
Math. Z. (2017) 286:1323–1356
DOI 10.1007/s00209-016-1803-x Mathematische Zeitschrift

On the fundamental domain of affine Springer fibers

Zongbin Chen1

Received: 16 September 2015 / Accepted: 12 October 2016 / Published online: 19 November 2016
© Springer-Verlag Berlin Heidelberg 2016

Abstract Let G be a connected reductive algebraic group over an algebraically closed field
k, γ ∈ g(k((ε))) a semisimple regular element, we introduce a fundamental domain Fγ for the
affine Springer fibers Xγ . We show that the purity conjecture of Xγ is equivalent to that of
Fγ via the Arthur–Kottwitz reduction. We then concentrate on the unramified affine Springer
fibers for the group GLd . It turns out that their fundamental domains behave nicely with
respect to the root valuation of γ . We formulate a rationality conjecture about a generating
series of their Poincaré polynomials, and study them in detail for the groupGL3. In particular,
we pave them in affine spaces and we prove the rationality conjecture.

1 Introduction

Let k be an algebraically closed field. Let F = k((ε)) be the field of Laurent series with
coefficients in k, O = k[[ε]] the ring of integers of F , p = εk[[ε]] the maximal ideal of O.
We fix a separable algebraic closure F of F , let val : F× → Q be the discrete valuation
normalised by val(ε) = 1.

Let G be a connected reductive algebraic group over k, we make the assumption that
char(k) > rk(G), where rk(G) is the semisimple rank of G. Let GF be the base change of G
from k to F . Let T be a maximal torus of GF over F . Their Lie algebras will be denoted by
the corresponding Gothic letters. Let K = G(O) be the standard maximal compact subgroup
of G(F). We have the affine grassmannianX = G(F)/K , which is an ind-k-scheme. For a
regular element γ ∈ t(O), the affine Springer fiber Xγ at γ

Xγ = {g ∈ G(F)/K |Ad(g−1)γ ∈ g(O)}
was introduced by Kazhdan and Lusztig [17]. The most striking property that these affine
Springer fibers are conjectured to have is the following:
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1324 Z. Chen

Conjecture 1.1 (Goresky–Kottwitz–MacPherson) The cohomology of Xγ is pure in the
sense of Deligne.

Assuming this conjecture, Goresky et al. [12] have proved the fundamental lemma of
Langlands–Shelstad in the unramified case, i.e. when the torus T splits under an unramified
extension of F . Following the same strategy, but assuming a truncated variant of the purity
conjecture, Chaudouard and Laumon [5] also prove Arthur’s weighted fundamental lemma
in the unramified case. As it will turn out, their variant of the purity conjecture is equivalent
to the Conjecture 1.1, see Remark 3.1.

Although the fundamental lemma has been proven by Ngô [20] and the weighted funda-
mental lemma by Chaudouard and Laumon [6,7], the purity conjecture remains open except
in several particular cases. Goresky et al. [13] have proved it when γ is equivalued, i.e. the
elements α(γ ) ∈ F have the same valuation for all the roots α of GF with respect to TF .
Lucarelli [19] constructed an affine paving of Xγ for the unramified elements γ ∈ gl3(F),
without the equivalued condition. Generalising his method in a more conceptual way, we [3]
construct affine pavings ofXγ for the unramified elements γ ∈ gl4(F). As a side result, we
also complete the case of GL3.

In general, it is expected thatXγ admits a Hessenberg paving. By the word “Hessenberg
paving” of an ind-k-scheme X , we mean an exhaustive increasing filtration ∅ � X1 � X2 �

· · · of X by closed complete subschemes Xi of finite type over k such that each successive
difference Xi+1\Xi is a disjoint union of iterated affine space bundles over Hessenberg
varieties. (For the definition of Hessenberg variety, we refer the reader to [13], §2.) When γ

is unramified, we believe that Xγ even admits an affine paving. In the special case when G
is of type A, it seems to us that Xγ always admits affine pavings.

One of the difficulties to construct affine pavings is due to the fact that the affine Springer
fibers are generally not of finite type. But their structure is not completely arbitrary either. In
fact, they have a large symmetry group. The group T (F) acts on Xγ with one of its orbits
being dense open in Xγ . So the free abelian discrete group � = π0(T (F)) acts simply and
transitively on the irreducible components ofXγ . It is desirable to use this symmetry to reduce
the study of Xγ to that of its irreducible components. But the condition of irreducibility is
difficult to explore. Instead, we construct a fundamental domain Fγ of Xγ with respect to
the action of �, which should be exactly one of the irreducible components of Xγ .

When T is split over F , the construction of Fγ runs roughly as follows: since T splits,
we have T = T0,F for some maximal torus T0 of G over k. Let P(T0) be the set of Borel
subgroups of G containing T0. For x ∈ X , B ∈ P(T0), let fB(x) ∈ X∗(T0) be the unique
co-character ν such that x ∈ UB(F)ενK/K , where UB is the unipotent radical of B. We
denote by Ec(x) the convex hull of ( fB(x))B∈P(T0) in X∗(T0)⊗R. Take a point x0 in general
position on Xγ , let

Fγ = {x ∈ Xγ |Ec(x) ⊂ Ec(x0), νG(x) = νG(x0)},
where the second condition in the bracket means that x and x0 lie on the same connected
component of X .

Our first main result is the following:

Theorem 1.2 For any γ ∈ t(O), suppose that FM
γ is cohomologically pure for any proper

Levi subgroup M of G containing T . Then Xγ is cohomologically pure if and only if Fγ is.

For the group G = GL1, we have Fγ = pt et Xγ = Z × pt, which are obviously
cohomologically pure. Using Theorem 1.2 inductively, we see that the conjecture of Goresky,
Kottwitz and MacPherson is equivalent to
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On the fundamental domain of affine Springer fibers 1325

Conjecture 1.3 The cohomology of Fγ is pure in the sense of Deligne.

At this stage, we should make a few comments on the advantage of Conjecture 1.3 over
Conjecture 1.1. Firstly, since Fγ is of finite type, we can count its rational points when the
base field k is taken to be a finite field. The counting result can give us a hint on how to
construct affine pavings. Secondly, in a forthcoming paper (a very preliminary version can
be found at [4]), we outline a conjectural general procedure to construct affine pavings for
cohomologically pure algebraic varieties admitting nice torus action. Basically, we look at
the moment graph of the torus action and introduce a formal Poncaré polynomial for each
acyclic orientation of the moment graph. We conjecture that whenever the formal Poincaré
polynomial attains the minimal, we obtain a generalised affine paving. The reader is referred
to §3.4 of [4] for more details. To apply this conjecture, we need the ind-scheme in question
to be of finite type. In fact, it is this conjecture that motivates us to the construction of Fγ .

We believe that Fγ is an irreducible component ofXγ , and that it is also the normalisation
of �\Xγ . This picture can be put in another context which is better suited for deformation.
Recall the following construction of Laumon [18]: let C be a rational projective curve with a
unique planar singularity at x ∈ C such that the completed local ring ̂OC,x is isomorphic to
O[γ ]. Let JacC be the compactified Jacobian of C , which is the moduli space of torsion-free
coherent sheaves of generic rank 1 and of degree 0 on C . Among others, Laumon shows that
there exists a morphism �\Xγ → JacC , which is finite, radicial and surjective. In particu-
lar, this implies that the étale cohomologies of �\Xγ and JacC are isomorphic. In general,
we have the “formule de produit” de Ngô [20], §4.15, which gives a uniformisation of the
compactified Jacobian of a projective irreducible algebraic curve with planar singularities by
products of the affine Springer fibers associated with the singularities. Based on these obser-
vations, we restate the conjectures of Goresky, Kottwitz, MacPherson and of Laumon [18]
§3.2 as follows, which hopefully may lead to a proof of the purity conjecture by deformation.

Conjecture 1.4 Let C be a projective geometrically integral algebraic curve over k. Suppose
that all the singularities of C are planar. Then the normalisation of the compactified Jacobian
of C is cohomologically pure.

Now we restrict to the group G = GLd+1. Let T be the maximal torus of G of diagonal
matrices, let B0 be the Borel subgroup of G of the upper triangular matrices. Let � = {αi, j }
be the root system of G with respect to T , let αi = αi,i+1, i = 1, . . . , d , be the simple roots
with respect to B0. Let γ ∈ t(O) be regular, it is said to be in minimal form if

val(αi, j (γ )) = min
i≤l≤ j−1{val(αl(γ ))}, ∀ i < j.

In this case, we say that the root valuation of γ is (val(α1(γ )), . . . , val(αd(γ ))). According
to [3] appendix, we can always conjugate γ such that it is in minimal form, and for n =
(n1, . . . , nd) ∈ Nd , we can find γ ∈ t(O) in minimal form with root valuation n.

Conjecture 1.5 The topology of Fγ only depends on its root valuation. Let Pn(q) be its
Poincaré polynomial. The power series

Q(q; 
t ) :=
+∞
∑

n1=1
· · ·

+∞
∑

nd=1
P(n1,...,nd )(q) tn11 · · · tndd ∈ Z[[q; t1, . . . , td ]]

is a rational fraction, i.e. it is an element of Z(q; t1, . . . , td).
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1326 Z. Chen

In particular, the conjecture implies that it is enough to do finitely many computations in
order to get the Poincaré polynomials of all the Fγ ’s.

Chaudouard and Laumon [5] have calculated the T -equivariant homology of cohomo-
logically pure truncated affine Springer fibers, following the strategy of Goresky et al. [12].
Assume that Fγ is cohomologically pure, we then reduce the rationality of Q(q; 
t ) to that
of another power series, which admits a certain geometric interpretation via toric varieties.
We refer the reader to §4 for more details.

For the groups GL2 and GL3, we have been able to calculate the Poincaré polynomial of
Fγ , without any hypothesis. The same method works for GL4, but the combinatorics is too
complicated to write down.

Theorem 1.6 (1) For G = GL2, any element γ ∈ t(O) is automatically in minimal form.
Let n be its root valuation. Then the Poincaré polynomial of Fγ is

∑n
i=0 qi .

(2) For G = GL3, let n = (n1, n2) ∈ N2, n1 ≤ n2, let γ ∈ t(O) be in minimal form with
root valuation n. The fundamental domain Fγ can be paved in affine spaces, and the
paving only depends on n. Its Poincaré polynomial is

Pn(q) =
n1
∑

i=1
i(q4i−2 + q4i−4)+

n1+n2−1
∑

i=2n1
(2n1 + 1)q2i

+
2n1+n2−1
∑

i=n1+n2
4(2n1 + n2 − i)q2i + q4n1+2n2 .

The rationality conjecture in these cases are easy consequences of the theorem.

Notations

We fix a split maximal torus A of G over k. Let � = �(G, A) be the root system of G with
respect to A, letW be theWeyl group ofG with respect to A. For any subgroup H ofG which
is stable under the conjugation of A, we note�(H, A) for the roots appearing in Lie(H). We
fix a Borel subgroup B0 of G containing A. Let 	 be the set of simple roots with respect to
B0, let (
α)α∈	 be the corresponding fundamental weights. To an element α ∈ 	, we have
a unique maximal parabolic subgroup Pα of G containing B0 such that �(NPα , A)∩	 = α,
where NPα is the unipotent radical of Pα . This gives a bijective correspondence between the
simple roots in 	 and the maximal parabolic subgroups of G containing B0. Any maximal
parabolic subgroup P of G is conjugate to certain Pα by an element w ∈ W , the element
w
α doesn’t depend on the choice of w, we denote it by 
P .

We use the (G, M) notation of Arthur. Let F(A) be the set of parabolic subgroups of G
containing A, letL(A) be the set of Levi subgroups of G containing A. For every M ∈ L(A),
we denote by P(M) the set of parabolic subgroups of G whose Levi factor is M , and by
F(M) the set of parabolic subgroups of G containing M . For P ∈ P(M), we denote by P−
the opposite of P with respect to M . Let X∗(M) = Hom(M, Gm) and a∗M = X∗(M)⊗ R.
The restriction X∗(M) → X∗(A) induces an injection a∗M ↪→ a∗A. Let (aMA )∗ be the subspace
of a∗A generated by �(M, A). We have the decomposition in direct sums

a∗A = (aMA )∗ ⊕ a∗M .

The canonical pairing

X∗(A)× X∗(A)→ Z
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On the fundamental domain of affine Springer fibers 1327

can be extended bilinearly to aA × a∗A → R, with aA = X∗(A) ⊗ R. For M ∈ L(A), let
aMA ⊂ aA be the subspace orthogonal to a∗M , and aM ⊂ aA be the subspace orthogonal to
(aMA )∗. We have also dually the decomposition

aA = aM ⊕ aMA ,

letπM , πM be the projections to the two factors.More generally, for L , M ∈ F(A), M ⊂ L ,
we also have a decomposition

aM = aL ⊕ aLM .

To save notation, we also write πL , π L for the projections to the two factors.
We identify X∗(A) with A(F)/A(O) by sending χ to χ(ε). With this identification, the

canonical surjection A(F)→ A(F)/A(O) can be viewed as

A(F)→ X∗(A). (1)

We use �G to denote the quotient of X∗(A) by the coroot lattice of G (the subgroup of
X∗(A) generated by the coroots of A in G). We have a canonical homomorphism

G(F)→ �G , (2)

which is characterised by the following properties: it is trivial on the image of Gsc(F) in
G(F) (Gsc is the simply connected cover of the derived group of G), and its restriction to
A(F) coincides with the composition of (1) with the projection of X∗(A) to �G . Since the
morphism (2) is trivial on G(O), it descends to a map

νG : X → �G ,

whose fibers are the connected components of X .
Finally, we suppose that γ ∈ t(O) satisfies γ ≡ 0 mod ε to avoid unnecessary compli-

cations.

2 The fundamental domain

2.1 Truncated affine Springer fibers

For M ∈ L(A), the natural inclusion of M(F) in G(F) induces a closed immersion ofX M

in X G . For P = MN ∈ F(A), we have the retraction

fP : X → X M

which sends gK = nmK to mM(O), where g = nmk, n ∈ N (F), m ∈ M(F), k ∈ K is
the Iwasawa decomposition.

Remark 2.1 We want to emphasise that the retraction fP is not a morphism between ind-k-
schemes. In fact, it is not even a continuous map. But it becomes a morphism when restricted
to the inverse image of each connected component of X M .

To see this, for μ ∈ �M , let X M,μ = ν−1M (μ), the inverse image f −1P (X M,μ) =
N (F)X M,μ is a locally closed ind-k-scheme of X . The restriction

fP : N (F)X M,μ → X M,μ
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1328 Z. Chen

is easily seen to be an infinite dimensional homogeneous affine fibration. The problem with
the global fP is that, while X M is the disjoint union of its connected components X M,μ,
the affine grassmannian X is not the disjoint union of N (F)X M,μ as an ind-k-scheme.

More generally we can define f LPL : X L → X M for L ∈ L(A), L ⊃ M and PL ∈
PL(M). These retractions satisfy the transitivity property: suppose that Q ∈ P(L) satisfies
Q ⊃ P , then

fP = f LP∩L ◦ fQ .

For P ∈ F(A), we have the function HP : X → aGM which is the composition

HP : X fP−→ X M νM−→ �M → aGM .

There is a notion of adjacency among the parabolic subgroups in P(M): two parabolic
subgroups P1 = MN1, P2 = MN2 ∈ P(M) are said to be adjacent if both of them are
contained in a parabolic subgroup Q = LU such that L ⊃ M and rk(L) = rk(M)+1. Given
such an adjacent pair, we define an element βP1,P2 ∈ �M in the following way: consider
the collection of elements in �M obtained from coroots of A in n1 ∩ n−2 , we define βP1,P2
to be the minimal element in this collection, i.e. all the other elements are positive integral
multiples of it. Note that βP2,P1 = −βP1,P2 , and if M = A, then βP1,P2 is the unique coroot
which is positive for P1 and negative for P2.

Proposition 2.1 (Arthur [1]) Let P1, P2 ∈ P(M) be two adjacent parabolic subgroups. For
any x ∈ X , we have

HP1(x)− HP2(x) = n(x, P1, P2) · βP1,P2 ,

with n(x, P1, P2) ∈ Z≥0.

Proof We give a proof for the case when M = A is a split maximal torus of G, the general
case follows by applying the projection from aGA to aGM .

For any two adjacent Borel subgroups B ′, B ′′ ∈ P(A), let P be the parabolic subgroup
generated by B ′ and B ′′. Let P = LU be the Levi factorisation. The application HB′ factor
through fP , i.e. we have commutative diagram

X

fP
HB′

X L
HL
B′∩L

aGT

and similarly for HB′′ . Since L has semisimple rank 1, the proposition is thus reduced to

G = SL2. In this case, let A be the maximal torus of the diagonal matrices, B ′ =
(∗ ∗
∗
)

,

B ′′ =
(∗
∗ ∗

)

, and we identify aGA with the line H = {(x,−x)|x ∈ R} ⊂ R2 in the usual

way. By the Iwasawa decomposition, any point x ∈ X can be written as x =
(

a b
d

)

K . Let

m = min{val(a), val(b)}, n = val(d), then m + n ≤ val(a)+ val(d) = 0 and

HB′(x) = (−n, n), HB′′(x) = (m,−m).
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On the fundamental domain of affine Springer fibers 1329

So

HB′(x)− HB′′(x) = (−(n + m), n + m) = −(n + m) · βB′,B′′ ,

and the proposition follows. ��
For any point x ∈ X , we write EcM (x) for the convex hull in aGM of the HP (x), P ∈

P(M). For any Q ∈ F(M), we denote by EcQM (x) the face of EcM (x) whose vertices are
HP (x), P ∈ P(M), P ⊂ Q. When M = A, we simplify the notations to Ec(x) and EcQ(x)
respectively.

Definition 2.1 A family D = (λP )P∈P(M) of elements in aGM is called a positive (G, M)-
orthogonal family if it satisfies

λP1 − λP2 ∈ R≥0 · βP1,P2 ,

for any two adjacent parabolic subgroups P1, P2 ∈ P(M).

Given such a positive (G, M)-orthogonal family, we will denote again by D the convex
hull of the λP ’s. For Q = LU ∈ F(M), parallel to EcQM (x), we denote by DQ the face of D
whose vertices are λP , P ∈ P(M), P ⊂ Q. With the projection π L , it will also be seen as
a positive (L , M)-orthogonal family.

Following Chaudouard and Laumon [5], we define the truncated affine grassmannian
X (D) to be

X (D) = {x ∈ X |EcM (x) ⊂ D},
and the truncated affine Springer fiber Xγ (D) to be the intersectionXγ ∩X (D). It should
be pointed out that both X (D) and Xγ (D) can have several connected components, and
there is slight difference between different components. We give an illustration of this point
in the coming Example 2.2.

Example 2.1 Let λ ∈ X∗(A) be a dominant cocharacter with respect to B0, we have the
positive (G, A)-orthogonal family D = (λB)B∈P(T ) with λwB0 = w(λ). Let X |λ|(D) be
the connected component of X (D) containing ελ, then

X |λ|(D) = Sch(λ),

where Sch(λ) is the affine Schubert variety K ελK/K .
To see this, we need the Bruhat–Tits decomposition of Sch(λ). Let I be the standard

Iwahori subgroup, i.e. it is the pre-image of B0 under the reduction G(O)
mod ε−−−−→ G(k). The

Bruhat–Tits decomposition states that

Sch(λ) =
⋃

μ∈X∗(A)

μ≺λ

IεμK/K ,

where ≺ means the Bruhat–Tits order on X∗(A) with respect to I .
Now that Sch(μ) is an A-invariant projective algebraic variety, we see that

lim
t→0

χ(t)x ∈ Sch(λ)A,

for any point x ∈ Sch(λ) and any regular cocharacter χ ∈ X∗(A). This implies that Sch(λ) ⊂
X |λ|(D).
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1330 Z. Chen

Conversely, if there exists any point x in X |λ|(D)\Sch(λ), it must lie in IενK/K for
some εν /∈ Sch(λ)A, i.e. the image of ν in aGA will lie outside the convex polytope D. Now
look at the affine Schubert cell IενK/K . Choose an element a ∈ t such that the associated
Moy–Prasad filtration gives (GF )a,0 = I . More precisely, the choice of a satisfies

Lie(I ) =
⊕

(α,n)∈�(G,T )×Z
α(a)+n≥0

gαεn + gεN , ∀N � 0.

The reader can refer to [3], §2 for a brief review of Moy–Prasad filtration. We have

IενK/K ∼= I/I ∩ Ad(εν)K ∼=
⊕

(α,n)∈�(G,T )×Z
α(a)+n≥0, α(ν)>n

gαεn . (3)

Let U be the unipotent subgroup of G with Lie algebra
⊕

α∈�(G,T )

α(ν+a)>0

gα.

It follows from the isomorphism (3) that

IενK/K ⊂ U (O)ενK/K .

Let B ∈ P(A) be a Borel subgroup containing U . The above inclusion implies HB(x) =
ν /∈ D, contradictory to the hypothesis x ∈ X |λ|(D).

Example 2.2 Let G = GLd+1, let A be the maximal torus of the diagonal matrices. Let
D ⊂ aGA be a positive (G, A)-orthogonal family, we want to look at the difference between
connected components of X (D).

The map νG : X → �G ∼= Z sends gK to val(det(g)) for any g ∈ G(F). Denote
ν−1G (n) by X (n). We can identify the central connected component X (0) with X SLd+1 . Let
�i = diag(ε, . . . , ε, 1, . . . , 1)with i terms of ε, i = 1, . . . , d . The translation by εn�i gives
an isomorphism between X (0) and X (n(d+1)+i).

Since HB(εnx) = HB(x) for any x ∈ X , n ∈ Z, we only need to look at the differences
betweenX (0)(D) andX (i)(D), for i = 1, . . . , d . Let B0 be the Borel subgroup of the upper
triangular matrices. Let {αi }di=1 be the simple roots of G with respect to B0. Let {
∨

i }di=1
be the corresponding fundamental coweights of G, i.e. they are elements in X∗(A) ⊗ Q
characterised by αi (


∨
j ) = δi j , ∀ i, j = 1, . . . , d . Since the translation by �i induces an

isomorphism between X (0) and X (i), the image of A-invariant points X (0),A and X (i),A

in aGA will differ by a translation of 
∨
i . Hence a translation by �i is necessary to get an

isomorphism betweenX (0)(D) andX (i)(D+
∨
i ), where D+
∨

i is the translation of D
by 
∨

i .

2.2 The fundamental domain

We begin by recalling several results concerning the action of T (F) on the affine Springer
fiber Xγ . Let � = π0(T (F)), it is a discrete free abelian group.

Proposition 2.2 (Kazhdan–Lusztig [17]) The group � acts freely on Xγ with the quotient
�\Xγ being a projective k-scheme, and the quotient map X → �\Xγ is an étale Galois
covering.
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On the fundamental domain of affine Springer fibers 1331

A point x = gK ∈ Xγ is said to be regular if the image of Ad(g−1)γ under the reduction
g(O) → g(k) is regular. Let X reg

γ be the open sub variety of Xγ of the regular points.

Proposition 2.3 (Bezrukavnikov [2]) The group T (F) acts transitively on X
reg
γ .

Proposition 2.4 (Ngô [20]) The subvariety X reg
γ is open dense in Xγ .

The last proposition is proved in an indirect way. In fact, one needs to use Laumon’s
observation on the affine Springer fibers and the compactified Jacobians, as recalled briefly
in the introduction, and to use a corresponding property of the compactified Jacobians. As a
consequence of the above two propositions, the abelian group � acts freely and transitively
on the irreducible components of Xγ .

Let S be the maximal F-split subtorus of T . Let M0 be the connected component of the
centraliser of S in G, then T is anisotropic modulo center in M0,F . We also have � = �M0 .
Without any loss of generality, we may assume that M0 contains A.

Goresky et al. [14] have given a characterisation of the regular points inXγ . To formulate
it,weneed to define an invariantn(γ, P1, P2) ∈ Z≥0 for any two adjacent parabolic subgroups
P1 = M0N1, P2 = M0N2 ∈ P(M0). The Galois group Gal(F/F) acts on the set of roots
of TF in n1 ∩ n−2 . Let α be such a root, let Fα be the field of definition of α. Let valFα be
the valuation normalised such that any uniformiser in Fα has valuation 1, i.e. valFα (ε) =
[Fα : F]. Let mα be the unique positive integer such that the image of α∨ in �M0 is equal to
mα · βP1,P2 . Now we define

n(γ, P1, P2) =
∑

valFα (α(γ )) · mα,

where the sum is taken over a set of representatives α of the orbits of Gal(F/F) on the set
of roots of TF in n1 ∩ n−2 .

Proposition 2.5 (Goresky–Kottwitz–MacPherson) Let x ∈ Xγ .

(1) For any two adjacent parabolic subgroups P1, P2 ∈ P(M0), we have

n(x, P1, P2) ≤ n(γ, P1, P2).

(2) The point x is regular in Xγ if and only if the following two conditions holds:

(a) the point fP (x) is regular in X M0
γ for all P ∈ P(M0);

(b) for any two adjacent parabolic subgroups P1, P2 in P(M0), one has

n(x, P1, P2) = n(γ, P1, P2).

In the proof of Goresky, Kottwitz and MacPherson, the general case is deduced from the
unramified case, by base change to the splitting field of γ . We will reproduce their proof in
the unramified case.

Lemma 2.6 (Goresky–Kottwitz–MacPherson) Let γ ∈ a(O). A point x ∈ Xγ is regular if
and only if for any Levi subgroup M ∈ L(A) of semisimple rank 1, the point fP (x) ∈ X M

γ

is regular for any P ∈ P(M).

Proof For x = gK ∈ Xγ , the image of Ad(g)−1γ under the reduction g(O) → g(k)
is well defined up to conjugacy, we denote it by uG(x). For any P = MN ∈ F(A), let
g = pk, p ∈ P(F), k ∈ K , then Ad(p)−1γ ∈ p(F) ∩ g(O) = p(O). Its image in p(k)
under the reduction is well defined up to conjugacy, we will denote it by uP (x). It is obvious
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that uP (x) goes to uM ( fP (x)) under the projection p → m. So if uG(x) is regular, then
uM ( fP (x)) is regular since uP (x) lies in the same conjugacy class as uG(x) in g(k). This
proves the necessary part of the lemma.

For sufficiency, it is enough to prove that uB0(x) is regular. For α ∈ 	, let Qα be the
parabolic subgroup generated by B0 and sα · B0, where sα ∈ W is the simple reflection
associated to α. Let Qα = MαNα be the Levi decomposition, then Mα is of semisimple
rank 1. Now uB0(x) goes to uMα ( fQα (x)) under the composition b0 ↪→ qα � mα . Since
uMα ( fQα (x)) is regular in mα for any α ∈ 	, this implies that uB0(x) is regular. ��

Proof of Proposition 2.5 when M0 = A. First of all, observe that for any x, y ∈ X such that
y lies in the closure of the orbit T (O) · x , we have Ec(y) ⊂ Ec(x). Now that X reg

γ is dense
open in Xγ , it suffices to prove the second assertion. By Lemma 2.6, it suffices to prove the
proposition for G = GL2. This follows from Proposition 2.8, where we will pick a particular
regular point x0 ∈ X

reg
γ and calculate that

HB(x0) = (val(α(γ )), 0), HB−(x0) = (0, val(α(γ ))).

It is obvious that HB(x0)− HB−(x0) = val(α(γ )) · α∨. ��

The above results motivate the following definition.

Definition 2.2 Take a regular point x0 ∈ X
reg
γ . Let

Fγ = {x ∈ Xγ |EcM0(x) ⊂ EcM0(x0), νG(x) = νG(x0)}.
We call it the fundamental domain of Xγ .

It is clear that different choice of x0 ∈ X
reg
γ gives rise to isomorphic fundamental domain.

It is also clear that Fγ contains an irreducible component ofXγ , but it is more subtle whether
they are isomorphic.

Proposition 2.7 The fundamental domain Fγ is a k-scheme of finite type. It is also the
fundamental domain of Xγ with respect to the action of � in the usual sense, i.e. we have
Xγ = � · Fγ , and any two translations of Fγ by elements of � intersect in a closed sub
variety of dimension strictly less than that of Fγ .

Proof Since γ is anisotropic modulo center in M0(F), the connected components of X M0
γ

are projective k-schemes by Proposition 2.2. This implies that there exists a bounded convex
polytope �1 in a

M0
A such that πM0(EcP (x)) = Ec(M0)( fP (x)) ⊂ �1 for any point x ∈ Fγ ,

P ∈ P(M0), here Ec(M0)( fP (x)) denotes the convex hull of HB′( fP (x)) in a
M0
A for B ′ ∈

PM0(A). On the other hand, πM0(Ec(x)) ⊂ EcM0(x0) by definition of Fγ . By the orthogonal

decomposition aGA = a
M0
A ⊕ aGM0

and the fact that all Ec(x) are positive (G, T )-orthogonal
family, we see that there exists a bounded convex polytope �2 such that Ec(x) ⊂ �2, ∀x ∈
Fγ . By suitably enlarging �2, we can assume that �2 = Ec((wλ)w∈W ) for some dominant
cocharacter λ ∈ X∗(A) with ελ lying on the connected component of X containing x0. By
Example 2.1, we have Fγ ⊂ Sch(λ), so it must be of finite type.

The assertion thatXγ = � · Fγ is implied by the construction of Fγ . The last assertion is
due to the fact that any two distinct translations of Fγ contains no regular points in common.

��
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2.3 Examples for GLd

Let G = GLd , let T be the maximal torus of G of the diagonal matrices, let B0 be the Borel
subgroup of G of the upper triangular matrices and B−0 the opposite of B0 with respect to T .
For each regular element γ ∈ t(O), we have a particular choice of a regular point x0 onXγ ,
which we call the Kostant regular point. Let x0 ∈ Xγ be the point representing the lattice
O[γ ] sitting inside F[γ ] ∼= F[X ]/(X − γ1) ⊕ · · · ⊕ F[X ]/(X − γd) ∼= Fd , where γi are
the eigenvalues of γ . Taking {1, γ, . . . , γ d−1} as a basis of F[γ ], we check easily that x0 is
a regular point.

Proposition 2.8 For σ ∈ Sd , we have

fσ B−0
(x0) = σ

[

O ⊕
d

⊕

i=2
p
∑i−1

j=1 val(ασ−1(i),σ−1( j)(γ ))

]

.

Proof Let {e1, . . . , ed}be the natural basis of Fd , the vectorsγ s ∈ O[γ ], s = 0, 1, . . . , d−1,
correspond to the vectors

∑d
i=1 γ s

i ei in Fd . Let g be the matrix

⎡

⎢

⎢

⎢

⎣

1 γ1 · · · γ d−1
1

1 γ2 · · · γ d−1
2

...
...

...

1 γd · · · γ d−1
d

⎤

⎥

⎥

⎥

⎦

,

then O[γ ] = gOd . From this expression and the equality fσ B−0
(x0) = σ

(

fB−0
(σ−1(x0))

)

,

we see that it suffices to prove the proposition for the standard B−0 .
After certain elementary operations on the columns, the matrix g can be put in lower

triangular form with 1, γ2 − γ1, (γ3 − γ2)(γ3 − γ1), . . . ,
∏d−1

i=1 (γd − γi ) on the diagonal
from top to bottom, from which the claim for fB−0

(x0) follows easily. ��

Let γ ∈ t(O) be regular in minimal form, suppose that its valuation data (n1, . . . , nd−1)
satisfies n1 ≤ n2 ≤ · · · ≤ nd−1, then the fundamental domain Fγ can be written as the
intersection of Xγ with two affine Schubert varieties. First of all, we identify X∗(T ) with
Zd in the natural way. We fix

μ =
(

0, n1, n1 + n2, . . . ,

d−1
∑

i=1
ni

)

,

λ =
(

(d − 1)n1, n1 + (d − 2)n2, n1 + n2 + (d − 3)n3, . . . ,

d−1
∑

i=1
ni ,

d−1
∑

i=1
ni

)

.

Observe that

μi =
i−1
∑

j=1
val(α j,i (γ )), λi =

d
∑

j=1
j �=i

val(α j,i (γ )). (4)

Proposition 2.9 In the above setting, the fundamental domain Fγ is the intersection

Fγ = Xγ ∩
[

Sch(μ) ∩ ελ · Sch(−μ)
]

.
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Proof Let D1, D2 be the convex polytope with vertices at (σ (μ))σ∈Sd and (λ−σ(μ))σ∈Sd

respectively. According to the Example 2.1, we have

X |μ|(D1) = Sch(μ), X |μ|(D2) = ελ · Sch(−μ),

whereX |μ| is the connected component ofX containing εμ. So we only need to prove that
Ec(x0) = D1 ∩ D2.

Firstly, we check that Ec(x0) ⊂ D1 ∩ D2. For the inclusion in D1, observe that both
( fB(x0))B∈P(T ) and (σ (μ))σ∈Sd are positive (G, T )-orthogonal families, so it suffices to
show that

fσ B−0
(x0) ≺σ B−0

σ(μ),

where for ν, ν′ ∈ X∗(T ), ν ≺σ B−0
ν′ means that ν′ − ν is a positive linear combination of

the positive coroots with respect to σ B−0 . By Proposition 2.8, this is equivalent to

σ
(

0, val(ασ−1(2),σ−1(1)(γ )), . . . ,

d−1
∑

j=1
val(ασ−1(d),σ−1( j)(γ ))

)

≺σ B−0
σ
(

0, n1, n1 + n2, . . . ,

d−1
∑

i=1
ni
)

.

Permute the inequality by σ−1, we see that this is a simple consequence of the assumption
n1 ≤ n2 ≤ · · · ≤ nd−1.

The inclusion Ec(x0) ⊂ D1 can be used to prove Ec(x0) ⊂ D2 by duality. Define an
algebraic involution ι on X by sending gK to (g−1)t K for any g ∈ G(F), where the
superscript t means transposition. Since γ is diagonal, ι induces an involution of Xγ . In
particular, it sends x0 to another regular point x ′0. Looking at how ι acts onX T , it is easy to
see that Ec(x ′0) = −Ec(x0), i.e.

fσ B0(x
′
0) = − fσ B−0

(x0), ∀ σ ∈ Sd ,

On the other hand, we have Ec(x0) = Ec(x ′0)+ λ′ for some element λ′ ∈ X∗(T ) since both
x0 and x ′0 are regular points. It is easy to find that

λ′ = fB0(x0)− fB0(x
′
0) = fB0(x0)+ fB−0

(x0) = λ

So we get Ec(x0) = λ−Ec(x0). Combined with the inclusion Ec(x0) ⊂ D1, we get the other
inclusion Ec(x0) ⊂ D2.

Given a (G, T )-orthogonal family D, given P = MN ∈ F(T )maximal, let dP (D) be the
distance between the two opposite faces DP and DP− . To finish the proof of the proposition,
it suffices then to prove that

dP (Ec(x0)) = dP (D1 ∩ D2).

Choose a minimal gallery of Borel subgroups B1, . . . , Bl+1 such that B1 ∈ P, Bl+1 ∈
P−, then αBi ,Bi+1 , i = 1, . . . , l runs through �(N , T ) exactly once. So we have

dP (Ec(x0)) = 
P (HB1(x0)− HBl+1(x0)) =
l

∑

i=1

P (HBi (x0)− HBi+1(x0))

=
∑

α∈�(N ,T )


P (val(α(γ )) · α∨) =
∑

α∈�(N ,T )

val(α(γ )).
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Let Pi = Mi Ni ∈ F(T ) be the maximal parabolic subgroup associated to the simple root
αi . Since dP (D1) = dP (D2) and both λ and μ are anti-dominant, we have

dP (D1 ∩ D2) = 2
P−i
(μ)−
P−i

(λ) = −2
i (μ)+
i (λ)

= 2

(

μi+1 + · · · + μd − d − i

d
(μ1 + · · · + μd)

)

−
(

λi+1 + · · · + λd − d − i

d
(λ1 + · · · + λd)

)

=
∑

α∈�(Ni ,T )

val(α(γ )),

here we use Eq. (4) in the last equality. Conjugate the above calculation by σ ∈ Sd , we
found that

dP (D1 ∩ D2) =
∑

α∈�(N ,T )

val(α(γ )) = dP (Ec(x0)).

��

3 Arthur–Kottwitz reduction

Given a regular semisimple integral element γ ∈ g(F), we have the tori S, T ⊂ GF and the
Levi subgroup M0 ∈ L(A) as in Sect. 2. Fix a regular point x0 ∈ X

reg
γ . Fix P0 = M0NP0 ∈

P(M0) containing B0. Let ξ ∈ aGM0
be such that α(ξ) is positive but almost equal to 0 for any

α ∈ 	 ∩�(NP0 , A). Let D0 = (λP )P∈P(M0) be the (G, M0)-orthogonal family given by

λP = HP (x0)+ w · ξ,

where w ∈ W is any element satisfying P = w · P0. For Q = MN ∈ F(M0), define RQ to
be the subset of aGM0

satisfying conditions

πM (a) ⊂ DQ
0 ;

α(πM (a)) ≥ α(πM (λP )), ∀α ∈ �(N , A), ∀ P ∈ P(M0), P ⊂ Q.

Notice that RG = D0. We get a partition

aGM0
=

⋃

Q∈F(M0)

RQ . (5)

Figure 1 gives an illustration of the partition for the group GL3 and M0 = T = A. The
partition (5) induces a disjoint partition of �M0 via the map �M0 → aGM0

, since we have
perturbed the (G, M0)-family (HP (x0))P∈P(M0) with ξ . We also want to point out that the
partition (5) has good transitivity property: for a maximal parabolic Q = LU ∈ F(M0), the
partition RQ :=⋃

Q′⊂Q RQ′ gives similar partition of aLM0
as (5) under the natural projection

aGM0
→ aLM0

.

Lemma 3.1 For any x ∈ Xγ , there exists a unique Q ∈ F(M0) such that EcQM0
(x) ⊂ RQ.

Proof The uniqueness is clear for the regular points x ∈ X
reg
γ , since EcM0(x) is a translation

of EcM0(x0) by �M0 . By Proposition 2.5, for any x ∈ Xγ , the convex polytope EcM0(x) is
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Fig. 1 Partition of aGA for GL3

RB−

RP−

RP

RB

D0

•HP (x)

RQ0

RQ1

contained in a translation of Ec(x0) by some λ ∈ �, from which the uniqueness for general
case follows.

Now we prove the existence. We can suppose that x /∈ Xγ (D0). For maximal parabolic
Q ∈ F(M0), notice that 
Q(HB(x)) doesn’t depend on the choice of B ∈ P(A), B ⊂ Q,
we write it as NQ(x). Let Q0 be the maximal parabolic such that

NQ0(x)− NQ0(x0) = max
Q∈F(M0) maximal

{NQ(x)− NQ0(x0)},

then NQ0(x)− NQ0(x0) > 0 since x /∈ Xγ (D0).

We claim that EcQ0
M0

(x) ⊂ RQ0 . If this is not the case, there exists P ∈ P(M0), P ⊂ Q0,

such that HP (x) /∈ RQ0 . Since NQ0(x) − NQ0(x0) > 0, there exists a maximal parabolic
subgroup Q1 ∈ F(M0) which is adjacent to Q0, such that HP (x) ∈ RQ1 . The situation is
best illustrated by the upper left corner of Fig. 1. Since in a right triangle with sides a, b, c,
we always have c > a, b, we get

NQ1(x)− NQ1(x0) > NQ0(x)− NQ0(x0),

which is a contradiction to the assumption on Q0.

Nowwe can use the retraction fQ0 : Xγ → X
MQ0

γ to find the required parabolic subgroup
Q inductively. ��

With this lemma, we define SQ := {x ∈ Xγ |EcQM0
(x) ⊂ RQ}. Notice that Fγ is one

connected component of SG = Xγ (D0). As in Example 2.2, the other connected components
of SG may have slight difference from Fγ . We get a disjoint partition

Xγ = Xγ (D0) ∪
⋃

Q∈F(M0)
Q �=G

SQ .

For each parabolic subgroup Q = MN ∈ F(M0), consider the restriction of the retraction
fQ : X → X M to SQ , its image is SQ ∩X M . Recall that the connected components of
X M are fibers of the map νM : X M → �M . For ν ∈ �M , let X M,ν be its fiber at ν. Let
Sν
Q = f −1Q (SQ ∩X M,ν), it is easy to verify that

SQ ∩X M,ν = X M,ν
γ (DQ

0 ).
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Proposition 3.2 The retraction fQ : Sν
Q → X M,ν

γ (DQ
0 ) is an iterated fibration in affine

spaces.

Proof Since fQ(ux) = fQ(x), ∀ u ∈ N , x ∈ X , by the definition of Sν
Q , we have the

identity

Sν
Q = [N (F) ·X M,ν

γ (DQ
0 )] ∩Xγ .

So the fiber of fQ : Sν
Q → X M,ν

γ (DQ
0 ) at mM(O) is

{

umM(O)|u ∈ N (F), Ad(u−1)γ ∈ Ad(m)g(O)
}

.

We’ll prove that they form a family which is an iterated fibration in affine spaces.
We follow the proof of Kazhdan–Lusztig [17], §5. By assumption, char(k) > rk(G), the

exponential map exp : n→ N is well defined. The group N has the decreasing filtration by
normal subgroups

N0 = N ⊃ N1 = [N , N ] ⊃ · · · ⊃ Ni = [Ni−1, N ] ⊃ · · · ⊃ Nrk(G) ⊃ 1.

The exponential map induces an isomorphism ni/ni+1 → Ni/Ni+1 which sends ni to 1+ni .
Let K be the K -equivariant fiber bundle G(F) ×K K on X , let K be the K -equivariant

vector bundle G(F)×K g(O) on X , where K acts on K and g(O) by conjugaison. Let ˜Ni

be the constant fiber bundle X × Ni (F), let ñi be the constant vector bundle X × ni (F).
We denote also ˜N = ˜N0.

To begin with, observe that with the retraction fQ , the locally closed subvariety
f −1Q (X M,ν) ofX is isomorphic to the restriction of the fiber bundle ˜N/˜N ∩K overX M,ν ,
we will identify them in the following. For i = 0, . . . , rk(G)+ 1, let Si be the sub bundle of
˜Ni\˜N/˜N ∩K restricted to X M,ν

γ (DQ
0 ), whose fiber at mM(O) is given by

{

u ∈ Ni (F)\N (F)/N (F) ∩ Ad(m)K |Ad(u)−1γ ∈ Ad(m)g(O)+ ni (F)
}

.

Let pi : Si+1 → Si be the natural projection, we get a tower of projections

Sν
Q
∼= Srk(G)+1 → Srk(G) → · · · → S0 ∼= X M,ν

γ (DQ
0 ).

The last isomorphism is due to the equivalence of the equations γ ∈ Ad(m)g(O)+n(F) and
γ ∈ Ad(m)g(O) since Ad(m)−1γ ∈ m(F). We will prove that each Si+1 is a homogeneous
space under a vector bundle over Si , this will end the proof of the proposition.

Given gK ∈ Si , we have

γ ∈ Ad(g)g(O)+ ni (F).

Let u = 1+ n ∈ Ni+1(F)\Ni (F), with n ∈ ni+1(F)\ni (F), then

ugK ∈ Si+1 ⇐⇒ Ad(u−1)γ ∈ Ad(g)g(O)+ ni+1(F)

⇐⇒ γ + [γ, n] ∈ Ad(g)g(O)+ ni+1(F). (6)

Using the isomorphism

Ad(g)g(O)+ ni (F)

Ad(g)g(O)+ ni+1(F)
∼= ni (F)/ni (F) ∩ Ad(g)g(O)

ni+1(F)/ni+1(F) ∩ Ad(g)g(O)
,
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let γ̄ be the image of γ under the isomorphism, then the Eq. (6) means that n should satisfy
the equation ad(γ )n = −γ̄ in the above quotient. Consider the endomorphism ad(γ ) of the
restriction of the vector bundle

ñi/ñi ∩ K

ñi+1/ñi+1 ∩ K
(7)

on Si . It is surjective since ad(γ ) : ni (F) → ni (F) is. This means that there is always n such
that Eq. (6) is satisfied, i.e. pi are surjective for all i . Further more, let Vi be kernel of the
endomorphism ad(γ ) of the vector bundle (7), then Vi is a vector bundle on Si . The above
calculation shows that Si+1 is a homogeneous space over Si under the vector bundle Vi . ��
Proposition 3.3 The strata Sν

Q are locally closed sub varieties of Xγ . Furthermore, in the
decomposition

Xγ = Xγ (D0) ∪
⋃

Q∈F(M0)
Q �=G

⋃

ν∈�MQ∩RQ

Sν
Q, (8)

we can order the strata Sν
Q as S(1), S(2), . . ., such that for each n ∈ N, the union

⋃n
i=1 S(i)

is a closed sub variety of Xγ .

Proof To begin with, Xγ (D) is a closed sub variety of Xγ for any (G, M0)-orthogonal
family D. Now we prove by induction. Let Q0 = L0U0 ∈ F(M0) be a maximal parabolic
subgroup containing Q. For Q′ = M ′N ′ ∈ F(M0), Q′ ⊂ Q0, let pM

′
L0

be the natural

projection �M ′ → �L0 , let ν0 = pML0
(ν). Consider

Zν0
Q0
:=

⋃

Q′⊂Q0

⋃

pM
′

L0
(ν′)=ν0

Sν′
Q′ .

Firstly, Zν0
Q0

can be written as a difference Xγ (D)\Xγ (D′) for two (G, M0)-orthogonal
family D, D′. Secondly, observe that

Sν′
Q′ = [U0(F) · (Sν′

Q′ ∩X L0,ν0)] ∩Xγ ,

the same proof as that of Proposition 3.2 shows that the retraction

fQ0 : Zν0
Q0
→ X L0,ν0

γ (DQ0)

is an iterated fibration in affine spaces. Now the claim follows by induction, using the tran-
sitivity property of fP . ��

By Proposition 3.2, each strata Sν
Q has an iterated affine fibration onto X

MQ ,ν
γ (DQ

0 ), so
the study ofXγ is reduced to that of Fγ . We call the decomposition (8) the Arthur–Kottwitz
reduction.

Lemma 3.4 Suppose that FM
γ is cohomologically pure for any proper Levi subgroup M of G

containing M0. Suppose that Fγ is cohomologically pure, then the truncated affine Springer
fiber X ν

γ (D0) is cohomologically pure for all ν ∈ �G.

Proof As in theExample 2.2, after certain translation onX by�M0 ,wehave Fγ = X ν
γ (D0+


∨), where
∨ is the image of aminuscule coweight in�M0 , and D0+
∨ is the translation
of D0 by
∨. It is easy to see thatX ν

γ (D0) ⊂ Fγ . Applying the reduction ofArthur–Kottwitz,

the open sub variety Fγ \X ν
γ (D0) is naturally stratified into finite unions of Sν′

Q ∩ Fγ . Since
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the two truncation parameters differ by a minuscule coweight, by Proposition 2.5, we have
Sν′
Q ⊂ Fγ , so Sν′

Q ∩ Fγ = Sν′
Q .

Nowwe proceed by induction. Suppose that the lemma is proved for all the Levi subgroups
M ∈ L(M0), then X M,ν′

γ (DQ
0 ) are all cohomologically pure for all Q ∈ P(M) and all

ν′ ∈ �M . By Propositions 3.2 and 3.3, we see that Fγ \X ν
γ (D0) is cohomologically pure.

Now the long exact sequence

· · · → Hi−1(X ν
γ (D0))→ Hi

c (Fγ \X ν
γ (D0))→ Hi (Fγ )→ Hi (X ν

γ (D0)) → · · ·
will split into short exact sequence

0→ Hi
c (Fγ \X ν

γ (D0)) → Hi (Fγ ) → Hi (X ν
γ (D0))→ 0,

because Hi−1(X ν
γ (D0)) is of weight at most i − 1 by [9]. The claim then follows from the

above short exact sequence. ��
Now we come to the proof of Theorem 1.2. We will prove a slightly stronger result. A

positive (G, M0)-orthogonal family D = (μP )P∈P(M0) is said to be regular with respect to
D0 if μP ∈ RP , ∀ P ∈ P(M0).

Theorem 3.5 Suppose that FM
γ is cohomologically pure for any proper Levi subgroup M

of G containing M0. Let D be a positive (G, M0)-orthogonal family which is regular with
respect to D0. Then the truncated affine Springer fiber Xγ (D) is cohomologically pure if
and only if Fγ is.

Proof The complication that some connected components of Xγ (D) don’t contain Fγ is
already treated in Lemma 3.4, so we can suppose that every connected component ofXγ (D)

contains a translation of Fγ . Applying the Arthur–Kottwitz reduction to every connected
componentX ν

γ (D), we get a stratification ofX ν
γ (D)\Fγ into finite union of Sν′

Q ∩X ν
γ (D).

The hypothesis that D is regular with respect to D0 implies that each Sν′
Q is either contained in

X ν
γ (D) or disjoint from it. Applying Lemma 3.4 to the Levi subgroups M ∈ L(M0), we see

that all the truncated affine Springer fibers X M,ν′
γ (DQ

0 ), Q ∈ P(M) are cohomologically
pure, which implies that X ν

γ (D)\Fγ is cohomologically pure by Propositions 3.2 and 3.3.
Now the theorem follows from the same argument as the last part of the proof of Lemma 3.4.

��
Remark 3.1 When T splits over F , Chaudouard and Laumon have conjectured thatXγ (D)

is cohomologically pure whenever D is sufficiently regular, see [5] Conjecture 1.3. Here
D = (λB)B∈P(T ) is said to be sufficiently regular if λB lies in the chamber indexed by
B and is sufficiently far from the walls bounding the chamber. However, they don’t have
a lower bound on the distance of λB to the walls for D to be sufficiently regular, and the
word sufficiently should be understood as as large as necessary. In this sense, when D
is sufficiently regular, it is regular with respect to D0. By our Theorem 3.5, their purity
conjecture is equivalent to the Conjectures 1.1 and 1.3.

4 Reformulation of the rationality conjecture

In this section, we will work with the groupG = PGLd+1 instead of GLd+1 to simplify some
technical points. We are only interested in the case when γ is unramified, i.e. we assume that
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T is the maximal torus of G of the diagonal matrices. Let B0 be the Borel subgroup of G of
the upper triangular matrices. We conserve the notations of the previous sections.

Wewill assume that Fγ is cohomologically pure, and give a geometric reformulation of the
rationality Conjecture 1.5. The main ingredient of the proof is the calculation by Chaudouard
and Laumon [5] of the T -equivariant homology of cohomologically pure truncated affine
Springer fibers.

4.1 Symmetric algebras

Let

S = Sym(t) =
∞
⊕

i=0
Symi ((t∗)∗)

be the ring of polynomial functions on t∗ with coefficients in Ql . Let

D = Sym(t∗) =
∞
⊕

i=0
Symi (t∗)

be the ring of linear differential operators with constant Ql -coefficients on t∗. The non-
degenerate perfect pairing

〈 , 〉 : D × S→ Ql

given by 〈∂, P〉 = ∂(P)(0) satisfies

〈∂∂ ′, P〉 = 〈∂, ∂ ′P〉. (9)

It induces a natural duality between the homogeneous degree n pieces Dn and Sn . For a
homogeneous ideal I =⊕∞

i=1 Ii ⊂ D , let

S{I } = { f ∈ S(t)|∂ f = 0, ∀ ∂ ∈ I }.
By (9), we have

S{I } = I⊥ =
∞
⊕

i=0
I⊥i .

For each root α ∈ �+, we will denote by ∂α ∈ D the corresponding differential operator
on t∗.

4.2 T -equivariant homology

Let X be a separated k-scheme of finite type endowed with an algebraic action of the torus T .
The T -equivariant cohomology of X is defined to be the cohomology of the quotient stack
[X/T ], i.e.

H∗T (X) = H∗T (X,Ql) = H∗([X/T ],Ql).

It is a Z≥0-graded Ql -algebra with respect to the cup product. Via the structural morphism

[X/T ] → BT = [Spec(k)/T ], (10)

it becomes a graded algebra over the ring H∗T (Spec(k)), which is isomorphic to the k-algebra
D via the Chern–Weil isomorphism. More precisely, we have natural isomorphism D1 =
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X∗(T ) ⊗ Ql , and given χ ∈ X∗(T ), let c1(χ) be the first Chern class associated to the
resulting line bundle on BT . Then c1 extends to a degree-doubling isomorphism

D → H∗(BT ) = H∗T (Spec(k)).

The Leray spectral sequence associated to the structural morphism (10) is

E p,q
2 = H p

T (Spec(k))⊗ Hq(X)⇒ H p+q
T (X).

When X is cohomologically pure, the spectral sequence will degenerate at E2, and we get a
non-canonical isomorphism

Hi
T (X) ∼=

⊕

p+q=i
H p(X)⊗ Dq . (11)

In [5,12], the authors work with homology instead of cohomology in order to facilitate
the process of taking limits. This is defined by taking dualities, for example,

HT∗ (X) = Hom
(

H∗T (X),Ql
)

.

Using the natural duality between S and D , the isomorphism (11) can be rewritten as

HT
i (X) ∼=

⊕

p+q=i
Hp(X)⊗ Sq .

4.3 T -equivariant homology of Fγ

Given a positive (G, T )-orthogonal family D, suppose thatXγ (D) is cohomologically pure,
Chaudouard and Laumon [5] have calculated the T -equivariant homology of Xγ (D). The
result is expressed in terms of the T -fixed points and 1-dimensional T -orbits inXγ (D). We
adapt their result to our situation.

For n ∈ Nd , let γ ∈ t(O) be an element in minimal form with root valuation n. Given a
regular point x0 ∈ X

reg
γ , up to a suitable translation by�, we will assume that HB−0

(x0) = 0.
Let En = Ec(x0) and let

�n := {λ ∈ X∗(T )|λ ∈ Ec(x0), νG(ελ) = νG(x0)}.
For each α ∈ �+, let

Rα,i =
∑

λ satisfying (∗)
(1− α∨)iλ⊗ S{∂ iα} ⊂ Q

�n
l ⊗ S,

where (∗) refers to the condition:

λ, α∨λ, . . . , (α∨)iλ ∈ �n.

Theorem 4.1 (Chaudouard–Laumon [5], prop. 10.3) Assume that Fγ is cohomologically
pure, then we have the exact sequence

0→
∑

α∈�+

val(α(γ ))
∑

i=1
Rα,i → Q

�n
l ⊗ S→ HT∗ (Fγ )→ 0. (12)
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We will write the first term in the exact sequence (12) as Rn. For a Z≥0-gradedQl -vector
space M =⊕+∞

n=0 Mn , we will define its Poincaré series to be

+∞
∑

n=0
dim(Mn)q

n .

The Ql -algebra S is naturally Z≥0-graded, it induces a grading on the three terms in the
exact sequence (12). We will denote their Poincaré series by Q1,n(q), Q2,n(q), Q3,n(q)

respectively. Let

Qi (q; 
t ) =
+∞
∑

n1=1
· · ·

+∞
∑

nd=1
Qi,(n1,...,nd )(q)tn11 · · · tndd , i = 1, 2, 3.

Since Fγ is assumed to be cohomologically pure, we have isomorphism

HT∗ (Fγ ) ∼= H∗(Fγ )⊗ S∗,

from which we deduce that

Q(q; 
t ) = (1− q)d Q3(q; 
t ).

So the rationality of Q(q; 
t ) is the same as that of Q3(q; 
t ). By the exact sequence (12),
this is the same as the rationality of Q2(q; 
t )− Q1(q; 
t ).

4.4 Toric varieties

Let ̂T be the dual torus of T , we have

X∗(̂T ) = X∗(T ), X∗(̂T ) = X∗(T ).

Let � be a complete fan in t∗ = X∗(̂T )⊗R. For n = 0, . . . , dim(T ), let �(n) be the set
of n-dimensional cones in �. Let Y = Y� be the toric compactification of ̂T according to
the fans �. To each cone σ ∈ �, we associate a ̂T -invariant affine open sub variety

Uσ := Spec(Ql [ σ∨ ∩ X∗(̂T )]),
where σ∨ = {λ ∈ X∗(̂T )|〈λ, x〉 ≥ 0, ∀ x ∈ σ }. Putting together, they give an affine covering
of Y . Themap σ → Uσ is inclusion preserving.We have also an inclusion-reversing bijection
σ → Dσ between the cones and the ̂T -invariant closed irreducible sub varieties of Y . More
precisely, Dσ is contained in the union of the affine open sub varieties Uτ , σ ⊂ τ . In each
Uτ , Dσ ∩Uτ is defined by the ideal generated by

{λ ∈ X∗(̂T )|λ ∈ τ∨, λ /∈ σ⊥},
where σ⊥ = {λ ∈ X∗(̂T )|〈λ, x〉 = 0, ∀ x ∈ σ }. It is easy to see that

Dσ ∩Uτ = Spec(Ql [ τ∨ ∩ σ⊥ ∩ X∗(̂T )]),
and the codimension of Dσ in Y is equal to the dimension of σ . In particular, the Dσ ’s, for
σ ∈ �(1), generate the group Div

̂T (Y ) of the ̂T -invariant Weil divisors in Y .
For σ ∈ �(1), let 
σ be the generator of the semi-group σ ∩ X∗(̂T ). To each λ ∈ X∗(̂T ),

viewed as a meromorphic function on Y , is associated its principal divisor

(λ) =
∑

σ∈�(1)


σ (λ)Dσ .
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Let Cl(Y ) be the class group of Weil divisors on Y , then we have the exact sequence

0→ X∗(̂T )→ Div
̂T (Y ) → Cl(Y )→ 0. (13)

For D ∈ Div
̂T (Y ), let [D] be its equivalent class in Cl(Y ). It is said to be effective if

D = ∑

σ nσ Dσ with positive coefficients. In this case, we write D ≥ 0. We write also
D1 ≥ D2 if D1 − D2 ≥ 0.

The toric variety Y has a quotient construction similar to that of Pn . We introduce the
homogeneous coordinate ring

A = Ql [ yσ ; σ ∈ �(1)],
which is graded by the abelian group Cl(Y ) in the following way: to every monomial
∏

σ ynσ
σ , nσ ∈ Z, we associate the divisor D = ∑

σ nσ Dσ . This monomial, written yD ,
is of degree [D] ∈ Cl(Y ). In this way, we get the grading

A =
⊕

[D]∈Cl(Y )

A[D].

The group G
�(1)
m acts naturally on A, hence on Spec(A). Let

̂Cl(Y ) = HomZ(Cl(Y ), Q
×
l ).

It is a sub-torus of G
�(1)
m if one takes the duality of the exact sequence (13). In this way,

it acts on Spec(A) as well. To define the quotient, we need to introduce the irrelevant ideal
B ⊂ A, which is generated by the y τ̂ , τ ∈ �, where

y τ̂ =
∏

σ∈�(1), σ�τ

yσ .

Now we have

Y = [

Spec(A)\V(B)
]

� ̂Cl(Y ).

Similarly to the case of Pn , we have an exact functor L → ˜L from the category of graded
A-modules to the category of quasi-coherent sheaves on Y . It sends A to the structure sheaf
and finitely generated graded A-modules to coherent sheaves on A. Furthermore, all the
quasi-coherent sheaves on A are of the form ˜L for some graded A-modules L .

Let D =∑

σ nσ Dσ be âT -invariantWeil divisor onY .We associate to it a lattice polytope
PD in t = X∗(̂T )⊗ R:

PD = {a ∈ t|〈
σ , a〉 + nσ ≥ 0, ∀ σ ∈ �(1)} .
The defining inequality is reminiscent of the inequality (λ)+ D ≥ 0, and we have

Proposition 4.2 Let D be a ̂T -invariant Weil divisor on Y , then we have

�(Y,OY (D)) =
⊕

λ∈X∗(̂T )∩PD
C · λ.

This is related to the homogeneous coordinate ring A as follows: let

A′ = Ql [y±1σ ; σ ∈ �(1)].
The pull back of rational functions corresponding to the natural projection

Spec(A)\V(B) → Y
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induces an injective morphism Ql [X∗(̂T )] → A′ given by

λ ∈ X∗(̂T ) "−→ yλ =
∏

σ∈�(1)

y
σ (λ)
σ . (14)

Given λ ∈ X∗(̂T ) ∩ PD , we define its D-homogenization to be

y〈λ,D〉 =
∏

σ∈�(1)

y〈
σ ,λ〉+nσ
σ .

One verifies that it induces an isomorphism

A[D] ∼=
⊕

λ∈X∗(̂T )∩PD
C · λ.

Conversely, given a full dimensional lattice polytope P in t, one can construct its normal
fan �P in t∗ and a ̂T -invariant ample divisor DP on Y�P . In this way, we have a bijection
between the set of full dimensional lattice polytopes P in t and the set of the pairs (Y�P , DP ),
where Y�P is a complete toric variety compactifying ̂T and DP is a ̂T -invariant divisor on
Y�P .

Proposition 4.3 Let D be a ̂T -invariant ample divisor on Y , then

Hi (Y,OY (D)) = 0, ∀ i �= 0.

4.5 Geometric interpretation

For any P ∈ F(T ), we have the strongly convex rational polyhedral cone in a
G,∗
T = t∗:

aG,+
P :=

{

χ ∈ a
G,∗
T |∀α ∈ �(MP , T ), χ(α∨) = 0; ∀β ∈ �(NP , T ), χ(β∨) � 0

}

.

Then � = (aG,+
P )P∈F(T ) is a complete fan in t. (This is the reason why we work with

PGLd+1 instead of GLd+1). Let Y = Y� be the toric compactification of ̂T according to the
fans �. Since we have supposed that n ∈ Nd , the normal fan of the polytope En ⊂ aGT = t

is �. So En defines an ample divisor Dn on Y : suppose that

En = {a ∈ t | 〈
σ , a〉 + Mn,σ ≥ 0, ∀ σ ∈ �(1)}, (15)

then Dn is defined to be
∑

σ∈�(1) Mn,σ · Dσ . According to the toric dictionary, we have

h0(Dn) := dim
(

H0(Y,OY (Dn))
) = |En ∩ X∗(T )| = |�n|.

Our main tool in this section is the Hirzebruch–Riemann–Roch theorem.

Theorem 4.4 (Hirzebruch–Riemann–Roch)Let X be a proper k-scheme. There exists a Todd
class Td(X) of X such that for any vector bundle E on X, we have

χ(X, E) =
∫

X
ch(E) ∩ Td(X),

where ch(E) is the Chern character of E.
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Proposition 4.5 The power series Q2(q; 
t ) is a rational fraction.

Proof It is easy to see that

Q2(q; 
t ) =
∑

n∈Nd

+∞
∑

q=0
dim

(

Q
�n
l ⊗ Sm

)

qmtn

= (1− q)−d
∑

n∈Nd

|�n| · tn

=: (1− q)−d Q4(
t ),

where tn = tn11 · · · tndd . So it is enough to prove that Q4(
t ) is a rational fraction.
We can further regroup the summation in n ∈ Nd according to the ordered partition
d̄ = ({i1, . . . , i j1}; · · · ; {i jr−1+1, . . . , i jr }) of the set {1, . . . , d}, written d̄ # {1, . . . , d},
i.e.

∑

n∈Nd

=
∑

d̄ #{1,...,d}

∑

ni1=···=ni j1 <···<ni jr−1+1=···=ni jr
,

we can write

Q4(
t ) =
∑

d̄ #{1,...,d}
Q4,d̄(
t ),

and it is sufficient to prove that each Q4,d̄(
t ) is a rational fraction, since there are only finitely
many ordered partitions.

Lemma 4.6 For each ordered partition d̄ # {1, . . . , d} and for each σ ∈ �(1), there is a
linear form Ld̄,σ : Zd → Z such that in the defining Eq. (15) of En, we have

Mn,σ = Ld̄,σ (n)

for all the n ∈ Nd which are of type d̄.

Proof Let Pσ ∈ F(T ) be the parabolic subgroup of G corresponding to σ , let B ∈ P(T ) be
any Borel subgroup contained in Pσ , then we have

Mn,σ = −
σ (HB(x0)).

Take a minimal gallery B1, . . . , Br ∈ P(T ) such that B1 = B−0 and Br = B, and Bi , Bi+1
are adjacent Borel subgroups, i = 1, . . . , r − 1. By Proposition 2.5, we have

HBi+1(x0)− HBi (x0) = val(βi (γ )) · β∨i , i = 1, . . . , r − 1,

where βi is the unique root which is positive with respect to Bi+1 while negative with respect
to Bi . By the definition of root valuation,

val(βi (γ )) = n j (i),

for some j (i) ∈ {1, . . . , d}, depending on the type d̄ of n. So

Mn,σ = −
σ (HB(x0)) = −
r−1
∑

i=1

σ

(

HBi+1(x0)− HBi (x0)
)+
σ (HB1(x0))

= −
r−1
∑

i=1

σ

(

n j (i) · β∨i
)
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depends linearly on n according to its type d̄ . ��
Since Dn is an ample divisor, we have Hi (Y,OY (Dn)) = 0, ∀i �= 0. By the Hirzebruch–

Riemann–Roch theorem, we have

|�n| = h0(Dn) = χ(Y,OY (Dn)) =
∫

Y
ch(OY (Dn)) ∩ Td(Y ).

Since Dn = ∑

σ∈�(1) Mn,σ · Dσ and Mn,σ is linear for all the n of the fixed type d̄ by
Lemma 4.6, there exists a polynomial Q5,d̄ ∈ Q[T1, . . . , Td ] such that

|�n| = Q5,d̄(n),

for all n of type d̄. This implies that

Q4,d̄(
t ) =
∑

n of type d̄

Q5,d̄(n)tn

is a rational fraction, which concludes the proof. ��
As a consequence, if we assume the cohomological purity of Fγ , the Conjecture 1.5 is

equivalent to

Conjecture 4.7 The power series Q1(q; 
t ) is a rational fraction.

We will give a geometric interpretation of the module Rn = ∑

α∈�+
∑val(α(γ ))

i=1 Rα,i , or
more precisely, of the homogeneous degree l part of

Rα,i =
∑

λ satisfying (∗)
(1− α∨)iλ⊗ S{∂ iα} ⊂ Q

�n
l ⊗ S,

where (∗) refers to the condition:

λ, α∨λ, . . . , (α∨)iλ ∈ �n.

As in the Eq. (14), the coroot α∨ defines the meromorphic function on Y

yα∨ =
∏

σ∈�(1)

y〈
σ ,α∨〉
σ .

Let

yα∨+ =
∏

σ∈�(1)
〈
σ ,α∨〉≥0

y〈
σ ,α∨〉
σ , yα∨− =

∏

σ∈�(1)
〈
σ ,α∨〉<0

y−〈
σ ,α∨〉
σ .

Let Dα be the divisor on Y defined by the homogeneous polynomial yα∨+ − yα∨− . After
homogenisation, it is easy to see

Proposition 4.8 We have the identity
∑

λ satisfying (∗)
(1− α∨)iλ = H0(Y,OY (Dn − i Dα)).

To interpret S{∂ iα}, we use the fact that S is the homogeneous coordinate ring of P(t∗) =
Pd−1. (Here we suppose that d ≥ 3, this is not an essential constraint since we will prove the
rationality conjecture for GL2 and GL3 by direct calculations.) The vector ∂α in t∗ defines a
point pα ∈ P(t∗) which represents the line k · ∂α in t∗. Let mα be the defining ideal of pα in
P(t∗).
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Lemma 4.9 (Ensalem–Iarrobino [10])We have Sl{∂ iα} = (ml−i
α )l , with the subscript l refers

to the homogeneous degree l parts. Let ˜Pα be the blow-up of P(t∗) at pα , let Eα be the
resulting exceptional divisor, then

Sl{∂ iα} = H0(˜Pα,O(lH + (i − l)Eα)),

where H is the pull back of a general hyperplane in P(t∗).
Proof For the first assertion, we complete ∂α into a basis of t∗ and write the resulting
coordinate to be (X0, . . . , Xn). It is easy to see that Sl{∂ iα} is generated by the monomi-
als Xd0

0 . . . Xdn
n , with

∑

di = l and d0 ≤ i . But this is exactly (ml−i
α )l . It is evident that the

second assertion is a reformulation of the first one. ��
Corollary 4.10 We have the equality

(Rn)l =
∑

α∈�+

val(α(γ ))
∑

i=1
H0(Y,OY (Dn − i Dα))⊗ H0(˜Pα,O(lH + (i − l)Eα)).

5 The generating series for GL2

Let G = GL2. Any element γ ∈ t(O) is automatically in minimal form, let n be the root
valuation of γ . Let Fγ be the fundamental domain of Xγ containing x0, where x0 is the
Kostant regular point defined in Sect. 2.3. By Proposition 2.8, Ec(x0) is the interval in t

between (0, n), (n, 0) ∈ X∗(T ). The fundamental domain is thus the intersection

Fγ = Sch(n, 0) ∩Xγ .

Proposition 5.1 We have Fγ = Sch(n, 0), so it admits an affine paving. Its Poincaré poly-
nomial is

∑n
i=0 qn.

Proof For any a ∈ k, it is evident that for any lattice L in F2, we have

γ · L ⊂ L ⇐⇒ (aεnId + γ ) · L ⊂ L .

So without any loss of generality, we can assume that both of the eigenvalues of γ have
valuation n. Now that Sch(n, 0) parametrise the lattices L of index n satisfying

pn ⊕ pn ⊂ L ⊂ O ⊕O,

we have

γ · L ⊂ pn ⊕ pn ⊂ L ,

which implies that Sch(n, 0) ⊂ Fγ , hence the equality in the first assertion.
Let I be the standard Iwahori subgroup, i.e. it is the inverse image of the Borel subgroup

B0 under the reduction G(O) → G(k). Recall that we have the Bruhat–Tits decomposition

Sch(n, 0) =
⊔

μ∈Sch(n,0)T

IεμK/K ,

from which we get the second assertion in the proposition. ��
Corollary 5.2 For the group GL2, we have

Q(q; 
t ) = 1

q − 1

(

q2t

1− qt
− t

1− t

)

.
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(2n1, n1 + n2,−n1)

(−n2, n1 + n2, n1 + n2 2() n1,−n1, n1 + n2)

(0, 2n1 + n2, 2()0 n1 + n2, 0, 0)

(0, 0, 2n1 + n2)

(2n1, n2, 0)(n1, n1 + n2, 0)

(0, n1 + n2, n1)

(0, n1, n1 + n2) (n1, 0, n1 + n2)

(2n1, 0, n2)

Fig. 2 Hexagon as intersection of two triangles

6 The generating series for GL3

Let G = GL3, let n = (n1, n2) ∈ N2, n1 ≤ n2, let γ ∈ t(O) be in minimal form with root
valuation n. Let Fγ be the fundamental domain ofXγ containing x0, where x0 is the Kostant
regular point defined in §2.3.

Proposition 6.1 The fundamental domain Fγ is the intersection of Xγ with

Sch(2n1 + n2, 0, 0) ∩ diag(ε−n2 , ε−n1 , ε−n1) · Sch(2n1 + n2, 2n1 + n2, 0).

Proof By Proposition 2.8, Ec(x0) is the hexagon with vertices marked as indicated in Fig. 2.
This hexagon can also be represented as the intersection of two triangles as indicated also

in the figure. Let �, � be the upward and the downward triangle in the figure. According to
the Example 2.1, we see that Ec(x) ∈ � if and only if x ∈ Sch(2n1 + n2, 0, 0). We notice
that � is the translation by (−n2,−n1,−n1) of the triangle �′ with vertices

(2n1 + n2, 2n1 + n2, 0), (2n1 + n2, 0, 2n1 + n2), (0, 2n1 + n2, 2n1 + n2).

Again usingExample 2.1,we see that Ec(x) ∈�′ if and only if x ∈ Sch(2n1+n2, 2n1+n2, 0),
the result follows directly from these considerations. ��
6.1 Affine paving

We can pave Fγ in affine spaces, the strategy is the following: by Proposition 6.1, we have

Fγ = Xγ ∩ Sch(2n1 + n2, 0, 0) ∩ diag(ε−n2 , ε−n1 , ε−n1) · Sch(2n1 + n2, 2n1 + n2, 0).
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So we firstly pave the intersection of the two affine schubert varieties in affine spaces, but this
paving doesn’t induce an affine paving of Fγ , we need to regroup the resulting pavements
and do a second nonstandard paving. Our main result in this section is:

Theorem 6.2 The fundamental domain Fγ admits an affine paving, which only depends on
the root valuation of γ .

Proof Let I be the standard Iwahori subgroup, i.e. it is the inverse image of theBorel subgroup
B0 under the reduction G(O) → G(k). Let I ′ = Ad(diag(εn1 , εn2 , εn2))I . By [3] Corollary
2.3, we have the affine paving

Sch(2n1 + n2, 0, 0) ∩ diag(ε−n2 , ε−n1 , ε−n1) · Sch(2n1 + n2, 2n1 + n2, 0)

=
⊔

μ∈(Fγ )T

Sch(2n1 + n2, 0, 0) ∩ I ′εμK/K

=
⊔

μ∈(Fγ )T

⎡

⎣

O pa pb

pn2−n1+1 O O
pn2−n1+1 p O

⎤

⎦ εμK/K ,

where a = max{n1 − n2,−μ2}, b = max{n1 − n2,−μ3}. We denote by C(μ) the resulting
pavement containing εμ.

To pave Fγ , we cut it into 4 parts. Let (μ′1, μ′2, μ′3) = (μ1 − n1, μ2 − n2, μ3 − n2), and

R1 = {μ ∈ (Fγ )T |μ′1 ≤ μ′2, μ′3},
R′1 = {μ ∈ (Fγ )T |μ′1 ≥ μ′2, μ′3; μ2 ≤ n2 − n1; μ3 ≤ n2 − n1},
R2 = {μ ∈ (Fγ )T |μ′2 < μ′1, μ′3; μ3 > n2 − n1},
R3 = {μ ∈ (Fγ )T |μ′3 < μ′1, μ′2; μ2 > n2 − n1}.

Although R1 and R′1 may intersect at one point, it doesn’t cause trouble to the paving.
Figure 3 gives an idea of the cutting. Let Vi = ⊔

μ∈Ri C(μ), i = 1, 2, 3. For l ∈ Z, let
Ri,l = {μ ∈ Ri |μi = l} and Vi,l =⊔

μ∈Ri,l C(μ). Similar notations for R′1.
We use the Iwahori subgroup I ′ to pave V1 ∩Xγ . Since we have

C(μ) =
⎡

⎣

O
pn2−n1+1 O O
pn2−n1+1 p O

⎤

⎦ εμK/K ,

we see easily that C(μ) ∩Xγ is isomorphic to an affine space.
We also use I ′ to pave V ′1 ∩Xγ . We have

C(μ) =
⎡

⎣

O p−μ2 p−μ3

O O
p O

⎤

⎦ εμK/K .

It is easily checked that C(μ) ∩Xγ is isomorphic to an affine space.
We need a second nonstandard paving in order to pave V2 ∩Xγ and V3 ∩Xγ . Since they

are symmetric, we only give details for V3 ∩Xγ . Since V3 = ⊔

l∈Z V3,l , we only need to
pave V3,l ∩Xγ . Let I ′l = Ad(diag(1, εl , εl))I ′, we claim that

V3,l ∩Xγ =
⊔

μ∈R3,l

V3,l ∩ I ′l εμK/K ∩Xγ
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(2n1, n2, 0)(n1, n1 + n2, 0)

(0, n1 + n2, n1)

(0, n1, n1 + n2) (n1, 0, n1 + n2)

(2n1, 0, n2)
R1

R3

R2

Fig. 3 Nonstandard paving

is an affine paving. Since we have

C(μ) =
⎡

⎣

O pn1−n2 p−μ3

pn2−n1+1 O O
p O

⎤

⎦ εμK/K ,

we see easily that V3,l admits an affine fibration onto the closed subvariety

⊔

μ∈R3,l

⎡

⎣

O pn1−n2
pn2−n1+1 O

O

⎤

⎦ εμK/K

of X GL2×GL1 . This implies

V3,l ∩ I ′l εμK/K =
⎡

⎣

O pc p−l
pn2−n1+l+1 O O

p O

⎤

⎦ εμK/K ,

with c = max(n1−n2−l,−μ2).With this equality, it is easily checked that V3,l∩ I ′l εμK/K∩
Xγ is isomorphic to an affine space.

It remains to precise the order of the paving. First of all, the Bruhat–Tits order with respect
to I ′ induces an ordering of V ′1,l and Vi,l , i = 1, 2, 3, l ∈ Z. On V1,l and V ′1,l we use the
Bruhat–Tits order with respect to I ′, while on V2,l and V3,l , we use the Bruhat–Tits order
with respect to I ′l . ��
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6.2 Rationality conjecture

To calculate the Poincaré polynomial of Fγ , we proceed by an indirect way in order to avoid
the combinatorial complexity. Our strategy is the following: we calculate firstly the Poincaré
polynomial of Xγ ∩ Sch(2n1 + n2, 0, 0), then we calculate the Poincaré polynomial of the
complement of Fγ in it, their difference gives what we want. It turns out that the complement
of Fγ can be paved in affine spaces.

Theorem 6.3 The Poincaré polynomial of Fγ is

Pn(t)=
n1
∑

i=1
i(t4i−2 + t4i−4)+

n1+n2−1
∑

i=2n1
(2n1+1)t2i+

2n1+n2−1
∑

i=n1+n2
4(2n1 + n2 − i)t2i + t4n1+2n2 .

Taking into account the fact that Fn2,n1 has the same Poincaré polynomial as Fn1,n2 , we
get the precise expression for the generating series.

Corollary 6.4 The power series

+∞
∑

n1=1

+∞
∑

n2=1
P(n1,n2)(t) T

n1
1 T n2

2 ∈ Z[t][[T1, T2]]

equals the rational fraction

2

{

(t2 + 1)T1T2
(1− T2)(1− T1T2)(1− t4T1T2)2

+ t4T1T 2
2 (3− t4T1T2)

(1− T2)(1− t2T2)(1− t4T1T2)2

+ 4t4T1T2
(1− t2T2)(1− t4T1T2)2(1− t6T1T2)

+ t6T1T2
(1− t2T2)(1− t6T1T2)

}

−
[

(t2 + 1)T1T2
(1− T1T2)(1− t4T1T2)2

+ 4t4T1T2
(1− t4T1T2)2(1− t6T1T2)

+ t6T1T2
1− t6T1T2

]

Proof of the Theorem 6.3 To pave Xγ ∩ Sch(2n1 + n2, 0, 0), we use the same idea as the
proof of Theorem 3.11 in [3]. We can pave Sch(2n1 + n2, 0, 0) in affine spaces with the
Iwahori subgroup

I ′ = Ad(diag(ε2n1+n2 , 1, 1))I.

Let C(μ) = Sch(2n1 + n2, 0, 0) ∩ I ′εμK/K , then we have the affine paving

Sch(2n1 + n2, 0, 0) =
⊔

μ∈Sch(2n1+n2,0,0)T
C(μ),

with

C(μ) =
⎡

⎣

O
p−μ1 O O
p−μ1 p O

⎤

⎦ εμK/K .

Then we prove with the same method that C(μ) ∩Xγ is an affine space of dimension

min{n1, μ2} +min{n1, μ3} +min

{

n2, |μ2 − μ3| + sign(μ2 − μ3)− 1

2

}

.
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(0, 2n1 + n2, 2()0 n1 + n2, 0, 0)(2n1, n2, 0) (n1 + n2, n1, 0)

(n1 + n2, 0, n1)(0, n1 + n2, n1)

(0, n1, n1 + n2)

(2n1, 0, n2)

(0, 0, 2n1 + n2)

R1

R1

R2

R2R3

R4
R4

Fig. 4 Partition of the triangle

It suffices to count the number of affine pavements of each dimension to get the Poincaré
polynomial. To facilitate the work, we cut Sch(2n1 + n2, 0, 0)T into 7 parts, as indicated in
Fig. 4, where

R1 = {μ ∈ Sch(2n1 + n2, 0, 0)
T |μ2 − μ3 > n2},

R′1 = {μ ∈ Sch(2n1 + n2, 0, 0)
T |μ3 − μ2 > n2},

R2 = {μ ∈ Sch(2n1 + n2, 0, 0)
T |μ2 − μ3 ≤ n2, μ3 < n1, μ2 > n1},

R′2 = {μ ∈ Sch(2n1 + n2, 0, 0)
T |μ3 − μ2 ≤ n2, μ2 < n1, μ3 > n1},

R3 = {μ ∈ Sch(2n1 + n2, 0, 0)
T |μ3 ≥ n1, μ2 ≥ n1},

R4 = {μ ∈ Sch(2n1 + n2, 0, 0)
T |μ3 ≤ n1, μ2 ≤ n1, n2 < μ1 ≤ n1 + n2},

R′4 = {μ ∈ Sch(2n1 + n2, 0, 0)
T |μ3 < n1, μ2 < n1, n1 + n2 < μ1 ≤ 2n1 + n2},

Nowwe count the contribution of each part. We first sum over each blue lines as indicated
in Fig. 4, then we add up all blue lines. We use the notation

∑ν′
μ=ν to mean summation over

the line having ends in ν, ν′. Since the Poincaré polynomial is a polynomial in t2, we use
q := t2 to simplify the notation.

(1) The contribution of C(μ)∩Xγ , μ ∈ R1 to the Poincaré polynomial ofXγ ∩Sch(2n1+
n2, 0, 0) is

n1−1
∑

i=0

(2n1−2i−1,n2+i+1,i)
∑

μ=(0,2n1+n2−i,i)
qn1+n2+i = 2

n1
∑

i=1
iq2n1+n2−i .

(2) The contribution of C(μ) ∩Xγ , μ ∈ R′1 is the same as R1.
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(3) The contribution of C(μ) ∩Xγ , μ ∈ R2 is

n1−1
∑

i=0

(n1+n2−i−1,n1+1,i)
∑

μ=(2n1−2i,n2+i,i)
qi+n1+μ2−μ3

= n1

n1+n2
∑

i=2n1+1
qi +

n1−1
∑

i=1
(n1 − i)qn1+n2+i .

(4) The contribution of R′2 is

n1−1
∑

i=0

(n1+n2−i−1,i,n1+1)
∑

μ=(2n1−2i,i,n2+i)
qi+n1+μ3−μ2−1

= n1

n1+n2
∑

i=2n1+1
qi−1 +

n1−1
∑

i=1
(n1 − i)qn1+n2+i−1.

(5) The contribution of R3 is

n2
∑

i=0

(i,n1+n2−i,n1)
∑

μ=(i,n1,n1+n2−i)
q2n1+|μ2−μ3|+ sign(μ2−μ3)−1

2

=
n2
∑

i=0
q2n1(1+ q + q2 + · · · + qn2−i )

= q2n1
n2
∑

i=0
(n2 + 1− i)qi .

(6) The contribution of R4 is

n1−1
∑

i=0

(n1+n2−i,i,n1)
∑

μ=(n1+n2−i,n1,i)
qn1+i+|μ2−μ3|+ sign(μ2−μ3)−1

2

=
n1−1
∑

i=0
qn1+i (1+ q + · · · + qn1−i )

= n1q
2n1 +

n1−1
∑

i=0
(i + 1)qn1+i .

(7) The contribution of R′4 is

n1−1
∑

i=0

(2n1+n2−i,i,0)
∑

μ=(2n1+n2−i,0,i)
qi+|μ2−μ3|+ sign(μ2−μ3)−1

2

=
n1−1
∑

i=0
qi (1+ q + · · · + qi ).

The complement of Fγ in Xγ ∩ Sch(2n1 + n2, 0, 0) can be paved in affine spaces in the
following way: observe that Fγ is contained in the intersection Xγ ∩ Sch(n1 + n2, n1, 0),
whose complement in Xγ ∩ Sch(2n1 + n2, 0, 0) can be paved in affine spaces using the
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(0, 2n1 + n2, 2()0 n1 + n2, 0, 0)(2n1, n2, 0) (n1 + n2, n1, 0)

(n1 + n2, 0, n1)(0, n1 + n2, n1)

(0, n1, n1 + n2)

(2n1, 0, n2)

(0, 0, 2n1 + n2)

(n1, n1 + n2, 0)

(n1, 0, n1 + n2)

T2

T3

T1

T1

Fig. 5 Complementary of Fγ

standard Iwahori subgroup I . It suffices to pave the complement of Fγ in Xγ ∩ Sch(n1 +
n2, n1, 0), which can be done by using the Iwahori subgroup

I ′′ = Ad(diag(εn1 , εn2 , εn2))I.

We cut the complement of FT
γ in Sch(2n1 + n2, 0, 0)T as indicated in Fig. 5, where

T1 = {μ ∈ Sch(2n1 + n2, 0, 0)
T |μ1 ≥ n1 + n2 + 1},

T2 = {μ ∈ Sch(2n1 + n2, 0, 0)
T |μ2 ≥ n1 + n2 + 1},

T3 = {μ ∈ Sch(2n1 + n2, 0, 0)
T |μ3 ≥ n1 + n2 + 1},

T ′1 = {μ ∈ Sch(2n1 + n2, 0, 0)
T |2n1 + 1 ≤ μ1 ≤ n1 + n2}.

The complement of Xγ ∩ Sch(n1 + n2, n1, 0) in Xγ ∩ Sch(2n1 + n2, 0, 0) is
⊔

μ∈T1∪T2∪T3
IεμK/K ∩Xγ .

It is easy to verify that this is an affine paving. To calculate its Poincaré polynomial, in each
region we first sum over the vertices on the blue lines as indicated in Fig. 5, then we sum
over all the lines.

(1) The contribution of T1 is

n1−1
∑

i=0

(2n1+n2−i,i,0)
∑

μ=(2n1+n2−i,0,i)
q2n1+|μ2−μ3|+ sign(μ2−μ3)−1

2

=
n1−1
∑

i=0
q2n1(1+ q + · · · + qi ).
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(2) The contribution of T2 is

n1−1
∑

i=0

(n1−i−1,n1+n2+1,i)
∑

μ=(0,2n1+n2−i,i)
qn1+n2+i =

n1
∑

i=1
iq2n1+n2−i .

(3) The contribution of T3 is the same as that of T2.

It remains to calculate the Poincaré polynomial of the complement of Fγ inXγ ∩Sch(n1+
n2, n1, 0). By Proposition 6.1, it is the union

⊔

μ∈T ′1
I ′′εμK/K ∩ Sch(n1 + n2, n1, 0) ∩Xγ .

By Proposition 2.5, points in IεμK/K ∩Xγ , μ ∈ T2 ∪ T3 don’t belong to any B ′ενK/K ∩
Xγ , ν ∈ T ′1, for any B ′ ∈ F(T ). The above intersection is thus equal to

⊔

μ∈T ′1
I ′′εμK/K ∩ Sch(2n1 + n2, 0, 0) ∩Xγ ,

which is easily verified to be an affine space of dimension

2n1 + |μ2 − μ3| + sign(μ2 − μ3)− 1

2
,

using the equality

I ′′εμK/K ∩ Sch(2n1 + n2, 0, 0) =
⎡

⎣

O pa pb

O O
p O

⎤

⎦ εμK/K ,

where a = max{n1 − n2,−μ2}, b = max{n1 − n2,−μ3}.
Summing up the contributions of all the pavements in T ′1 in the order as for the region T1,

we find the Poincaré polynomial of the complement of Fγ in Xγ ∩ Sch(n1 + n2, n1, 0) to
be

n2−1
∑

i=n1

(2n1+n2−i,i,0)
∑

μ=(2n1+n2−i,0,i)
q2n1+|μ2−μ3|+ sign(μ2−μ3)−1

2

=
n2−1
∑

i=n1
q2n1(1+ q + · · · + qi ).

Now taking into account all the above calculations, we get the result as claimed in the
theorem. ��
Remark 6.1 Observe that in the above proof we actually give an affine paving of the com-
plement of Fγ in Xγ ∩ Sch(2n1 + n2, 0, 0), and this paving can also be obtained by the
Arthur–Kottwitz reduction. In principle, one can calculate the Poincaré polynomial of the
fundamental domain of the affine Springer fibers for GL4, using the same method with
Arthur–Kottwitz reduction and the affine pavings in [3].
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