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1. Introduction

1.1. Background

Let G be a connected complex reductive algebraic group, and E a complex elliptic 
curve.

The moduli of G-bundles on E play a distinguished role in representation theory, gauge 
theory and algebraic combinatorics (for example [13,36] as the setting of the elliptic Hall 
algebra), and its geometry has been the subject of a long and fruitful study. Atiyah [3]
classified vector bundles on E in terms of line bundles and their extensions. In particular, 
he showed rank n vector bundles with trivial Jordan-Holder factors are in bijection 
with unipotent adjoint orbits in GL(n), with the unique irreducible such vector bundle 
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corresponding to the regular unipotent orbit. This initiated the organizing viewpoint 
that vector bundles on E form an analogue of the adjoint quotient of GL(n), where 
the “eigenvalues” of a vector bundle are the line bundles appearing as its Jordan-Holder 
factors. In a beautiful series of papers, Friedman, Morgan and Witten [17,15,16] extended 
this to any G, definitively describing the Jordan-Holder patterns and the geometry of 
the coarse moduli of semistable bundles. Our focus here is the moduli stack of semistable 
bundles, and specifically the construction of an analytic uniformization of it by finite-
dimensional subvarieties of the loop group of G. We discuss motivations and applications 
at the end of the introduction.

1.1.1. Holomorphic loop group with twisted conjugation
Thanks to complex function theory, the uniformization E � C∗/qZ, with |q| < 1, has 

been known since the 19th century. Let Jac(E) be the Jacobian variety parameterizing 
degree zero line bundles on E. (Thanks to Serre’s GAGA, one can equivalently consider 
algebraic or holomorphic bundles.) The Abel-Jacobi map E → Jac(E), x �→ OE(x − x0)
is an isomorphism, inducing a similar uniformization Jac(E) � C∗/qZ.

This isomorphism also results from the following geometric observations. By the uni-
formization E � C∗/qZ, holomorphic line bundles on E are equivalent to equivariant 
holomorphic line bundles on C∗. Since every holomorphic line bundle on C∗ is trivi-
alizable, equivariant holomorphic line bundles are encoded by their equivariance up to 
gauge. Such data can be represented by elements of the holomorphic loop group LholC∗

up to q-twisted conjugacy. Within this identification, one finds the uniformization of 
Jac(E) by the constant loops C∗ ⊂ LholC∗ up to q-twisted conjugacy by the coweights 
Z � Hom(C∗, C∗) ⊂ LholC∗.

Now let GE := Bunss,0
G (E) denote the connected component of the trivial bundle in 

the stack of semistable G-bundles on E. By the uniformization E � C∗/qZ, isomorphism 
classes of G-bundles on E are in bijection with q-twisted conjugacy classes in the holo-
morphic loop group LholG (see for example [4] where this is attributed to Looijenga). 
We would like to enhance this to an analytic uniformization of GE by finite-dimensional 
subvarieties of LholG. As a first attempt, we could take the constant loops G ⊂ LholG, 
but unfortunately, in general, the natural map G/G → GE from the adjoint-quotient 
is neither surjective nor étale. We will correct for both of these shortcomings by con-
sidering multiple charts together with their gluing; see the main results as described in 
Sect. 1.2.

1.1.2. Connections on a circle with gauge transformation
Our arguments also apply to an easier situation to give a similar uniformization 

of G/G in terms of (open subsets of) adjoint quotients of reductive Lie algebras. 
In this case, the role of LholG with the action of twisted conjugation is replaced 
by the affine space of connections on a circle with the action of gauge transforma-
tion.
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1.2. Main results

Assume that G is semisimple and simply-connected. Let T ⊂ G be a maximal torus, 
and denote by X∗(T ) = Hom(C∗, T ) the coweight lattice.

The real affine space tR := X∗(T ) ⊗R has a natural stratification by simplices coming 
from the hyperplanes

Hα,n := {x ∈ tR | α(x) = n}, for α a root of G,n ∈ Z

Let C be an alcove of tR, i.e. a top dimensional simplex. There is a naturally defined 
category FC of faces of C, whose objects are faces of C, i.e. simplices in C, and whose 
morphisms are given by the closure relation.

For any J ∈ FC , we have canonically associated finite-dimensional connected reduc-
tive subgroup GJ ⊂ LholG, whose Lie algebra gJ ⊂ Lholg is spanned by t and those 
affine root spaces whose affine root vanishes on J .

We introduce an analytic twisted adjoint-invariant open subset gseJ ⊂ gJ (resp. Gse
J ⊂

GJ) of elements with “small eigenvalues” with respect to J . Roughly speaking, an eigen-
value in t (resp. T ) is small with respect to J if its real part (resp. q-part) lies in a simplex 
whose closure contains J (for details, see definition before Proposition 5.36 for Gse

J , and 
Theorem 5.40(6) for gseJ ). Denote by GJ/

′GJ(resp. gJ/′GJ) be the quotient stack w.r.t. 
the twisted conjugation (Sect 1.1.1) (resp. the gauge action (Sect 1.1.2, which we shall 
also refer to as a “twisted” action)).

Theorem 1.1 (Theorem 5.40(6), 5.38). There are isomorphisms of complex analytic stacks

(1) colimJ∈FC
gseJ /′GJ

∼
G/G

(2) colimJ∈FC
Gse

J /′GJ
∼

GE

One of our motivations for the above is to study ∞-categories of complexes of sheaves 
with nilpotent singular support. To this end, we show by a propagation and an untwisting 
argument that:

Proposition 1.2 (Proposition 6.5, 6.7, 6.8). For sheaves with nilpotent singular support, 
there are equivalences, compatible with the diagram FC:

ShN (gJ/GJ) ∼
ShN (gJ/′GJ) ∼

ShN (gseJ /′GJ)

ShN (GJ/GJ) ∼
ShN (GJ/

′GJ) ∼
ShN (Gse

J /′GJ)

where GJ/GJ , gJ/GJ are the quotient stacks by usual conjugations.
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We deduce the following main result of the paper:

Theorem 1.3 (Theorem 6.12). There are equivalences of ∞-categories:

(1) ShN (G/G) ∼ limJ∈Fop
C

ShN (gJ/GJ)

(2) ShN (GE) ∼ limJ∈Fop
C

ShN (GJ/GJ)

Remark 1.4.

(1) In the limit, the arrow from J to J ′ is identified as parabolic restriction w.r.t. the
parabolic subalgebra pJJ ′ (resp. subgroup P J

J ′) defined by the relative position be-
tween J and J ′ (Definition 3.6). Similarly, the (higher) commutativities are given by 
(higher) transitivity isomorphisms between parabolic restrictions.

(2) ShN (g/G) is by definition the category of character sheaves on g. Fourier trans-
form gives an equivalence T : ShN (g/K) �−→ Sh(N/G). The latter category is 
studied in the generalized Springer theory initiated in [29]. For characteristic 0 coef-
ficients, Sh(N/G) is explicitly calculated in [34,35]. For characteristic p coefficients, 
the abelian category Perv(N/K) is the subject of modular generalized Springer the-
ory [1].

(3) By [31], ShN (G/G) agrees with the category of character sheaves introduced by 
Lusztig, which serves as a geometric avatar for the character theory of the finite 
group of Lie type G(Fq).

(4) The group GJ is explicitly known: let C be the standard alcove, and denote by S0

the set of affine simple roots, then there is natural identification between F op
C and 

P◦(S0) := the category of proper subset of S0, via J �→ {α ∈ S0 : α(J) = 0}. 
Under this identification, GJ is generated by the one parameter subgroup corre-
sponding to the roots in J . Hence the Dynkin diagram of GJ is J viewed as a 
subdiagram of the affine Dynkin diagram of G. In particular, when J is a vertex of 
the alcove, GJ is isomorphic to either G or a Pseudo-Levi subgroup of G (a con-
nected maximal rank reductive subgroup of G that is not contained in any parabolic 
subgroup), and all Pseudo-Levi subgroups arise in this way, cf. Borel–de Siebenthal 
[11].

(5) Recall that the conjugation actions in Theorem 1.1 are twisted (which depends on 
q). Nevertheless, in the last theorem, the conjugations are the usual (untwisted) 
ones. To achieve this, one needs to untwist all the conjugations compatibly with 
the diagram F op

C . (This essentially comes down to the fact that the simplices J ’s 
are contractible, and the nilpotent cone in gJ/GJ (resp. GJ/GJ) is constant along 
the direction of J .) Hence the right hand sides of Theorem 1.3 are completely Lie 
theoretic, and in particular, the right hand side in (2) is irrelevant to the elliptic 
curve E.
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(6) For a torus T , let Loc(T/T ) (resp. Loc(TE)) be the ∞-category of local systems 
on the adjoint quotient (resp. on the degree zero component of T -bundles on E). 
Theorem 1.3 can be thought of as an analogy for a simple, simply-connected group, 
of the statement:

Loc(T/T ) ∼ limBX∗(T ) Loc(t/T )

Loc(TE) ∼ limBX∗(T ) Loc(T/T )

where BX∗(T ) denotes the classifying space of the coweight lattice (viewed as an ∞-
groupoid), the object in BX∗(T ) goes to Loc(t/T ) (resp. Loc(T/T )), and all (higher) 
morphisms go to the identity. Indeed, the first equivalence (and similarly the sec-
ond one) can be seen as follows: a local system on T/T is a local system on pt/T
together with X∗(T )-action by monodromies, these data are equivalent to an object 
in limBX∗(T )(Loc(pt/T )), which is equivalent to an object in limBX∗(T )(Loc(t/T )), 
since t is contractible.

Combining the statements for a simple, simply-connected group and a torus, one 
can obtain a general statement for any reductive group.

Example 1.5. (G = SL2) Theorem 1.3 (1) gives:

ShN (SL2/SL2)

= lim{ ShN (
[
C C
C C

]
/ ∼) [ ∗ ∗

0 ∗
] ShN (

[
C 0
0 C

]
/ ∼) ShN (

[
C Cz

Cz−1 C

]
/ ∼)[ ∗ 0

∗ ∗
] }

where the matrices stand for the corresponding Lie subalgebras of Lsl2, and / ∼ is short-
hand for taking the quotient by the corresponding adjoint action. The arrows “→” in 
the diagram are parabolic restrictions with respect to the indicated parabolic subalge-
bras.

Example 1.6. (G = SL3) Theorem 1.3 (1) gives
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ShN (SL3/SL3) = lim

ShN (
[

C Cz Cz
Cz−1 C C
Cz−1 C C

]
/ ∼)

[ ∗ 0 0
∗ ∗ ∗
∗ ∗ ∗

] [ ∗ 0 ∗
∗ ∗ ∗
∗ 0 ∗

]

[ ∗ 0 0
∗ ∗ ∗
∗ 0 ∗

]

ShN (
[
C 0 0
0 C C
0 C C

]
/ ∼)
[ ∗ 0 0

0 ∗ ∗
0 0 ∗

]

⇒

⇓

ShN (
[

C 0 Cz
0 C 0

Cz−1 0 C

]
/ ∼)

[ ∗ 0 0
0 ∗ 0
∗ 0 ∗

]

⇐

⇓ShN (
[
C 0 0
0 C 0
0 0 C

]
/ ∼)

ShN (
[
C C C
C C C
C C C

]
/ ∼)

[ ∗ ∗ ∗
0 ∗ ∗
0 ∗ ∗

]

[ ∗ ∗ ∗
∗ ∗ ∗
0 0 ∗

]

[ ∗ ∗ ∗
0 ∗ ∗
0 0 ∗

]

ShN (
[
C C 0
C C 0
0 0 C

]
/ ∼)

[ ∗ ∗ 0
0 ∗ 0
0 0 ∗

]
⇑ ⇑

ShN (
[

C C Cz
C C Cz

Cz−1 Cz−1 C

]
/ ∼)

[ ∗ ∗ ∗
0 ∗ 0
∗ ∗ ∗

]

[ ∗ ∗ 0
∗ ∗ 0
∗ ∗ ∗

]

[ ∗ ∗ 0
0 ∗ 0
∗ ∗ ∗

]

where the 2-arrows “⇒” in the diagram are the transitivity natural isomorphisms between 
parabolic restrictions.

Remark 1.7. The theorem is compatible with Springer theory in the sense that there is 
a commutative diagram:

C[Waff]-mod♥ ∼ limJ∈FC
C[WJ ]-mod♥

PervN (G/G) ∼ limJ∈FC
PervN (gJ/GJ)

ShN (G/G) ∼ limJ∈FC
ShN (gJ/GJ)

where WJ is the Weyl group of GJ (which equals the centralizer/stabilizer of J in the 
affine Weyl group Waff := W �X∗(T )); A-mod♥ is the abelian category of A-modules. 
Perv(X) denotes the category of perverse sheaves on X; the first and second limit is 
taken inside C at the category of categories, and the last limit is taken inside C at∞
the category of ∞-categories. Note that the first isomorphism follows from the Coxeter 
presentation of Waff, hence Theorem 1.3 can be thought of as a Coxeter presentation of 
character sheaves. One can also upgrade the first line to an ∞-categorical statement, see 
[25] for details.
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We also define more general descent diagrams for general reductive groups. See Sec-
tion 2.2 below for more details.

1.3. Applications

1.3.1. Global Fourier/Radon transform
There are natural integral transforms on each term in the right hand side of The-

orem 1.3. Namely, the Fourier transform TJ : ShN (gJ/GJ) → Sh(NgJ
/GJ) in (1), 

the Radon transform RJ : ShN (GJ/GJ) → Sh(BJ\GJ/BJ ) and the inverse Radon 
transform ŘJ : ShN (BJ\GJ/BJ) → Sh(GJ/adGJ) in (2), where BJ := P J

C is a Borel 
subgroup of GJ . The integral transforms are compatible with the diagram, hence pass 
to the (co)limit:

T : ShN (G/G) ∼−→ lim
J∈FC

Sh(NgJ
/GJ)

R : ShN (GE) → lim
J∈FC

Sh(BJ\GJ/BJ)

Ř : colimJ∈FC
Sh(BJ\GJ/BJ ) → colimJ∈FC

ShN (GJ/GJ) � ShN (GE)

We refer to these functors as the global Fourier/(inverse) Radon transform. Note that 
in the last row, we identify limit in ∞-categories with colimit in ∞-categories (with 
continuous functors), see [18, Lemma 1.3.3].

1.3.1.1. Sheaf theoretic Kirillov orbit method. The Kirillov orbit method is a heuristic 
method in representation theory that states every irreducible character of a Lie group 
should be given by the Fourier transform of an orbital distribution. The global Fourier 
transform T : ShN (G/G) ∼−→ limJ∈FC

Sh(NgJ
/GJ) gives a sheaf theoretic realization of 

this heuristic: any character sheaf is given by a compatible system of (nilpotent) orbital 
sheaves. The appearance of the compatible system indexed by FC reflects the feature 
of sheaves: a sheaf is determined by its value on an open cover (indexed by FC in this 
case) together with gluing, while an analytic function can be determined by its value on 
a single open subset.

1.3.1.2. Spectral description of character sheaves. The category Sh(NgJ
/GJ) is de-

scribed by the generalized Springer correspondence [29,35]. Based on that and the global 
Fourier transform, the first author obtains the following spectral description of the cat-
egory ShN (G/G) of character sheaves on G: denote W J

aff := NWaff(WJ)/WJ , ΛJ ⊂ W J
aff

the subgroup of translations, W J := W J
aff/ΛJ , ŠJ := dual torus of ΛJ ⊗ C∗ and cJ

the number of cuspidal sheaves on NgJ
/GJ . Denote LX := X ×X×X X the derived 

loop space of X. Put Ĝ :=
∐

J∈FC
((LŠJ)/W J)

∐
cJ , and QCoh(Ĝ) the ∞-category of 

quasi-coherent sheaves on Ĝ.
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Theorem 1.8 ([25]). There is an equivalence of ∞-categories:

ShN (G/G) � QCoh(Ĝ)

1.3.1.3. Global Radon transform and Betti Geometric Langlands. Let us first re-
call the Betti geometric Langlands conjecture proposed by Ben-Zvi–Nadler. Let B
be a Borel subgroup of G and denote by N its unipotent radical. Let Ǧ be the 
Langlands dual group of G, Let Σ be a compact Riemann surface, and denote by 
BunG(Σ) := Map(Σ, BG) the derived moduli stack of holomorphic principal G-bundles 
on Σ, and by LocsysǦ(Σ) := Map(ΠΣ, BǦ) the derived moduli stack of Ǧ local system 
on Σ, where ΠΣ is the fundamental ∞-groupoid of Σ. Denote by IndCohŇ (LocsysǦ(Σ))
the dg category of ind-coherent sheaves on LocsysǦ(Σ) with singular support in the 
global nilpotent cone Ň ⊂ T ∗,−1LocsysǦ(Σ) (cf. Arinkin-Gaitsgory [14]).

Conjecture 1.9 ([8, Conjecture 1.5]). There is an equivalence of dg-categories:

LG : ShN (BunG(Σ)) � IndCohŇ (LocsysǦ(Σ))

Remark 1.10. We expect that Theorem 1.8 can be interpreted as semistable part of 
Conjecture 1.9 for Σ = nodal genus 1 curve.

We denote by I the Iwahori subgroup corresponding to the alcove C, and by 
NJ (resp. I0) the unipotent radical of BJ(resp. I). Denote by B̌ the dual Borel sub-
group of Ǧ, and by Ň its unipotent radical. For a group T acting on X, denote by 
ShT×T (X) ⊂ Sh(X) the full subcategory of sheaves which are locally constant on T
orbits. Let Tr(A) := A ⊗A⊗Aop A be the trace of a monoidal category A.

Now for Σ = E, we expect to define a functor:

Lss
G : ShN (GE) IndCohŇ (LocsysǦ(E))

by the compositions of following functors:

(1) ShN (GE) � limShN (GJ/GJ).
This is our main theorem.

(2) limShN (GJ/GJ) � colim ShN (GJ/GJ).
Again, this is because we can identify limit in ∞-categories with colimit in ∞-
categories (with continuous functors).

(3) (expected) colim ShN (GJ/GJ) � colim Tr(ShT×T (NJ\GJ/NJ )).
Denote by Shu

T×T (−) ⊂ ShT×T (−) the full subcategory of sheaves with T×T acting 
by unipotent monodromies. Define the unipotent character sheaves Shu

N (G/G) ⊂
ShN (G/G) to be the image of Shu

T×T (N\G/N) under inverse Radon transform. 
This expected equivalence is known for unipotent monodromies by Ben-Zvi–Nadler 
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[6, Theorem 1.8]: Shu
N (GJ/GJ) � Tr(Shu

T×T (NJ\GJ/NJ )) and it is expected for 
general monodromies [6, Expectation 1.23].

(4) colim Tr(ShT×T (NJ\GJ/NJ)) → Tr(ShT×T (I0\LG/I0)).
This functor is induced by the monoidal functors ShT×T (NJ\GJ/NJ) →
Tr(ShT×T (I0\LG/I0)).

(5) (expected) Tr(ShT×T (I0\LG/I0)) � Tr(IndCoh(B̌/B̌ ×Ǧ/Ǧ B̌/B̌)).
This is known for unipotent monodromies by Bezrukavnikov [10, Theorem 1 (2)]: 
Shu

T×T (I0\LG/I0) � IndCohu(B̌/B̌×Ǧ/ǦB̌/B̌), where IndCohu(B̌/B̌×Ǧ/ǦB̌/B̌) ⊂
IndCoh(B̌/B̌×Ǧ/Ǧ B̌/B̌) is the full subcategory of objects supported on Ň/Ň ×Ǧ/Ǧ

Ň/Ň . It is expected for general monodromies [10, Conjecture 58].
(6) Tr(IndCoh(B̌/B̌ ×Ǧ/Ǧ B̌/B̌)) � IndCohŇ (LocsysǦ(E)).

This is proved by Ben-Zvi–Nadler–Preygel [9, Theorem 4.4]. Denote by Locsysu
Ǧ

(E)
⊂ LocsysǦ(E) be the substack of local systems whose first monodromies are unipo-
tent, and by
IndCohu

Ň (LocsysǦ(E)) ⊂ IndCohŇ (LocsysǦ(E)) the full subcategory of sheaves 
supported on Locsysu

Ǧ
(E). Inside the equivalence above, we have the unipotent ver-

sion Tr(IndCohu(B̌/B̌ ×Ǧ/Ǧ B̌/B̌)) � IndCohu
Ň (LocsysǦ(E)).

In particular, denote by Shu
N (GE) := limShu

N (GJ/GJ) ⊂ ShN (GE) the full sub-
category corresponding to unipotent character sheaves, then (3) and (5) above are 
known for unipotent monodromies, so we have defined a functor Lss,u

G : Shu
N (GE) →

IndCohŇ (LocsysǦ(E)u). Under Conjecture 1.9, we expect the following diagram to com-
mute:

Shu
N (GE)

Lss,u
G IndCohŇ (LocsysǦ(E)u)

ShN (GE)
Lss

G

j!

IndCohŇ (LocsysǦ(E))

ShN (BunG(E))
LG

∼ IndCohŇ (LocsysǦ(E))

for j : GE → BunG(E) the open embedding. Hence it is natural to expect:

Claim 1.11. Lss,(u)
G is fully-faithful.

Assuming the expected equivalences (3) and (5) above, this claim is equivalent to a 
statement about affine Hecke categories:

Claim 1.12. The natural functor

colimJ∈FC
Tr(ShT×T (NJ\GJ/NJ)) Tr(ShT×T (I0\LG/I0))
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is fully-faithful.

We shall prove these claims in a future paper. An analogous statement to Claim 1.12
for Weyl group has been proved in [26].

Remark 1.13. The word global Fourier/Radon transform refers to being global on the 
moduli stack Bun(ss)

G (Σ), rather than on the Rieman surface Σ. Nevertheless, we expect 
that localizing on moduli stack is related to taking nearby cycles along degenerations 
of Riemann surface. This fits into the general framework of [8, Conjecture 4.15] where 
they proposed an approach to Conjecture 1.9 via gluing (i.e. taking (co)limits) from 
degenerations.

1.3.2. Topological nature of ShN (GE)
We can also define the uniformizations universally over the moduli of elliptic curve 

M1,1, this gives a natural notion of parallel transport:

Proposition 1.14 (Corollary 7.5). The ∞-category ShN (GE) of complexes of sheaves 
with nilpotent singular support is locally constant over the moduli space of elliptic curves 
M1,1.

Remark 1.15. As in Remark 1.4 (3), the right hand side in Theorem 1.3 (2) is irrelevant 
to the elliptic curve E. However, the equivalence there depends on a choice of basis in 
H1(E, Z) (and a point in E). Hence Theorem 1.3 (2) does NOT imply ShN (GE) is 
constant over M1,1. It is only constant after making the choice of basis (i.e. after a base 
change to the upper half plane H). And in fact the resulting sheaf of categories on M1,1

has interesting monodromy. For G = SLn, this sheaf contains the monodromy of the 
SL(2, Z) action on E[n]/Sn, by considering the cuspidal objects, where E[n] is the set 
of n-torsion points of E.

With modest further effort, and similar applications of the above results, one can 
extend the corollary to the ∞-category ShN (BunG(E)) of complexes of sheaves with 
nilpotent singular support on the entire moduli of all G-bundles on E. This category 
contains the Hecke eigensheaves of the geometric Langlands program, and we expect 
it to offer also a theory of affine character sheaves. Furthermore, under Langlands du-
ality/mirror symmetry, it is expected to correspond to a derived category of coherent 
sheaves on the commuting stack. (Note that the commuting stack, and hence its coherent 
sheaves as well, is evidently a topological invariant, only depending on the fundamental 
group of the elliptic curve.) This is in turn the subject of beautiful recent developments 
(Schiffmann-Vasserot [38,37,39] on Macdonald polynomials and double affine Hecke al-
gebras; Ginzburg [22] on Cherednik algebras and the Harish Chandra system) and in 
particular its role as affine character sheaves was established in [9].
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1.3.3. Dependence of restriction functor on parabolic subgroups
During the proof of our main theorem, we also obtain the following result:

Corollary 1.16. Let P1, P2 ⊂ G be two parabolic subgroups of a G with the same Levi L ⊂
G. Then there is a (non-canonical) natural isomorphism between the parabolic restrictions

ResP1 � ResP2 : ShN (G/G) ShN (L/L)

Such statements have been proved for orbital sheaves on Lie algebras in [30], and for 
perverse character sheaves on Lie groups in [20]. During the proof of our main theorem, 
we define a restriction functor RU : ShN (G/G) → ShN (L/L) depending on a choice 
of retractable subset U ⊂ L. The idea is that both parabolic restriction functors are 
isomorphic to the unique extension of the pullback along U/L → G/G. Hence each 
choice of U gives such a natural isomorphism. In fact, the space of choices of such U is 
connected but not contractible. This is explained in detail in Section 8.3.

1.4. Outline of the argument in an example

To illustrate the ideas, we give a first example in its most plain form.
Let G = SL2, g = sl2, T, t the diagonal matrices in G, g. Let U := {X ∈ g :

|Re(λ(X))| < 1/2}, for λ(X) an eigenvalue of X. Let V be another copy of U . We have 

U → G by X �→ exp(2πiX) and V → G by Y �→
(
−1 0
0 −1

)
exp(2πiY ). Let D = {H ∈

t : 0 < λ1(H) < 1/2}, where λ1(H) is the first eigenvalue of H. We have D ×G/T → U

by (H, g) �→ gHg−1 and D ×G/T → V by (H, g) �→ g(H −
(

1/2 0
0 −1/2

)
)g−1. Notice 

that [H, 
(

1/2 0
0 −1/2

)
] = 0. The commutative diagram

D ×G/T

�U V

G

is cartesian. All arrows are open embeddings and U
∐

V → G is surjective. The diagram 
is G-equivariant, and passing to the quotient, we have
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D/T

�U/G V/G

G/G

(1.17)

with all actions being adjoint actions. Passing to sheaves, the pullback functors preserve 
nilpotent singular supports. Hence we have a

ShN (G/G) � lim

⎛⎜⎜⎜⎜⎝
ShN (D/T )

ShN (U/G) ShN (V/G)

⎞⎟⎟⎟⎟⎠
The singular support condition allows us to deduce that ShN (g/G) j∗−→ ShN (U/G) is 
an equivalence, for j : U → g the open embedding. Similarly we have ShN (t/T ) �
ShN (D/T ) and ShN (g/G) � ShN (V/G). Hence we get

ShN (G/G) � lim

⎛⎜⎜⎜⎜⎝
ShN (t/T )

ShN (g/G) ShN (g/G)

⎞⎟⎟⎟⎟⎠
Moreover the functors on the right hand side can be identified with parabolic restric-

tion (see Section 6.1 for a detailed discussion). Hence this gives a description of the 
category of character sheaves on a Lie group in terms of categories of character sheaves 
on Lie algebras. It turns out that the charts U/G, V/G and D/T above appear naturally 
in side the infinite dimensional gauge uniformizations.
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2. Preliminaries on category theory

2.1. The Grothendieck construction and Kan extensions

References for the Grothendieck construction (also referred to as unstraightening func-
tor) are [28, Sect 3.2], [19, I.1.1.4]. We shall only define it in the context we need. By 
a (2, 1)-category, we mean a strict 2-category, such that all 2-morphisms are invertible. 
And a 2-groupoid is a strict 2-category, such that all 1 and 2-morphisms are invertible. 
We can view a (2, 1)-category as an ∞-category and a 2-groupoid as an ∞-groupoid. For 
any ∞-category C , denote by C � the ∞-category obtained by add one final object ∗ to 
C . For a functor F : C � → T between ∞-categories, we say F is a colimit diagram if 
the natural map colimCF → F (∗) is an isomorphism in T .

Definition 2.1. Let C be an ordinary category, and F : C → S≤2 a strict functor to 
the category S≤2 of small 2-groupoids. The Grothendieck construction

∫ C F is a (2, 1)-
category with

• objects: (x, E), for x ∈ C and E ∈ F(x);
• 1-morphisms: (f, a) : (x, E) → (y, F ), for f : x → y a 1-morphism in C , and 

a : F(f)(E) → F a morphism in F(y);
• 2-morphisms: ηα : (f, a) ⇒ (f, b) for α : a ⇒ b a 2-morphism in F(y).

There is a natural functor p :
∫ C F → C , via (x, E) �→ x, (f, a) �→ f , and ηα �→ id.

Definition 2.2. Given a functor ρ : A → B a functor between ∞-categories and an ∞-
category T , denote ρ∗ : [B, T ] → [A , T ] the induced functor. The left Kan extension
ρ! is the left adjoint to ρ∗.

We collect some basic properties of Kan extensions:

Proposition 2.3. Let K : A → T be a functor,

(1) Let π : A → pt (the one point category), then π!A (pt) � colimA K, provided either 
side of the equation exist.

(2) Let ρ : A → B, ϕ : B → C , and assume that ρ!(K), ϕ!(ρ!(K)) exist, then (ϕ ◦ρ)!(K)
exist and (ϕ ◦ ρ)!(K) � ϕ!(ρ!(K)).

(3) Let ρ : A → B, then colimA K � colimBρ!(K).

Proof. (1) follows from the definition of colimit. (2) follows from the fact that ρ∗ ◦ϕ∗ �
(ϕ ◦ ρ)∗ and that adjoints are canonical. (3) follows from (1) and (2), by taking C = pt

in (2). �
The following statement can be found in [19, I.1.2.2.4].
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Proposition 2.4. Let p :
∫ C F → C the natural map, and K ∈ [

∫ C F, T ].
Then p!(K)(x) = colimF(x)K, provided that the colimits exist.

2.2. The index category 
∫Δop

S•
Γ

Denote by Δ the simplex category, it is the category of finite non-empty linearly 
ordered sets. Denote by [n] the linear ordered set {0 → 1 → ... → n} ∈ Δ.

Definition 2.5. Let S be a set, Γ a group acting on S.

(1) S//Γ denotes the set of orbits.
(2) S/Γ denotes the quotient groupoid.
(3) The (2, 1)-category SΓ has

• object s for every s ∈ S;
• morphism γ : s → t for every γ ∈ Γ, s, t ∈ S, such that γ(s) = t;
• 2-morphism γ′γ−1 : γ ⇒ γ′, for every γ, γ′ : s → t.
The identity and composition are given by the obvious ones. We see that (−)Γ defines 
a functor Γ-S et → S≤2.

(4) Let S• : Δop,� → Γ-S et be the functor [n] �→ Sn+1 with diagonal Γ-action, where 
S0 := pt the one point set. And define S•

Γ := (−)Γ ◦ S• : Δop,� → S≤2.

Proposition 2.6. The natural functor SΓ → S//Γ is an equivalence of (2, 1)-categories, 
where we view a set as a (2, 1)-category with trivial 1 and 2-morphisms.

Proof. This functor is clearly essentially surjective. Let s, t ∈ S, we need to show the 
map HomSΓ(s, t) → HomS//Γ(s, t) is an equivalence of ordinary categories. If there is 
no γ ∈ Γ, such that γ(s) = t, then both categories are empty. Otherwise, HomS//Γ(s, t)
is the singleton category {∗} and HomSΓ(s, t) consist of object γ ∈ Γ, with γ(s) = t, 
and any two objects γ, γ′ are isomorphic by the arrow γ′γ−1. Hence HomSΓ(s, t) is also 
isomorphic to {∗}. �
Remark 2.7.

(1) The indexing (2, 1)-category SΓ is natural since the stacks we use are 1-truncated 
(e.g. g/G, G/G and BunG(C)), and such stacks form a (2, 1)-category inside S tk.

(2) The category 
∫Δop,�

S•//Γ has a final object, denote by pt. And 
∫Δop,�

S•//Γ �
(
∫Δop

S•//Γ)�.

Construction 2.8. Let X be a set with an action of a discrete group Γ. Choose a Γ-set 
S, and subset Vs ⊂ X, for each s ∈ S, such that the collection of subsets {Vs : s ∈ S}
are Γ-invariant, i.e., γ(Vs) = Vγs, for any γ ∈ Γ, s ∈ S. For any s = (s1, s2, ..., sk) ∈ Sk, 
put |s| := {s1, s2, ..., sk} ⊂ S, denote by Vs :=

⋂
s∈|s| Vs, Γs the stabilizer of Γ at s (for 

the diagonal action). Then we define a functor
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V :
∫Δop,�

S•
Γ S

(1) V(s) := Vs/Γs, where V(pt) := X/Γ;
(2) V(γ) := Acγ : Vs/Γs → Vγs/Γγs the action by γ;
(3) for 2-morphism γ′γ−1 : γ ⇒ γ′ : s → t. Define V(γ′γ−1) := ηγ′γ−1 ◦ Acγ : Acγ ⇒

Acγ′ , where ηγ′γ−1 : IdVt
⇒ Acγ′γ−1 : Vt/Γt → Vt/Γt is the canonical trivialization 

of the action of γ′γ−1 ∈ Γt as inner automorphism.
(4) for δ : s → s′, then Vs ⊂ V ′

s′ and Γs ⊂ Γs′ , this gives U(δ) := Vs/Γs → Vs′/Γs′

Let V0 :
∫Δop,�

S•
Γ S be the functor by same formula above except we replace / 

by //. Hence V0 is isomorphic to the composition 
∫Δop,�

S•
Γ

V
S

π0
S et ⊂ S

Proposition 2.9. Assume that 
⋃

s∈S Vs = X, then the natural morphisms in S are an
equivalence:

colim∫Δop
S•

Γ
V ∼ V(∗) = X/Γ .

Assume further that for any x ∈ Vs, the stabilizers satisfy Γx ⊂ Γs, then the natural 
morphism is an equivalence:

colim∫Δop
S•

Γ
V0

∼ V0(∗) = X//Γ .

Proof. Denote p :
∫Δop

S•
Γ → Δop the natural map. By Proposition 2.4, we have 

p!(V)([n]) = colimSn
Γ
Vs/Γs �

∐
[s]∈Sn//Γ, fix s a lift of [s] Vs/Γs � (

∐
s∈Sn Vs)/Γ.

Hence p!V is isomorphic to the functor [n] �→ (
∐

s∈S Vs)nX/Γ, where for any map 
Y → X, denote by Y n

X := Y ×X ... ×X Y the n-fold fiber product. Therefore 
colim∫Δop

S•
Γ
V � colimΔopp!V � X/Γ. For the second statement, note that under the 

additional assumption, the functor V takes 1-morphisms to fully-faithful morphisms in 
S , hence the second equivalence follows from the first one. �
Remark 2.10. The upshot of this construction is that the charts Vs/Γs → X/Γ are usually 
non-Galois. The category 

∫Δop

S•
Γ gives a way to organizes these non-Galois charts. The 

main example we have in mind is when X = t and Γ = Waff.

2.3. The ∞-category of correspondence

The reference is [19, Chapter 7]. We shall use the ∞-category of correspondences to 
organize the higher morphisms between various restriction functors in our main theorem. 
Morally speaking, the advance of using correspondences is that the higher coherence 
follows from cartesian property of certain squares.
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Let C be an ∞-category.

Definition 2.11. Define Corr(C ) the ∞-category via MorCat∞([n], Corr(C )) :=
Grid≥dgnl

n (C ), where Grid≥dgnl
n (C ) ⊂ MorCat∞(([n] × [n]op)≥dgnl, C ) is the full ∞-

subgroupoid consist of commutative diagram c:

c0,n c0,n−1 ... c0,1 c0,0

c1,n c1,n−1 ... c1,1

... ... ...

cn−1,n cn−1,n−1

cn,n

such that all squares are cartesian.

Remark 2.12. Corr(C ) can be defined as an (∞, 2)-category. However, for our purpose, 
we only viewed Corr(C ) as an ∞-category as defined above.

There is an canonical equivalence can : Corr(C )op � Corr(C ), by switching the source 
and target for a correspondence (i.e. flipping along the main diagonal of the above 
diagram). For any functor F : I → Corr(C ), denote by

F := can ◦ F op : I op → Corr(C ). (2.13)

2.3.1. Functors into the category of correspondences
Assume that C is an ∞-category with a final object ∗. Then we can view 

MorCat∞([n], Corr(C )) as a full subgroupoid of MorCat∞([n] × [n]op, C ), by sending 
all entries below the off-diagonal to ∗. For any ∞-category I , write I = colim[i]/I [i], 
then we can view MorCat∞(I , Corr(C )) as a full subgroupoid of MorCat∞(I ×I op, C ). 
For I = [1] × [n], we have the following:

Proposition 2.14. MorCat∞([1] × [n], Corr(C )) ⊂ MorCat∞(([1] × [1]op × [n] × [n]op), C )
is the full ∞-subgroupoid consists of c0,0 ← c0,1 → c1,1, such that cl,k ∈ Grid≥dgnl

n (C )
and the following labeled squares are cartesian, for all i, j:
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c1,1i+1,j+1 c1,1i,j+1

�

c1,1i,j

c0,1i+1,j+1

�

c0,1i,j+1 c0,1i,j

c0,0i+1,j+1 c0,0i,j+1 c0,0i,j

(2.15)

Proof. Let c = cl,ki,j ∈ MorCat∞(([1] × [1]op × [n] × [n]op), C ). Then
c ∈ MorCat∞([1] × [n], Corr(C ))
⇐⇒ for any f : [m] → [1] × [n], f∗c ∈ MorCat∞([m], Corr(C )),
⇐⇒ for fi : [n + 1] → [1] × [n], f∗

i c ∈ MorCat∞([n + 1], Corr(C )), where fi is the 
(n + 1)-simplex (0, 0) → (0, 1) → ... → (0, i) → (1, i) → ... → (1, n), for i = 0, 1, ..., n.

⇐⇒ for i = 0, 1, ..., n, the following squares are cartesian:

c0,10,n c0,10,n−1 ... c0,10,i c0,00,i ... c0,00,1 c0,00,0

c0,11,n c0,11,n−1 ... c0,11,i c0,01,i ... c0,01,1

... ... ... ... ... ...

c0,1i,n c0,1i,n−1 ... c0,1i,i c0,0i,i

c1,1i,n c1,1i,n−1 ... c1,1i,i

... ... ...

c1,1n−1,n c1,1n−1,n−1

c1,1n,n

The squares can be divided into five groups: (1) two rows consisting of c0,1i,∗ and c1,1i,∗ ; (2) 
two columns consisting of c0,1∗,i and c0,0∗,i ; (3) the left upper corner consisting of c0,1∗,∗; (4) 
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triangle on the right consisting of c0,0∗,∗; (5) triangle on the bottom consisting of c1,1∗,∗. Then 
(1), (2) corresponds to the two cartesian squares in (2.15), and (3), (4), (5) corresponds 
to the condition that cl,k ∈ Grid≥dgnl

n (C ). �

Corollary 2.16. Let c → d ∈ MorCat∞([1] × [n] × [n]op, C ), such that c, d ∈ Grid≥dgnl
n (C ).

(1) Assume that for any i, j the square

ci,j+1 ci,j

di,j+1 di,j

is cartesian. Then c ← c → d ∈ MorCat∞([1] × [n], Corr(C )).
(2) Similarly, assume that for any i, j the square

ci,j ci+1,j

di,j di+1,j

is cartesian. Then c ← c → d ∈ MorCat∞([1] × [n], Corr(C )op).

2.3.2. Correspondences and sheaves
See Appendix A for our convention on analytic stacks. Let S tk◦ ⊂ S tk be the 

subcategory consist of analytic stacks and morphisms which are representable up to 
unipotent gerbes.

For f : X → Y in S tk◦, the functors f!, f∗, f !, f∗ are defined. For F : X → Y a 

morphism in Corr(S tk◦) given by X
f←− Z

g−→ Y , we define Sh(F ) := g∗f ! : Sh(X) →
Sh(Y ) a morphism in C at∞. Following the method in [19, Chapter 7, Theorem 3.2.2, 
Theorem 5.2.4], we extend Sh(F ) to a functor

Sh : Corr(S tk◦) → C at∞.

Example 2.17. Let Xi ← Yi → Zi, i = 1, 2 be two 1-simplices in Corr(S tk◦). Then by 
Proposition 2.14, the following commutative diagram
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X1 Y1

�

Z1

X

�

Y Z

X2 Y2 Z2

gives a map between these two 1-simplices (i.e. a functor from Δ1 ×Δ1 → Corr(S tk◦)). 
Composing with Sh we get the following morphism between 1-simplices in C at∞:

Sh(X1) Sh(Z1)

Sh(X2) Sh(Z2)

The commutativity is induced by base change isomorphisms of the two cartesian 
squares.

3. Preliminaries on Lie theory

3.1. Groups generated by reflections

A reference for this section is [12, V].
We will denote by A a real affine space of finite dimension, and by L the vector space 

of translations of A. Assume that L is provided with an inner product. Let H be a set 
of hyperplanes of A, and W = WH be the subgroup of automorphism of A generated 
by orthogonal reflections rH with respect to the hyperplanes H ∈ H. We assume the 
following conditions are satisfied:

(1) For any w ∈ W and H ∈ H, the hyperplane w(H) belongs to H;
(2) The group W , provided with the discrete topology, acts properly on A.

Given two points x and y of E, denote by R{x, y} the equivalence relation:
for any hyperplane H ∈ H, either x ∈ H and y ∈ H or x and y are strictly on the same 
side of H.

Definition 3.1.

(1) A facet of A is an equivalence class of the equivalence relation defined above.
(2) A chamber of A is a facet that is not contained in any hyperplane H ∈ H.
(3) A vertex of A is a facet that consists of a single point.
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(4) For S ⊂ A subset, the star of S is StS :=
⋃

J facet,S∩J �=∅ J ; and WS := {w ∈ W :
w|S = id} denotes the group of elements fixing S. Note that for S, J facets, then 
S ∩ J �= ∅ if and only if S ⊂ J .

(5) Let J be a facet, A face of J is a facet I, such that I ⊂ J .
(6) For a facet J , denote by FJ the poset of all faces of J , and for I, I ′ ∈ FJ , we say 

I ≤ I ′ if I ⊂ I
′. We also view FJ as a category with morphism given by the partial 

order.

We collect some facts:

Theorem 3.2.

(1) For J ⊂ A a facet, the group WJ is generated by {rH : J ⊂ H}.
(2) For any chamber C, the closure C of C is a fundamental domain for the action of 

W on A, i.e., every orbit of W in A meets C in exactly one point.

Fix a chamber C, for faces J, J ′ of C (which are automatically facets of E), such 
that J ⊂ J ′, we have StJ ′ ⊂ StJ and WJ ′ ⊂ WJ . The maps StJ ′/WJ ′ → StJ/WJ and 
StJ ′//WJ ′ → StJ//WJ give two functors FC → S .

Proposition 3.3. The morphism in S :

colimFop
C
StJ/WJ

∼
A/W

colimFop
C
StJ//WJ

∼
A//W

are equivalences, where StJ and A are equipped with discrete topology.

Proof. The two statements are equivalent since all arrows (including the augmen-
tations) in the diagram are fully-faithful maps. For the second statement, we have 
StJ//WJ = StJ ∩ C, and A//W = C by last Theorem. Hence colimFop

C
StJ//WJ �∐

x∈C |N(x/F op
C )| × {x} �

∐
x∈C{x} � C. Where x/F op

C ⊂ F op
C is the full subcategory 

consists of faces I, such that x ∈ StI , and |N(−)| denotes the geometric realization of the 
nerve of −. We see that x/F op

C = F op
I , for I the face containing x, hence |N(x/F op

C )| � I

is contractible. �
3.2. Lie theoretic reminder

Notation 3.4. Let G be a reductive algebraic group, T ⊂ G a maximal torus. Denote 
by Φ = Φ(G, T ) the set of roots, by X∗(T ) := Hom(C∗, T ) the coweight lattice, and by 
tR := X∗(T ) ⊗ R. The Weyl group W := NG(T )/T acts naturally on T, X∗(T ) and tR. 
Let Waff := W �X∗(T ) be the affine Weyl group and Φaff := {α0 −n : α0 ∈ Φ, n ∈ Z} ⊂
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Map(tR, R) be the set of affine roots. Denote by g the Lie algebra of G, by Lg and LG
the polynomial loop algebra and loop group. For any α0 ∈ Φ, denote by gα0 ⊂ g the root 
space of α0, and for α = α0 − n ∈ Φaff, denote by gα := gα0z

n ⊂ Lg the root space of 
α. Fix a lift of set W → NG(T ) ⊂ G. It gives a lift Waff → LG. For w ∈ Waff, denote its 
lift by ẇ.

Assume further that G is semisimple and simply-connected. Then tR carries an inner 
product induced by the Killing form. Denote by H := {{α(x) = 0 : x ∈ tR}α∈Φ} and 
Haff := {{α(x) = 0 : x ∈ tR}α∈Φaff} two collections of hyperplanes in tR, let WH, WHaff

be the corresponding groups generated by reflections. The inclusion Z ⊂ R induces 
X∗(T ) ⊂ tR.

Theorem 3.5. Viewing X∗(T ) as translations of tR, we have the following equality as 
subgroup of affine linear transformation of tR:

(1) WH = W

(2) WHaff = Waff.

3.2.1. Levi and Parabolic subgroups associated to facet geometry

Definition 3.6. Let J be a facet of tR equipped with Haff.

(1) ΦJ := {α ∈ Φaff : α(J) = 0}.
(2) Denote by gJ ⊂ Lg the Lie-subalgebra:

gJ := t⊕
⊕
α∈ΦJ

gα,

where gα ⊂ Lg is the root space of α. Denote by GJ the corresponding subgroup of 
LG.

(3) Let J, J ′ two facet with J ⊂ J ′, denote by pJJ ′ ⊂ gJ the subalgebra:

pJJ ′ := t⊕
⊕

α∈ΦJ ,α(J ′)>0

gα.

Denote by P J
J ′ the corresponding subgroup of GJ .

(4) For a ∈ tR, put Ga = GJ for J the affine facet J containing a.

Theorem 3.2 (1) implies:

Proposition 3.7. WJ ⊂ GJ .
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3.2.2. Transitivity of parabolic subgroups
Let R ⊂ G be a parabolic subgroup with Levi K, and Q ⊂ K be a parabolic subgroup 

with Levi L. Denote by P := Q ◦R := Q ×K R. We have the following diagram:

P
p̃1q̃2

Q
p1q1

� R
p2q2

L K G

Denote by l, p, q, k, r, g the corresponding Lie algebras.

Proposition 3.8. There are commutative diagrams of stacks with the middle squares being 
cartesian, where all actions are adjoint actions:

p/P

p̃1q̃2

q/Q

p1q1

� r/R

p2q2

l/L k/K g/G

P/P

p̃1q̃2

Q/Q

p1q1

� R/R

p2q2

L/L K/K G/G

Proof. We have

BP
p̃1q̃2

BQ
p1q1

� BR
p2q2

BL BK BG
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Therefore, for any stack X, we have

Map(X,BP )
p̃1q̃2

Map(X,BQ)
p1q1

� Map(X,BR)
p2q2

Map(X,BL) Map(X,BK) Map(X,BG)

Then we obtain the first diagram by taking X = BĜa, and second diagram by taking 
X = S1. �

The following proposition is easy to check:

Proposition 3.9. Recall gJ , pJJ ′ as in Definition 3.6, we have:

(1) gJ ′ ⊂ pJJ ′ ⊂ gJ , and pJJ ′ is a parabolic subalgebra of gJ with Levi factor gJ ′ .
(2) pJ

′

J ′′ ◦ pJJ ′ = pJJ ′′ .

4. Preliminaries on singular support

A reference for this section is [23]. In the following sections, we assume for simplicity 
that the coefficient ring k has characteristic 0, see Remark 4.12 about how to drop this 
constrain. Actually many of the statements hold for more general (possibly non-stable) 
coefficients.

Let X be a differentiable manifold, F ∈ Sh(X) a sheaf on X. Then the singular 
support of F is the subset of T ∗X defined by the following equivalent conditions:

(1) (x, ξ) /∈ SS(F ).
(2) For any differentiable function f on X, with f(x) = 0 and dfx = ξ, the map 

colimU�xF (U) ∼−→ colimU�xF (U ∩ {f < 0}) is an isomorphism.

For X be a smooth analytic stack, SS(F ) ⊂ T ∗X is defined via descent. The singular 
support relates the sheaf theory on X to the symplectic geometry of T ∗X:

Theorem 4.1.

(1) SS(F ) is a closed conical coisotropic substack of T ∗X.
(2) SS(F ) is a Lagrangian substack if and only if F is weakly constructible, i.e., there is 

a stratification {Si}i∈I of X, such that F |Si
is a locally constant sheaf for all i ∈ I
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[24,21] showed that the global nilpotent cone in T ∗BunG is a Lagrangian, hence all 
sheaves we considered are actually weakly-constructible. For Λ ⊂ T ∗X, put ShΛ(X) :=
{F ∈ Sh(X) : SS(F ) ⊂ Λ}, Db

Λ(X) := {F ∈ ShΛ(X) : F is constructible } the ∞-
category of constructible sheaves, and PervΛ(X) := {F ∈ Db

Λ(X) : F is perverse} the 
category of perverse sheaves. Our results in the remaining of the paper will be stated for 
ShΛ(X), but they also apply to Db

Λ(X) and PervΛ(X).
Let f : Y → X be a map between smooth analytic stacks. For any Λ ⊂ T ∗X, denote 

f∗Λ := tf ′(f−1
π (Λ)) and f∗Λ := fπ( tf ′−1(Λ)):

T ∗Y Y ×X T ∗X
tf ′fπ

T ∗X

Assume further that f is smooth, then SS(f !(F )) = SS(f∗(F )) = f∗SS(F ). Hence we 
have:

Proposition 4.2. In the context of Theorem A.8, let Λ ⊂ T ∗X(∗). For any I ∈ I �, 
put fI := X(I → ∗) : X(I) → X(∗). Then the functor: ShX,Λ : I �,op → C at∞, by 
I �→ Shf∗

I Λ(X(I)) is a limit diagram.

4.1. Fourier and Radon transform

Let V be a complex vector space, denote by ShR+(V ) ⊂ Sh(V ) the fully subcategory 
of conical sheaves, i.e. sheaves that are locally constant along R+-orbits. The Fourier-
Sato transform is by definition T := q2!q

∗
1 [dimC V ] : ShR+(V ) → ShR+(V ∗)

V Q
q1 q2

V ∗,

where Q = {(x, y) ∈ V × V ∗| Re(〈x, y〉) ≤ 0}. The functor T is an equivalence between 
∞-categories (with this shift, T also preserves perverse sheaves).

Let G be a reductive group, the Radon transform and inverse Radon transform are 
by definition R := s∗r

!, Ř := r!s
∗:

N\G/N
T G/AdB

rs
G/G

Let P be a parabolic subgroup of a reductive group G with Levi factor L, define 
the parabolic restriction with respect to p to be the functor Resp := q∗p

! : Sh(g/G) →
Sh(l/L):

l/L p/P
q p

g/G (4.3)

And similarly ResP := q∗p!:
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L/L P/P
q p

G/G

Assume further that P contains B, put BL, NL the image of B, N under P → L. 
Then BL is a Borel subgroup of L, and NL is the nilpotent radical of BL. Define the 
corresponding parabolic restriction for Hecke categories ResP := q∗p

!:

NL\L/NL

T
N\P/N

T

pq N\G/N
T

Statement (2) below was pointed out to us by Sam Gunningham:

Proposition 4.4.

(1) Identify g∗ � g, l∗ � l via an invariant bilinear form κ, then Resp naturally commute 
with Fourier transformation T :

ShR+(g/G)
Resp

T ∼

ShR+(l/L)

T ∼

ShR+(g/G)
Resp

ShR+(l/L)

(2) ResP naturally commute with Radon transformation R

Sh(G/G)
ResP

R

Sh(L/L)

R

Sh(N\G/N
T )

ResP
Sh(NL\L/NL

T )

Proof. (1) is [30, Lemma 4.2]. We include a proof for reader’s convenience. Denote by 
p̌ : g∗ → p∗ and q̌ : l∗ → p∗ the dual map of p and q. Put np the nilpotent radical of p, 
and d = dim np. We have the commutative diagram:

ShR+(g/G)

T

ShR+(g/P )
p!

T

ShR+(p/P )
q∗

T

ShR+(l/P ) ∼

T

ShR+(l/L)

T

ShR+(g∗/G)

κ

ShR+(g∗/P )
p̌∗[−d]

κ

ShR+(p∗/P )
q̌![d]

κ

ShR+(l∗/P ) ∼

κ

ShR+(l∗/L)

κ

ShR+(g/G) ShR+(g/P )
p̌∗[−d]

ShR+((g/np)/P )
q̌![d]

ShR+(l/P ) ∼
ShR+(l/L)

ShR+(g/G) ShR+(g/P )
p!

ShR+(p/P )
q∗

ShR+(l∗/P ) ∼
ShR+(l∗/L)
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where the top middle two squares are given by [23, Proposition 3.7.14], and the bottom 
midterm square is the base change isomorphism of the cartesian square:

p p/np = l

g g/np

(2) The natural isomorphism is given by the diagram:

NL\L/NL

T L/AdBL

�

L/L

N\P/N
T

�

P/AdB P/P

N\G/N
T G/AdB G/G

�

4.2. Retractable substacks

Definition 4.5. Let X be an analytic stack, Λ ⊂ T ∗X. A open substack j : U ↪→ X is 
retractable w.r.t. Λ if the restriction functor:

ShΛ(X) ∼
j∗

ShΛ(U)

is an equivalence.

Let A be a Lie group acting on a smooth manifold X, L ⊂ T ∗X be a closed A-
invariant conical isotropic subset. Let X/A be the quotient stack, π : X → X/A the 
natural projection and μ : T ∗X → a∗ the moment map, then π∗(T ∗(X/A)) = μ−1(0) =∐

x∈X T ∗
AxX, and

Proposition 4.6. The subset L is contained in μ−1(0).

Proof. Suffices to check on the smooth locus of L, where it follows from definition of 
isotropic submanifold. �
Proposition 4.7. Let U ⊂ X open subset, F ∈ ShL(U) := ShL|U (U), then F |Ax∩U is 
locally constant for all x ∈ U .

Proof. SS(F ) ⊂ L ⊂ π|∗U (T ∗(X/A)), hence by [23, Prop. 6.6.2], in a neighborhood of 
x ∈ U , F = π|∗U (F ′), for some F ′ ∈ Sh(X/A). �
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For X a manifold with R+ action, recall that a biconical subset of T ∗X is a conical 
subset invariant under the induced R+ action on T ∗X. The following proposition is the 
most important technical result of the paper.

Proposition 4.8. Let X be a smooth manifold with R+ action, and j : U ↪→ X an open 
embedding, such that U ∩R+x is contractible, for any x ∈ X. Then U is retractile w.r.t. 
any closed biconical isotropic subset L of T ∗X.

Proof. By Proposition 4.7, any F ∈ ShL(X) is conic, i.e. satisfies F |R+x is locally con-
stant for all x ∈ X. Hence for F1, F2 ∈ ShL(X) by [23, Prop. 3.7.4(iii), Cor. 3.7.3], 
HomShL(X)(F1, F2) 

�−→ HomShL(U)(j∗F1, j∗F2) is an isomorphism, hence j∗ is fully 
faithful. Let F ′ ∈ ShL(U), then by Proposition 4.7, for any x ∈ U , F ′|R+x∩U is locally 
constant. We have natural maps

U ×R+

j̃
a′

U
i′

j

X ×R+

p

a

Xi

where j̃ = j × Id, a is the action map, p is the projection, i(resp. i′) is inclusion to 
X(resp. U) ×{1}. a′ := a ◦ j̃ : U ×R+ → X, then a′ is R+-equivariant, has contractible 
fibers and F ′ � kR+ is constructible along the fibers of a′. Define F := a′∗(F ′ � kR+) ∈
Sh(X), then F is conic by [23, Prop. 3.7.4(ii)]. There is a chain of isomorphisms

F ′ � i′ ∗(F ′ � kR+) � i′ ∗a′ ∗(F ) � i′ ∗j̃∗a∗(F ) � i′ ∗j̃∗p∗(F ) � j∗(F ) (4.9)

where the second isomorphism is by [23, Prop. 2.7.8], the fourth isomorphism is by 
[23, Prop. 3.7.2]. Now a′ is smooth and surjective, and SS(a′ ∗F ) = SS(F ′ � kR+) ⊂
L ×T ∗

R+R+ = a′ ∗(L) since L is biconical. Hence SS(F ) ⊂ L by descent [23, Prop. 5.4.5]. 
Combining with (4.9), the functor j∗ is essentially surjective. �

For any smooth manifold U , denote by 0U ⊂ T ∗U the zero section. Fix u ∈ U , let 
X any analytic stack, and Λ ⊂ T ∗X. We have π : U × X → X, via (u, x) �→ x, and 
i : X → U ×X via x �→ (u, x).

Proposition 4.10. Assume that U is contractible, then π!, π∗, i!, i∗ maps Sh0U×Λ(U ×X)
isomorphically onto ShΛ(X), and π!, π∗ maps ShΛ(X) isomorphically onto Sh0U×Λ(U×
X).

Proof. By [23, Prop. 5.4.5(ii)] we see that Sh0U×T∗X(U×X) exactly consist of the 
sheaves on U × X which are contractible along fibers of π. Then by [23, Prop.2.7.8], 
the functors
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π∗ : Sh(X) ←→ Sh0U×T∗X(U ×X) : π∗

are inverse to each other. Then by descent SS(π∗(F )) ⊂ 0U×Λ if and only if SS(F ) ⊂ Λ, 
hence we have inverse functors:

π∗ : ShΛ(X) ←→ Sh0U×Λ(U ×X) : π∗.

The statement for (π!, π!) follows since π! = π∗ up to a shift. And the statement for i∗, i!
also follows since π ◦ i = id. �
4.3. Nilpotent cones

We have the identifications:

H0(T ∗(g/G)) � {(Y,X) ∈ g× g | [Y,X] = 0}/G,

H0(T ∗(G/G)) � {(g,X) ∈ G× g | Adg(X) = X}/G,

H0(T ∗BunG(Σ)) � {(P, φ) | P ∈ BunG(Σ), φ ∈ H0(Σ, gP ⊗ ΩΣ)}.

Where Σ above is a compact Riemann surface. Denote the corresponding nilpotent cones 
by:

NT∗(g/G) := {(Y,X) ∈ H0(T ∗(g/G)) | X is nilpotent.}
NT∗(G/G) := {(g,X) ∈ H0(T ∗(G/G)) | X is nilpotent.}

NT∗BunG(Σ) := {(P, φ) ∈ H0(T ∗BunG(Σ)) | φ is nilpotent.}

We will use nilpotent cones lying in different spaces in the paper. When the context is 
understood, we shall drop the indices and write all nilpotent cones as N . The nilpotent 
cones above are known to be Lagrangian [24,21], hence the sheaves with singular support 
in N are actually weakly constructible.

Proposition 4.11. The parabolic restrictions preserve nilpotent singular support:

(1) Resp takes ShN (g/G) into ShN (l/L).
(2) ResP takes ShN (G/G) into ShN (L/L).

Proof. (1) Since NT∗(g/G) is a biconical Lagrangian, we have ShN (g/G) ⊂ ShR+(g/G), 
and Sh(N/G) ⊂ ShR+(g/G). Then by Proposition 4.4 the following diagram commutes:

ShN (g/G)
Resp

T

ShR+(l/L)

T

Sh(Ng/G)
Resp

ShR+(l/L),
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where the left arrow is by [23, Theorem 5.5.5]. Now the bottom arrow takes Sh(Ng/G)
into Sh(Nl/L) because q(Ng ∩ p) = Nl. Hence the top arrow lands in ShN (l/L) by [23, 
Theorem 5.5.5].
(2) Recall by assumption, the coefficient k ⊃ Q. Denote by ShT (N\G/N

T ) ⊂ Sh(N\G/N
T )

the subcategory of sheaves constructible w.r.t. to the left (or equivalently right) T orbits. 
By [31, Theorem 4.4], for a sheaf F on G/G, we have SS(F ) ∈ N if and only if R(F ) ∈
ShT (N\G/N

T ). Then by Proposition 4.4, the following diagram commutes:

ShN (G/G)
ResP

R

Sh(L/L)

R

ShT (N\G/N
T )

ResP
Sh(NL\L/NL

T )

�

So R ◦ ResP (F ) � ResP ◦ R(F ) lies in ShT (NL\L/NL

T ). By [31, Theorem 4.4] again, 
we conclude that ResP (F ) lies in ShN (L/L).

Remark 4.12. Proposition 4.11 (2) is the only place in the paper we use the assump-
tion char(k) = 0. One can alternatively prove this statement by using first part of 
Theorem 6.12, which does not rely on Proposition 4.11 (2), and therefore drop the char-
acteristic 0 assumption.

5. Twisted conjugacy classes in the loop group

Fix q ∈ C∗ with |q| < 1, and let E = C∗/qZ be the corresponding elliptic curve. 
In this section, we focus on the connected component GE of the trivial bundle in the 
moduli stack of semistable G-bundles on E. We describe the geometry of GE in terms 
of the Lie theory of q-twisted conjugacy classes in the holomorphic loop group. We work 
in the context of complex analytic stacks (see Appendix A for the facts used).

5.1. Automorphism groups

The aim of this subsection is to calculate the automorphism groups of semisimple 
semistable bundles. The main result is Corollary 5.10, stating that the automorphism 
group can be calculated in terms of affine root systems. This was previously obtained 
in [5, Theorem 5.6], though the approaches to the component groups differ somewhat. 
Our approach makes the role of the affine Weyl group transparent.

We adopt Notation 3.4.
Let BunG(E) be the moduli stack of G-bundles on E. Let LholG be the holomorphic 

loop group of holomorphic maps g(z) : C∗ → G. It acts on itself by q-twisted conjugation

Ad′k(z)g(z) := k(qz)g(z)k(z)−1
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For any g(z) ∈ LholG, we can define a G-bundle

Pg(z) := C∗ ×qZ G E = C∗/qZ

where the qZ-action of is given by

q · (z, x) = (qz, g(z)x)

Note if g(z), h(z) are q-twisted conjugate, then their associated bundles Pg(z), Ph(z) are 
isomorphic.

The automorphism group of Pg(z) admits the description

Aut(Pg(z)) � {k(z)|k(qz) = g(z)k(z)g(z)−1} = CLholG(g(z))

as a q-twisted centralizer, since the automorphisms of Pg(z) are isomorphic to the auto-
morphisms of the corresponding qZ-equivariant G-bundle over C∗.

Since any G-bundle on C∗ is trivializable, we have an isomorphism of groupoids

LholG/′LholG � BunG(E)(C)

where /′ donotes the quotient with respect to Ad′. For s ∈ T , set

Gs := CLholG(s).

Note that Gs is preserved by q-twisted conjugation on itself: for f(z), g(z) ∈ Gs, 
f(qz)g(z)f(z)−1 ∈ Gs by direct calculation.

For the moment, Gs is simply an abstract group. In the rest of this subsection, we 
will calculate Gs explicitly and equip it with the structure of algebraic group, which is 
compatible with the one coming from the automorphism group of a G-bundle.

5.1.1. Calculation of G0
s

Fix s ∈ T . We start by equipping Gs with a structure of an algebraic group and 
calculate its neutral component G0

s, the result is given in Corollary 5.6.
Recall LG ⊂ LholG denote the subgroup of polynomial loops g(z) : C∗ → G. We 

will regard it as an ind-scheme, more specifically, as the increasing union of its closed 
subschemes of prescribed zeros and poles. Let Lg denote its Lie algebra.

We will begin with G = GLN . Let TN ⊂ GLN be the invertible diagonal matrices.

Lemma 5.1. Let f : C∗ → C be a holomorphic function. Assume that f(qz) = af(z), for 
some a ∈ C. If a ∈ qZ, then f(z) = czn, for some c ∈ C and n = logq(a); otherwise, 
f(z) ≡ 0.
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Proof. Follows from an elementary comparison of the coefficients of the Laurent expan-
sion of f . �
Proposition 5.2. Let s = diag(λ1, λ2, ..., λN ) ∈ TN .

Let Is consist of those (i, j) such that λi/λj ∈ qZ, where nij = logq(λi/λj).
Set glN,s =

⊕
(i,j)∈Is

CznijEij ⊂ LpolyglN , where Eij ∈ gN is the elementary matrix 
with non-zero (i, j)-entry.

Then under the standard embedding GLN → glN as invertible matrices, GLN,s con-
sists of the invertible matrices in glN,s.

Proof. For g(z) = ⊕(i,j)gij(z)Eij ∈ GLN,s, observe that g(qz) = s ·g(z) ·s−1 is equivalent 
to gij(qz) = (λi/λj)gij(z) for all (i, j). By the previous lemma, gij(z) = cznij if λi/λj =
qnij and gij(z) = 0 otherwise. In particular, gii(z) is constant. �
Corollary 5.3. GLN,s ⊂ LholGLN lies in LGLN ⊂ LholGLN and is Zariski-closed 
therein. With its reduced subscheme structure, GLN,s is a reductive algebraic group, 
its q-twisted conjugation is an algebraic action, and the evaluation map

ev1 : GLN,s GLN g(z) g(1)

is an injective homomorphism of algebraic groups. Furthermore, the Lie algebra of GLN,s

is precisely glN,s.

For a general reductive algebraic group G with maximal torus T ⊂ G, choose an 
embedding of pairs i : (G, T ) → (GLN , TN ). This induces embeddings LG ⊂ LpolyGLN , 
Gs ⊂ GLN,s, with Gs = LG ∩GLN,s. Hence Gs is Zariski-closed in both GLN,s and LG. 
Thus we have the following generalization of the previous corollary.

Proposition 5.4. The subgroup Gs ⊂ LholG lies in LG ⊂ LholG and is Zariski-closed 
therein. With its reduced subscheme structure, Gs is a reductive algebraic group, its q-
twisted conjugation is an algebraic action, and the evaluation map

ev1 : Gs G g(z) g(1)

is an injective homomorphism of algebraic groups. Moreover, the natural map Gs →
Aut(Ps) is an isomorphism of algebraic groups.

Proof. Only the last statement needs proof. We have a commutative diagram of abstract 
groups:
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Gs
∼

ev1

Aut(P)

res0

G = Aut(P0)

where P0 is the fiber of P over 0 ∈ E, and the “=” means canonical isomorphism. The 
two vertical maps are injective morphisms of algebraic groups, so the top arrow is also 
a morphism of algebraic groups. �

Since Gs = LG ∩ GLN,s, its Lie algebra satisfies gs = Lg ∩ glN,s. More explicitly, 
it admits the following description. Regard the set of affine roots Φaff as a subset of 
Map(T, C∗) via α = α0 + n �→ {s �→ α0(s)qn}, and put Φs := {α ∈ Φaff | α(s) = 1}. For 
any α ∈ Φaff, recall the definition of gα as in Notation 3.4.

Proposition 5.5. The Lie algebra of Gs is precisely gs = t ⊕
⊕

α∈Φs
gα ⊂ Lg.

Proof. glN,s is a finite dimensional subalgebra of LglN satisfying {X(z) ∈ LglN |X(qz) =
Ad(s)X(z)}. So gs = Lpolyg ∩ glN,s = {X(z) ∈ Lg|X(qz) = Ad(s)X(z)}. Write 
X(z) = h(z) +

∑
α0∈Φ

fα0(z), with respect to the root decomposition of t, i.e. h(z) :

C∗ → t, fα0(z) : C∗ → gα0 . Now the condition X(qz) = Ad(s)X(z) is equivalent to 
h(qz) = h(z), and fα0(qz) = α0(s)fα0(z). By Lemma 5.1 h(z) is constant function, and 
the only nonvanishing fα0 are those with α0(s) = qnα0 for some nα0 ∈ Z and in this case 
fα0 = znα0Xα0 ∈ gα. So gs = t ⊕

⊕
α0∈Φ,α0(s)∈qZ gα0z

nα0 . By compare this expression 
with the definition of gα for affine root α, the proposition follows. �
Corollary 5.6. The subgroup G0

s ⊂ LG is generated by T ∪ {exp gα | α ∈ Φs}.

Example 5.7. G = SL2, and T diagonal matrices, with roots {α, −α} take s =(√
q 0

0 √
q−1

)
∈ T , hence α(s) = √

q/(√q−1) = q, so nα = 1, similarly n−α = −1,

we have Xα =
(

0 1
0 0

)
, X−α =

(
0 0
1 0

)
, then by Corollary 5.6, the group G0

s is 

generated by T, exp
(

0 bz
0 0

)
, and exp

(
0 0

cz−1 0

)
and so it is equal to the subgroup {(

a bz
cz−1 d

)}
of LG. In fact, in this case we have G0

s = Gs = CLG(s).

5.1.2. Calculation of Gs

We proceed to calculate Gs. The result is given in Corollary 5.10, which states that 
the component group is controlled by the affine Weyl group.

For M1, M2 two smooth/complex manifolds, write Map(M1, M2) for the set of differ-
entiable/holomorphic maps M1 → M2.
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Lemma 5.8. Let M be a connected complex manifold.
Regard Map(M, G) as a group, and T ⊂ NT (G) ⊂ G ⊂ Map(M, G) as subgroups of 

constant maps.
Then NMap(M,G)(T ) = Map(M, T ) ·NG(T ) as subgroups of Map(M, G).

Proof. Let f(x) ∈ NMap(M,G)(T ). Then f(x)Tf(x)−1 = T , for any x ∈ M , hence 
f(x) ∈ Map(M, NG(T )). Hence NMap(M,G)(T ) ⊂ Map(M, NG(T )). Since M is con-
nected, Map(M, NG(T )) = Map(M, T ) ·NG(T ). Now Map(M, T ) ⊂ NMap(M,G)(T ), and 
NG(T ) ⊂ NMap(M,G)(T ). Hence Map(M, T ) ·NG(T ) ⊂ NMap(M,G)(T ). �
Lemma 5.9. (LholT ·NG(T )) ∩Gs = T · CWaff(s) as subgroups of LholG.

Proof. The right hand side does not depend on the lifting of W and equals (X∗(T ) ·
NG(T )) ∩ Gs which naturally sits inside the left hand side. We need to show that 
(LholT · NG(T )) ∩ Gs ⊂ X∗(T ) · NG(T ). Suppose fw ∈ (LholT · NG(T )) ∩ Gs, for 
f ∈ LholT, w ∈ NG(T ). Then we have f(qz)ws(f(z)w)−1 = s, i.e. f(qz) = w(s)−1f(z). 
However, w(s)−1, s ∈ T , and this implies f ∈ X∗(T ) by Lemma 5.1. �

Let Ws := CWaff(s) be the stabilizer of s in Waff. By Lemma 5.8 and 5.9, we have 
NGs

(T ) = NLholG(T ) ∩ Gs = (LholT · NG(T )) ∩ Gs = T · Ws and the Weyl group 
W (Gs, T ) := NGs

(T )/T is isomorphic to Ws, therefore we have:

Corollary 5.10. Gs = G0
s · NGs

(T ) =< G0
s, ẇ | w ∈ Ws >=< T, exp gα, ẇ | α ∈ Φs, w ∈

Ws >.

Example 5.11. G = PGL2, and T diagonal matrices, with roots {α, −α}. Take s =(√
q 0

0 1

)
. We have G0

s = T , and Gs =< T, w >� T � Z/2, where w =
(

0 z
z−1 0

)
.

Remark 5.12. The same method can be used to calculate the automorphism group of 
any semisimple (not necessarily semistable) bundle. Theta functions naturally show up 
in the calculation for non-semistable bundles, so in general CLholG(g(z)) is not contained 
in LG.

5.1.3. Untwist twisted conjugation
The twisted conjugation of LholG is very different from the usual conjugation. How-

ever, when restricted to the action of Gs on itself, the twisted conjugation is isomorphic 
to usual conjugation:

Proposition 5.13. The left multiplication by s−1 : Gs → Gs is a Gs-equivariant iso-
morphism of algebraic varieties, where the first action is q-twisted conjugation, and 
second action is usual conjugation. In other words, we have an isomorphism of stacks 
s−1 : Gs/

′Gs → Gs/Gs.
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Proof. For any k(z) ∈ Gs, we have k(qz) s k(z)−1 = s, hence s−1Ad′k(z)g(z) =
s−1k(qz)g(z)k(z)−1 = k(z)s−1g(z)k(z)−1 = Adk(z)(s−1g(z)). �

The space G0
s is stable under the twisted conjugation by Gs. Hence G0

s/
′Gs has the 

usual properties of an adjoint quotient (on its neutral component.)

Corollary 5.14. C[G0
s]Gs = C[T ]Ws , where the invariants are taken w.r.t. the twisted 

conjugation.

So there is a map χ′
s : G0

s → T//′Ws := Spec C[T ]Ws . Let U ⊂ T be a Ws-invariant 
open subset, let V := χ′

s
−1(U//′Ws)

Definition 5.15. Let S be a topological space, and A ⊂ S a subset. We say A is abundant
(in S) if the only open subset of S containing A is S.

Note that A ⊂ S is abundant if and only if A contains all the closed points of S. 
Examples of abundant subsets that we will use are given in the next corollary.

Corollary 5.16. The image of U in |V/′Gs| is abundant.

Proof. All closed conjugation orbits are semisimple. By Proposition 5.13 all closed 
twisted conjugation orbits are semisimple. �

Let T s−reg ⊂ T be the locus where the action of Ws is free.

Corollary 5.17. Assume further that U ⊂ T s−reg. Then

V/′Gs
�←− U/′NGs

(T ) �−→ (U ×BT )/′Ws.

5.2. Etale charts

In this section, we will define some étale charts of GE . The main result in this sec-
tion is Theorem 5.27. Facts about semistable bundles on elliptic curves are collected in 
Appendix B.

5.2.1. Definition and representability
There are three, mutually commuting actions of qZ, Gs, G on C∗ ×G0

s ×G:

q · (z, h, g) := (qz, h, h(z)g), q ∈ qZ

k · (z, h, g) := (z,Adqk(h), k(z)g), k ∈ Gs

g′ · (z, h, g) := (z, h, gg′ −1), g′ ∈ G
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Put Ps := (C∗ × G0
s × G)/qZ. Then Ps maps naturally to E × G0

s and it is a Gs-
equivariant (with respect to the twisted conjugation on Gs) principal G-bundle. Hence 
Ps/Gs → E ×G0

s/
′Gs is a principal G-bundle, and therefore it defines a map of stacks 

ps : G0
s/

′Gs → BunG(E).
Recall the notation GE := Bun0,ss

G (E) for the stack of degree 0 semistable G-bundles.

Proposition 5.18. The image of ps lies in GE.

Proof. Let x ∈ |G0
s/

′Gs|. Then by Corollary 5.16, there is a t ∈ T , such that t ∈ {x}. 
Hence ps(t) ∈ {ps(x)}. Now ps(t) ∈ GE because it is in the image of TE → GE . Hence 
ps(x) ∈ GE , since GE ⊂ BunG(E) is open. �
Proposition 5.19. The map ps is representable.

Proof. Let GE,0 be the stack classifying pairs (P, β), where P is a semistable G bundle of 
degree 0, and β is a trivialization of P at 0 ∈ E. GE,0 is representable by Proposition B.3. 
The group G acts on GE,0 by changing the trivialization and GE,0/G = GE . There is a 
natural map p′s : G0

s → GE,0 defined by Ps with the natural trivialization that identifies 
the fiber over 0 ∈ E with the fiber over 1 ∈ C∗. The map p′s is Gs-equivariant, where 
Gs acts on GE,0 via ev1 : Gs → G. So p′s induces p′s : G0

s/
′Gs → GE,0/Gs. Hence p′s is 

representable. We have the following commutative diagram of stacks:

G0
s/

′Gs

p′
s

ps

GE,0/Gs GE,0/G

�

GE

By Proposition 5.4, ev1 : Gs → G is injective, so the top arrows are representable and 
hence ps is representable. �
5.2.2. 1-shifted symplectic stacks

In this section, we show that the morphism ps is a symplectomorphism.

Definition 5.20. Let X be a smooth analytic stack, TX its tangent complex.

(1) A weak 1-shifted symplectic structure is a 1-shifted non-degenerate 2-form ωX , i.e. a 
non-degenerate OX -bilinear antisymmetric pairing

ωX : TX[−1] × TX[−1] OX [−1] .

(2) A symplectomorphism f : (X, ωX) → (Y, ωY ) between smooth stacks with weak 1-
shifted symplectic structure is a morphism of stacks f : X → Y together with an 
isomorphism f∗ωY � ωX .
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Remark 5.21. To define the actual shifted symplectic structure, the notion of closed 
forms is needed and requires a more careful definition, see [32]. The weak version above 
is sufficient for our purpose. For smooth stacks with positive dimensional automorphism 
group, n = 1 is the only possible value for a n-shifted symplectic structure to exist.

Shifted symplectic structures relate the stacky and infinitesimal behaviors:

Proposition 5.22. Let f : (X, ωX) → (Y, ωY ) be a symplectomorphism, and x ∈ X. 
Assume that fx : Aut(x)0 → Aut(f(x))0 is an isomorphism, then f is étale at x.

Proof. We need to show that dfx : TxX → Tf(x)Y is a quasi-isomorphism. The tangent 
complex is concentrated in degrees −1, 0 since the stacks are smooth and 1-truncated. 
For degree −1, we have H−1(dfx) = d(fx), so it is an isomorphism. For degree 0, the 
map H0(dfx) is also an isomorphism since the weak 1-shifted symplectic structure pairs 
H−1 and H0. �
Example 5.23. Fix κ an invariant non-degenerate bilinear form on g. For P ∈ BunG(E), 
we have a natural identification TPBunG(E)[−1] � RΓ(E, gP), and BunG(E) (hence GE) 
has a natural weak 1-shifted symplectic structure given by the Serre duality pairing:

RΓ(E, gPg(z)) ×RΓ(E, gPg(z)) κ
τ≥1RΓ(E,OE)

Similarly, G/G � LocsysG(S1) has a natural weak 1-shifted symplectic structure given 
by Poincaré duality. In general, [32] shows that BunG(X) has a 2 −n shifted symplectic 
structure for X a n-dimensional Calabi-Yau manifold and LocsysG(M) has a 2 −n shifted 
symplectic structure for M a n-dimensional oriented smooth manifold.

The uniformization p : LholG/′LholG → BunG(E) can be thought of as a non-linear 
Čech resolution associated to the cover C∗ → E, in the sense that, after linearization:

dpg(z) : Tg(z)LholG/′LholG[−1] ∼
TPg(z)BunG(E)[−1]

{Lholg −−−→
φg(z)

Lholg}
∼

RΓ(E, gPg(z))

the tangent map in the first row can be identified with the Čech resolution in the sec-
ond row above, where φg(z)(X(z)) = Adg(z)−1X(qz) − X(z), and also complexes are 
(cohomologically) concentrated in degree 0, 1.

There is a natural pairing:

κ : {Lholg → Lholg} × {Lholg → Lholg} τ≥1{LholC → LholC} � C
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(X•(z), Y •(z))
∮
κ(X•(z), Y •(z))dzz

It follows from definition that this pairing resolves the Serre duality pairing, i.e.:

Proposition 5.24. The diagram naturally commutes:

{Lholg → Lholg} × {Lholg → Lholg} κ

∼

{LholC → LholC}

∼

RΓ(E, gPg(z)) ×RΓ(E, gPg(z)) κ
RΓ(E,OE)

If we view the tangent complex Tg(z)G
0
s/

′Gs as a subcomplex of Tg(z)LholG/′LholG, 
then G0

s/
′Gs has an induced 1-shifted 2-form ω.

Proposition 5.25. The 1-shifted 2-form ω on G0
s/

′Gs is non-degenerate. And the map 
ps : G0

s/
′Gs → GE is a 1-shifted symplectomorphism.

Proof. The second statement follows from Proposition 5.24. For the first statement, we 
first prove that the pairing 

∮
κ(−, −)dzz : gs × gs C is non-degenerate. This is 

because gs = t ⊕
⊕

α∈Φs
gα, and the pairing pairs t with t, pairs gα with g−α. Now the 

non-degeneracy of ω follows from the following tautological Lemma:

Lemma 5.26. Let < −, − >: V 0 × V 1 C a non-degenerate pairing between finite 
dimensional vector spaces, and let φ : V 0 → V 1, such that < Ker(φ), Im(φ) >= 0, then 
the induced pairing

Ker(φ) × (V 1/Im(φ)) C

is also non-degenerate.

To complete the proof of Proposition, take V 0 = gs, V 1 = gs, and φ = φg(z). �
5.2.3. Etale charts

Let T et
s := {t ∈ T : Gt ⊂ Gs}, then T et

s is a Ws-invariant open subset of T , also note 
that T et

s can be computed in terms of root datum and the elliptic parameter q thanks 
to Corollary 5.10. Denote G0,et

s := χ′
s
−1(T et

s //Ws).

Theorem 5.27. The map pets : G0,et
s /′Gs → GE is étale. And pet,∗s (NT∗GE

) =
NT∗(G0,et

s /′Gs).

Proof. We first prove that pets is étale for t ∈ T et
s . By Proposition 5.22 and 5.25, we need 

to show that (ps)t : Aut(t) → Aut(Pt) is an isomorphism (on the neutral component). 
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This is true because (ps)t is identified as Aut(t) = CGs
(t) = Gs ∩CLholG(t) = Gs ∩Gt =

Gt
∼−→ Aut(Pt). Now the first assertion follows since T et

s is abundant in |G0,et
s /′Gs| and 

the étale locus is open. For the second statement, for g(z) ∈ Gs, the Čech complex 
for g∗Pg(z)

and the first statement give quasi-isomorphisms of complexes in degree 0, 1: 
T ∗
g(z)(GE) � {Lholg

∗ → Lholg
∗} � {Lholg → Lholg}∗ � {gs → gs}∗ � {g∗s → g∗s} �

T ∗
g(z)(G0

s/
′Gs). Under this identification, X(z) ∈ H0(g∗s → g∗s) �κ H0(gs → gs) is 

in NT∗GE
if X(z) is nilpotent in g for all z ∈ C∗, and X(z) is in NT∗(G0,et

s /′Gs) if it is 
nilpotent as an element in the Lie algebra gs. Now we see these two notions are equivalent 
by the explicit formula of gs in Proposition 5.5. �

View X∗(T ) as a subgroup of LT , it acts freely on the constant loops T ⊂ LT via 
twisted conjugation. We have TE � T/′X∗(T ) × BT . The group Waff = X∗(T ) � W

acts on T , and let T q−reg be the open dense locus where the action of Waff is free. Let 
G0,q−reg

s := χ−1
s (T q−reg//′Ws). Using the identification T reg

E /W � (T q−reg/′X∗(T ) ×
BT )/W � (T q−reg ×BT )/′Waff, we have a commutative diagram:

(T q−reg ×BT )/′Ws
∼

G0,q−reg
s /′Gs

ps

(T q−reg ×BT )/′Waff
∼

Greg
E

(5.28)

Recall the semi-simplification map χE : GE → eE as in Appendix B.

Proposition 5.29. The following commutative diagram is cartesian:

G0,et
s /′Gs

χ′
s

ps �

T et
s //′Ws

GE

χE

eE � T//′Waff

Proof. Suffices to show for each small open U ⊂ T et
s //′Ws, the diagram obtained by 

restricting to U is cartesian:

χ′
s
−1(U)

χ′
s

pU �

U

q

GE

χE

T//′Waff

Assume U is small so that q is an open embedding. Let Ũ be the preimage of U in T et
s . 

Now by (5.28), pU |χ′ −1(U∩(T q−reg/′W )) is identified with the composition

s s
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((Ũ ∩ T q−reg) ×BT )/′Ws → (T q−reg ×BT )/′Waff → GE

which is an open embedding by the choice of U . Therefore pU is generically open embed-
ding, and it is also étale, so by Lemma A.3, the map pU is an open embedding. Now we 
need to check the image of pU equal χ−1

E (q(U)). This is because the image contains all 
the semi-simple bundles in χ−1

E (q(U)) by construction and hence consist all χ−1
E (q(U))

by Proposition B.2. �
5.3. Gluing of charts

In this section, we will glue the charts defined in Section 5.2, i.e. we will calculate 
the fiber products of the charts. The combinatorics of higher descent data is naturally 
organized in diagrams introduced in Section 2.2. The main result of this section is The-
orem 5.32.

For s = (s1, s2, ..., sk) ∈ T k, let Gs :=
⋂k

i=1 Gsi , Ws := NGs(T )/T , define χs, T et
s , Get

s
analogously. All the above statements for Gs still hold for Gs, and moreover Ws =⋂k

i=1 Wsi , T
et
s =

⋂k
i=1 T

et
si , T q−reg ⊂ T et

s for all s by the connectedness of G.

Proposition 5.30. For any w ∈ NG(T ) · X∗(T ) ⊂ LG, the twisted conjugation Ad′w :
G0

s
∼−→ G0

w(s) intertwines the action Adw : Gs
∼−→ Gw(s). Hence we have an isomorphism 

of stacks Ad′w : G0
s/

′Gs
∼−→ G0

w(s)/
′Gw(s).

Proof. Gw(s) = CLG(w(s)) = AdwCLG(s), so we have a isomorphism of algebraic groups: 
Adw : Gs → Gw(s).

Write w = uλ, for u ∈ NG(T ), and λ ∈ X∗(T ). Using the fact that λ(q) ∈ T ⊂ Gs, 
we have

Ad′w(Gs) = uλ(qz)Gsλ(z)−1u−1 = uλ(z)λ(q)Gsλ(z)−1u−1 = Adw(Gs) = Gw(s).

Since Ad′w stabilize T , we have Ad′w : G0
s → G0

w(s) isomorphism of algebraic varieties. The 
pair of isomorphisms of algebraic varieties and algebraic groups (Ad′w, Adw) : (G0

s, Gs) →
(G0

w(s), Gw(s)) intertwine the twisted conjugation action on both sides. Hence we have an 
induced isomorphism of quotient stacks, still denoted by Ad′w : G0

s/Gs → G0
w(s)/Gw(s). 

It’s also easy to see that the above map takes étale locus to étale locus, so we have 
Ad′w : G0,et

s /Gs → G0,et
w(s)/Gw(s). �

Definition 5.31. Let Ẇaff ⊂ NG(T ) · X∗(T ) be a subgroup such that the map Ẇaff →
(NG(T ) · X∗(T ))/T = Waff is surjective. Let S ⊂ T be a Waff (or equivalently Ẇaff) 
invariant subset, and let {Vs, s ∈ S} be a collection of open subsets of T satisfying 
Vw(s) = w(Vs), for all w ∈ Waff. Let Vs :=

⋂
s∈s Vs, Us := χ′

s
−1(Vs//Ws).

Then we have a functor

U :
∫Δop

S•
Ẇaff

S tk∞



P. Li, D. Nadler / Advances in Mathematics 380 (2021) 107572 41
defined similarly to Construction 2.8 by:

(1) U(s) := Us/
′Gs;

(2) U(w) := Ad′w : Us/
′Gs

∼
Vw(s)/

′Gw(s) ;

(3) U(w′w−1) := ηw′w−1 ◦Ad′w : Ad′w Ad′w′ ;

(4) U(δ : s → s′) := i : Us/
′Gs Us′/

′Gs′ .

The augmentation morphisms ps and 2-morphisms ϕw defined below extends the 
functor U to
U+ :

∫Δop,�

S•
Ẇaff

S tk∞ , by sending the final object to GE :

There is commutative diagram:

C ×G0
s ×G

ϕw

� C ×G0
w(s) ×G

C ×G0
s

Id×Ad′
ẇ

� C ×G0
w(s)

where ϕw(z, h, g) := (z, Ad′w(h), w(z)g). The diagram is qZ-equivariant and hence in-
duces:

Ps

ϕw

� Pw(s)

E ×G0
s

Id×Adq
w

� E ×G0
w(s)

Hence and induces ϕw : ps ⇒ pw(s) ◦ Ad′w : G0
s/Gs → GE an isomorphism between 

the morphisms of stacks.

We have the main theorem of this section:

Theorem 5.32. Assume Vs ⊂ T et
s and 

⋃
s∈S Vs = T , then

(1) the natural map in S tk is an isomorphism:

colim∫Δop
S•
Ẇaff

U ∼
GE

(2) the natural map in C at∞ is an equivalence:

lim(
∫Δop

S•
Ẇaff

)op ShN (Us/
′Gs)

∼
ShN (GE)
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Proof. By Construction 2.8, we have V+ :
∫Δop,�

S•
Ẇaff

S , which is a colimit 

diagram by Proposition 2.9. The character polynomial maps χs and χE give a natural 
transformation χ : U+(C) ⇒ V+, which is cartesian by argument similar to Proposi-
tion 5.29 (note that T//′Waff = T//′Ẇaff). Hence the functor U+(C) is a colimit diagram 
since colimit in S is stable under base change. Hence we conclude by Theorem 5.27 and 
Proposition 4.2. �
5.3.1. A Lie theoretic choice of charts for simply-connected groups

In this section, we will simplify the previous general discussions to concrete Lie theo-
retic data involving alcove geometry. We assume G is simply-connected throughout this 
section.

Choose τ ∈ H, such that q = exp(2πiτ). The identification Z � Zτ gives tR =
X∗(T ) ⊗R � X∗(T ) ⊗Rτ . And hence gives a natural wall stratification on X∗(T ) ⊗Rτ . 
Under the identification C = R ×Rτ , we have:

(X∗(T ) ⊗R/Z) × (X∗(T ) ⊗Rτ) = X∗(T ) ⊗C/Z
Exp:=exp(2πi−)−−−−−−−−−−→ X∗(T ) ⊗C∗ = T.

Note that the restriction of exponential map: X∗(T ) ⊗ Rτ → T is an embedding. The 
groups defined in Section 3.2 and in Section 5.1 coincide under this embedding:

Proposition 5.33.

(1) For a ∈ tR, we have Ga = GExp(0,aτ).
(2) For a ∈ tR, and θ ∈ X∗(T ) ⊗R/Z, we have GExp(θ,aτ) ⊂ GExp(0,aτ).

Proof. There is a commutative diagram:

(X∗(T ) ⊗R/Z) × (X∗(T ) ⊗Rτ)
Exp

Waff-equivariant

α

X∗(T ) ⊗C∗

α

R/Z×Rτ
Exp

∼ C∗

{0} × Zτ
Exp

∼ qZ

Denote Φθ := {α = α0 − n ∈ Φaff | α0(θ) = 0} and Wθ := CWaff(θ). For s := Exp(θ, aτ), 
then Φs = Φθ ∩Φa as subset of Φaff and Ws = Wθ ∩Wa as group of Waff. Hence (1), (2)
follow since for θ = 0, Φθ = Φaff and Wθ = Waff, cf. Proposition 3.7. �

Now we assume that G is simply-connected.
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Corollary 5.34. For s = Exp(0, aτ), the group Gs is connected.

Remark 5.35. For general s, the group Gs may not be connected, a counter-example is 
given in [5].

Denote by T se
J := (X∗(T ) ⊗ R/Z) × StJ · τ ⊂ T and Gse

J := χ′
J
−1(T se

J //′WJ) ⊂ GJ

be the set of elements with “small eigenvalues”.

Proposition 5.36. The subset T se
J is contained in T et

J .

Proof. Need to prove that for any s ∈ T et
J , the group Gs is contained in GJ . By Propo-

sition 5.33, we can assume s = (0, aτ), i.e. we need to prove Ga ⊂ GJ for a ∈ StJ , and 
this can be easily checked. �
Proposition 5.37. There are isomorphisms in S :

(1) colimJ∈Fop
C
T se
J //′WJ

∼
T//′Waff

(2) colimJ∈Fop
C
Gse

J /′GJ(C) ∼
GE(C)

Proof. (1) By Proposition 3.3, we have colimJ∈FC
StJτ×WJ

Waff � tRτ , as Waff-set. Mul-
tiply the Waff-set X∗(T ) ⊗R/Z on both sides yields colimJ∈FC

(X∗(T ) ⊗R/Z) ×StJτ×WJ

Waff � (X∗(T ) ⊗ R/Z) × tRτ compatible with the diagonal Waff action. Now dividing 
Waff on both sides gives colimJ∈FC

T se
J /WJ � T/Waff. For s = (θ, aτ) ∈ T se

J , w ∈ Waff, 
such that w(s) = s, we have w(a) = a, and a ∈ StJ , hence w ∈ WJ . So the maps 
T se
J /WJ → T/Waff are fully-faithful, then we get (1) by take π0 of the previous equiva-

lence. (2) Follows from (1) and Proposition 5.29. �
Theorem 5.38.

(1) There is an isomorphism of stacks:

colimJ∈FC
Gse

J /′GJ
∼

GE

(2) There is an equivalence of ∞-categories:

limJ∈FC
ShN (Gse

J /′GJ) ShN (GE)∼

Proof. The functor F �
C → S tk (via J �→ Gse

J /′GJ and ∗ �→ GE) satisfies the assumption 
of Theorem A.8: (i) Gse

J /′GJ and GE are analytic stacks. (ii) The maps are étale by 
Proposition 5.36. (iii) By Proposition 5.37 (2). �
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Remark 5.39. The locus of small eigenvalues Gse
J depends on the choice of τ . Nevertheless, 

as we will see later in Corollary 6.10, the category of sheaves with nilpotent singular 
support ShN (Gse

J /′GJ) does not depend on τ and it is equivalent to ShN (GJ/GJ).

5.3.2. A Lie theoretic choice of charts for general reductive groups
Now assume that G is a connected reductive group. We write G = (Z0(G) × G̃der)/F , 

where G̃der is the simply-connected cover for the derived group of G, and F is some central 
finite group. Denote by T̃der the corresponding torus in G̃der, and ̃tder its Lie algebra. Let 
S0 ⊂ t̃der the set of vertices of the affine alcoves in ̃tder,R. Denote by S := (X∗(Z0(G)) ×
S0)/F ⊂ tR, for any s = [(c, s0)] ∈ S, the open subset VR,s := (zg × Stx0)/F ⊂ tR

is independent of the choice of the representatives of s. Put Vs = X∗(T ) ⊗ R/Z ×
VR,s ⊂ T . Then the collection {Vs, s ∈ S} satisfies the assumption of Definition 5.31 and 
Theorem 5.32.

5.4. Complex gauge theory on S1

In this section, we study the stack G/G � LocsysG(S1) using the gauge uniformization 
on S1. We will establish the results in previous sections in the present situation. It can be 
viewed as a nonabelian analog of the uniformization C → C∗ = C/Z. Many of the proofs 
are similar as before, we shall only highlight some differences in the present situation.

Denote by G the trivial G-bundle on S1, by A(G) the space of connections on G, 
and by ConnG(S1) the moduli stack of smooth G-bundles on S1 with connection. Since 
every G-bundle on S1 is trivial, we have an isomorphism of groupoids ConnG(S1)(pt) =
A(G)/Aut(G). We have an identification Aut(G) � C∞(S1, G) =: LsmG. The trivial 
connection on G gives A(G) � Ω1(S1, g). Fix z ∈ C∞(S1, C∗) a degree 1 map, such that 
dz is nowhere vanishing. (For example, take S1 to be the unit circle with angle coordinate 
θ and z = eiθ). Then we have a identification − ∧ d log(z) : Lsmg := C∞(S1, g) ∼−→
Ω1(S1, g).

We have

ConnG(S1)(pt) = Lsmg/′LsmG

And the action above of LsmG on Lsmg is identified with the gauge transformation 
(twisted adjoint action): ad′

g(a) := gag−1 − dg
d log(z) · g−1 for g ∈ LsmG, a ∈ Lsmg.

We have X∗(T ) → LsmT via λ �→ λ ◦z, then t ⊂ Lsmt is stable under the gauge action 
of X∗(T ) and the action is identified as translation under X∗(T ) ↪→ X∗(T ) ⊗C � t, where 
the last isomorphism is given by (λ, c) �→ dλ(c). The group Ẇaff ⊂ LsmG acts on t via 
gauge transformation, this action factor through Waff. When restricted to tR, this action 
of Waff equal to the one in Section 3.2.

For a ∈ t ⊂ Lsmg, put Φa := {α ∈ Φaff | α(a) = 0}, Wa := CWaff(A), GA := CLsmG(a)
and ga := Lie(Ga). For a = (ai) ∈ tn, let Ga :=

⋂n
i=1 Gai

, ga :=
⋂n

i=1 gai
, Φa :=⋂n

i=1 Φai
, and Wa :=

⋂n
i=1 Wai

.
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Theorem 5.40.

(1) G0
a =< T, exp gα | α ∈ Φa >.

(2) Ga =< G0
a, ẇ | w ∈ Wa >, where Wa = CWaff(a). In particular, it agrees with Ga in 

Definition 3.6 for a = (a) ∈ tR.
(3) The space ga is stable under the gauge transformation of Ga. The translation by −a

gives an isomorphism of stacks −a : ga/
′Ga

∼−→ ga/Ga, where the later action is 
adjoint action.

(4) Let χ′
a : ga → ta//Wa the characteristic polynomial map with respect to the gauge 

action. Let teta := {x ∈ t | Wx ⊂ Wa, Φx ⊂ Φa}, and geta := χ′
a
−1(teta //Wa). Then the 

natural map peta : geta /Ga → LocsysG(S1) is (representable) étale. And pet,∗a (N ) = N .
(5) Let S ⊂ t be a Waff-invariant subset, for each a ∈ S, let Va ⊂ ta be Wa-invariant 

open subset, satisfying Vw(a) = w(Va) for all w ∈ Waff. Let Va := ∩a∈aVa, and 
Ua := χ−1

a (Va//Wa), then we have a functor by sending a to Ua/
′Ga and ∗ to 

LocsysG(S1):

U :
∫Δop,�

S•
Ẇaff

S tk

Assume further more that Va ⊂ teta , and 
⋃

a∈S Va = t, then the induced map is an 
isomorphism:

colim∫Δop
S•
Ẇaff

U ∼ LocsysG(S1) � G/G

(6) Assume that G is simply-connected, let tseJ := StJ × itR ⊂ t, and gseJ :=
χ−1(tseJ //WJ). Then there is an isomorphism:

colimJ∈Fop
C
gseJ /′GJ

∼ LocsysG(S1) � G/G

Proof. (1) This is similar to Corollary 5.6. We have ga = {x ∈ C∞(S1, g) : dx + [a, x] ∧
d log(z) = 0}, Let x = h +

∑
α∈Φ fαxα, where h : S1 → t, fα : S1 → C. Then the 

equation dx + [a, x] ∧ d log(z) = 0 is equivalent to dh = 0 and dfα = α(a)fα ∧ d log(z). 
The first equation has solution constant functions. The second equation has a nontrivial 
solution only when α(a) ∈ Z, and in this case, the solutions are fα = czα(a), c ∈ C.
(2) Similar to Corollary 5.10, where we need a version of Lemma 5.9, with Lhol replaced 
by Lsm, and Gs by Ga.
(3) Similar to Proposition 5.13. As a remark, the map −a : ga/′Ga → ga/Ga can be 
thought of as untwisting the gauge transformation. Since the gauge transformation is an 
affine linear action, and the action of Ga fixes a, so re-center the affine space ga at a will 
make the action of Ga a linear action (in fact adjoint action).
(4) Similar to Theorem 5.27. The 1-shifted symplectic structure on LocsysG(S1) is used.
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(5) Similar to Theorem 5.32.
(6) Similar to Theorem 5.38(1). �

From Theorem 5.40(4)(5)(6), and Proposition 4.2, we have:

Theorem 5.41. There is an equivalence:

(1) lim(
∫Δop

S•
Ẇaff

)op ShN (Ua/
′Ga) ShN (LocsysG(S1)) � ShN (G/G)∼

And for G simply-connected:

(2) limJ∈FC
ShN (gseJ /′GJ) ShN (LocsysG(S1)) � ShN (G/G)∼

5.5. Holomorphic gauge theory on elliptic curves

Let ω = (ω1, ω2) be a pair of complex numbers not contained in the same real line. 
E = Eω := C/(Zω1 ⊕ Zω2) an elliptic curve. As we shall establish below, similar to 
previous sections, the holomorphic gauge uniformization gives an nonabelian analogue 
of the uniformization C → E. Results in this section will not be used in our main 
theorem.

5.5.1. Holomorphic gauge uniformization on E.
Denote by G the trivial smooth G-bundle on E, by A0,1(G) the space of (0,1)-

connections on G. Any such connection ∇ defines a holomorphic structure on G by 
defining the holomorphic sections are those section s satisfying ∇(s) = 0. Since ev-
ery degree 0 holomorphic G-bundle on E is trivial as smooth bundle, we have an 
isomorphism of groupoids Bun0

G(E)(pt) = A0,1(G)/Aut(G). We have an identifica-
tion Aut(G) � C∞(E, G). The ∂̄ operator and the (0,1)-form dz̄ give identifications 
A0,1(G) � Ω0,1(E, g) � C∞(E, g). Hence we have

Bun0
G(E)(pt) = C∞(E, g)/′C∞(E,G)

And the action above is identified with the Gauge transformation: ad′
g(b) := gbg−1 −

∂̄g · g−1 for g ∈ C∞(E, G), and b ∈ C∞(E, g).
Let S1, S2 be two copies of the unit circle. We have isomorphism of Lie groups S1 ×

S2
�−→ E, by (θ1, θ2) �→ ω1θ1+ω2θ2

2π . This induces X∗(T ) × X∗(T ) � HomLie(E, T ). An 
easy calculation shows that under the identification

tR × tR
∼

t, (A1, A2) −2πi
ω1ω̄2−ω̄1ω2

(ω2A1 − ω1A2)

The translation of X∗(T ) ×X∗(T ) on tR× tR is identified with the gauge transformation 
of HomLie(E, T ) ⊂ C∞(E, T ) on t ⊂ C∞(E, t) (as constant maps). Let Φell := Z ×Z ×Φ, 
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and for any α = (n1, n2, α0) ∈ Φ, define gα := ei(n1θ1+n2θ2)gα0 ⊂ C∞(E, g), and such α
defines a map α : tR × tR → R × R, by (a1, a2) �→ (α(a1) + n1, α(a2) + n2). And define 
Well := (X∗(T ) ×X∗(T )) �W , and Ẇell ⊂ (X∗(T ) ×X∗(T )) � NG(T ) be a subgroup, 
such that Ẇell → Well is surjective. For b = (b1, b2) under the identification, define 
Φb := {α ∈ Φell | α(a1, a2) = 0}, and Wb := CWell(a1, a2).

For b = (a1, a2) ∈ t ⊂ C∞(E, g), let Gb := Gω
b := CC∞(Eω,G)(b) the stabilizer 

under the gauge transformation, and gb := Lie(Gb). For b = (bi) ∈ tn, let Gb :=⋂n
i=1 Gbi , gb :=

⋂n
i=1 gbi , Φb :=

⋂n
i=1 Φbi , and Wb :=

⋂n
i=1 Wbi . The following theorem 

is analogous to Theorem 5.40, we shall omit the proof.

Theorem 5.42.

(1) G0
b =< T, exp gα | α ∈ Φb >.

(2) GB =< G0
b, ẇ | w ∈ Wb >.

(3) Let χ′
b : gb → tb//

′WB the characteristic polynomial map with respect to the gauge 
action. Let tetb := {x ∈ t | Wx ⊂ Wb, Φx ⊂ Φb}, and getb := χ′

b
−1(tetb //′Wb). Then 

the natural map pb : getb /′Gb → Bun0
G(E) is (representable) étale.

(4) Let S ⊂ t be a Well-invariant subset, for each B ∈ S, let Vb ⊂ tetb be Wb-invariant 
open subset, satisfying Vw(b) = w(Vb) for all w ∈ Well. Let Vb := ∩b∈bVb, and 
Ub := χ′

b
−1(Vb//

′Wb), then we have a functor by sending b to Ub/
′Gb and pt to 

GE:

U :
∫Δop,�

S•
Ẇell

S tk

Assume further more that Vb ⊂ tetb , and 
⋃

b∈S Vb = t, then the induced map is an 
isomorphism:

colim∫Δop
S•
Ẇell

U ∼
GE

(5) There is induced equivalence

lim(
∫Δop

S•
Ẇell

)op ShN (Ub/
′Gb) ShN (GE)∼

Recall that the points in coarse moduli eE can be identified with the set of isomorphism 
classes of degree 0 semisimple G-bundles.

Corollary 5.43. Let P be a point in eE, assume that Aut(P) is connected. Then eE is 
smooth at P.
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Proof. By Theorem 5.42, near P, the stack GE is locally isomorphic to the quotient stack 
Lie(Aut(P))/Aut(P) near 0. When Aut(P) is connected reductive, the coarse moduli of 
the later stack is smooth (in fact, an affine space). �

Remark 5.44.

(1) By a theorem of Looijenga, eE is isomorphic to a weighted projective space (with 
explicit weights depending on the root datum), and it is not always smooth.

(2) It is possible to deduce Corollary 5.43 from some general slicing theorem such as in 
[2].

5.5.2. Relation with gauge uniformization on circle

Notation 5.45. We denote by Gi
a, Φi

aff, W
i
aff the corresponding notation associated to 

Si, i = 1, 2.

The inclusion {0}

S1 S2,

Eω

induces C∞(Eω, G)

C∞(S1, G) C∞(S2, G)

G

Proposition 5.46. Under the above map, let b = (a1, a2) we have

Gω
b

�G1
a1

G2
a2

G

and all the arrows are injective.
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Proof. It is easy to check that

Wb

�W 1
a1

W 2
a2
,

W

Φb

�Φ1
a1

Φ2
a2
,

Φ

The proposition follows since the groups involved are determined by the above data. �
Remark 5.47. Let Gc be a maximal compact subgroup of G. Under Yang-Mills equation, 
this Proposition can be thought of as an analogue of the fact that for a Gc-local system 
L on E, we have

Aut(L)

�Aut(L|S1) Aut(L|S2)

Aut(L|0) = Gc

Note that both Aut(L|Si
) and Gi

ai
are of the form CG(s) for some s ∈ Tc (or T ). In 

particular, they are connected if G is simply-connected.

6. Character sheaves

In this section, we establish results on propagation (Proposition 6.5) and untwisting 
(Proposition 6.7) for character sheaves, and then use them to prove our main theorem.

Notation 6.1. Recall Φaff is by definition of set of affine roots of G. A subset R ⊂ Φaff is 
called admissible if:

• α + β ∈ R, for any α, β ∈ R, such that α + β ∈ Φaff;
• the map R ⊂ Φaff → Φ is injective, where Φaff → Φ is the natural map via α0 +n �→

α0.

Let R := {R ⊂ Φaff | R admissible }. For a connected finite dimensional subgroup 
of LG, we shall use the notation K ∈ R if K ⊃ T and the set of roots of T acting on 
Lie(K) is admissible. Similar for k ∈ R. We see that gs, ga, gb, Ga, G0

s, G
0
b ∈ R.

Let L, K ∈ R, with Lie algebra l, k, and assume that L ⊂ K, denote by:
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• l/L quotient stack with respect to the adjoint action ad.
• l/′L the quotient stack with respect to the gauge transformation ad′.
• L/L quotient stack with respect to the adjoint action Ad.
• L/′L quotient stack with respect to the twisted conjugation action Ad′.
• cl := {c ∈ l | adg(c) = c, ∀g ∈ L} the center of l.
• c′l := {c ∈ l | ad′

g(c) = c, ∀g ∈ L} the twisted center of l.
• Z(L) := {c ∈ L | Adg(c) = c, ∀g ∈ L} the center of L.
• Z ′(L) := {c ∈ L | Ad′

g(c) = c, ∀g ∈ L} the twisted center of L.
• WL the Weyl group of L.
• χl : l → t//WL, χL : L → t//WL, the characteristic polynomials.
• χ′

l : l → t//′WL, χ′
L : L → t//′WL, the twisted characteristic polynomials.

• For x ∈ l, denote CL(x) := {g ∈ L | adg(x) = x} and C ′
L(x) := {g ∈ L | ad′

g(x) = x}.
• For x ∈ L, denote CL(x) := {g ∈ L | Adg(x) = x} and C ′

L(x) := {g ∈ L | Ad′
g(x) =

x}.
• lk-reg := {x ∈ l | CK(x) = CL(x)}, and lk-reg

′ := {x ∈ l | C ′
K(x) = C ′

L(x)}.
• LK-reg := {x ∈ L | CK(x) = CL(x)}, and LK-reg′ := {x ∈ L | C ′

K(x) = C ′
L(x)}.

The following proposition is easy to check.

Proposition 6.2. Let L, K ∈ R and L ⊂ K, then:

(1) c′l �= ∅. For any c ∈ c′l, translation by −c induces identifications: l/′L � l/L, c′l �
cl, χ′

l = χl, C ′
L(x) = CL(x − c), lk-reg′ = lk-reg.

(2) Z ′(L) �= ∅. For c ∈ Z ′(L), multiplication by c−1 induces identifications: L/′L �
L/L, Z ′(L) � Z(L), χ′

L = χL, C ′
L(x) = CL(c−1x), LK-reg′ = LK-reg.

Many results in the following sections are stated for both twisted and untwisted case. 
We shall only give proof for the untwisted one because the twisted statement follows 
from Proposition 6.2.

We call L ⊂ P ⊂ G a parabolic sequence if P is a parabolic subgroup of the reductive 
G and L ∼−→ P/UP is an isomorphism, where UP is the unipotent radical of P .

Lemma 6.3.

(1) The maps f : lk-reg/L → k/K, and f ′ : lk-reg′
/′L → k/′K are étale.

(2) The maps df∗ and df ′∗ respect nilpotent cones.

Proof. (1) Follows from Proposition 5.22. (2) For any Y ∈ lk-reg, and under the identifi-
cation by shift symplectic form, we have H0(df∗

Y )|l = Id. �
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Lemma 6.4. Let L ⊂ Q ⊂ K be a parabolic sequence, denote by i : l ⊂ q the inclusion and 
q : q → l the projection. Let U ⊂ lk-reg invariant open subset, denote by QU := q−1(U) ⊂
q, then i : U/L � QU/Q : q are inverses to each other.

Proof. The map i is fully-faithful by definition of lk-reg. To prove that i is essentially 
surjective, we need to show that the unipotent radical N0 of Q acts transitively on 
x +n0, for any x ∈ lk-reg. Now let Ni := [Ni−1, N0], and ni the corresponding Lie algebra, 
we have [q, ni] ⊂ ni. For any x ∈ q, the adjoint action Ni stabilizes x + ni. To see this, 
let u ∈ ni, then by Baker-Campbell-Hausdorff formula:

Adeux = x + [u, x] + 1
2! [u, [u, x]] + ... ∈ x + ni.

Now assume x ∈ lk-reg, then Adx : ni
∼−→ ni is an isomorphism (if [u, x] = 0, then 

eu ∈ CK(x) = CL(x) ⊂ L, hence u = 0). We prove by induction (in reverse order) that 
the action of Ni on x + ni is transitive. For n >> 0, we have Nn = 1, and the action is 
automatically transitive. Assume now that Ni+1 acts transitively. Suffices to show that 
every Ni orbit intersects x + ni+1. Now for any v ∈ ni, take u = Ad−1

x v ∈ ni. Then 
Adeu(x + v) = x + v + [u, x] + ([u, v] + 1

2! [u, [u, x + v]] + ...) ∈ x + ni+1. Hence the action 
of Ni is also transitive. �
6.1. Propagation and untwisting

Let P be the category consist of object (K, U), where K ∈ R reductive, and U a 
twisted-invariant open subset of k, with morphisms

P((G1, U1), (G2, U2)) =

⎧⎪⎪⎨⎪⎪⎩
{P |G1 ⊂ P ⊂ G2 a parabolic sequence},

if G1 ⊂ G2, U1 ⊂ U2 ∩ g
g2-reg′

1 ;
∅, otherwise.

The composition is given by

P((G2, U2), (G3, U3)) × P((G1, U1), (G2, U2)) → P((G1, U1), (G3, U3))

(P3, P2) �→ P3 ◦ P2

The nerve of P is the simplicial set N(P) with N(P)n := the tuples {(G0, G1, ..., Gn);
(P1, P2, ..., Pn); (U0, U1, ..., Un)}, such that Gi, Pi ∈ R, and Gi−1 ⊂ Pi ⊂ Gi is a parabolic 

sequence, and Ui is twisted-invariant open subset in ggi+1-reg′

i . The face and degeneration 
maps are defined in the obvious way.

Put P[i,j] :=
{
Pi+1 ◦ ... ◦ Pj , for i < j.

Gj , for i = j.

We define three functors α, α′, β′ : N(P) → Corr(S tk◦), via
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(1) α(G0, G1, ..., Gn; P1, P2, ..., Pn; U0, U1, ..., Un)i,j = p[i,j]/P[i,j].
(2) α′(G0, G1, ..., Gn; P1, P2, ..., Pn; U0, U1, ..., Un)i,j = p[i,j]/

′P[i,j].
(3) β′(G0, G1, ..., Gn; P1, P2, ..., Pn; U0, U1, ..., Un)i,j = Ui/

′Gi.

Note that α and α′ are well defined by Proposition 3.8.
Let Pret ⊂ P be full subcategory consists of objects whose U -factors are retractable 

w.r.t. N .

Proposition 6.5. There is a natural isomorphism ShN (α′)|N(Pret) � ShN (β′)|N(Pret).

Proof. By Lemma 6.4, the natural maps Ui/
′Gi → p[i,j]/

′P[i,j] induce cartesian squares:

Ui/
′Gi Ui/

′Gi

p[i,j+1]/
′P[i,j+1] p[i,j]/

′P[i,j].

And by Corollary 2.16, this defines a natural transformation η′ : β′ ⇒ α′, or equiv-
alently η′ : α′ ⇒ β

′ (notation cf. 2.13). Hence we get an natural transformation 
Sh(η′) : Sh(α′) ⇒ Sh(β′). The arrows in Sh(α′) and Sh(β′) are given by parabolic 
restriction and restriction to open substacks, hence preserve nilpotent singular support 
by Proposition 4.11 and Lemma 6.3. Let ShN (α′) ⊂ Sh(α′) and ShN (β′) ⊂ Sh(β′) be 
the corresponding functor that takes an object (G0, U0) to ShN (g0/G0) and ShN (U0/G0)
respectively. The natural transformation Sh(η′) induces ShN (η′) : ShN (α′) ⇒ ShN (β′). 
Then ShN (η′)|N(Pret) is a natural isomorphism by the definition of retractable sub-
stacks. �

Define un : c′g×g/′G → g/G, via (c, x) �→ x −c. Put Nfat := 0c′g ×N ⊂ T ∗(c′g×g/′G).

Lemma 6.6. un∗, un∗ preserves nilpotent singular support and there are inverse equiva-
lence of functors:

un∗ : ShN (g/G) ←→ ShNfat(c′g × g/′G) : un∗

Proof. We can write un as the composition c′g × g/′G Un−−→ c′g × g/G π−→ g/G, where 
Un(c, x) = (c, x −c), and π is the projection onto the second factor. Un is an isomorphism 
and preserves Nfat, hence it induces equivalences

Un∗ : ShNfat(c′g × g/G) ←→ ShNfat(c′g × g/′G) : Un∗

We then prove the Lemma by applying Proposition 4.10 to π. �
Proposition 6.7. There is a natural isomorphism ShN (α′) � ShN (α).
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Proof. Define α′
fat : N(P) → Corr(S tk◦), via

α′
fat(G0, G1, ..., Gn;P1, P2, ..., Pn;U0, U1, ..., Un)i,j = c′gj

× p[i,j]/
′P[i,j].

By Corollary 2.16, the maps c′gj
× p[i,j]/

′P[i,j] → p[i,j]/P[i,j], via (c, x) �→ x − c define 
a natural transformation ε : α′

fat ⇒ α. By Lemma 6.6 The induced map ShN (ε) :
ShNfat(α′

fat) ⇒ ShN (α) is an equivalence. Similarly define α′
fat ⇒ α′ by projecting 

to the second factor. It induces equivalence ShNfat(α′
fat) ⇒ ShN (α′). Hence we get 

ShN (α′) � ShN (α). �
We also state the group analogue of the above statements. Proofs are similar and we 

shall omit.
Let P̃ be the category consist of object (K, U), where K ∈ R reductive, and U a 

twisted-invariant open subset of K, with morphisms

P̃((G1, U1), (G2, U2)) =

⎧⎪⎪⎨⎪⎪⎩
{P |G1 ⊂ P ⊂ G2 a parabolic sequence},

if G1 ⊂ G2, U1 ⊂ U2 ∩GG2-reg′

1 ;
∅, otherwise.

Define similarly the functors α, α′, β′ : N(P̃) → Corr(S tk◦), via

(1) α̃(G0, G1, ..., Gn; P1, P2, ..., Pn; U0, U1, ..., Un)i,j = P[i,j]/P[i,j].
(2) α̃′(G0, G1, ..., Gn; P1, P2, ..., Pn; U0, U1, ..., Un)i,j = P[i,j]/

′P[i,j].
(3) β̃′(G0, G1, ..., Gn; P1, P2, ..., Pn; U0, U1, ..., Un)i,j = Ui/

′Gi.

Proposition 6.8. There are equivalence of functors:

(1) ShN (α̃′)|N(P̃ret) � ShN (β̃
′
)|N(P̃ret).

(2) ShN (α̃) � ShN (α̃′).

Next, we give some examples of retractable substacks.

Proposition 6.9.

(1) Let K be a reductive group with Lie algebra k. And V ⊂ t be an WK-invariant 
open subset. Then V is star-shaped centered at some c ∈ ck if and only if U :=
χ−1
k

(V//W ) ⊂ k is so. In this situation, U/K is a retractable open substack of k/K
w.r.t. N .

(2) Let K ∈ R and V ⊂ t be an WK-twisted-invariant open subset. Then V is star-
shaped centered at some c ∈ c′k if and only if U := χ′

k

−1(V//′W ) ⊂ k is so. In this 
situation, U/′K is a retractable open substack of k/′K w.r.t. N .
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Proof. Denote by π : t → t//W . Let x ∈ U , and t ∈ V , such that χ(x) = π(t), then 
χ(cx) = π(ct). Hence V is star-shaped at c if and only if U is so. Now U/K is retractable 
by Proposition 4.8, since N is biconical with respect to the R+ action (which commutes 
with the K action) centered at c. �

We also have the Lie group version of last proposition.

Proposition 6.10.

(1) Let K be a reductive group, c ∈ Z(K), and V be a W -invariant open subset of 
T , such that Ṽ := Exp−1(c−1V ) ⊂ X∗(T ) ⊗ C is convex and containing tR. Put 
U := χ−1

K (V//W ), then U/K is a retractable substack of K/K w.r.t. N .
(2) Let K ∈ R, c ∈ Z ′(K), and V be a W -twisted-invariant open subset of T , such 

that Ṽ := Exp−1(c−1V ) ⊂ X∗(T ) ⊗ C is convex and containing tR. Put U :=
χ′
K

−1(V//′W ), then U/′K is a retractable substack of K/′K w.r.t. N .

Proof. Since N ⊂ T ∗(K/K) is invariant under translation by central elements, it suffices
to assume c = 1. In Proposition 5.41 (1), we could choose Ua = χ′

a
−1(Va//

′Wa) for Va

convex in t, and Va ∩ tR �= ∅. Then the restriction map ShN (K/K) → ShN (U/K) is in-
duced by taking the limit over 

∫
Δop S

•
Ẇaff

of the restrictions ShN (χ′
a
−1(Va//

′Wa)/Ka) →
ShN ((χ′

a
−1(Va∩Ṽ //′Wa)/Ka), which is an isomorphism, because when Va is non-empty, 

both χ′
a
−1(Va//

′Wa) and χ′
a
−1(Va∩Ṽ //′Wa) are retractable open subset of ka by Propo-

sition 6.9. �
Corollary 6.11.

(1) The substack gseJ /′gJ ⊂ gJ/
′gJ is retractible w.r.t. N .

(2) The substack Gse
J /′GJ ⊂ GJ/

′GJ is retractible w.r.t. N .

Proof. (1) V = StJ is star-shaped centered at any c ∈ J . Hence gseJ = χ′ −1
gJ

(StJ//′WJ)
satisfies the assumption of Proposition 6.9.
(2) Take V = T se

J , we see that the subset Exp−1(c−1T se
J ) = tR× i(StJ − c) ⊂ tR× itR =

X∗(T ) ⊗ C is convex and containing tR, hence Gse
J = χ′ −1

GJ
(T se

J //′WJ) satisfies the 
assumption of Proposition 6.10. �
6.2. The main theorem

Theorem 6.12. There are equivalences of ∞-categories:

ShN (G/G) ∼ limJ∈FC
ShN (gJ/GJ)

ShN (GE) ∼ limJ∈FC
ShN (GJ/GJ)
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where in the limit, the arrows are parabolic restriction functors.

Proof. Define FC → Pop, via {J0 → J1} �→ {P J0
J1

: (GJ1 , g
se
J1

) → (GJ0 , g
se
J0

)}. Then

ShN (G/G) � lim
J∈FC

ShN (gseJ /′GJ) by Proposition 5.41 (2)

� lim
J∈FC

ShN (gJ/′GJ) by Proposition 6.5 and Corollary 6.11 (1)

� lim
J∈FC

ShN (gJ/GJ) by Proposition 6.7.

Define FC → P̃op, via {J0 → J1} �→ {P J0
J1

: (GJ1 , G
se
J1

) → (GJ0 , G
se
J0

)}. Then

ShN (GE) � lim
J∈FC

ShN (Gse
J /′GJ) by Proposition 5.38 (2)

� lim
J∈FC

ShN (GJ/
′GJ) by Proposition 6.8 (1) and Corollary 6.11 (2)

� lim
J∈FC

ShN (GJ/GJ) by Proposition 6.8 (2). �
Example 6.13. For G = SL2, identifying X∗(T ) ⊂ tR as Z ⊂ R, and take the alcove 
C = (0, 1/2) ⊂ tR. We have
ShN (G/G) = lim ShN (t/T )

ShN (g0/G0)

Res
p0
(0,1/2)

ShN (g1/2/G1/2)

Res
p
1/2
(0,1/2)

If the coefficient k = C, the above diagram can be explicitly calculated as:

ShN (G/G,C) = lim Vect

Vect ⊕C[Z/2]-mod

0⊕U

Vect ⊕C[Z/2]-mod

0⊕U

= Vect ⊕ Vect ⊕C[(Z/2 ∗ Z/2)]-mod = Vect ⊕ Vect ⊕C[Waff]-mod

Where U : C[Z/2]-mod → Vect is the forgetful (restriction) functor. The two Vect are 
generated by two cuspidal sheaves, and C[Waff]-mod corresponds (see [7]) to sheaves 
coming from Grothendieck-Springer correspondence:

T/T B/B G/G .

7. Uniformization over M1,1 and parallel transport

Denote Mg the moduli stack of genus g Riemann surface. Denote BunG,g be the stack 
classifying pairs (C, P ), for C a Riemann surface of genus g, and P a G-bundles on C. 
We have a natural map BunG,g → Mg.
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Denote by π : BunB,g → BunG,g, and Ng := π∗(0BunB,g
). We expect Ng defines 

parallel transport of the automorphic category ShN (BunG(C)) over Mg. More precisely, 
for any D → Mg étale map, put BunG,D := BunG,g ×Mg

D, we expect:

Conjecture 7.1. Let i : {C} ↪→ D be a point. Then functor i∗ : ShNg
(BunG,D) →

Sh(BunG(C)) takes value in ShN (BunG(C)). Moreover, if D is contractible, then the 
induced functor

ShNg
(BunG,D) ∼

ShN (BunG(C)),

is an equivalence.

We shall prove a similar statement for elliptic curves. Denote M1,1 the moduli stack 
of elliptic curves. Denote by BunG := BunG,1,1 the stack classifying (E, P ), for E an 
elliptic curve and P a G-bundle on E. And Bun0,ss

G,1,1 ⊂ BunG,1,1 the subset of degree 

0 semistable bundles. Denote N ss
1,1 := π∗(0Bun0,ss

B,1,1
), for π : Bun0,ss

B,1,1 → Bun0,ss
G,1,1. Let 

H → M1,1 be the universal cover by upper half plane. Put Bun0,ss
G,H := Bun0,ss

G,1,1×M1,1 H, 
and N ss

H := N ss
1,1 ×M1,1 H.

Choose S ⊂ t a Waff-invariant subset, and for each a ∈ S, choose VR,a ⊂ tetR,a open 
subset, so that VR,w(a) = w(VR,a) for all w ∈ Waff. For any τ ∈ H, put Vτ,a := X∗(T ) ⊗
R/Z ×VR,a ·τ ⊂ T . Put VH,a := ∪τ∈HVτ,a ⊂ T ×H =: TH. Denote by UH,a ⊂ Ga×H =:
GH,a consist of those elements with eigenvalues lying in VH,a//Wa. For a = (a1, ..., an), 
put Ua = ∩a∈aUa, we have charts pa : UH,a/

′GH,a → Bun0,ss
G,H. These charts give the 

uniformization over M1,1:

Theorem 7.2. There is an isomorphism of stacks:

colim∫Δop
S•
Ẇaff

UH,a/
′GH,a � Bun0,ss

G,H.

Proposition 7.3. p∗a(N ss
H ) = N × 0H as substacks of T ∗(UH,a/

′GH,a) ⊂ T ∗(Ga/
′Ga) ×

T ∗H

Proof. Pick VR,a small, so that VR,a//Wa → tR//Waff is an open embedding. Put Ba :=
Ga ∩ LB, BH,a := Ba ×H and UB

H,a = UH,a ∩BH,a We have a commutative diagram

BH,a/
′BH,a UB

H,a/
′BH,a Bun0,ss

B,H

GH,a/
′GH,a UH,a/

′GH,a Bun0,ss
G,H

TH//Wa VH,a//Wa TH//Waff
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The horizontal arrows are open embeddings, and all squares are cartesian. Hence the 
claim follows. �
Proposition 7.4. Let D → M1,1 be an étale map, and i : {E} ↪→ D a point. Then the 
functor i∗ : ShN ss

1,1(Bun0,ss
G,D) → Sh(Bun0,ss

G (E)) takes value in ShN (BunG(E)). More-
over, if D is contractible, then the induced functor

ShN ss
1,1(Bun0,ss

G,D) ∼
ShN (Bun0,ss

G (E))

is an equivalence.

Proof. Assume D is small and hence can be lifted to H. Then by Theorem 7.2 and 
Proposition 7.3. We see that i∗ is given by the colimit over 

∫Δop

S•
Ẇaff

of the restriction 
functors

i∗a : ShN×0D
(UD,a/

′GD,a) → Sh(Ua/
′Ga).

The notation involving D is self explanatory. We can choose VR,a so that UD,a, Ua

are retractable w.r.t. the nilpotent cones, e.g. the ones as in section 5.3.2. We need to 
show the functor i∗a maps isomorphically onto ShN (Ua/

′Ga). To see this, we have a 
commutative diagram

ShN×0D
(GD,a/GD,a)

�

Sh(Ga/Ga)

�

ShN×0D
(GD,a/

′GD,a)

�

Sh(Ga/
′Ga)

ShN×0D
(UD,a/

′GD,a)
i∗
a

Sh(Ua/
′Ga)

where the top two vertical arrows are untwisting by some element a ∈ a. And bottom two 
vertical arrows are restriction to open substacks, where the left arrow is an equivalence 
since UD,a is retractable w.r.t. 0D × N . The top horizontal arrow can be identified as 
ShN×0D

(Ga/Ga × D) → Sh(Ga/Ga), which maps isomorphically onto ShN (Ga/Ga). 
Hence we see i∗a also maps isomorphically onto ShN (Ua/

′Ga). �
Define A ss a sheaf of category over M1,1 via D �→ ShN ss

1,1(Bun0,ss
G,D).

Corollary 7.5. A ss is a locally constant sheaf of ∞-categories over M1,1, whose stalk at 
E ∈ M1,1 is ShN (GE).
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8. Remarks

In this section, we make some comments about several related topics.

8.1. Stratification of compact group

Lusztig stratification is commonly used in the study of geometry of G/G. We explain 
its relation with our charts when restricted to a maximal compact subgroup.

Let Gc be a simple and simply-connected compact Lie group, and Tc ⊂ Gc a maximal 
compact torus. Choose an alcove C in X∗(Tc) ⊗ R, we define open cover C of Gc by 
C = {Gse

c,J : J ∈ vertices of C}. Identifying the cover with its image, and the cover does 
not depend on the choice of Tc and C, hence the cover is intrinsic associated to Gc. 
Denote by S the finest stratification of Gc generated by C via taking complement and 
intersection. Then C can also be recovered from S : a chart in C is the union of all strata 
whose closure containing a fixed closed stratum in S . It is clear from the definition that 
C and S are conjugation invariant. The stratification S can also be described more 
explicitly:

Proposition 8.1. S = {Gc(Exp(J)) : J ∈ faces of C}.

Now let G be the complexification of Gc, then G has a Lusztig stratification L by 
conjugation invariant subvarieties [29]. Let Lc denote the induced stratification on Gc. 
Note that even each stratum in L is connected, its intersection with Gc may not be 
connected.

Proposition 8.2. Strata in S are precisely the connected components of strata in Lc.

Example 8.3. For Gc = SU(3), G = SL(3, C). L = {(connected components of) Lλ :
λ a partition of 3.}, where Lλ = {g ∈ G : the semisimple part gss has eigenvalue of
type λ.}. The stratum L(2,1) is connected. However L(2,1) ∩ Gc =

∐
k=0,1,2 Sk has 

three connected component, where Sk = {g ∈ Gc : g has eigenvalues {a, a, a−2}, a =
e2πiθ/3, and θ ∈ (k, k + 1)}. And S = {{I}, {e2πi/3I}, {e4πi/3I}, S0, S1, S2, Greg

c } con-
sists of 7 strata.

The closed strata in S (or Lc) are precisely the isolated conjugacy classes in Gc, 
they are in bijection with the vertices of C. For a vertex v, the corresponding conjugacy 
class is isomorphic to G/CG(Exp(v)). For type A, the isolated conjugacy classes are 
central elements, hence discrete. For other types, there exists isolated class corresponds 
to a non-special vertex (i.e. those such that CG(Exp(v)) �= G), and is therefore positive 
dimensional.
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8.2. Nonabelian Weierstrass ℘-function

We have understood the nonabelian analog of E = C/(Z + Zτ) and E = C∗/qZ, we 
also describe the nonabelian analog of view E as of a cubic equation y2 = 4x3 − g2x − g3
birationally.

Let E = C/Λ, where Λ = Z + Zτ , recall the ℘-function is defined as a Λ-invariant 
meromorphic function on C:

℘(z) = 1
z2 +

∑
ω∈Λ−{0}

( 1
(z + ω)2 − 1

ω2 )

Definition 8.4. The nonabelian ℘-function and its derivative is defined as the following 
meromorphic functions gln → gln:

℘(Z) = 1
Z2 +

∑
ω∈Λ−{0}

( 1
(Z + ωI)2 − 1

(ωI)2 )

℘′(Z) = −2
∑
ω∈Λ

1
(Z + ωI)3

We shall consider G = GLn, recall that GLn,E,0 is representable by an smooth alge-
braic variety, and there is a map p : GLn → GLn,E,0. For n = 1, GL1,E,0 = Pic0(E) � E, 
and the map p is identified as C∗ → C∗/e2πiτZ = E.

Theorem 8.5.

(1) Under the maps gln
Exp

GLn

p
GLn,E,0 , the function ℘(Z) and ℘′(Z) de-

scent to a rational function on GLn,E,0.
(2) The map (℘, ℘′) : GLn,E,0 gln × gln , defines a birational isomorphism be-

tween GLn,E,0 and the subvariety:

{(X,Y ) ∈ gln × gln : [X,Y ] = 0, and Y 2 = 4X3 − g2X − g3},

where g2 = 60 
∑

ω∈Λ−{0} ω
−4 and g3 = 140 

∑
ω∈Λ−{0} ω

−6.

Remark 8.6. It is more complicated to (partially) compactify the image of the above 
rational map to give an actual isomorphism. So far we have only use a single chart, and 
the various other charts may be useful for this purpose.

8.3. Dependence of restriction functors on parabolic subgroups

The main results here are Proposition 8.8, which follows immediately from Proposi-
tion 6.8. However, we want to proceed to explain the problem in a more natural point 
of view that compatible with other previous approaches.
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In the theory of finite groups, let f : A ↪→ B be an inclusion of finite groups. A useful 
tool is the induction/restriction of characters:

C[A/A]
f∗

C[B/B]
f∗

Now let G be a reductive Lie group, L ⊂ G a Levi. It turns out that direct induc-
tion/restriction between G and L as in finite group case does not behave well. To correct 
it, the idea is to use an intermediate parabolic subgroup P . And define the parabolic 
induction/restriction in various context using the diagram

L P
pq

G

It’s natural to ask what is the dependence of the resulting restriction/induction on 
the choice of parabolic subgroups. One heuristic reason the restriction (pull back) along 
f : L/L → G/G does not behave well is that the map f is not étale (nor smooth). 
Nevertheless, put Lr = LG-reg, the map f |Lr : Lr/L → G/G is étale, so when restricted 
to Lr, the “correct” restriction functor should agree with f |∗Lr . And we are done if we 
could recover the restriction functor from its information on Lr. In the setting of perverse 
character sheaves, this is what happens, essentially as explained in [20]:

Proposition 8.7. The bottom horizontal arrow is fully faithful and the triangle is naturally 
commutative.

PervN (G/G)

ResP
f∗|Lr/L

PervN (L/L) PervN (Lr/L)

In particular, ResP is the unique (up to canonical isomorphism) functor making the 
diagram commutative.

From our perspective, at the level of 1-categories, Lr play the role of a retractable sub-
set. This is possible because H0(L) → H0(Lr) is an isomorphism (both are connected). 
So two parabolic restrictions are canonical isomorphic since there is a canonical choice 
of retractable subset, namely the largest one Lr.

However, at the level of ∞-categories, Lr is not a retractable subset since the map 
H∗(L) → H∗(Lr) is not an isomorphism. (This is more obvious for Lie algebras, where 
l is contractible while lr is not.) Nevertheless, we could still choose a retractable subset 
to get:
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Proposition 8.8. Let P1, P2 be two parabolic subgroups of a reductive group G with the 
same Levi factor L, then there is an isomorphism of functors (depending on a choice of 
retractable U in LG-reg with respect to N ):

ResP1 � ResP2 : ShN (G/G) ShN (L/L)

Proof. Let U ⊂ LG-reg be a retractable subset w.r.t. N (we left it to the readers to 
show the existence of such U .) Define i1, i2 : Δ1 → P̃ mapping to P1 : (L, U) → (G, G)
and P2 : (L, U) → (G, G) respectively. By Proposition 6.8, we have ShN (α(i1)) �
ShN (β(i1)) � ShN (β(i2)) � ShN (α(i2)) �
Remark 8.9. The retractable subset does not always exist for general H ⊂ G of maximal 
rank (other than Levi subgroups). A counterexample is that for H = SL2 × SL2 ⊂
Sp4 = G.

Since the choice of retractable subset is not canonical, it is natural to understand the 
space of choices. This is more clear in the situation of Lie algebras. Let p1, p2 be two 
parabolic subalgebra of g with Levi l. The space of choice of a retractable subset of l
w.r.t. g is crl := cl ∩ lr. Indeed, for any x ∈ crl , we could choose a small contractible 
and retractable Ux near x, and for x, y close enough and Ux, Uy small enough, we could 
choose a Ux,y containing Ux, Uy. Hence we have constructed

Proposition 8.10. Regard crl as an ∞-groupoid. There is a morphism of ∞-groupoids:

crl [Resp1 ,Resp2 ],

where the right hand side is the ∞-groupoid of natural isomorphisms between Resp1 and 
Resp2 .

Remark 8.11.

(1) Pick any x ∈ crl , it gives Lie algebra version of Proposition 8.8.
(2) Under Fourier transform, for orbital sheaves, such morphism is constructed in [30]

using nearby cycle functor of the family given by characteristic polynomial map. 
Note that the same choice crl is implicit in the proof.

The same approach does not apply to the elliptic situation, we don’t know yet if the 
parabolic restriction for nilpotent sheaves on GE is isomorphic for different choice of 
parabolics. The problem is that E is compact, restricting to any (proper) open subset 
will miss the top cell, hence there is no retractable open subset in this case. This is 
contrary to the case for C∗ or C where one could restrict to a smaller open subset where 
the relavant maps behave well while still retains the topology. We will understand this 
question for E in a future paper via a different method.
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Appendix A. Analytic stacks

Denote by S the ∞-category of topological spaces, Cplx the site of complex spaces 
with classical topology, a prestack is a presheaf Y : C plxop → S , and a stack is a 
sheaf on Cplx. Denote by S tk the ∞-topoi of stacks. We view Cplx ⊂ S tk via the 
Yoneda embedding. A morphism Y ′ → Y in S tk is representable if for any X →
Y , X ∈ C plx, the fiber product X ×Y Y ′ is representable (by a complex spaces). Let 
P be a property of morphism in C plx, which is stable under base change, we say a 
representable morphism Y ′ → Y in S tk satisfying P if for any X → Y , X ∈ C plx, 
the base change map X ×Y Y ′ → X satisfies property P . Such properties include being 
surjective, étale (:=locally biholomorphic), smooth, closed embedding, open embedding, 
open dense embedding, isomorphism.

Definition A.1. A stack Y is an analytic stack if

(1) Y (S) is a (1-)groupoid, for all S.
(2) The diagonal map Y → Y × Y is representable.
(3) There exist Z ∈ C plx, and f : Z → Y (which is automatically representable by (2)) 

smooth and surjective.

We shall call the pair (Z, f) an atlas of F .

Definition A.2. f : X → Y is generically open if there is U ⊂ X open dense embedding, 
such that f |U : U → Y is an open embedding.

Lemma A.3. An étale and generically open morphism of analytic stacks is open embed-
ding.

Proof. Suppose f : X → Y is generically open and étale, but not an open embedding. 
Then there are x, x′ ∈ X mapping to the same point y. By étaleness, there is a small ball 
U near y, so that f−1(U) → U contains a double cover. Therefore f can’t be generically 
open. Contradiction. �
Notation A.4. For a groupoid C , let |C | be the set of isomorphism classes in C . For a 
stack X , Denote |X | := |X (C)|. It has a natural topology coming from (representable) 
étale morphisms.

Let x ∈ Ob(X (C)), we say f is étale at x if for any base change Y → Y , f ′ :
X := X ×Y Y → Y is étale at any point x′ ∈ X over x. By definition, étaleness only 
depends on isomorphism class of x, so we can also speak about f being étale at x ∈ |X |. 
The locus in |X | where f is étale is open. And f is étale if and only if it is étale at 
every |X |.
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A.1. Tangent groupoid and tangent complex

TxX the tangent groupoid at x is defined to be the fiber category of σ : X (C[ε]) →
X (C) over x, i.e. Ob(TxX ) := {(v, φ) : v ∈ X (C[ε]), φ : σ(v) ∼−→ x}, and morphism are 
those induce identity on x. There is an action of Aut(x) on TxX via (v, φ) �→ (v, g ◦ φ)
We have natural map of groupoid dfx : TxX → Tf(x)Y by post-composition with f . 
The map intertwines the action of Aut(x) and Aut(f(x)). By base change, we have

Proposition A.5. Assume X ,Y smooth analytic stacks, then f is étale at x if and only 
if dfx is an equivalence.

Where an analytic stack is smooth if it has an atlas (Z, f), such that Z is a complex 
manifold. For smooth analytic stack X , the tangent groupoid TxX has a natural struc-
ture of category in vector spaces such that the commutativity constraint is trivial. Such 
datum is equivalent to complex of vector spaces in degree −1, 0. The assignment is by 
associate such a category C to H−1 → H0 where the differential is trivial and H0(C ) :=
isomorphism classes of objects in C , and H−1(C ) := the automorphisms of identity 
object. Note that both of them have vector space structures. Under this assignment, 
Aut(x) acts linearly on Hi(TxX ), and dfx induces an linear map between Hi’s and it is 
an isomorphism if and only if the original functor between groupoids is an equivalence. 
We have H−1(TxX ) = Lie(Aut(x)), and the action of Aut(x) is conjugation.

Example A.6. Let X = X/G be the quotient stack, TX is represented by the complex 
g ⊗C OX → TX, for x ∈ X, let x̄ be the image of x in X , then Tx̄X is quasi-isomorphic 
to the complex g → TxX, where the arrow is H �→ d

dt |t=0 exp(tH)x. The action of 
Aut(x̄) = CG(x) on Tx̄X = {g δ−→ TxX} can be identified as:

• conjugation on g;
• g ∈ Aut(x̄), v = γ′(0) ∈ TxX, for some curve γ(t) through x. We have g · v :=

d
dt |t=0gγ(t).

Then δ is an Aut(x̄) module map. Indeed, δ(adg(H)) = d
dt |t=0 exp(t · adg(H))x =

d
dt |t=0g exp(tH)g−1x = d

dt |t=0g exp(tH)x = g ·δ(H), where g−1x = x because g ∈ CG(x).

A.2. Sheaves on analytic stacks

We shall work in the framework of [27,28]. Let k be a commutative ring of finite global 
dimension. Denote by Sh(X) = Sh(X, k) the ∞-category of sheaves of k-modules on X. 
And for Y a prestack, define Sh(Y ) := limX∈Cplx/Y

Sh(X). We have the following 
smooth descent:

Theorem A.7. Let F be an analytic stack, (Z, f) an atlas of Y . Denote Z•
Y : Δop → S tk

the Čech nerve of f . Then:
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(1) colimΔopZ•
Y � Y in S tk.

(2) limΔ Sh(Z•
Y ) � Sh(Y ) in C at∞.

Theorem A.8. Let I be an ∞-category, and X : I � → S tk be a functor, such that

(i) all objects go to analytic stacks;
(ii) all arrows go to representable étale morphisms;
(iii) the induced functor on C-points X(C) : I � → S is a colimit diagram.

Then

(1) X is a colimit diagram.
(2) the induced functor on sheaves ShX : I �,op → C at∞, defined by I �→ Sh(X(I)), is 

a limit diagram.

Proof. By Theorem A.7, we can assume X takes value in C plx.
(2) For I ∈ I , put fI : X(I) → X(∗). For any F ∈ Sh(X(∗)) and x ∈ X(∗), we 
have (fI!f∗

i F )x �
∐

f−1
I (x) Fx by the étaleness of fI . For fully-faithfulness: by next 

Lemma, it is equivalent to show that the natural map colimi∈I fI!f
∗
I (F ) → F is an 

isomorphism for any F ∈ Sh(X(∗)). This can be checked on stalks: for any x ∈ X, 
we have (fI!f∗

I F )x �
∐

f−1
I (x) Fx by the étaleness of fI , hence (colimI∈I fI!f

∗
I (F ))x �

colimI∈I (fI!f∗
I (F ))x � colimI∈I

∐
f−1
I (x) Fx � Fx because colimI∈I

∐
f−1
I (x) � {x} by 

assumption. For essential surjectivity: let FI ∈ Sh(X(I)), I ∈ I be a compatible sys-
tem, put F := colimI∈I fI!FI . Define the ∞-category Xx := {(I, xI) | xI ∈ f−1

I (x)}, 
then Fx = colimI∈I

∐
xI∈f−1

I (x) FIxI
= colimXx

FIxI
= colim|Xx|FIxI

, the last equality 
is because for any (I, xI) → (J, xJ), the natural map FJxJ

→ FIxI
, is an isomorphism. 

Now |Xx| � ∗ by assumption. This induces the isomorphism FIxI
→ Fx � f∗

I FxI
, hence 

f∗
I F � FI .

(1) We see that the functor X factors as I � X′

Sh(X(∗),S ) i
S tk , where 

X ′(I) = fI!f
∗
I (X(∗)). The functor i preserves colimit, so it suffices to show X ′ is 

a colimit diagram. This follows the argument in (2), since X � colim fI!f
∗
I (X) in 

Sh(X(∗), S ). �

Lemma A.9. Let C : I �,op → C at∞ be a functor, such that for any a : I → J in I , the 
left adjoint of C(a) exist. Put gI := C(I → ∗), and fI its left adjoint. Then the following 
are equivalent:

(1) The induced functor C(∗) → limI∈I C(I) is fully faithful.
(2) The natural transformation ε : colimi∈I fIgI → Id is an isomorphism.
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Proof. The limit ∞-category limI∈I C(I) consists of objects: compatible system {cI ∈
C(I)}I∈I , and morphisms: Hom(cI , dI) = lim Hom(cI , dI). For x, y ∈ C(∗), we have 
Hom(x, y) → limi∈I Hom(gi(x), gi(y)) � Hom(colimi∈I figi(x), y). Then both (1) and 
(2) are equivalent to the above arrow being an equivalence. �
Remark A.10.

(1) (Descent for hypercovering) Étale hypercoverings satisfy the assumption of Theo-
rem A.8. In fact, a functor U•,� : Δop,� → S tk is an étale hypercovering of an 
analytic stack if and only if it satisfies (i)-(iii) and the additional assumption: (iv) 
the simplicial set U•,�(C)|Δop is a Kan complex.

(2) Let {Us|s ∈ S} be a finite open cover of an analytic stack X. Let P(S)(resp. P0(S))
be the category of (resp. nonempty) subset of S. Then the functor U : P(S)op =
P0(S)op,� → S tk, via I → ∩s∈IUs satisfies assumption.

Appendix B. Semisimple and semistable bundles

In this section, we collected some basic facts about G-bundles on elliptic curves. Some 
references are [4,15,16].

Definition B.1. Let P be a G bundle on a compact Riemann surface C.
P is of degree 0 if it lies in the neutral component Bun0

G(C) of BunG(C)
P is semisimple if P has reduction to a maximal torus T .
Let C = E be an elliptic curve.
P is semistable if the associated adjoint bundle gP is semistable.

It’s easy to see that semisimple semistable G bundles of degree 0 are exactly those in 
the image of the map Bun0

T (C) → Bun0
G(C). Let GE := Bun0,ss

G (E) be the stack of degree 
0 semistable G bundles on E. And eE be the coarse moduli space of degree 0 semistable 
G bundles. There is a (non-representable) maps between stacks χE : GE → eE , by taking 
a bundle to its S-equivalence class. We have eE � (Pic0(E) ⊗ X∗(T ))//W . There is a 
commutative diagram:

TE/W
i

π

GE

χE

eE

where π : TE/W → eE by forgetting the automorphisms. Let eregE = (Pic0(E) ⊗
X∗(T ))reg//W ⊂ eE , where (Pic0(E) ⊗X∗(T ))reg ⊂ (Pic0(E) ⊗X∗(T )) is the open dense 
locus where the W action is free. Take Greg

E := χ−1
E (eregE ) and T reg

E /W := π−1(eregE ), then 
we have an isomorphism of analytic stacks T reg

E /W
∼−→ Greg

E .
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Proposition B.2. For any c ∈ eE, the subset of semisimple bundles is abundant in 
|χ−1

E (c)|.

Proof. Take any P ∈ |χ−1
E (c)|, by [7], there exists a B-reduction PB of degree 0. Now by 

[33, Proposition 3.5], there exist a family of G bundles on E, whose generic fiber is P and 
special fiber is Pss := PB×BT×TG. Hence Pss ∈ {P}, note also that Pss ∈ |χ−1

E (c)|. �
Let Bun0,ss

G,x (E) be the moduli stack of degree 0 semistable G-bundles on E with 
trivialization at x ∈ E. We have:

Proposition B.3. Bun0,ss
G,x (E) is representable by a complex manifold.

Proof. Consider Bun0,ss
G,x (E)alg the smooth algebraic stack of degree 0 semistable G bun-

dles with trivialization at x. For any G-bundles P, the natural map Aut(P) → Aut(Px)
is injective, by Atiyah’s classification of vector bundles over elliptic curves. Hence 
Bun0,ss

G,x (E)alg takes values in S et ⊂ S , therefore it is representable by a smooth alge-
braic space. And Bun0,ss

G,x (E) is analytification of Bun0,ss
G,x (E)alg, hence it is representable 

by a complex manifold. �
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