fixed r (there always exist some fixed r for

different ¢y and {5, for example, take r = 1), the derivative
(et — 2l e Sl < o, This
together with the condition 2/ | e (means 1 < £ < §) reveals
that the range of the dimension & forany 1 < ¢ < § with 2¢ | e
is wider than the range of the dimension k for the Hermitian

case ¢ = 5. Therefore, the [n, k],, [n+ 1,k]|; and [n + 2, k],
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MDS codes in Theorems IIL.4, 1IL.5 and II1.6 with dimension
k satisfying Lin”J +1<k< |5 +”J forany 1 </ < %
with 2¢ | e cannot be obtained by the Hermitian case ¢ = §.
For example, take p = 7, e = 4, ¢ = 1, 1 = 2400, 22 = 6
andr = 11 in Theorems I11.4, IgI.S and II1.6, then n = 400, and
hence |TH19¢| = 50 and [ T8 | = 8. Therefore, we can
obtain [400, k|4, [401, k]74 and [402, k]« MDS codes for each
1 < k < 50, while for the same length, MDS codes with
dimension k£ satisfying 9 < k£ < 50 cannot be produced from
those by considering the Hermitian case ¢ = 2.

C. MDS Codes Related to the Coset Decomposition of a
Cyclic Group

In this subsection, we will construct another three families
of MDS codes with ¢-Galois hulls of arbitrary dimensions. The
coordinates of the vector a in GRSy (a, v) or GRSk (a, v, c0)
are obtained via the coset decomposition of a cyclic group.

Let ¢ = p°® with p being a prime number. Assume ¢ | e
and set y = qf_ll. Let m | (g —1). We know m can be
labeled as m = mims, where m; = m and mo =
ged(m,y). Let F) = (a). Denote H = (¢1) and G = (¥2),

where ¥, := a*+ and ¥, = o™ . Then we have ord(H) =m
and ord(G) = (p* — 1)ma.
Next, it follows from mo = gced(m,y) that
| o

gcd(ml,miz) = 1. Combining it with m; =
obtain m; | (p* — 1), which implies that H is a subgroup
of G. Thus the left coset decomposmon of G with respect

pf—1
™1

to H can be written as G = J,}

—, W€

n;H, where n; is the left

coset representative of G/H for i =1,2,. p;—:l.
Let n = rm, where 1 <r < p —L_ Denote
r
H=|JnH ={ar,a2,...,a,}. (22)

i=1

We give the following lemma.

Lemma I11.6: Let a; and u; be defined by Egs. (22) and (3),
respectively. Assume /¢ | e and m | (¢—1). Then, a; 'u; € B
holds for each i =1,2,...,n

Proof: For any i =

1,2,...,n, there exists s €

{1,2,...,7r} such that a; € nsH. Then a; = ns} for some
1 <t < m. By Eq. (3), we know that
w; = H (ai—aj)_l' H H a;—a;r)
aj€EnsH,a;#a; 1<s'<r,s'#sajEng H
First, we have that
I[I @-a)= [ @ —not)
aj€EnsH,a;#a; 1<t/ <m,t'#t
=@t I a-9)
1<t’<m-—1
= a;ln;”m.
Besides, we obtain that
I @-ap)= T 00 —nedt)=nl—np.

1<t'<m

a;r engH
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Thus, we get that

M —1 m my\—1
Ui = QMg M H (775 - 775') .
1<s'<r,s'#s

For any 1 < ¢ < r, we know that n; = 19% holds for some
1 <j < (p*—1)ma. Then, N = al™y e IE‘;,Z, which derives
that a; Lu; € IF;Z. This completes the proof. [ |

Now, by applying the above lemma, we obtain a new family
of MDS codes of length n with ¢-Galois hulls of arbitrary
dimensions as follows.

Theorem II1.7: Let ¢ = p° with p being an odd prime
number. Assume 2¢ | e and m | (¢ — 1). Let n = rm for

-1 . -1
eachl <r< pm—1 :’Vlth mi = ﬁ for y = 1%’ Then,
forany 1 < k < Liei’” and 0 < h < k — 1, there exists an

[n, k], MDS code with h-dimensional ¢-Galois hull.
Proof: Letay,as,...,a, bedefined by Eq. (22). For each
1 < ¢ < n, by Lemma III.6, we have a;lui IS IE‘;,Z. Further,
in terms of Lemma III.2, there exists v; € IFZ such that
vful =a; 'u;. Set 2 := k—1—h and take 3 € F}; such that
3P +1 £ 1. We can consider the (-Galois hull of the [n, klq
MDS code C := GRSk(a,v), where a = (ai,az,...,a,)
and v = (Bv1,..., B0z, U041, ..., 0y,). Similar to the proof of
Theorem III.1, we can obtain dim(Hully(C)) = k—z—1 = h.
From this, the desired result follows immediately. [ |
Next, based on Theorem III.7, we proceed to construct a
family of MDS codes of length n + 1 from GRS codes with
¢-Galois hulls of arbitrary dimensions as follows.
Theorem II1.8: Let ¢ = p° with p being an odd prime
number. Assume 2¢ | e and m | (¢ — 1). Let n = rm for
eachlgrgp;—:lwithmlz

—1
m for Yy = Iﬁ Then,

forany 1 < k < Ll’jii’” and 0 < h < k, there exists an
[n + 1, k], MDS code with h-dimensional ¢-Galois hull.
Proof: Let ay,aq,...,a, be defined by Eq. (22) and let

an+1 = 0. For each 1 < i < n, it follows from Lemma II1.6

that
11

1<j<n+1,j#i

(a; —ap) "t =a;t ]

1<j<n,ji

(ai — aj)fl S F;e.

For ¢ = n + 1, a direct calculation derives that
n r m ) —1
[[(ans1 —a)™ = (—1)n[H ( 771'19]1)]
i=1 i=1  j=1

Hn[m € F..
i=1

Further, we write w; = [],c;c, 1 (a0 —aj)7" i =
I,...,n+ 1. In light of Lemma III.2, there exists v; € I}
such that vful =w; fori=1,...,n+ 1.

Next, we set z := k — h and take § € IFZ such that
BP'+1 £ 1. We can consider the ¢-Galois hull of the [n+1, k],
MDS code C := GRSi(a,v), where a = (a1, az2,...,an+1)
andv = (Bu1,..., 00,041, ..., Un41). Working in a similar
way to the proof of Theorem III.2, we can deduce that
dim(Hully(C)) = k — z = h. Therefore, the desired result
follows. [ ]

_ rm(m+1)
2

= (-1)"9,
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Now, if we consider the extended GRS code
GRSk(a,v,00) of length n + 2 with a and v being
defined as in the proof of Theorem IIL8, then a family of
MDS codes with ¢-Galois hulls of arbitrary dimensions can
be yielded as follows.

Theorem II1.9: Let ¢ = p° with p being an odd prime
number. Assume 2¢ | e and m | (¢ — 1). Let n = rm for

-1 . -1
eachl <r < ”TT with m; = for y = 1%71. Then,

forany 1 < k < L’;Zi’” and 0 < h < k — 1, there exists an

[n + 2, k], MDS code with h-dimensional ¢-Galois hull.
Proof: Let ay,as,...,a, be defined by Eq. (22) and

let a4 = 0. For each 1 < ¢ < n + 1, write w; =

ngjgnJrL#i(ai —a;)~!. Then w; € IF;/,. By Lemma II1.2,

there exists v; € F such that vf’ul =w;fori=1,...,n+1.

Next, we set z := k — h — 1 and take 8 € IF; such
that B +! # 1. Put a = (a1, as,...,an41) and v =
(Bv1, ..., B0z, V241, ..., Unt1). We can consider the (-Galois
hull of the [n + 2,k], MDS code C := GRSk(a,v,0).
Similar to the proof of Theorem III.3, we deduce that
dim(Hully(C)) = k — 1 — z = h, completing the proof. M

Remark II1.4: Note that when e is even, the MDS
codes in Theorems III.7, III1.8 and III.9 generalize those in
[16, Theorems 3.8-3.10] which consider the Hermitian case
(ie., £ = §). More importantly, observing the condition 2/ | e
(as shown in Lemma III.2, this condition i§ necessary since it
enables us to find a v; € IF; such that vffﬂ = u; holds for
any u; € IE‘;,Z, which means that 1 < /¢ < %) and using the fact

? ot .
(ZJT)’ - (1(pf}r’1)lfp < 0 for n > 2, we know that when n is

fixed (for example, take » = 1, then n = m is fixed), the range
of the dimension of the MDS codes in Theorems III.7, IIL.8
and 1.9 for any 1 < £ < § with 2/ | e is wider than the
range of the dimension of those in [16, Theorems 3.8-3.10].
In other words, for the same length n, the [n, k|, [0+ 1, k],

and [n + 2, k], MDS codes in Theorems II1.7, 111.8 and II1.9
with dimension k satisfying |22 +1 < k < | Bt
for any 1 < ¢ < § with 2 | e cannot be obtained by the
Hermitian case £ = 5 considered in [16, Theorems 3.8-3.10].
For example, take p =5,¢=6,¢ =1, m =126 and r = 1 in
Theorems I11.7, 1I1.8 and II1.9, then n = 126 and Lf’;fﬁ(jj =
21. Hence, we can obtain [126, k56, [127, k|56 and [128, k|56
MDS codes for each 1 < k < 21, while for the same lengths,
Theorems 3.8-3.10 of [16] only produce [126, 1]56, [127, 1]56

and [128,1]56 MDS codes since LE’S.“%J =1.

D. MDS Codes Related to an Additive Subgroup of F, and
Its Cosets

We will construct another two families of MDS codes with
¢-Galois hulls of arbitrary dimensions. The coordinates of the
vector a in GRSy (a,v) or GRSy (a, v, 00) are related to an
additive subgroup of [, and its cosets.

Let ¢ = p® with p being an odd prime number. Let a | e
and K be a F,.-subspace of IF, of dimension w satisfying
{0} € K C F,. Then, 1 < w < %—1.Taken6Fq\K
and put Fpe = {1, 02,...,0pa}. For 1 < i < p®, denote by
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K; = K + ;n. For 1 <t < p®, denote by

t
U K, ={a1,a9,...,a,}.
i=1

Then, we have n = tp®”. By [16, Lemma 3.1], there exists
¢ € Fy such that cu; € Fy. for each 4. Let a | £ and 2/ | e.
Then, we have cu; € IE‘;,Z. According to Lemma II1.2, there
exists v; € I} such that eu; = vl’-’ul.

Based on the above analysis, we are able to give another two
families of MDS codes with ¢-Galois hulls of arbitrary dimen-
sions in the following two theorems. Since their construc-
tion procedures are similar to those of Theorems III.1-I11.9,
we omit the proofs.

Theorem II1.10: Let ¢ = p® with p being an odd prime
number. Assume 2¢ | e and a | £. Let n = tp® for each
1<t <p° andeach1§w§%—1.Then,forany1§k'§

Lpep‘mzlj and 0 < h < k, there exists an [n, k], MDS code
with h-dimensional ¢/-Galois hull.

Theorem III.11: Let ¢ = p® with p being an odd prime
number. Assume 2¢ | e and a | £. Let n = tp® for each

1§t§paandeach1§w§%—1.Then,forany1§k'§

Lpep‘mzlj and 0 < h < k— 1, there exists an [n+ 1, k], MDS

code with h-dimensional /-Galois hull.

Remark II1.5: Note that when e is even, the MDS codes
in Theorems III.10 and II.11 generalize those in [16, The-
orem 3.6] which consider the Hermitian case (i.e., £ = 5).
What’s more, the condition 2/ | e (this means that 1 < ¢ < 5)

and the fact (2 ;;f_’f_;l ) = (2(;2_”1?;” < 0 for n > 3 imply that
when n is fixed, the range of the dimension %k of the MDS
codes in Theorems II1.10 and IIL.11 for any 1 < £ < 5 with
2¢ | e is wider than the range of the dimension % of those in
[16, Theorem 3.6]. Hence, for the same length n, the [n, k|,

and [n+ 1, k], MDS codes in Theorems III.10 and III.11 with

dimension k satisfying Lpigi:;lj +1<k< L%J for
any 1 < ¢ < § with 2/ | e cannot be produced by [16, Theo-
rem 3.6]. For example, take p =3,a=2,e =8,/ =2, w =2
and t = 2 in Theorems III.10 and III.11, then n = 162, and
hence we can obtain [162, k|3s and [163, k]3s MDS codes for
each 1 < k < 17. Since Lﬁﬁ?lj = 2, these k-dimensional
MDS codes of the same length with 3 < k < 17 cannot
be produced by considering the Hermitian case, i.e., { = 4,

in [16, Theorem 3.6].

IV. CONSTRUCTIONS OF EAQECCS WITH RELATIVELY
LARGE MINIMUM DISTANCE

As the applications of the g-ary MDS codes constructed in
Section III, this section aims to provide several families of
[[n, k,d;c]], entanglement-assisted quantum error-correcting
codes (EAQECCs) with relatively large minimum distance in
the sense that 2d =n —k + 2 + c.

First, let us review some basic concepts and notations about
quantum codes. For the complex field C, let C? denote the
g-dimensional complex Hilbert space over C. For a pure
n-qudit state, it can be written as |v) = Zaer vala), where

va € C with Y g, val? = 1 and {|]a) = |a1) ® - ®
lan) @ (a1,...,a,) € Fy} being a basis of C9". Let v be a
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complex primitive p-th root of unity. For a = (ay,...,an),
b= (b1,...,bn) €FY, let T(a) = T'(a1) ® --- ® T'(an) and
R(a) = R(a1)®---® R(ay) be the tensor products of n error
operators, where T'(a;) and R(a;) are defined as T'(a;)|z) =
|z + a;) and R(a;)|z) = y"(%)|z), respectively, in which
Tr(z) == Y.0_, "' is the trace function from F, (¢ = p°)
to Fp,. Then, T'(a) and R(a) satisfy T'(a)|x) = |x + a) and
R(a)|x) = y™{(@X)e)|x), respectively. Therefore, the error
set

E,={y'T(a)RM®)[0<i<p-1l,abec Fy}

forms an error group. For any error e = v‘T'(a)R(b) € E,,
its quantum weight is defined by wg(e) = #{i|(a;, b;) #
(0,0)}. Denote E,(i) = {e € E,|lwgle) < i}
For a g-ary quantum code ), if d is the largest pos-
itive integer such that (x|ely) = O holds for any
Ix),ly) € Q with (xly) = 0 and e € E,(d — 1),
then ) has minimum distance d.

Usually, we use the notation [[n, k,d]], to denote a g-ary
quantum code of length n, dimension ¢* and minimum dis-
tance d. It has the abilities to detect up to d — 1 quantum
errors and correct up to L%J quantum errors. The minimum
distance d of a quantum code must satisfy the quantum
Singleton bound, i.e., 2d < n 4+ 2 — k. Further, if 2d =
n + 2 — k, then such a quantum code is called a quantum
MDS code.

In 2006, Brun et al. [2] introduced an interesting concept
called entanglement-assisted quantum error-correcting codes
(EAQECCs), which turns out to be significant progress in
the field of quantum error correction. These codes can be
regarded as a generalization of the quantum stabilizer codes
generated by CSS construction. As shown in [2], we can
obtain EAQECCs from any classical linear codes with the
help of the pre-shared entanglement between the sender and
receiver. Furthermore, we denote by [[n,k,d;c]], a g-ary
EAQECC which encodes k logical qubits into n physical
qubits by means of ¢ copies of maximally entangled states
(i.e., c ebits). When ¢ = 0, the EAQECCs are just the standard
quantum stabilizer codes.

For an [[n, k, d; c]]2 EAQECC, the authors in [3] gave the
following Singleton bound on its parameters:

2d<n—k+2+ec.

It is very exciting to know that Grassl [24] presented a
new entanglement-assisted quantum communication scheme
with parameters violating this bound in certain ranges. The
scheme in [24] shows better parameters than the one proposed
in [2] in some range. For more information on the counter
examples of quantum Singleton bound, we refer the reader to
the latest results obtained by Grassl, Huber and Winter in [26].
Considering these facts, from now on, if an [[n,k,d;c]],
EAQECC satisfies 2d = n — k + 2 + ¢, then we call it an
EAQECC with relatively large minimum distance rather than
a MDS EAQECC.

The following lemmas tell us how to construct EAQECCs
from the classical linear codes.

Lemma IV.1 ([19], [53]): Let C1 : [n,ki,di], and Cq :
[n, k2, d2], be two linear codes with parity check matrices H;
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and Ho, respectively. Then, there exists an [[n, k1 + ko —n +
¢, min{dy, ds}; c|], EAQECC, where ¢ = rank(H; HY) is the
required number of maximally entangled states.

Lemma 1V.2 ([19]): Let Cy [n,k1,d1]2 and Co
[n, k2, d2],2 be two linear codes with parity check matrices
H, and Hy, respectively. Then, there exists an [[n, k1 + ko —
n + ¢, min{dy, dz2}; c|]|; EAQECC, where ¢ = rank(HlHQT)
is the required number of maximally entangled states with
H' := (h%,) for H = (hsj).

Remark IV.1: The binary case for the EAQECCs in
Lemma IV.l was given by Wilde and Brun [53] in 2008.
In 2019, Galindo, Hernando, Matsumoto and Ruano [19]
extended the binary case to the general one and they also
obtained several important results on EAQECCs.

For a matrix A = (a;;) over F,, we define A®"" 9 =

e—1{ e—2¢
(af; ) and denote A* = [A®" )], Then, we have the
following useful lemma.

Lemma IV.3 ([41]): If C is an [n,k,d],

parity-check matrix H, then

linear code with

rank(HHY) = n — k — dim(Hull,(C)).

Based on the above facts,
proposition.

Proposition IV.1: If C is an [n, k, d], linear code, then there
exists an [[n, k — dim(Hully(C)), d; n —k —dim(Hulle(C))]],
EAQECC.

Proof: Taking C; = C and C = C*" ' in Lemma IV.1,
we obtain an [[n,2k — n + ¢, d; ]|, EAQECC, where ¢ =
rank(H(H(pe_k))T). By Lemma IV.3, we know that

we obtain the following

c =rank(HH*Y) = n — k — dim(Hull,(C)),

which completes the proof. [ ]

By Proposition IV.1, we immediately obtain the following
corollary.

Corollary IV.1: If C is an [n, k], MDS code, then exists an
[[n, k —dim(Hull,(C)),n —k+1;n—k — dim(Hulle(C))]],
EAQECC.

Remark IV.2: Given an [n, k], (¢ = p®) MDS code C. If e is
even, then C17 (i.e., CL%) is an [n, n—k|, MDS code. Hence,
it follows from Lemma IV.2 and Corollary IV.1 that there exist
[[n, k—dim(Hully(C)),n—k+1;n—k—dim(Hullg (C))]] 4
and [[n, n—k—dim(Hully (C)), k+1; k—dim(Hullz(C))]] /q
EAQECCs.

Generally speaking, the comparison of the QECCs (includ-
ing the EAQECCs) over different fields makes no sense.
Therefore, from now on, when we compare the EAQECCs for
different ¢, the EAQECCsS for the Hermitian case ¢ = & refer
to the g-ary EAQECCsS produced by the g-ary MDS codes (see
Corollary IV.1) rather than the ,/g-ary EAQECCs produced by
the g-ary MDS codes (see Remark 1V.2).

By combining Theorems III.1-II.3 with Corollary IV.1,
we can construct the following three families of EAQECCs
with relatively large minimum distance.

Theorem IV.1: Let ¢ = p°® with p belng an odd prime
number. Assume 2/ | e. Let n = t]()q D for each 1 < ¢ <

+
p’ — 1. Then, for any 1 < k < Liurf ,
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(1) there exists an [[n, k—h,n—k+1;n—k—h]], EAQECC
with relatively large minimum distance for any 0 < h < k—1;

(2) there exists an [[n+ 1, k—h,n—k+2;n—k—h+1]],
EAQECC with relatively large minimum distance for any 0 <
h <k;

(3) there exists an [n+2,k—h,n—k+3;n—k—h+2]],
EAQECC with relatively large minimum distance for any 0 <
h<k-1.

Remark 1V.3: By Remark III.1, we know that the
([n,k,n—k+1in—Eklg [[n+ LEn—k+2;n—k+ 1],
and [[n+2,k n—k+3'n—k—|—2]] EAQECC:s (take h = 0)

in Theorem IV.1 with dimension ¢* satisfying Lp +”J +1<

k<[E Zi’” for any 1 < ¢ < & with 2/ | e ecannot be obtained
by considering the Hermitian case. For example, as shown in
Remark III.1, by taking p =5, e =4, f =1and t = 1 in
Theorem IV.1 we know that the [[156, k, 157 — k; 156 — k]| 54,
[[157, k, 158 — k; 157 — k|54 and [[158, k, 159 — k; 158 — k]]54
EAQECCs for each 7 < k < 26 derived from Theorem IV.1
cannot be produced by considering the Hermitian case ¢ = 2.
Note that if e is even in Theorem IV.1, then by Remark IV.2,
there exist [n+n',k—h,n—k+n'+1;n—k—h+n'] 4
and [[n +n',n —k —h+n',k+ 1;k — h]] 5 EAQECCs for
n=t(,/g+1)and n’ =0,1,2, where 1 <t < ,/g—1 and
1< k< [YER].

Next, in terms of Theorems II[.4-Il1.6 and
Corollary IV.1, we obtain three families of EAQECCs
with relatively large minimum distance in the following
theorem.

Theorem IV.2: Let ¢ = p® with p being an odd prime
number. Assume 2/ | e, (q —1) | lem(z1,22) an

S 7"(q 1)

for two positive 1ntegers 1 and xo. Let n = W’ﬂ*” for
+

each 1 <7’§ m Then for any 1 < k < L%J,

(1) there exists an [[n,k — h,n — k + 1;n — k — h]],
EAQECC with relatively large minimum distance for any
0<h<k-1;

(2) there exists an [n+1,k—h,n—k+2;n—k—h+1]],
EAQECC with relatively large minimum distance for any 0 <
h <k;

(3) there exists an [[n+2,k—h,n—k+3;n—k—h+2]],
EAQECC with relatively large minimum distance for any 0 <
h<k-1.

Remark 1V.4: By Remark II1.3, we know that the [[n, k,n —
E+ Lin—FKlg [[n+ 1L,kn—k+ 2;n —k + 1]], and
[n+2,k,n—k+3;n—k+ 2]], EAQECCs (take h = 0)

in Theorem IV.2 with dimension ¢* satisfying Lp +”J +1<

E < Lf},,ffj for any 1 < ¢ < 5 with 2£|e cannot be
obtained by considering the Hermitian case. For example,
as shown in Remark IIL.3, by taking p = 7, e = 4, £ = 1,
x1 = 2400, 2o = 6 and r = 1 in Theorem IV.2 we
know that the [[400, k, 401 — k; 400 — k]|, [[401, k, 402 — k;
401 — k]]74 and [[402, k, 403 — k; 402 — k]];a EAQECCs for
each 9 < k < 50 derived from Theorem IV.2 cannot be
produced by considering the Hermitian case ¢ = 2. Note that
if e is even in Theorem IV.2, then by Remark IV.2, there
exist [n +n',k —h,n—k+n +1Lin—k—h+n]] 4
and [[n +n',n —k—h+n',k+1;k — h]] 5 EAQECCs for
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r(g=1) _ Jatn
m and n/ = 0,1,2, where 1 S k S \_\/a+1J,

1<r< ﬁ}qﬂ), (¢g—1) | lem(zy,22) and (\/g+1) | 21.
Now, by Theorems III.7-II1.9 and Corollary IV.1, we have
the following three families of EAQECCs with relatively large
minimum distance.
Theorem 1V.3: Let ¢ = p° with p being an odd prime
number. Assume 2¢ | e and m | (¢ — 1). Let n = rm for
each1 <r< ;;;_:1 with m; = 9-1  Then,

0 i1
forany 1 <k < |7 ],
(1) there exists an [[n, k—h,n—k+1;n—k—h]], EAQECC
with relatively large minimum distance for any 0 < h < k—1;
(2) there exists an [[n+ 1,k —h,n—k+2;n—k—h+1]],
EAQECC with relatively large minimum distance for any 0 <
h <k,

(3) there exists an [n+2,k—h,n—k+3;n—k—h+2]],
EAQECC with relatively large minimum distance for any 0 <
h<k-—1

Remark 1V.5: By Remark II1.4, for the same length n,
the [[n,k,n—k+1;n—k|lg [n+1,k,n—k+2;n—k+1]],
and [[n+2, k,n—k+3;n—k+2|]; EAQECC:s (take h = 0) in
Theorem IV.3 with dimension q’C satisfying L%J +1<k<
L’;iffj for any 1 < £ < § with 2/ |e cannot be produced by
the Hermitian case. For example, as shown in Remark II1.4,
by taking p = 5, e =6,/ =1, m = 126 and r = 1 in
Theorem IV.3 we know that the [[126, k, 127 — k; 126 — k]]56,
([127, k, 128 — k; 127 — k]| 56 and [[128, k, 129 — k; 128 — k|50
EAQECCs for 2 < k < 21 derived from Theorem IV.3 cannot
be produced by the Hermitian case ¢ = 3. Note that if e
is even in Theorem IV.3, then by Remark IV.2, there exist
([n+n';k —hn—k+n +1Ln~k—h+n] ;4 and
[[n+n',n—k—h+n'k+1;k—h]] 7 EAQECCs for n = rm
and n’ = 0,1,2, where 1 < k < L*/(Hnj m | (¢ —1) and

Va+l
1<r< \/fnzl with m; = W\/ﬁl)' The latter ,/g-ary
EAQECCs are identical to those shown in [16, Theorem 4.9].

Finally, by Theorems III.10-III.11 and Corollary IV.1, we
obtain the following two families of EAQECCs with relatively
large minimum distance.

Theorem 1IV.4: Let ¢ = p°® with p being an odd prime
number. Assume 2¢ | e and a | £. Let n = tp® for each
1 <t Sg)“ and each 1 < w < %—1.Then,forany
1<k <[,

(1) there exists an [[n, k—h,n—k+1;n—k—h]], EAQECC
with relatively large minimum distance for any 0 < h < k;

(2) there exists an [n+1,k—h,n—k+2;n—k—h+1]],
EAQECC with relatively large minimum distance for any 0 <
h<k-1

Remark 1V.6: By Remark IIL.5, for the same length n,
the [[n,k,n — k + L;n — k]]y and [[n + 1,k,n — k +
2Zn — k + 1], EAQECCs in Theorem IV.4 with dimen-
sion ¢ satisfying L%J +1 <k < Lpep‘fizlj for
any 1 < ¢ < § with 2{|e cannot be obtained by the
Hermitian case. For example, as shown in Remark IIL5,
by taking p = 3, a = 2, e = §, £ = 2, w = 2 and
t = 2 in Theorem IV.4 we know that Theorem IV.4 can
produce [[162, k,163 — k; 162 — k]]3s and [[163, k, 164 — k;
163 — k]]3s EAQECCs for each 1 < k < 17, while for the

n =

ged(m,y) fory =
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TABLE I
NEW EAQECCS FROM THEOREM IV.1 FOR p = 5,
e=4,/=1ANDt=2,3
New EAQECCs for n = 312 || New EAQECCs for n = 468
[[312, 13, 300; 299]]54 [[468, 19, 450; 449]] 54
[[312, 14, 299; 298]] 54 [[468, 20, 449; 448]] 54
[[312,15,298;297]]54 [[468, 21, 448; 447]] 54

(312, 51, 262; 261]] 54 (468,77, 392; 391]] 54
(312, 52, 261; 260]] 54 (468,78, 391; 390]] 54
([313,13,301; 300] |54 [[469, 19, 451; 450] ] 54
[ Il ([ ]
[ Il ([ ]

[313, 14, 300; 299]] 54 469, 20, 450; 449]] 54
[313, 15, 299; 298]] 54 469, 21, 449; 448]] 54

(313,51, 263; 262] )54 [[469, 77, 393; 392]] 54
(313, 52, 262; 261]]54 (469, 78, 392; 391]] 54
([314, 13,302; 301] 54 [[470, 19, 452; 451]] 54
[ Il ([ ]
[ Il I ]

314, 14, 301; 300]] 54 470,20, 451; 450]|54
5 5
[314, 15, 300; 299]] 54 470, 21, 450; 449]] 54

[[470, 77, 394; 39354
[[470, 78, 393; 392]] 54

[[314, 51, 264; 263]]54
[[314, 52, 263; 262] 54

same lengths, these EAQECCs with 3 < k£ < 17 cannot be
obtained by the Hermitian case ¢ = 4. Note that if e is even
in Theorem IV.4, then by Remark IV.2, there exist [[n + n’,
k—hn—k+n"+1n—k—h+n'] 5 and [[n+n',n-
k—h+n',k+ 1k~ h]] 5z EAQECCs for n = tp*" and
n’ =0,1, where 1 <k < L*/EJ;_T_IIJ, 1<t<p®aljand
1<w< § — 1. The latter ,/q-ary EAQECCs are identical to
those shown in [16, Theorem 4.8].

Remark IV.7: As we know, it is not easy to construct an
[, k", d"; "]l EAQECC with 2d" = n" — k" +2 4 ¢"
such that the value of the copies of maximally entangled
states ¢’ is flexible. Note that the parameter ¢”” of many
EAQECCs constructed in the literature is fixed (for example,
see [10], [11], [13], [29], [36], [42], [45], [49]). Observing the
EAQECCs in Theorems IV.1-IV.4, we know that their para-
meters are flexible. Besides, their relatively large minimum
distance means that they have good error detection and error
correction capabilities.

From Theorems IV.1-IV.4, we can expect a myriad of
new EAQECCs with relatively large minimum distance. Here,
we provide some examples of EAQECCs with flexible parame-
ters in Tables I-IV. The relatively large minimum distance of
these EAQECCs indicates that they have good error detection
and error correction capabilities.

Apart from the example given in Remark I'V.3, Table I gives
some new EAQECCs from Theorem IV.1 for p = 5,e = 4,
{=1andt=23.

Apart from the example given in Remark I'V.4, Table II lists
some new EAQECCs from Theorem IV.2 for p = 3,e = 6,
{=1,z1 = 364, o = 24 and n = 91, 182.

Apart from the example shown in Remark IV.5, Table III
provides some new EAQECCs from Theorem IV.3 for
p = 5e = 6,{ = 1,m = 18,r = 1,n = 186 and
p="Te=40=1,m=50,r=4,n = 200, respectively.
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TABLE II

NEwW EAQECCS FROM THEOREM IV.2 FORp = 3,e = 6,
¢ =1,z1 =364 ANDx2 = 24

New EAQECCs for n = 91 || New EAQECCs for n = 182

[[91, 5,87; 86]] 36 [[182, 8, 175; 174]]56
[[91,6, 86; 85]] 36 [[182,9, 174; 173]] 56
(91,7, 85; 84]] 36 [[182, 10, 173; 172]] 56
191,22, 70; 69]] 36 [[182,45, 138; 137]]36
191,23, 69; 68]] 36 [[182, 46, 137; 136]]6

[9 ] [ ]
91 ] [ ]
(192, 5, 85; 87]J30 [[183,8,176; 175] |50
[ ] [ ]
[ ] [ ]

[92, 6, 87; 86]]56 [183,9, 175; 174]] 56
(92, 7. 86: 85]] 56 (183,10, 174; 173]] 56
(192, 22, 71; 70]] 56 [[183, 45, 139; 138]] 56
(192, 23, 70; 69]] 56 [[183, 46, 138; 137]] 56

[[93,5, 89; 88]] 30 [[184, 8, 177; 176] |6
[[93,6, 88; 87]] 6 ([184,9, 176; 175]36
[93,7,87; 86H3s [ ]

[[184, 10, 175; 174]]36

[[184, 45, 140; 13956
[[184, 46, 139; 138]]56

(193,22, 72: T1]]36
193,23, 71; 70]] 36

TABLE III
NEW EAQECCS FROM THEOREM IV.3 FORp = 5,e = 6,£ =1,
m=186,r =1 ANDp="T,e =4, =1,m =50,r =4
New EAQECCs for n = 186 || New EAQECCs for n = 200
[[186, 3,184; 183]]56 [[200, 5, 196; 195]] 74
[[186,4, 183; 182]]56 [[200, 6, 195; 194]] 74
[[186, 5, 182; 181]]56 [[200, 7, 194; 193]] 74

[[186, 30, 157; 156]56 [[200, 24, 177; 176]] 74
[[186, 31, 156; 155]56 [[200, 25, 176; 175]] 74
[[187, 3, 185; 184]] 56 ([201, 5, 197; 196]]74
] [
] [

([187, 4, 184; 183]] 56 201, 6, 196; 195]] 74
(187, 5, 183; 182]] 56 201, 7, 195; 194]] 4

[[187, 30, 158; 157]56 [[201, 24, 178; 177]] 4
(187,31, 157; 156] |56 [[201, 25, 177; 176]] 74

] [
] [
[[188, 3,186; 185]] 0 ([202,5,198;197]] -4
] [
J [

(188, 4, 185; 184]] 56 202, 6, 197; 196]] 4
(188, 5, 184; 183]] 56 202, 7, 196; 195]] 74

[[202, 24, 179; 178]]74
[[202, 25, 178; 177]] 4

[[188, 30, 159; 158] 56
(188,31, 158; 157]] 56

Finally, apart from the example shown in Remark IV.6,
Table IV also lists some new EAQECCs from Theorem IV.4
forp = 7,e =6,/ =1a = 1w =2t =4n = 196
and p = 13,e = 4,/ = 1,a = 1,w = 2,t = 2,n = 338,
respectively.

V. DISCUSSION ON THE LENGTHS OF OUR EAQECCs
IN THEOREMS IV.1-1V.4

Inspired by the reviewers’ insightful comments, it is mean-
ingful and necessary to make a detailed explanation for why
we further develop the theory on /¢-Galois hulls of MDS

7977

TABLE IV

NEW EAQECCS FROM THEOREM IV.4FORp =T7,e = 6,0 =1,
a=1lw=2t=4ANDp=13,e=40=1,a=1,w=2,t=2

New EAQECCs for n = 196
[[196, 2,195; 194]]76
[[196, 3,194; 193]]76
[[196,4,193;192]]76

New EAQECCs for n = 338
[[338, 3, 336; 335]] 34
[[338,4,335; 334]] 34
[[338, 5, 334; 333]] 134

(196,24, 173; 172]}7 (1338, 24, 315; 314]] 154
[[196,25,172; 171]]76 (1338, 25, 314; 313]] 154

] [ ]

] [ ]
[[197, 2, 196; 195]] 76 339, 3,337; 336]] 154

] [ ]

] [ ]

(197, 3,195; 194]] 76 (339, 4, 336; 335]] 154
[[197,4,194; 193] 76 (339, 5, 335; 334]] 154

(1339, 24, 316; 315]] 154
(1339, 25, 315; 314]] 154

(197, 24, 174; 173]] 6
(197, 25, 173; 172]] 6

codes in the previous sections to construct new families of
EAQECCs. To be specific, the main advantages of this work
are reflected in the following two aspects:

Advantage 1: As revealed in Sections III and IV (e.g., see
Remarks IV.3-1V.6), the range of the dimension ¢* of the [[n+
a,k,n—k+a+1;n—k+ally (@=0,1,2 and take h = 0)
EAQECCs in Theorems IV.1-IV.3 and the [[n 4 b, k,n — k +
b+1;n—k+b]], b=0,1and take h = 0) EAQECCs in
Theorem IV.4 for any 1 < ¢ < § with 2/ | e is wider than
those for the Hermitian case ¢ = £. In particular, when ¢ = 1,

the upper bound L";ti;lj or |2 [fl'J of k attains a maximum.

Advantage 2: For each theorem of Theorems IV.1-1V.4,
the variables ¢ with 2¢ | e correspond to EAQECCs with
different kinds of length sets because the length n therein
is related to ¢. This allows us to obtain different kinds of
EAQECCs in each theorem of Theorems IV.1-IV.4 through
different variables /. More specifically, in each theorem of
Theorems IV.1-1V.4:

(1) For each £ # 1, 5, the corresponding kind of EAQECCs
has some EAQECCs whose lengths cannot be obtained by
those derived from ¢ = 1;

(2) For certain ¢ = f; # 1,35, the corresponding kind
of EAQECCs has some EAQECCs whose lengths cannot be
obtained by those derived from certain ¢ = {3 # 1, 5, where
by # 0.

To finish this section and verify our statement in Advan-
tage 2, we will provide some examples and several tables
(see Tables V, VI, VII and VIII) containing parameters of
EAQECCs derived from Theorems IV.1-IV.4 that possess
different kinds of length sets by considering ¢/ = 1,2,3 (see
Subsections V-A and V-D) and ¢ = 1, 2 (see Subsections V-B
and V-C), and have larger dimension that cannot be yielded
from those by considering the Hermitian case.

It seems that the sets of length n in Theorems I'V.1 and IV.2
are either identical, or, one of the two sets is contained in the
other one. In fact, that is not the case. As a sample, for p = 3,
e = 8 and ¢ = 2, Table IX will supply some lengths coming
from the set of length n in Theorem IV.1 (resp. Theorem IV.2)
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that cannot be obtained by the set of length n in Theorem IV.2
(resp. Theorem IV.1).

We need to fix some notations which will be used in the
sequel. For any two integers x,y with z < y, denote by [z, y]
the set consisting of the integers =, x + 1,...,y. For any two
sets A and B, define their difference by A\B = {z|z €
A, x ¢ B}. The symbol Ay Ll Ay LI --- LI A, represents the
union of the mutually disjoint sets Ay, As, ..., Apy,.

A. Lengthn:%forlgtgpz—landZNein
Theorem 1V.1

In this subsection, let us consider p = 5, e = 12 and ¢ =
l; =i for i = 1,2,3 in Theorem IV.1. In this case, we have

that g—1 = 5'2 —1 =2%.32.7.13-31-601. In what follows,
let us compute the sets of length n = t(q 1) for the cases
¢ = {; =i, where i = 1,2,3. For convemence we denote

by X1 (t), Xo(t) and X3(t) the corresponding sets of length
n=""for f =0 =1,0=10,=2and [ =3 =3,
respectlvely

1.For¢=/¢;, =1, wehave n=1¢-22-32.7-13-31-601
for each 1 <t < 22, then

Xy(t)={t-2%-3%.7-13-31-601|1 <t < 2?}.

2.For/ =0y =2, wehaven=1¢-2-3-7-13-31-601 for
each 1 <t < 2.3, then

Xo(t)={t-2-3-7-13-31-601|]1 <t <2%-3}.

3. For { =/¢3 =3, we have n =1¢-22-32.7-13-601 for
each 1 <t < 22.31, then

Xa(t) = {t-2%.3%.7-13-601|1 <t < 2%.31}.

In order to determine the length set X;(¢)\X;(¢) for each
1 <1 #j <3, weneed to compute the sets X1 (t) N Xo(¢),
X1(t) N X5(t) and Xo(t) N X3(t). We first consider X (t) N
Xo(t). Suppose there exist 1 < t; < 22 and 1 <ty < 23.
3 such that ¢; -22-32.7-13-31-601 = ¢5-2-3-7-
13 - 31 - 601, then ty = 6t1, ie., (t1,t2) = (i,6¢) for i =

2,3, 4. Therefore, X1(t) N X2(t) = X;(t), which implies
that X () C X5(t). Similarly, we obtain X;(t) N X5(t) =
X1(t) and hence X (t) C X3(2).

Now, let us compute Xo(t) N X3(t). Suppose there exist
1 <ty <2%.3and 1 < t3 <22.31 such that t5-2-3-
7-13-31-601 =t3-22-32.7-13-601, hence 31ty = 6t3,
ie., (t2,t3) = (6i,314) for i = 1,2,3,4 and therefore

Xa(t) N X5(t) = {X2(6), X2(12), X2(18), X5(24)}
= {X5(31), X5(62), X5(93), X5(124)}
= X1(t).

Remark V.I: For { = 1,2,3, Table V lists the corre-
sponding [[n,k,n — k + 1;n — k]]s12 EAQECCs derived
from Theorem IV.1 with length sets X7 (), X2(¢) and X3(¢),
respectively. Moreover, Table V also gives the corresponding
[[n, k,n—k+1;n—E]]512 EAQECCs of length n coming from
Xg(t)\Xl(t), Xg(t)\Xg(t), Xg(t)\Xl(t) and Xg( )\Xg(t),
respectively, with dimension 5'2¥ satisfying [gﬁiﬂ +1<k<

LQ‘Z%J or Lgii’” +1<k< L%J that cannot be obtained
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by the Hermitian case ¢ = 6. From Table V, we see that 20
of the 24 kinds of lengths in X5 (¢) for £ = ¢ = 2 cannot be
produced by X (¢) for £ = ¢; = 1, and 120 of the 124 kinds
of lengths in X35(¢) for ¢ = ¢35 = 3 cannot be produced by
X1(¢) for £ = ¢; = 1. Moreover, 20 of the 24 kinds of lengths
in Xo(t) for £ = ¢35 = 2 cannot be produced by X;5(¢) for
¢ = {3 =3, and 120 of the 124 kinds of lengths in X35(¢) for
¢ = ¢35 = 3 cannot be produced by Xs(¢) for £ = ly = 2.

r(g—1)

B. Length n = =" for (¢ — 1) | lem(z;, x2), e ] | 1,
1 <r < A= and 2| e in Theorem IV.2
ged(z;,q—1)

Since 5[71 | 21, there exists a positive integer ¢; such
that 7 = ;1[1 . Then, we obtain that ged(z1,q9 — 1) =
p[ 1gcd(tl,p —1). Hence, the upper bound qul) of r
becomes diy Therefore, the length n in Theorem IV.2

ged(tr,pf—1)
can be expressed as n = %, where (¢ — 1) |
p-—1

1cm(p tl,xg) and 1 <r < Al g =D

In thls subsection, let us consider p = 3, ¢ = 8 and £ =
l; =1 for i = 1,2 in Theorem IV.2. In this case, we obtain
g—1=3%—-1=2%.5.41. For convenience, we denote by
Y71 and Y5 the corresponding sets of length n = %
for { = ¢, =1 and ¢ = {5 = 2, respectively.

1. For ¢ = /1 = 1, we have that

o r-25.5-41
~ ged(z2,25-5-41)°

where 2°-5-41 | lem(24-5-41-#1,29) and 1 < r < m.
Case (1 1): When ged(t1,2) = 1, we have 2° | zo. Write
= 2°2), for any positive integer 5. Then n = m
for 1<r < 2, which implies that the set of length n, denoted

by Y71, is
Y'171:{7«.5b.416|1§7~§2,Ogb,cgl}. (23)

Case (1.2): When ged(t1,2) = 2, we have 2 | ¢1, implying
that x> can be taken as any positive integer. Then, the set of
length n, denoted by Y », is

Yio=1{2°5°-41°0<a <5 0<bec<1}.  (24)

Combining Eq. (23) with Eq. (24), we know that the set of
length n for £ =¢; =1 is

Yi=Y11UY2=Y1,.
2. For / = 05 = 2, we have that

25541
~ ged(z2,25-5-41)°

where 2°-5-41 | lem(22-5-41-t1,79) and 1 <7 < m

Case (2.1): When gcd(t1,8) = 1, we have 2° | x5. Write
xo = 2°x), for any positive integer x5. Then n = W’?Al)
7
for 1 <17 < 8. Thus, the set of the length n, denoted by Y5 1,
is

Yoi ={r-5°-41°1<r <8, 0<bc<1}. (25)
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TABLE V
PARAMETERS OF THE [[n, k,n — k 4+ 1;n — k]]512 EAQECCS IN THEOREM IV.1

l Length set Cardinality Length n t k

1 X1(t) 4 t-22.32.7-13-31-601 [1,4] 1,32 ]]

2 Xa(t) 24 t-2-3-7-13-31-601 [1,24] 1,250 )]
o ePersn 1,124 [, 12352

2 Xa()\Xa(t) 20 £-2:3.7-13-31-601  [1,23)\{6,12,18}  [[ZgF2] +1,| 2552 ]]
2 Xa2()\X5(1) 20 £-2:3.7-13-31-601  [1,23)\{6,12,18}  [[ 32| +1,| 257 ]
30 Xa(®)\Xa(t) 120 £-22.32.7-13-601  [1,123)\{31,62,93} [|ZEn| 1, 1250 ]
3 X(H)\Xa(t) 120 £-22.32.7-13.601  [1,123]\{31,62,93} [|ZFn| 1, 1250 ]

TABLE VI

PARAMETERS OF THE [[n,k,n — k + 1;n — k]]3s EAQECCS IN THEOREM IV.2

¢  Length set  Cardinality Length n a,b,c k
1 Yi 24 20.5Y.41¢  a€[0,5;b,ce(0,1] [1,|22]]
2 Ya 38 2¢.5Y.41¢  a€[0,5;b,ce(0,1] [1,| %]
3-5°.41¢ b,ce[0,1] e
52-41° ce0,1] [1, | 22 ]]
6-5°-41¢ b,ce[0,1] (1, %2 )]
7-5b . 41¢ b,c € [0,1] (1,1 %==]]
2 Yo\n 14 3.50.41° b,c € [0,1] [1, | 22 ]]
52.41¢ c€0,1] e
6-5° . 41° b,c € [0,1] e
7-5°.41¢ b,ce[0,1] e

Case (2.2): When ged(t1,8) = 2, we have 2 | t1 and 4 1 ¢4,
and hence 2° | z5. Similarly, the set of length n, denoted by
Y5 0, is

Yoo ={r-5°-41°1<r <4, 0<bc<1}. (26)

Case (2.3): When ged(t1,8) = 4, we have 4 | t; and 8 1 ¢4,
and hence 2° | z2. Thus, the set of length n, denoted by Y5 3,
is

1/273:{7~.5b.410|1§r§2,ogb,cgl}. 27

Case (2.4): When ged(t1,8) = 8, we have 8 | ¢1, implying
that x5 can be taken as any positive integer. Then the set of

length n, denoted by Y3 4, is
You ={2°-5°-4190<a <5, 0<bc< 1} (28)

By Egs. (25)-(28), we know that the set of length n for
l= 62 =21is

Yo =Ul Ys; =Yo1UYoy =Yo7 UYips.

Then, we know that Y7 C Y5. To determine Y5\Y3,
it suffices to compute Y5 1NY7 2. Now, comparing the elements
in sets Yo ; and Y; o gives rise to

Yo1NYio={2%-5"-4190<a <3, 0<bc<1}.

Remark V.2: As is clear from above, one can verify that
[Y21] = 30, |Yi2| = 24 and |Y31 N Y7 2| = 16. Hence,

we deduce that 14 of the 38 kinds of lengths in Y5 for
{ = {3 = 2 cannot be produced by Y; for ¢/ = ¢, = 1.
These 14 kinds of lengths are: (i) n = 3 - 5% - 41¢ for each
0 <b,c<1 (take r = 3 in Ya1); (ii) n = 52 - 41¢ for each
0<c<1l(taker=5andb=1inY5,); (iii) n = 6- 5 - 41°¢
foreach 0 < b,c <1 (take r =61in Y5 1); (iv) n = 7-50.41¢
for each 0 < b,c < 1 (take » = 7 in Y5 ;). In Table VI, we list
the corresponding [[n, k,n — k + 1;n — k]]ss EAQECCs for
¢ = 1,2 derived from Theorem IV.2 with length n coming
from Y7, Y5 and Y5\Y3, respectively. We note that all the
EAQECC s of length n (except n = 3,6, 7) taken from Y5\Y;
with dimension 3% satisfying L%J +1 <k < L%J
cannot be produced by considering the Hermitian case ¢ = 4.

0
C. Lengthn =rm for 1 <r < pTII, m;zﬁw,
m | (q—1)and 20 | e in Theorem IV.3

P
First, we give the following lemma.
Lemma V.1: Let ¢ = p°® with p being a prime number.
Assume that ¢ | e. Define

q—1
F(O)=(p'—1 d( —)
()= ' ~ Dged (m. ).
where m is a fixed positive integer. For any two positive
integers (1, (o satisfying ¢1 | e and ¢5 | e, if ¢1 | {2, then
F(¢y) < F(¢2) holds.
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Proof: Since {1 | e, {5 | e and ¢; | {2, we obtain that

g—1 p€2 —1
F(t) = " = Dged (m. = - 7=y
-1y p2—1
<(p" -1 d( q ) '
< (0" = Dged (m, 4= ) - e
-1
L =
(0" = Dged (m., £
= F({3),
which completes the proof. [ ]

Observing the conditions in Theorem IV.3, we can rewrite

(pkfl)gcd m, q—1
the length as n = rm, where 1 < r < ( Ll),m|

(¢g—1) and 2¢ | e. Hence, for a fixed m satlsfylng m|(¢g—1)
and for any two positive integers {1, {2 satisfying 2/ | e,
205 | e and ¢y | 42, it follows from Lemma V.1 that the upper

—1 d{m
bound ('~ Dee ( - ) of r for ¢ = {5 is wider than the one
for ¢ = /4. Therefore our EAQECCs with length n = rm for

(p’zl—l)gcd(m 131 (p*2— 1)gcd(m, 2 11)

— 1) +1<r< — coming
from the case ¢ = {5 cannot be generated by the case ¢ = /5.

In this subsection, let us consider p = 5, ¢ = 8 and ¢ =
l; =i for i = 1,2 in Theorem IV.3. In this case, we know
that g — 1 = 5% — 1 = 2°.3.13- 313. For convenience, when
fixing a positive integer m with m | (5% — 1), we denote by
Z1(r) and Z5(r) the corresponding sets of length n = rm for
¢ =1/¢, =1and ¢ = ¢y = 2, respectively. Hence, we obtain
that

4ocd 23.3.13-31
Zi(r) = {n—rm‘l <r< ged(m, 3-13-3 3)}
m

and

24gcd 22.13-313
Zg(r):{nzrm‘lgrg ged(m, )}

m

Remark V.3: By Lemma V.1, we know that Z;(r) C Zs(r).
4gcd(m,23-3-13-313)

— and ro =

For simplicity, we write r; =
24ng(m52 13:313) Based on the previous analysis, for a fixed
m with m | (58 — 1), we deduce that ro — 71 of the ro
kinds of lengths in set Zy(r) for £ = ¢ = 2 cannot be
produced by Z(r) for £ = ¢; = 1. In Table VII, we list
the corresponding [[n, k,n — k + 1;n — k]]ss EAQECCs for
¢ = 1,2 derived from Theorem IV.3 with length sets Z;(r)
and Z5(r), respectively. Moreover, Table VII also gives the
corresponding [[n, k,n —k + 1;n — k]]ss EAQECCs of length
n coming from Z(r)\Z;(r) with dimension 58% satisfying
Lgii’” +1 < k < LQ‘Z%J that cannot be obtained by
the Hermitian case ¢ = 4. In particular, for some different
m with m | (5% — 1), Table VII lists the corresponding
[[n, k,n—k+1;n—k]]ss EAQECCs with 82 kinds of lengths
n = rm coming from the set Z5(r)\Z1(r).

D. Length n = tp® for 1 <t <p®, I <w<<—1all
and 2¢ | e in Theorem IV.4

In this subsection, let us consider p = 3, e = 12 and
¢ =1{; =i fori=1,23 in Theorem IV.4. For convenience,
we denote by Vi, V5 and V3 the corresponding sets of length n

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 67, NO. 12, DECEMBER 2021

in Theorem IV.4 for / = /1 =1,¢ =/, =2 and ¥ = {5 = 3,
respectively. Let

Sy ={t-3¥|1<t<3, 1<w<11},
Sy ={t-32V[1<t<3% 1<w<5},
={t-3%"[1<t <3 1<w<3}.

Though there are some repeated elements ¢; - 3*“i in each
set S; (i = 1,2,3) for some pairs of elements (¢;,w;) with
distinct #;s (1 < ¢; < 3) and distinct w;s (1 < w; < 12 1),
one easily verifies that |S1]| = 23, |S2| = 41 and |S5| = 79.
Besides, we note that

Vi=51, Voa=5USs, Vg=5USs.

To determine which lengths in the set V; are not contained
in the set V; for i # j, we need to compute the set S; N .S
for each 1 < i # j < 3.

First, to determine S; N Ss, suppose there exist 1 < ¢ <
3,1 <w < 11,1 <ty <321 < wy < 5 such that
ty - 3W1 =ty - 322 e to = 3W1—2W2¢,  Moreover, we have
wy — 2wy € [—9,9]. Note that 1 < ¢; < 3 and 1 <ty < 32
This can be divided into four cases below.

(i): When wy — 2wy = —1, ie., (wy,ws) =
1 =1,2,...,5, we have t; = 3to. Hence, (t1,t2) =
In this case, the intersection of S; and So,

(2¢ — 1,1) for
(3,1).
denoted by M7y, is
M, = {3%|1 <i < 5}.

(ii): When wy — 2ws = 0, ie., (wy,w2) = (2i,4) for
i =1,2,...,5, we have t; = to. Hence, (t1,t2) = (i,7)
for i = 1,2,3. In this case, the intersection of S; and S,
denoted by Mo, is

My={j-3%1<i<51<j<3}.

(iii): When wy — 2ws = 1, i.e., (w1, wa) = (2 + 1,4) for
1=1,2,...,5, we have to = 3t¢;. Hence, (t1,t2) = (4, 3t) for
i =1,2,3. In this case, the intersection of S7 and S5, denoted
by M3, is

Mz ={j-3%"|1<i<51<j<3}.
(iv): When w; — 2ws = 2, ie., (w1, w2) = (2 + 1,4) for

i = 1,2,3,4, we have to = 9t;. Hence, (t1,t2) = (1,9).
In this case, the intersection of S; and S3, denoted by My, is

My = {3221 <i < 4}.
By the cases (i)-(iv), we have that
S1 NSy = Ul M;
= {3i|2 <i<12}u{2-3"2<i<11}.  (29)

Hence, |S1 N Sa| = 21. Since Va\Vi = (S1 U S3)\S1 =
S5\S1, we know that

Vo\Vi = {j-3%]j =4,5,7,8, 1 <i <5},

Hence, [V2\V1| = 20. Similar to the steps shown in the
cases (i)-(iv), we get that

S1NSs={33<i<12}u{2-33<i<11}. (30)
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TABLE VII
PARAMETERS OF THE [[n, k,n — k 4+ 1;n — k]]ss EAQECCS IN THEOREM IV.3

l Length set Cardinality Length n r m (fixed value) k

1 Z1(r) r1 rm [1,71] m | (58 —1) [1, [22]]

2 Za(r) o rm [1,72] m | (58 — 1) (1,2t ]]

2 Za(r)\Zi(r) ro — 11 rm [7’1 + 1,7"2} m| (58 —1) [I_gii?J +1, LQZX”J]
2 Za(r)\Zi(r) 4 r-24.13 3, 6] 24.13 [[%%j +1, 25t ]
2 Za(r)\Z1(r) 20 313 [5, 24] 313 [Liii’fj 41,25 ]
2 Za(r)\Zi(r) 2 r-25.13 [2,3] 25.13 [[giﬁj +1, 25t ]
2 Zo(r)\Zi(r) 20 r-2-313 5, 24] 2.313 [Liiﬁj +1,[ 355 ]]
2 Za(r)\Zi(r) 4 r-3-313 5, 8] 3313 [[gif{j +1, 25t ]]
2 Zo(r)\Zi(r) 20 r-22.313 5, 24] 22.313 [Liii’fj +1,[ 35 ]]
2 Za(r)\Zi(r) 4 r-2-3-313 [5,8] 2-3-313 [[gif{j +1,[ 3]
2 Zo(r)\Zi(r) 8 r-2%.313 [5,12] 23 .313 [[iiﬁj +1,[ 35 ]]

S3

Fig. 1. Venn diagram of sets S1, S2 and S3.

Then, |S; N S3| = 19. Since V3\Vi = S3\S5;, we obtain
that
Va\Vi = {j-3%|j € [4,26], 31j, 1 <i<3}
U{j-3%*j=4,57,8, 1<i<3}.

Hence, |V5\V;| = 60. In addition, we also compute that

Son Sy ={33<i<12}u{2-3"i=3,8,9}
u{j-3j=2,4,56,7,8, i =4,6,10}.

Then, |S2 N S5| = 31. Hence, we obtain that

So\S3 = {3%,2- 3%} U {j- 3" =4,5,7,8, i=2,8}, 3D

S5\Sy = {j - 3°|j € [4,26],3 1} U {j- 3% € [10,26],31 j}
L{j-37j=4,5,7,8 L {j-3%j € [4,26],31}.

(32)

We also notice that S1 N S5N.S3 = S1NS3. This means that
S1 N S3 C Sy. Therefore, it will be convenient to determine
the two sets V5\V3 and V5\V; by using the Venn diagram
of sets Sy, So and Ss3 (see Fig. 1, where the three ellipses
represent the sets S1, So and S3 in which, for convenience,
they are divided into the disjoint subsets .J; fori =1,2,...,7
by using the relation S NS5 C S5).

Based on Fig. 1, we know that V5\V3 = (51 U S2)\(S1 U
Sg) = JsUJ7, 52\53 = JoUJgUJ7, S1 NSy = Jo LU J3 and

S1 N S3 = Js. Hence, we obtain that
Vo\V3 = S5\ S3 — Jo = 52\ S5 — (S1 N S2 — 51N Ss),
which, together with Egs. (29)-(31), gives rise to
Vo\Vs = {j-3"j = 4,5,7,8, i = 2,8}.
Hence, |V2\V3| = 8. Finally, it follows from Fig. 1 that
Vs\Va = (81 U S3)\(S1 U S2) = J5 = S3\ 52,

as shown in Eq. (32). Hence, |V3\ V3| = 48.

Remark V.4: For ¢ = 1,2,3, Table VIII lists the corre-
sponding [[n, k,n — k + 1;n — k]]312 EAQECCs derived from
Theorem IV.4 with length sets V;, V5 and Vi, respectively.
Moreover, Table VIII also gives the corresponding [[n, k,n —
k+1;n — k]]312 EAQECCs of length n coming from the sets
Vo\Vi, Va\ V3, V3\ Vi and V3\ V3, respectively, with dimension

12K qaticfus 354n—1 84n 354n—1
312F satisfying [ *553+ [+1 < k < [5t] or | S [+1 <
k< LQGQE”J that cannot be obtained by the Hermitian case

¢ = 6. From Table VIII, we see that 20 of the 43 kinds of
lengths in V5 for £ = {5 = 2 cannot be produced by V; for
{ = /{1 = 1, and 60 of the 83 kinds of lengths in V3 for
{ = {3 = 3 cannot be produced by V; for ¢ = ¢, = 1.
Moreover, 8 of the 43 kinds of lengths in V5 for £ = ¢ = 2
cannot be produced by V3 for ¢ = ¢35 = 3, and 48 of the
83 kinds of lengths in V3 for ¢ = {3 = 3 cannot be produced
by V5 for £ = {5 = 2.

E. Comparison of the Length Sets of the EAQECCs in
Theorems 1V.1 and IV.2 for p =3, e =8 and { = 2

It seems that the sets of length n in Theorems I'V.1 and IV.2
are either identical, or, one of the two sets is contained in the
other one. Fortunately, that is not the case. In fact, for the
same ¢, the corresponding set of length n in Theorem IV.1
(resp. Theorem IV.2) has some lengths that cannot be produced
by the set of length n in Theorem IV.2 (resp. Theorem IV.1).

To verify this statement, let us consider an example for
p = 3, e 8 and ¢/ = 2 in Theorems IV.1 and IV.2.
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TABLE VIII
PARAMETERS OF THE [[n, k,n — k 4+ 1;n — k]]312 EAQECCS IN THEOREM IV .4

¢  Length set Cardinality Length n i i k

1 Vi 23 j-3i [1,3] [1,11] [1, 1242 ]

2 Va 43 j-3i [1,3] [1,11] (1,182 ]]
j-32% 4,5,7,8 [1,5] M=)

3 Vs 83 j-3 [1,3] [1,11] (1, 2552 1]
j-3% [4,26],315  [1,3] [1, [ 2552 )
j 3%t 4,5,7,8 [1,3] [1, [ 25k ]

> B\ 20 i3 asTs (Ls] [[3ert] 3]

2 Vh\Vi 8 j-32 4,5,7,8 - [[55est + 1, | 36 )]
i3 asTs - [R5

3 Va\W 60 io3% 42835 (1,3 [[Znrt] 4125
jo3%tasTs (1,3 [[B5E] 1, 2]

SRRV 8 i80 st - [[5EE425]]
3% 02635 - [+ 25 ]
.37 4,5,7,8 — IR B )]
j-3° 4201315 = [[Egesl]4n %]

TABLE IX

COMPARISON OF THE LENGTH SETS OF THE EAQECCS IN
THEOREMS IV.1 ANDIV.2 FORp = 3,e =8 AND{ = 2

Remark V.5: Based on the above analysis, Table IX lists
all the corresponding lengths coming from the sets Ws(t), Ya,
Wa(t)\Yz and Y\ Ws(t), respectively. As shown in Table IX,
we know that 34 of the 38 kinds of lengths in the set Y5 cannot

Length set Cordinally Le;l ghn babe be obtained by the set Wa(t). At the same time, 4 of the 8
Walt) ° b2 oedl te g kinds of lengths in the set W (¢) cannot be yielded from the
Y, 38 20.5%.41¢  a €0,5];b,c € [0,1] set Y.
3.5b.41¢ b,c € [0,1]
52 . 41¢ cefo0,1]
6.5b . 41¢ b [0,1] VI. CONCLUSION
7.5b.41¢ b,ce0,1] In this paper, by investigating the GRS codes and extended
Wa(t)\Ya 4 £.92.5.41 te{3,5,6,7} GRS codes, we constructed eleven families of MDS codes with
Ya\Wa(t) 34 9a aco,5] {-Galois hulls of arbitrary dimensions via four different tools,
%a .5 aco5 i.e., (i) the norgl mapping fror.r.llF(’; to IF;@; (ii) the dir.e?t prod-
24 .41 a o5 uct Qf two cyclic s.ubgroups;. (.111) the coset decompos.ltlon of a
9a.5. 41 o€ 0,1] cyclic group; and (iv) an additive subgroup of I, and its cosets.
3.5b. 41¢ bee[0,1] Through thes.e MDS codes, we presented eleven families of
52 41c ce 1] EAQECCs with flexible parameters in Theorems IV.1-1V.4.
b e ’ Based on the analysis in Sections III, IV and V, let us make
6-5"-41 b,c €10,1] a summary on the parameters of our EAQECCs constructed
7-5%.41° b,c€[0,1]

In this case, we denote by Wh(t) the set of length n of the
[[n, k,n —k+1;n — k]]3s EAQECCs in Theorem IV.1. Then,
we have that

Wa(t) = {t-2%-5-41|1 <t < 8}.

As shown in Table VI (see also Table IX), the set of
length n of the [[n,k,n — k 4+ 1;n — k]]ss EAQECCs
in Theorem IV.2 is Y, with cardinality |Y2] = 38. One
can check that Wy(1), W5(2), Wa(4), W5(8) € Y, and
Wy(3), Wa(5), Wa(6), Wa(7) ¢ Ya. Hence, we have Wy (t) N
Yy = {WQ(l)v W2(2)a Wa (4)7 W2(8)}

in Theorems IV.1-1V.4.

o When / increases, the range of the dimension q’c becomes
smaller. It attains the maximum for ¢ = 1 and the
minimum for £ = 5 (Hermitian case).

o In general, when ¢ increases, the cardinality of the set
of length n becomes larger. It attains the maximum for
¢ = § (Hermitian case) and the minimum for ¢ = 1.
Moreover, for certain ¢ = {1 # 1, 5, the corresponding
kind of EAQECCs has some EAQECCs whose lengths
cannot be obtained by those derived from certain ¢/ =
ly # 1,5, where 1 # (5.

All in all, we believe that the approaches shown in

Sections II and III will be very useful for finding more new
families of EAQECCs with flexible parameters.
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Next, let us look at two problems. Since the dimension
k of the MDS codes constructed in Theorems IILI1-IIL11
is bounded by L”p",f—fglj or £ J?J, one has the following
problem.

Problem VI.1: How to improve the bound of the dimension
k of MDS codes in Theorems III.1-III.11 to a larger value
such that k& > L%J or k> L%J?

If this problem is solved, then the dimensions of the
corresponding EAQECCs in Theorems IV.1-IV.4 will have a
broader range.

Note that the ¢-Galois dual code C*¢ of an [n, k], MDS
code C is an [n,n — k|, MDS code (see [40]). So it follows

from Corollary IV.1 that there also exists an

[[n, n—k—dim(Hully(C**)), k41; k—dim(Hull,(C**))]],

(33)
EAQECC. For the Euclidean case (i.e., { = 0) and
Hermitian case (ie., £ = 5 for even ¢), we have

Hullp(C) = Hullg(C*#) and Hully(C) = Hully(CtH)
since (Ct#)te = C and (Ct#)tw C. This implies
that the parameters of the EAQECCs in Eq. (33) are deter-
mined by dim(Hullg(C)) when £ = 0 or determined by
dim(Hully(C)) when £ = § (if e is even). However, we usu-
ally have (C-¢)*¢ 2 C for £ # 0 and ¢ # £. Naturally, we give
the following problem.

Problem VI2: (1) How to determine the relationship
between Hull,(C) and Hully(C+¢)?

(2) Further, is there an equation to link dim(Hull,(C)) with
dim(Hull,(C+))?

If this problem is solved, then the parameters in Eq. (33) will
be determined by dim(Hully(C)). As a consequence, we will
obtain another eleven families of EAQECCs with flexible
parameters apart from those shown in Theorems IV.1-IV.4.
Then, in terms of [3], the EAQECCs with 2k < n in
Eq. (33) will produce many catalytic quantum error-correcting
codes (CQECCs) with flexible parameters determined by
dim(Hully(C)).
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