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Abstract. Li-Nadler proposed a conjecture about traces of Hecke categories,
which implies the semistable part of the Betti geometric Langlands conjec-
ture of Ben-Zvi-Nadler in genus 1. We prove a Weyl group analogue of this
conjecture. Our theorem holds in the natural generality of reflection groups
in Euclidean or hyperbolic space. As a corollary, we give an expression of
the centralizer of a finite order element in a reflection group using homotopy
theory.

1. Introduction

1.1. Statement of the theorem. Let W be a reflection group in Euclidean or
hyperbolic space. For I a facet, denote by WI the subgroup fixing I. For C a
chamber, denote by FC the category (or poset) of facets in C (:= the closure of
C). We view W (with discrete topology) as a monoid in S := the ∞-category of
topological spaces and denote its trace by Tr(W ) ∈ S. Our main theorem is:

Theorem 1.1. The natural map is fully-faithful:

colimI∈F
op
C

Tr(WI)
� � �� Tr(W ).

Moreover, denote by W f ⊂ W the subset consisting of elements of finite order,
and let Tr(W )f ⊂ Tr(W ) be those components in the image of the natural map
W f → W → Tr(W ). Then the above map induces an equivalence in S:

colimI∈F
op
C

Tr(WI)
� �� Tr(W )f .

For a topological group G, it is not hard to see that Tr(G) is equivalent to the
Borel construction G/G := G×G EG for the adjoint action. So the above theorem
is equivalent to

colimI∈F
op
C

WI/WI
� � �� W/W, colimI∈F

op
C

WI/WI
� �� W f/W.
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2 PENGHUI LI

We get the following expression of the centralizer CW (w) of a finite order ele-
ment w:

Corollary 1.2. Let w ∈ W f , let J be a facet fixed by w (always exists by Proposi-
tion 2.3 (4)), and let C be a chamber with C ⊃ J . Then there is an equivalence of
H-groups:

CW (w) � Ωw(colimI∈F
op
C

WI/WI),

where Ωw(−) denotes the based loop space at w, and w is the image of w ∈ WJ →
WJ/WJ → colimI∈F

op
C

WI/WI . In particular, there is an isomorphism of groups:

CW (w) � π1(colimI∈F
op
C

WI/WI , w).

Note that the theorem/corollary also implies the non-trivial fact that
colimI∈F

op
C

WI/WI is a disjoint union of K(π, 1) spaces.
The idea of the proof of the theorem is to resolve the colimit using the geometry of

the associated hyperplane arrangement (cf. the functor K at the start of Section 3)
and reduce the calculation of the colimit to combinatorics using an ∞-categorical
version of the Seifert-van Kampen theorem due to Lurie [Lur12, Theorem A.3.1].

Remark 1.3.
(1) For a topological group G acting on a topological space X, we denote by

X/G the topological space X ×G EG, where EG is a contractible space with
free G action. It is not hard to see that Tr(G) � G/G for the adjoint ac-
tion of G (Proposition 2.4). Denote by • a single point. It is known that
colimI∈F

op
C

•/WI � •/W (see e.g. [Li18]). This equivalence sits inside Theo-
rem 1.1 via the commutative diagram

colimI∈F
op
C

•/WI
∼ ��

� �

��

•/W� �

��

colimI∈F
op
C

WI/WI
∼ �� W f/W

where the vertical maps take • to 1. A similar statement of the top equivalence
for the Bruhat-Tits building was used to prove that the representation category
of a p-adic group has global dimension ≤ dim(C) (see e.g. Bernstein’s lectures
on representation of p-adic groups). It may be interesting to see the meaning
of the bottom arrow in p-adic representation theory.

(2) Note that colim •/WI � •/W , while in general colim Map(S1, •/WI) �
colim WI/WI 	� W/W � Map(S1, •/W ). This reflects the fact that Map(S1,−)
does not preserve colimits; i.e., loop spaces are not calculated locally.

1.2. Relation to geometric Langlands. When W = Waff , the affine Weyl group
of a simply-connected reductive group G, Theorem 1.1 confirms a Weyl group ana-
logue of the following conjecture in [LN15]. Let G be a simply-connected reductive
algebraic group, LG the loop group of G. Let C be an affine alcove. For each
facet I of C (i.e., I ⊂ C), denote by GI the Levi of the parahoric subgroup of LG
corresponding to I. Let HI be the Hecke category of GI , and let Haff be the affine
Hecke category.

Conjecture 1.4 ([LN15, Claim 1.12]). The natural map of ∞-categories

colimI∈F
op
C

Tr(HI) �� Tr(Haff)

is fully-faithful.
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A COLIMIT OF TRACES OF REFLECTION GROUPS 3

This conjecture comes from the consideration of geometric Langlands. Roughly
speaking, the Betti geometric Langlands conjecture [BZN16] predicts the equiva-
lence of two (∞)-categories: the automorphic category Ag and the spectral category
Bg. As explained in [LN15], the above conjecture implies that for genus g = 1, one
can embed the semistable automorphic category Ass

1 ⊂ A1 fully-faithfully into B1

and hence implies this part of geometric Langlands. Note that WI is the Weyl
group of GI , Weyl groups are specializations of Hecke algebra, and Hecke algebras
are decategorifications of Hecke categories. Hence Theorem 1.1 confirms an easier
analogue of Conjecture 1.4.

1.3. Examples. We give some examples of Theorem 1.1. Denote by Sn the sym-
metric group on n letters:

(1) W is the Weyl group of a reductive algebraic group G. Then F
op
C has a final

object O the origin, and WO = W . Hence Theorem 1.1 holds trivially since the
LHS is also Tr(W ).

(2) W is the affine Weyl group of SL2. F
op
C is the category • ← • → •. S2/S2 �

•/S2

∐
•/S2

LHS = colim •

����
��
��

��
��

��
��

S2/S2 S2/S2

� colim •

����
��
��

��
��
��
��

•/S2 •/S2

∐
colim

•/S2 •/S2

� •/W
∐

•/S2

∐
•/S2 → W/W .

The image consists of components labelled by 1, s1, s0 (viewed as elements
in W/W via the map W → W/W ) for s1, s0 two simple reflections in W . The
map being fully-faithful reflects the fact that s1 and s0 are not conjugate in W ,
and the centralizer of each is S2.

(3) W is the affine Weyl group of SL3. Note thatS3/S3�•/S3

∐
•/S2

∐
•/(Z/3).

LHS = colim S3/S3
��

��
��

		

��
��



S2/S2
����

S2/S2
��		•

S3/S3

��










��

������
S2/S2

��

S3/S3

��

�����
��
��









� colim •/S3
��

��
��

		

��
��



•/S2
����

•/S2
����•

•/S3

��










��

������
•/S2

��

•/S3

��

�����
��
��









∐
colim •/S2

��

��
��

		

��
��

•/S2 •/S2

•/S2

��

����


 •/S2 •/S2

��

����
��

∐
colim •/(Z/3)

•/(Z/3) •/(Z/3)

� •/W
∐

(•/S2 × ∂C)
∐

(•/(Z/3))
∐

3.
The second factor •/S2 × ∂C can be identified as the component labelled

by reflections in W/W : let sI ∈ W be the reflection corresponding to a one-
dimensional facet I of C. The component of sI is equivalent to •/S2×∂C. We
find the centralizer CW (sI) � ΩsI (•/S2 × ∂C) � S2 ×Z. This agrees with the
more familar presentation CW (sI) � 〈sI〉 × X∗(Z(GI)) � S2 × Z. Also note
that there is only one component of the form •/S2 × ∂C, and this reflects the
fact that all reflections are conjugate (unlike the previous case).
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4 PENGHUI LI

(4) Let W be the triangle group (2, 3,∞). It is a reflection group in the hyperbolic
plane.

LHS = colim S2/S2

��

•

 ��

��

S2/S2

��

(S2 ×S2)/(S2 ×S2) S2/S2


 �� S3/S3

= colim{ (S2 ×S2)/(S2 ×S2) S2/S2


 �� S3/S3 }

= •/W
∐
(•/(S2 ×S2))

∐
3
∐

•/(Z/3).
We see that in this case, CWI

(w) = CW (w) for any w ∈ WI .

2. Preliminaries

2.1. Discrete groups generated by reflections. References for this section are
[Bou02, V] and [Vin88]. Let X be an Euclidean space E

n or hyperbolic space H
n.

Let H be a collection of hyperplanes in X. Let W be the group generated by the
orthogonal reflection along the hyperplanes H ∈ H. Assume that:

(1) For any w ∈ W and H ∈ H, we have w(H) ∈ H.
(2) W provided with discrete topology acts properly on X.

Given two points x and y of X, denote by R{x, y} the equivalence relation:
For any hyperplane H ∈ H, either x ∈ H and y ∈ H or x and y are strictly on

the same side of H.

Definition 2.1.
(1) A facet of X is an equivalence class of the equivalence relation defined

above.
(2) For two facets I, J , denote I ≤ J if I ⊂ J . Then ≤ defines a partial order

on the set of facets.
(3) A chamber C of X is a maximal elements of the partial order set of facets.
(4) For any facet J , denote by FJ the category corresponding to the poset

{I|I ≤ J}.
(5) The star of I is XI :=

⋃
{J|I≤J} J ⊂ X and WI := {w ∈ W | w|I = id}.

Proposition 2.2.
(1) A facet is a polytope.
(2) For any chamber C, the closure C of C is a fundamental domain for the

action of W on X; i.e., every orbit of W in X meets C in exactly one
point.

(3) For I a facet, the group WI is generated by the reflections fixing I.
(4) WI acts on XI with fundamental domain XI ∩ C for any chamber C ≥ I.
(5) Let w ∈ W,x ∈ I. Then w(x) = x if and only if w|I = id if and only if

w(I) = I.

Proof. (1) By definition since each facet is an intersection of hyperplanes and half
spaces. (2) See [Bou02, V.3.3, Theorem 2]. (3) See [Bou02, V.3.3, Proposition 2].
(4) Let J ≥ I be a facet in XI . Then w(J) ≥ w(I) = I; hence w(J) ⊂ XI , and
thereforeWJ acts on XI . For the second statement, note that WI is also a reflection
group on X. Hence by (2), we deduce that XI ∩ CI is a fundamental domain of
the WI action on XI , where CI is any WI -chamber (for the action of X). We can
choose CI to contain C, and then we just have to show that XI ∩ CI = XI ∩ C.
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A COLIMIT OF TRACES OF REFLECTION GROUPS 5

Note that CI is the union of the closures of the W -chambers contained in CI and
that such a closure intersects XI only if its interior W -chambers are contained in
XI . But observe that any two W -chambers in XI are connected by an element in
WI (a path between them close to some fixed point of I will cross only hyperplanes
containing I), which means that XI ∩ CI = C; hence the result follows. (5) See
[Bou02, V.3.3, Proposition 1]. �
Proposition 2.3.

(1) Let I be a facet. Then the star XI is star-shaped with center c for any
c ∈ I.

(2) Let w be a finite order isometry of X. Then the fixed point locus Xw is
non-empty and convex.

(3) Xw, XI , and Xw
I := Xw ∩XI are contractible for any w ∈ W f and facet I.

(4) W f = {w ∈ W : w(I) = I for some facet I} as subsets of W .

Proof. (1) Take any x ∈ XI . Then by definition x ∈ J for some J ≥ I; hence x ∈ J .
Therefore the line segment cx is contained in J , because J is convex. We conclude
that cx\{c} ⊂ J ; hence cx ⊂ I∪J ⊂ XI . (2) Follows from [BH13, Corollary II.2.8].
(3) Follows from (1) and (2). (4) It is clear that RHS ⊂ W f . Now take w ∈ W f ;
by (2) w has a fixed point x. Then by Proposition 2.2, w(I) = I for the facet I
containing x. �
2.2. Traces of monoids. Let C be a symmetric monoidal ∞-category such that
all colimits exist in C. Let A ∈ Mon(C) be a monoid in C. The trace (or Hochschild
homology) of A is by definition Tr(A) := A ⊗A⊗Aop A ∈ C, and there is a natural
map A → Tr(A). We view S as a symmetric monoidal ∞-category, where ⊗ is given
by the Cartesian product.

Proposition 2.4. Let G be a topological group. View G ∈ Mon(S). Then Tr(G) �
G/G := G×G EG, where G acts on G by conjugation, and the map G → Tr(G) is
identified with the natural projection G → G/G.

Proof. We have an isomorphism G � G ⊗ Gop ⊗G • as G ⊗ Gop modules, where
G acts on G⊗Gop diagonally. Then G ⊗G⊗Gop G � G⊗G⊗Gop (G⊗Gop ⊗G •) �
G ⊗G • � G/G, where the action of G on G is the conjugation. One also checks
that this isomorphism is compatible with the natural map from G. �
2.3. Topological groupoid and open descent. We denote a topological groupoid
G to be the data consisting of a discrete group G acting properly discontinuously
on a topogical space Y , and we use the notation G = [Y/G]. Let G′ = [Y ′/G′] be
another topological groupoid. A morphism F : G → G′ consists of the data (f, ϕ),
where f : Y → Y ′ is a continous map and ϕ : G → G′ is an injective homomorphism
such that f(a · y) = ϕ(a) · f(z) for all a ∈ G, y ∈ Y . We denote by TopGrpd the
category of topological groupoids. A morphism F is an open embedding if the
induced map Y ×GG′ → Y ′ is an open embedding. We denote by Y the underlying
set of Y and G := Y /G ∈ S (recall that G is assumed to be discrete). Also define
Gh := Y/G ∈ S, the homotopy type of G.
Remark 2.5. Our definition of topological groupoid is somewhat non-standard; in
particular we require the group homomorphism ϕ above to be injective. This con-
dition ensures that the morphism F is actually “representable”; hence we could
define the notion of open embedding via base change.
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6 PENGHUI LI

Proposition 2.6. Let F = (f, ϕ) : G → G′ as above, assume that f is a local
homeomorphism, and assume the induced map F : G → G′ is fully-faithful. Then F
is an open embedding.

Proof. The base changed map Y ×G G′ → Y ′ is a local homeomorphism since G
and G′ are discrete. The map on underlying sets Y ×G G′ → Y ′ is fully-faithful
(i.e., injective), because fully-faithful maps between groupoids are stable under base
change. These imply the map Y ×G G′ → Y ′ is an open embedding. �

Let I be a small category. We denote by I� the category by adding one final
object ∗ to I. We say a functor K : I� → T is a colimit diagram if the induced map
colimK|I → K(∗) is an isomorphism.

Lemma 2.7. Let K : I� → S be a functor, and let p : Y → K(∗) be a morphism in
S which induces surjection on π0. Denote by Kp : I� → S the base changed functor
via I �→ K(I)×K(∗) Y . Then K is a colimit diagram if and only if Kp is a colimit
diagram.

Proof. The only if part follows from the fact that the colimit in S is stable under
base change. For the if part, assume Kf is a colimit diagram, put X := K(∗),
and let p[n] : Y n+1

X → X. Then Kp[n] is a colimit diagram for all n ≥ 0, and
{Kpn}n≥−1 form an augmented simplicial functor, whereKp[−1] := K. We haveX�
colim[n]∈Δop Y n+1

X �colim[n]∈Δop colimI∈I Kp[n](I)�colimI∈I colim[n]∈Δop Kp[n](I)�
colimI∈I K(I). Hence K is a colimit diagram. Here we have used the fact that for
any morphism T → S in S, which induces surjection on π0, we get an equivalence
colim[n]∈Δop Tn+1

S
∼−−−→ S, where Tn+1

S := T ×S T ×S ×S · · · ×S T with (n + 1)
copies of T . �

Proposition 2.8 (∞-categorical Seifert-van Kampen theorem for topological
groupoids). Let K : I� → TopGrpd be a functor, assume that all arrows in I�

go to open embeddings, and assume the induced functor K : I� → S is a colimit
diagram. Then the induced functor Kh : I� → S is a colimit diagram.

Proof. Assume K(∗) = [Y/G], let P : Y → [Y/G] be the projection, and de-
note by KP the base changed functor via I �→ K(I) ×[Y/G] Y = YI ×GI

G, for
K(I) = [YI/GI ]. By Lemma 2.7, the proposition holds for K if and only if it
holds for KP . Hence we could assume that K takes value in Top the category
of topological spaces. Then this is the ∞-categorical Seifert-van Kampen theo-
rem [Lur12, Theorem A.3.1]. Note that the condition (∗) [Lur12, Theorem A.3.1]
is equivalent to the condition that K is a colimit diagram. To see this, we have
K =

∐
x∈K(∗) I

�
x , where I�x : I�x → S is the constant functor mapping to • ∈ S,

and Ix is a category defined in [Lur12, Theorem A.3.1]. Then condition (∗) (that
|N(Ix)| is contractible for all x ∈ K(∗)) is equivalent to I�x being a colimit diagram
for all x ∈ K(∗) and is equivalent to K being a colimit diagram. �

Remark 2.9 (Topological groupoids as topological stacks). Denote by Top the
category of topological spaces with continuous map. One can define a topog-
ical stack as a functor X : Topop → S, satisfying certain descent and repre-
sentibility conditions. Then Yoneda embedding (and regarding Set ⊂ S) gives
ι : Top ↪→ TopStack. One can define embedding ι′ : TopGrpd → TopStack via
[Y/G] → colim•∈Δop ι(G×• × Y ). In this case, G = ι′(G)(∗), and Gh is also the
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A COLIMIT OF TRACES OF REFLECTION GROUPS 7

homotopy type of ι′(G). Proposition 2.8 is most naturally presented in the con-
text of topological stacks (with local homeomorphisms), but we shall not use this
generality.

3. Proof of main theorem

Recall Xw, Xw
I as in Proposition 2.3. We define a functor K : Fop,�

C → TopGrpd
by I �→ [(

∐
w∈WI

Xw
I )/WI ] and ∗ �→ [(

∐
w∈W f Xw)/W ].

Lemma 3.1.

K(I) =
∐

{J|C≥J≥I}
(J ×WJ )/WJ , and K(∗) =

∐
{J|C≥J}

(J ×WJ )/WJ .

Proof. By Proposition 2.2(5), we see that Xw =
∐

{J|w(J)=J} J . Hence, as sets,

we have Xw
I =

∐
{J|J≥I,w(J)=J} J and

∐
w∈WI

Xw
I =

∐
w∈WI

∐
{J|J≥I,w(J)=J} J =∐

{(J,w)|J≥I,w(J)=J,w∈WI} J × {w} =
∐

{(J,w)|J≥I,w∈WJ} J × {w} =
∐

{J|J≥I} J ×
WJ . Hence K(I) = (

∐
{J|J≥I} J × WJ )/WI =

∐
{J|C≥J≥I}(J × WJ )/WJ , where

the last equality is by Proposition 2.2(2). The second statement follows from a
similar argument with the description of W f as in Proposition 2.3(4). �

Lemma 3.2.
(1) For any I ′ → I in F

op,�
C , K(I ′) → K(I) is fully-faithful.

(2) K is a colimit diagram.

Proof. (1) One checks that under the identification in Lemma 3.1, the mapK(I ′) →
K(I) is induced by the inclusion of indexing sets {J |C ≥ J ≥ I ′} → {J |C ≥ J ≥ I}.

(2) For any J ≤ C, define KJ : Fop,�
C → S by

KJ(I) :=

{
(J ×WJ )/WJ if I ≤ J,

∅ otherwise.

We see that colimF
op
C

KJ � |Fop
J |× ((J ×WJ )/WJ) � (J ×WJ )/WJ � KJ(∗). The

second equivalence follows from the fact that the geometric realization |Fop
J | � J is

contractible. Hence KJ is a colimit diagram, and K �
∐

J≤C KJ is also a colimit
diagram. �

Proof of Theorem 1.1. By Proposition 2.4, it is equivalent to show that the natural
map colimI∈Fop WI/WI → W/W is fully-faithful and the image is W f/W . We
claim the functor K satisfies the assumption of Proposition 2.8. We first show
that all arrows in F

op,�
C go to open embeddings. For any I ′ ≥ I, the natural map∐

w∈WI′
Xw

I′ →
∐

w∈WI
Xw

I is an open embedding. Hence by Proposition 2.6 and

Lemma 3.2(1), K(I ′) → K(I) is an open embedding, and K is a colimit diagram by
Lemma 3.2(2). Hence we conclude that Kh is a colimit diagram by Proposition 2.8.
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Now we have a commutative diagram in S:

colimI∈F
op
C
(
∐

w∈WI
Xw

I )/WI ∼
Kh ��

∼
��

(
∐

w∈W f Xw)/W

∼
��

colimI∈F
op
C

WI/WI
p

��

q

�����
����

����
����

���
W f/W� �

i

��

W/W

The two vertical arrows are given by Xw
I (resp. Xw) �→ {w}; hence they are

equivalences since Xw
I and Xw are contractible (Proposition 2.3). We conclude

that p is an equivalence. Now i is fully-faithful by definition; hence q is fully-
faithful. �
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